Minimum cost solution of photovoltaic–diesel–battery hybrid power systems for remote consumers
•An optimal energy dispatch model of a PV–diesel–battery hybrid system is proposed.•The cost function minimizes fuel costs subject to given constraints.•We analyse energy flows in the system in a 24-h period.•Effect of daily and seasonal variations in demand on fuel cost is shown. Hybrid systems pre...
Saved in:
Published in | Solar energy Vol. 96; pp. 292 - 299 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An optimal energy dispatch model of a PV–diesel–battery hybrid system is proposed.•The cost function minimizes fuel costs subject to given constraints.•We analyse energy flows in the system in a 24-h period.•Effect of daily and seasonal variations in demand on fuel cost is shown.
Hybrid systems present a new dimension to the time correlation of intermittent renewable energy sources. The paper considers the daily energy consumption variations for winter and summer weekdays and weekends in order to compare the corresponding fuel costs and evaluate the operational efficiency of the hybrid system for a 24-h period. Previous studies have assumed a fixed load and uniform daily operational cost. A load following diesel dispatch strategy is employed in this work and the fuel costs and energy flows are analysed. The results show that the photovoltaic–diesel–battery model achieves 73% and 77% fuel savings in winter and 80.5% and 82% fuel savings in summer for days considered when compared to the case where the diesel generator satisfies the load on its own. The fuel costs obtained during both winter and summer seasons for weekdays and weekends show substantial variations which should not be neglected if accurate operation costs are to be achieved. The results indicate that the developed model can achieve a more practical estimate of the fuel costs reflecting variations of power consumption behavior patterns for any given system. |
---|---|
AbstractList | Hybrid systems present a new dimension to the time correlation of intermittent renewable energy sources. The paper considers the daily energy consumption variations for winter and summer weekdays and weekends in order to compare the corresponding fuel costs and evaluate the operational efficiency of the hybrid system for a 24-h period. Previous studies have assumed a fixed load and uniform daily operational cost. A load following diesel dispatch strategy is employed in this work and the fuel costs and energy flows are analysed. The results show that the photovoltaic-diesel-battery model achieves 73% and 77% fuel savings in winter and 80.5% and 82% fuel savings in summer for days considered when compared to the case where the diesel generator satisfies the load on its own. The fuel costs obtained during both winter and summer seasons for weekdays and weekends show substantial variations which should not be neglected if accurate operation costs are to be achieved. The results indicate that the developed model can achieve a more practical estimate of the fuel costs reflecting variations of power consumption behavior patterns for any given system. [PUBLICATION ABSTRACT] Hybrid systems present a new dimension to the time correlation of intermittent renewable energy sources. The paper considers the daily energy consumption variations for winter and summer weekdays and weekends in order to compare the corresponding fuel costs and evaluate the operational efficiency of the hybrid system for a 24-h period. Previous studies have assumed a fixed load and uniform daily operational cost. A load following diesel dispatch strategy is employed in this work and the fuel costs and energy flows are analysed. The results show that the photovoltaic diesel-battery model achieves 73% and 77% fuel savings in winter and 80.5% and 82% fuel savings in summer for days considered when compared to the case where the diesel generator satisfies the load on its own. The fuel costs obtained during both winter and summer seasons for weekdays and weekends show substantial variations which should not be neglected if accurate operation costs are to be achieved. The results indicate that the developed model can achieve a more practical estimate of the fuel costs reflecting variations of power consumption behavior patterns for any given system. •An optimal energy dispatch model of a PV–diesel–battery hybrid system is proposed.•The cost function minimizes fuel costs subject to given constraints.•We analyse energy flows in the system in a 24-h period.•Effect of daily and seasonal variations in demand on fuel cost is shown. Hybrid systems present a new dimension to the time correlation of intermittent renewable energy sources. The paper considers the daily energy consumption variations for winter and summer weekdays and weekends in order to compare the corresponding fuel costs and evaluate the operational efficiency of the hybrid system for a 24-h period. Previous studies have assumed a fixed load and uniform daily operational cost. A load following diesel dispatch strategy is employed in this work and the fuel costs and energy flows are analysed. The results show that the photovoltaic–diesel–battery model achieves 73% and 77% fuel savings in winter and 80.5% and 82% fuel savings in summer for days considered when compared to the case where the diesel generator satisfies the load on its own. The fuel costs obtained during both winter and summer seasons for weekdays and weekends show substantial variations which should not be neglected if accurate operation costs are to be achieved. The results indicate that the developed model can achieve a more practical estimate of the fuel costs reflecting variations of power consumption behavior patterns for any given system. |
Author | Tazvinga, Henerica Xia, Xiaohua Zhang, Jiangfeng |
Author_xml | – sequence: 1 givenname: Henerica surname: Tazvinga fullname: Tazvinga, Henerica email: henerica.tazvinga@up.ac.za – sequence: 2 givenname: Xiaohua surname: Xia fullname: Xia, Xiaohua – sequence: 3 givenname: Jiangfeng surname: Zhang fullname: Zhang, Jiangfeng |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27745487$$DView record in Pascal Francis |
BookMark | eNqFkU1qHDEQhUVwIGM7Rwg0hEA23ZHU0khDFiGY_IGDNw5kJyR1NdbQLU1UaofZ5Q6-YU4SDTPZeONVFdT3XhX1zslZTBEIecVoxyhbv9t2mCaIkDtOWd9R1dGePiMrJhRrGZfqjKwo7XVLN_znC3KOuKWUKabVirjvIYZ5mRufsDTVZykhxSaNze4ulXSfpmKD__vnYQiAMNXG2VIg75u7vcthaHbpN-QG91hgxmZMuckwpwLVMOIyQ8ZL8ny0E8LLU70gPz5_ur362l7ffPl29fG69YLS0oKTjqleSilAO8m4FmwEwa2mTo2jhYE7vhmUs1w6KbzTDvjGc1tbx4D3F-Tt0XeX068FsJg5oIdpshHSgoYJqWUvhdhU9PUjdJuWHOt1leq5Xgsm1pV6c6IsejuN2UYf0OxymG3eG66UkEKryr0_cj4nxAyj8aHYwx9LtmEyjJpDTmZrTjmZQ06GKlNzqmr5SP1_wVO6D0cd1J_ehzpFHyB6GEIGX8yQwhMO_wBy5raY |
CODEN | SRENA4 |
CitedBy_id | crossref_primary_10_1016_j_apenergy_2015_03_109 crossref_primary_10_3390_forecast2040025 crossref_primary_10_1016_j_jnlest_2020_100016 crossref_primary_10_1049_iet_rpg_2017_0659 crossref_primary_10_1016_j_energy_2020_118567 crossref_primary_10_1016_j_esr_2016_10_002 crossref_primary_10_1080_20421338_2018_1540126 crossref_primary_10_3182_20140824_6_ZA_1003_00943 crossref_primary_10_1016_j_egypro_2015_07_193 crossref_primary_10_1016_j_jclepro_2017_09_212 crossref_primary_10_1088_1757_899X_494_1_012074 crossref_primary_10_1016_j_enconman_2020_112941 crossref_primary_10_1016_j_apenergy_2017_03_076 crossref_primary_10_1016_j_renene_2018_02_021 crossref_primary_10_1016_j_solener_2015_02_001 crossref_primary_10_14710_ijred_2023_54072 crossref_primary_10_1007_s00202_023_02074_0 crossref_primary_10_1016_j_ifacol_2017_08_029 crossref_primary_10_3390_en12010181 crossref_primary_10_1016_j_arcontrol_2016_09_009 crossref_primary_10_1016_j_solener_2014_12_013 crossref_primary_10_1155_2024_5933462 crossref_primary_10_1016_j_compeleceng_2019_01_027 crossref_primary_10_1016_j_enbuild_2015_03_032 crossref_primary_10_1016_j_apenergy_2016_03_110 crossref_primary_10_1016_j_egyr_2022_10_063 crossref_primary_10_1016_j_energy_2014_01_100 crossref_primary_10_1115_1_4031514 crossref_primary_10_3390_su10114082 crossref_primary_10_1016_j_epsr_2022_108905 crossref_primary_10_1016_j_jclepro_2017_12_248 crossref_primary_10_3390_su13115856 crossref_primary_10_1016_j_solener_2018_06_033 crossref_primary_10_1016_j_renene_2023_03_127 crossref_primary_10_1016_j_apenergy_2017_06_043 crossref_primary_10_1016_j_ijhydene_2024_03_169 crossref_primary_10_1016_j_matpr_2020_04_894 crossref_primary_10_1007_s12204_019_2037_y crossref_primary_10_1016_j_jclepro_2020_125308 crossref_primary_10_3390_app9061261 crossref_primary_10_1016_j_ijhydene_2018_05_110 crossref_primary_10_3390_en17020459 crossref_primary_10_1016_j_egyr_2024_09_061 crossref_primary_10_1016_j_apenergy_2019_03_049 crossref_primary_10_1016_j_envres_2020_109651 crossref_primary_10_1016_j_egyr_2022_05_200 crossref_primary_10_1016_j_energy_2017_11_093 crossref_primary_10_1016_j_energy_2018_08_048 crossref_primary_10_1002_jnm_2675 crossref_primary_10_1016_j_rser_2014_10_051 crossref_primary_10_1016_j_enconman_2015_04_024 crossref_primary_10_1016_j_egypro_2014_12_158 crossref_primary_10_1016_j_energy_2019_116475 crossref_primary_10_1109_TIA_2017_2782671 crossref_primary_10_1007_s00500_023_08814_5 crossref_primary_10_3390_pr10112164 crossref_primary_10_1007_s00521_023_08813_5 crossref_primary_10_1007_s40565_017_0364_2 crossref_primary_10_1016_j_egypro_2015_07_300 crossref_primary_10_2174_2352096511666180312142859 crossref_primary_10_4028_p_13gc8e crossref_primary_10_1016_j_apenergy_2015_10_072 crossref_primary_10_1016_j_renene_2019_03_003 crossref_primary_10_1016_j_seta_2021_101225 crossref_primary_10_1016_j_ijhydene_2024_12_244 crossref_primary_10_1016_j_scs_2018_05_049 crossref_primary_10_1016_j_rser_2014_12_035 crossref_primary_10_1016_j_enbuild_2015_02_051 crossref_primary_10_1016_j_egypro_2014_11_1093 crossref_primary_10_1016_j_energy_2018_08_177 crossref_primary_10_1016_j_egyr_2023_10_019 crossref_primary_10_3390_en11030610 crossref_primary_10_1016_j_enconman_2015_03_087 crossref_primary_10_1080_14786451_2020_1735387 crossref_primary_10_1016_j_jclepro_2023_140403 crossref_primary_10_1051_matecconf_201816401045 crossref_primary_10_1016_j_apenergy_2017_05_033 crossref_primary_10_1016_j_apenergy_2016_12_077 crossref_primary_10_1016_j_renene_2019_10_065 crossref_primary_10_1016_j_enconman_2015_05_018 crossref_primary_10_3390_en17236039 crossref_primary_10_1016_j_energy_2015_04_002 crossref_primary_10_1016_j_est_2019_100877 crossref_primary_10_1016_j_solener_2020_07_037 crossref_primary_10_1016_j_apenergy_2019_113718 crossref_primary_10_3390_en14196333 crossref_primary_10_1109_TSTE_2015_2408622 crossref_primary_10_1016_j_arcontrol_2017_04_003 crossref_primary_10_1016_j_solener_2015_02_028 crossref_primary_10_1016_j_apenergy_2015_12_080 crossref_primary_10_1016_j_apenergy_2018_03_162 crossref_primary_10_1016_j_solener_2023_112123 crossref_primary_10_1155_2019_4824837 crossref_primary_10_1016_j_energy_2017_03_032 crossref_primary_10_1016_j_solener_2014_07_025 crossref_primary_10_3390_electronics10070796 crossref_primary_10_1016_j_ref_2021_07_007 crossref_primary_10_2139_ssrn_3943537 crossref_primary_10_1016_j_renene_2016_08_026 crossref_primary_10_1016_j_enconman_2016_12_036 crossref_primary_10_1016_j_rser_2019_109417 crossref_primary_10_1007_s42835_021_00801_w crossref_primary_10_1038_s41598_024_72706_3 crossref_primary_10_5194_asr_20_129_2024 crossref_primary_10_1080_01430750_2019_1636868 crossref_primary_10_1016_j_apenergy_2016_10_041 crossref_primary_10_1016_j_enbuild_2017_06_031 crossref_primary_10_1016_j_enconman_2015_01_015 crossref_primary_10_1016_j_energy_2017_10_012 crossref_primary_10_1016_j_renene_2024_121674 crossref_primary_10_1016_j_seta_2018_12_008 crossref_primary_10_1016_j_solener_2014_02_017 crossref_primary_10_1080_17597269_2016_1192443 crossref_primary_10_3390_s22041306 crossref_primary_10_3390_su13148048 crossref_primary_10_1109_ACCESS_2019_2907199 crossref_primary_10_3390_en15051776 crossref_primary_10_1016_j_enconman_2015_10_051 crossref_primary_10_1007_s40313_020_00585_w crossref_primary_10_1109_TCST_2014_2361800 crossref_primary_10_1016_j_renene_2022_06_086 crossref_primary_10_1016_j_energy_2019_01_019 crossref_primary_10_1016_j_ijhydene_2020_08_153 crossref_primary_10_1007_s40095_018_0266_8 crossref_primary_10_1016_j_apenergy_2018_04_001 crossref_primary_10_1016_j_solener_2016_05_028 crossref_primary_10_1007_s42461_022_00640_x crossref_primary_10_1016_j_apenergy_2018_06_092 crossref_primary_10_1016_j_jai_2023_12_001 crossref_primary_10_1016_j_solener_2021_08_079 crossref_primary_10_1016_j_desal_2017_10_044 crossref_primary_10_1108_IJESM_12_2017_0008 crossref_primary_10_1016_j_renene_2023_119744 crossref_primary_10_1016_j_energy_2021_120730 crossref_primary_10_1016_j_apenergy_2016_10_048 crossref_primary_10_1177_0958305X231215312 crossref_primary_10_1016_j_jobe_2024_108916 crossref_primary_10_1016_j_renene_2017_02_054 crossref_primary_10_1049_iet_rpg_2015_0027 crossref_primary_10_1007_s13369_023_08573_3 |
Cites_doi | 10.1016/0038-092X(79)90100-2 10.1109/MCS.2011.941403 10.1016/S0038-092X(96)00087-4 10.1016/j.solener.2005.03.013 10.1016/j.solener.2010.10.018 10.1016/0038-092X(88)90020-5 10.1016/j.epsr.2011.12.002 10.1016/j.apenergy.2011.03.015 10.17159/2413-3051/2012/v23i1a3153 10.1016/j.energy.2004.07.011 10.1016/S0038-092X(97)00028-5 10.17159/2413-3051/2012/v23i4a3175 10.1016/S0038-092X(98)00139-X 10.1016/j.solener.2004.10.004 10.1016/S0360-3199(98)00175-X 10.1016/j.rser.2006.07.013 10.1016/j.solener.2011.09.003 10.1016/j.solener.2005.11.002 10.1039/9781849730952 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Copyright Pergamon Press Inc. Oct 2013 |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright Pergamon Press Inc. Oct 2013 |
DBID | AAYXX CITATION IQODW 7SP 7ST 8FD C1K FR3 KR7 L7M SOI 7TG 7U6 KL. |
DOI | 10.1016/j.solener.2013.07.030 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1471-1257 |
Editor | Bandyopadhyay, B |
Editor_xml | – fullname: Bandyopadhyay, B |
EndPage | 299 |
ExternalDocumentID | 3072929841 27745487 10_1016_j_solener_2013_07_030 S0038092X13003046 |
Genre | Feature |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI 7TG 7U6 KL. |
ID | FETCH-LOGICAL-c400t-eb5b1735554e8b512841fe42a80b7ffaed2b29d7ba25b54cb8be29c2a4cbb1e23 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Fri Jul 11 01:01:29 EDT 2025 Fri Jul 25 04:20:52 EDT 2025 Wed Apr 02 07:13:28 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Tue Jul 01 01:08:32 EDT 2025 Fri Feb 23 02:18:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optimisation algorithm Economic dispatch Energy efficiency Control strategy Operation efficiency Hybrid system Performance evaluation Dispatching problem Energy consumption Costs Load distribution Diesel fuel Daily variation Optimization Electric power consumption Energy flow Control system Diesel engine Secondary cell Algorithm Renewable energy sources Electrical network Summing circuits Hybrid power systems Economic aspect Comparative study |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-eb5b1735554e8b512841fe42a80b7ffaed2b29d7ba25b54cb8be29c2a4cbb1e23 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1432864146 |
PQPubID | 9393 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1458535449 proquest_journals_1432864146 pascalfrancis_primary_27745487 crossref_citationtrail_10_1016_j_solener_2013_07_030 crossref_primary_10_1016_j_solener_2013_07_030 elsevier_sciencedirect_doi_10_1016_j_solener_2013_07_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier – name: Pergamon Press Inc |
References | Duffie, Beckman (b0040) 2006 Tiwari, G.N., Dubey, S., 2010. Fundamentals of Photovoltaic Modules and their Applications. RSC Publishing, Cambridge. Zhou, Lu, Yang (b0145) 2007; 81 Barley, Winn (b0015) 1996; 58 Seeling-Hochmuth (b0080) 1997; 61 Xia, Zhang (b0125) 2011; 31 Fulzele, Dutt (b0050) 2012; 2 Vosen, Keller (b0115) 1999; 24 Datta, Senjyu, Yona, Funabashi, Kim (b0035) 2009; 24 Battisti, Corrado (b0020) 2005; 30 Shaahid, Elhadidy (b0085) 2008; 12 Collares-Pereira, Rabl (b0030) 1979; 22 Zhang, Xia, Zhang (b0140) 2012; 86 Agrawal (b0005) 2012 Dufo-Lopez, Bernal-Augustin (b0045) 2005; 79 Koutroulis, Kolokotsa, Potirakis, Kalaitzakis (b0065) 2006; 80 Tazvinga, H., Fore, S., 2010. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system. International Conference on Domestic Use of Energy, Cape Peninsula University of Technology, Cape Town, 29–31 March, 2010, pp. 68–73. Post, Thomas (b0075) 1988; 41 Agrawal, Tiwari (b0010) 2011; 85 Zhang, Xia (b0135) 2011; 88 Muselli, Notton, Louche (b0070) 1999; 65 Tazvinga, Hove (b0100) 2010 Hong, Lian (b0055) 2012; 27 Suryoatmojo, Elbaset, Syafaruddin, Hiyama (b0090) 2010; 6 Wies, Johnson, Agrawal, Chubb (b0120) 2005; 20 Belfkira, Zhang, Barakat (b0025) 2011; 85 Hove, Tazvinga (b0060) 2012; 23 Tina, Gagliano, Raiti (b0105) 2006; 80 Xia, Zhang, Cass (b0130) 2012; 23 10.1016/j.solener.2013.07.030_b0110 Belfkira (10.1016/j.solener.2013.07.030_b0025) 2011; 85 Xia (10.1016/j.solener.2013.07.030_b0130) 2012; 23 10.1016/j.solener.2013.07.030_b0095 Agrawal (10.1016/j.solener.2013.07.030_b0010) 2011; 85 Koutroulis (10.1016/j.solener.2013.07.030_b0065) 2006; 80 Tazvinga (10.1016/j.solener.2013.07.030_b0100) 2010 Zhang (10.1016/j.solener.2013.07.030_b0140) 2012; 86 Agrawal (10.1016/j.solener.2013.07.030_b0005) 2012 Battisti (10.1016/j.solener.2013.07.030_b0020) 2005; 30 Seeling-Hochmuth (10.1016/j.solener.2013.07.030_b0080) 1997; 61 Hong (10.1016/j.solener.2013.07.030_b0055) 2012; 27 Wies (10.1016/j.solener.2013.07.030_b0120) 2005; 20 Xia (10.1016/j.solener.2013.07.030_b0125) 2011; 31 Barley (10.1016/j.solener.2013.07.030_b0015) 1996; 58 Suryoatmojo (10.1016/j.solener.2013.07.030_b0090) 2010; 6 Dufo-Lopez (10.1016/j.solener.2013.07.030_b0045) 2005; 79 Muselli (10.1016/j.solener.2013.07.030_b0070) 1999; 65 Vosen (10.1016/j.solener.2013.07.030_b0115) 1999; 24 Hove (10.1016/j.solener.2013.07.030_b0060) 2012; 23 Zhang (10.1016/j.solener.2013.07.030_b0135) 2011; 88 Tina (10.1016/j.solener.2013.07.030_b0105) 2006; 80 Collares-Pereira (10.1016/j.solener.2013.07.030_b0030) 1979; 22 Zhou (10.1016/j.solener.2013.07.030_b0145) 2007; 81 Shaahid (10.1016/j.solener.2013.07.030_b0085) 2008; 12 Post (10.1016/j.solener.2013.07.030_b0075) 1988; 41 Duffie (10.1016/j.solener.2013.07.030_b0040) 2006 Datta (10.1016/j.solener.2013.07.030_b0035) 2009; 24 Fulzele (10.1016/j.solener.2013.07.030_b0050) 2012; 2 |
References_xml | – volume: 20 start-page: 692 year: 2005 end-page: 700 ident: b0120 article-title: Simulink model for economic analysis and environmental impacts of a PV with diesel-battery system for remote villages. Power Systems publication-title: IEEE Transactions – volume: 85 start-page: 100 year: 2011 end-page: 110 ident: b0025 article-title: Optimal sizing study of hybrid wind/PV/diesel power generation unit publication-title: Solar Energy – volume: 23 start-page: 23 year: 2012 end-page: 31 ident: b0130 article-title: Energy management of commercial buildings – a case study from a POET perspective of energy efficiency publication-title: Journal of Energy in Southern Africa – volume: 65 start-page: 143 year: 1999 end-page: 157 ident: b0070 article-title: Design of hybrid-photovoltaic power generator, with optimization of energy management publication-title: Solar Energy – volume: 27 start-page: 640 year: 2012 end-page: 647 ident: b0055 article-title: Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using Markov-based genetic algorithm. Power Delivery publication-title: IEEE Transactions – volume: 22 start-page: 155 year: 1979 end-page: 164 ident: b0030 article-title: The average distribution of solar radiation correlation between diffuse and hemispherical and between daily and hourly insolation values publication-title: Solar Energy – volume: 2 start-page: 68 year: 2012 end-page: 74 ident: b0050 article-title: Optimium planning of hybrid renewable energy system using HOMER publication-title: International Journal of Electrical and Computer Engineering – volume: 80 start-page: 1072 year: 2006 end-page: 1088 ident: b0065 article-title: Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using generic algorithms publication-title: Solar Energy – volume: 24 start-page: 1139 year: 1999 end-page: 1156 ident: b0115 article-title: Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies publication-title: International Journal of Hydrogen Energy – year: 2010 ident: b0100 article-title: Photovoltaic/Diesel/Battery Hybrid Power Supply System: Generator Component Sizing and Energy Performance Analysis – year: 2006 ident: b0040 article-title: Solar Engineering of Thermal Processes – volume: 31 start-page: 18 year: 2011 end-page: 31 ident: b0125 article-title: Modelling and control of heavy-haul trains publication-title: IEEE Control Systems Magazine – volume: 61 start-page: 77 year: 1997 end-page: 87 ident: b0080 article-title: A combined optimization concept for the design and operation strategy of hybrid-PV energy systems publication-title: Solar Energy – volume: 80 start-page: 578 year: 2006 end-page: 588 ident: b0105 article-title: Hybrid solar/wind power system probabilistic modeling for long-term performance assessment publication-title: Solar Energy – volume: 12 start-page: 488 year: 2008 end-page: 503 ident: b0085 article-title: Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions - A step to clean future publication-title: Renewable and Sustainable Energy Reviews – volume: 41 start-page: 465 year: 1988 end-page: 473 ident: b0075 article-title: Photovoltaic systems for current and future applications publication-title: Solar Energy – volume: 85 start-page: 3046 year: 2011 end-page: 3056 ident: b0010 article-title: Experimental validation of glazed hybrid micro-channel solar cell thermal tile publication-title: Solar Energy – volume: 79 start-page: 33 year: 2005 end-page: 34 ident: b0045 article-title: Design and control strategies of PV-diesel systems using genetic algorithms publication-title: Solar Energy – reference: Tiwari, G.N., Dubey, S., 2010. Fundamentals of Photovoltaic Modules and their Applications. RSC Publishing, Cambridge. – volume: 6 start-page: 4631 year: 2010 end-page: 4649 ident: b0090 article-title: Genetic algorithm based optimal sizing of PV-diesel-battery system considering publication-title: International Journal of Innovative Computing Information and Control – year: 2012 ident: b0005 article-title: Comparative Analysis of Hybrid Photovoltaic Thermal Air Collectors: Design, modeling and Experiment to improve the overall efficiency of PV system – volume: 30 start-page: 952 year: 2005 end-page: 967 ident: b0020 article-title: Evaluation of technical improvements of photovoltaic system through life cycle assessment methodology publication-title: Energy – volume: 24 start-page: 153 year: 2009 end-page: 162 ident: b0035 article-title: A coordinated control method for leveling PV output power fluctuations of PV-diesel hybrid systems connected to isolated power utility Energy Conversion publication-title: IEEE Transactions – volume: 86 start-page: 41 year: 2012 end-page: 50 ident: b0140 article-title: Optimal sizing and operation of pumping systems to achieve energy efficiency and load shifting publication-title: Electric Power Systems Research – reference: Tazvinga, H., Fore, S., 2010. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system. International Conference on Domestic Use of Energy, Cape Peninsula University of Technology, Cape Town, 29–31 March, 2010, pp. 68–73. – volume: 88 start-page: 3061 year: 2011 end-page: 3071 ident: b0135 article-title: Modeling and energy efficiency optimization of belt conveyors publication-title: Applied Energy – volume: 58 start-page: 165 year: 1996 end-page: 179 ident: b0015 article-title: Optimal dispatch strategies in remote hybrid power systems publication-title: Solar Energy – volume: 23 start-page: 18 year: 2012 end-page: 28 ident: b0060 article-title: A techno-economic model for optimising component sizing and energy dispatch strategy for PV-diesel-battery hybrid power systems publication-title: Journal of Energy in Southern Africa – volume: 81 start-page: 1813 year: 2007 end-page: 1824 ident: b0145 article-title: A novel optimization sizing model for hybrid solar-wind power generation system publication-title: Solar Energy – volume: 22 start-page: 155 year: 1979 ident: 10.1016/j.solener.2013.07.030_b0030 article-title: The average distribution of solar radiation correlation between diffuse and hemispherical and between daily and hourly insolation values publication-title: Solar Energy doi: 10.1016/0038-092X(79)90100-2 – volume: 31 start-page: 18 issue: 4 year: 2011 ident: 10.1016/j.solener.2013.07.030_b0125 article-title: Modelling and control of heavy-haul trains publication-title: IEEE Control Systems Magazine doi: 10.1109/MCS.2011.941403 – volume: 58 start-page: 165 issue: 4 year: 1996 ident: 10.1016/j.solener.2013.07.030_b0015 article-title: Optimal dispatch strategies in remote hybrid power systems publication-title: Solar Energy doi: 10.1016/S0038-092X(96)00087-4 – volume: 80 start-page: 578 year: 2006 ident: 10.1016/j.solener.2013.07.030_b0105 article-title: Hybrid solar/wind power system probabilistic modeling for long-term performance assessment publication-title: Solar Energy doi: 10.1016/j.solener.2005.03.013 – volume: 85 start-page: 100 year: 2011 ident: 10.1016/j.solener.2013.07.030_b0025 article-title: Optimal sizing study of hybrid wind/PV/diesel power generation unit publication-title: Solar Energy doi: 10.1016/j.solener.2010.10.018 – ident: 10.1016/j.solener.2013.07.030_b0095 – volume: 41 start-page: 465 issue: 5 year: 1988 ident: 10.1016/j.solener.2013.07.030_b0075 article-title: Photovoltaic systems for current and future applications publication-title: Solar Energy doi: 10.1016/0038-092X(88)90020-5 – volume: 86 start-page: 41 year: 2012 ident: 10.1016/j.solener.2013.07.030_b0140 article-title: Optimal sizing and operation of pumping systems to achieve energy efficiency and load shifting publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2011.12.002 – volume: 20 start-page: 692 issue: 2 year: 2005 ident: 10.1016/j.solener.2013.07.030_b0120 article-title: Simulink model for economic analysis and environmental impacts of a PV with diesel-battery system for remote villages. Power Systems publication-title: IEEE Transactions – volume: 2 start-page: 68 issue: 1 year: 2012 ident: 10.1016/j.solener.2013.07.030_b0050 article-title: Optimium planning of hybrid renewable energy system using HOMER publication-title: International Journal of Electrical and Computer Engineering – volume: 88 start-page: 3061 year: 2011 ident: 10.1016/j.solener.2013.07.030_b0135 article-title: Modeling and energy efficiency optimization of belt conveyors publication-title: Applied Energy doi: 10.1016/j.apenergy.2011.03.015 – volume: 23 start-page: 23 issue: 1 year: 2012 ident: 10.1016/j.solener.2013.07.030_b0130 article-title: Energy management of commercial buildings – a case study from a POET perspective of energy efficiency publication-title: Journal of Energy in Southern Africa doi: 10.17159/2413-3051/2012/v23i1a3153 – year: 2010 ident: 10.1016/j.solener.2013.07.030_b0100 – volume: 30 start-page: 952 year: 2005 ident: 10.1016/j.solener.2013.07.030_b0020 article-title: Evaluation of technical improvements of photovoltaic system through life cycle assessment methodology publication-title: Energy doi: 10.1016/j.energy.2004.07.011 – volume: 24 start-page: 153 issue: 1 year: 2009 ident: 10.1016/j.solener.2013.07.030_b0035 article-title: A coordinated control method for leveling PV output power fluctuations of PV-diesel hybrid systems connected to isolated power utility Energy Conversion publication-title: IEEE Transactions – volume: 61 start-page: 77 issue: 2 year: 1997 ident: 10.1016/j.solener.2013.07.030_b0080 article-title: A combined optimization concept for the design and operation strategy of hybrid-PV energy systems publication-title: Solar Energy doi: 10.1016/S0038-092X(97)00028-5 – volume: 81 start-page: 1813 issue: 1 year: 2007 ident: 10.1016/j.solener.2013.07.030_b0145 article-title: A novel optimization sizing model for hybrid solar-wind power generation system publication-title: Solar Energy – volume: 23 start-page: 18 issue: 4 year: 2012 ident: 10.1016/j.solener.2013.07.030_b0060 article-title: A techno-economic model for optimising component sizing and energy dispatch strategy for PV-diesel-battery hybrid power systems publication-title: Journal of Energy in Southern Africa doi: 10.17159/2413-3051/2012/v23i4a3175 – volume: 65 start-page: 143 issue: 3 year: 1999 ident: 10.1016/j.solener.2013.07.030_b0070 article-title: Design of hybrid-photovoltaic power generator, with optimization of energy management publication-title: Solar Energy doi: 10.1016/S0038-092X(98)00139-X – year: 2006 ident: 10.1016/j.solener.2013.07.030_b0040 – volume: 6 start-page: 4631 issue: 10 year: 2010 ident: 10.1016/j.solener.2013.07.030_b0090 article-title: Genetic algorithm based optimal sizing of PV-diesel-battery system considering CO2 emission and reliability publication-title: International Journal of Innovative Computing Information and Control – volume: 27 start-page: 640 issue: 2 year: 2012 ident: 10.1016/j.solener.2013.07.030_b0055 article-title: Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using Markov-based genetic algorithm. Power Delivery publication-title: IEEE Transactions – volume: 79 start-page: 33 issue: 1 year: 2005 ident: 10.1016/j.solener.2013.07.030_b0045 article-title: Design and control strategies of PV-diesel systems using genetic algorithms publication-title: Solar Energy doi: 10.1016/j.solener.2004.10.004 – volume: 24 start-page: 1139 issue: 12 year: 1999 ident: 10.1016/j.solener.2013.07.030_b0115 article-title: Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies publication-title: International Journal of Hydrogen Energy doi: 10.1016/S0360-3199(98)00175-X – volume: 12 start-page: 488 year: 2008 ident: 10.1016/j.solener.2013.07.030_b0085 article-title: Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions - A step to clean future publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2006.07.013 – volume: 85 start-page: 3046 year: 2011 ident: 10.1016/j.solener.2013.07.030_b0010 article-title: Experimental validation of glazed hybrid micro-channel solar cell thermal tile publication-title: Solar Energy doi: 10.1016/j.solener.2011.09.003 – volume: 80 start-page: 1072 year: 2006 ident: 10.1016/j.solener.2013.07.030_b0065 article-title: Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using generic algorithms publication-title: Solar Energy doi: 10.1016/j.solener.2005.11.002 – year: 2012 ident: 10.1016/j.solener.2013.07.030_b0005 – ident: 10.1016/j.solener.2013.07.030_b0110 doi: 10.1039/9781849730952 |
SSID | ssj0017187 |
Score | 2.5004883 |
Snippet | •An optimal energy dispatch model of a PV–diesel–battery hybrid system is proposed.•The cost function minimizes fuel costs subject to given constraints.•We... Hybrid systems present a new dimension to the time correlation of intermittent renewable energy sources. The paper considers the daily energy consumption... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 292 |
SubjectTerms | Applied sciences Control strategy Correlation analysis Cost analysis Cost estimates Direct energy conversion and energy accumulation Economic dispatch Electrical engineering. Electrical power engineering Electrical machines Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy consumption Energy efficiency Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Hybrid system Operation efficiency Operation. Load control. Reliability Optimisation algorithm Photovoltaic cells Power networks and lines Regulation and control Seasons |
Title | Minimum cost solution of photovoltaic–diesel–battery hybrid power systems for remote consumers |
URI | https://dx.doi.org/10.1016/j.solener.2013.07.030 https://www.proquest.com/docview/1432864146 https://www.proquest.com/docview/1458535449 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heimqUGlBbKErI3ENu3HsxDkiVLSA4ATS3iw7cUTQkkQke-BS8R_4h_wSZvLYFhUJqTfnMYk19sx8o3kY4DCTKkiNRE9VoJALNBCejTPlpb5yJkx8kU2pOPnyKpzdiPO5nK_ByVALQ2mVve7vdHqrrfs7k56bkyrPqcY3UNOYzykgQ_E9qmAXEe3yo9-rNA8fdW_XNzOgMD-f_6nimdyhE7ug5s6U4RW0PTwpGfp9-_SlMjVyLeuOu_hHc7fm6PQrbPY4kh13U92CNVd8g42_ugt-B3uZF_n98p4lZd2wYY-xMmPVbdmUqJcakycvT8-USOgWOLBts81HdvtIdVysohPUWNfruWaIbtmDw5V1-MGubrPehpvTX9cnM68_UsFLUFgbz1lp_QgxhhROWUnGyc-c4EZNbZRlxqXc8jiNrOHSSpFYZR2PE25waH3Hgx1YL8rC7QKLERpxg2gikAmiGmtFGoUSqUJEjMaIEYiBkTrp-43TsRcLPSSW3eme_5r4r6eRRv6P4GhFVnUNNz4iUMMq6Tc7R6NR-Ih0_GZVVz_kCIrJlRvB_rDMupftGp2lgKtQoIkZwcHqMUolhVpM4colvYNuWCCFiH_8__T24DNddamD-7DePCzdT4RAjR23e3wMn47PLmZXr5ViCvA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLSoqugDsYWCK_UaduPYiXOsUNHyWE4g7c2yE0cELUlEsgcuVf9D_2F_SWfyWEBFQurNiuPEGntmvtG8AL5lUgWpkWipCmRygQrCs3GmvNRXzoSJL7IJJSfPLsLplTidy_kaHA25MBRW2cv-Tqa30rp_Mu6pOa7ynHJ8AzWJ-ZwcMuTfewUbAtmX2hgc_lzFefgofLvCmQH5-fn8IY1nfINW7IKqO1OIV9AW8aRo6OcV1NvK1Ei2rOt38Y_obvXR8Ra864Ek-97t9T2sueIDbD4qL_gR7Cwv8tvlLUvKumHDJWNlxqrrsilRMDUmT_78-k2RhG6BA9tW27xn1_eUyMUqaqHGumLPNUN4y-4cHq3DD3aJm_UnuDr-cXk09fqeCl6C3Np4zkrrRwgypHDKStJOfuYEN2pioywzLuWWx2lkDZdWisQq63iccIND6zsebMN6URZuB1iM2IgbhBOBTBDWWCvSKJS4KkTIaIwYgRgIqZO-4Dj1vVjoIbLsRvf010R_PYk00n8Eh6tlVVdx46UFajgl_eTqaNQKLy3df3Kqqx9yRMVky41gbzhm3TN3jdZSwFUoUMeM4OtqGtmSfC2mcOWS3kE7LJBCxJ__f3sH8Hp6OTvX5ycXZ7vwhma6OMI9WG_ulu4L4qHG7rf3_S-PBwx- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+cost+solution+of+photovoltaic%E2%80%95diesel%E2%80%95battery+hybrid+power+systems+for+remote+consumers&rft.jtitle=Solar+energy&rft.au=TAZVINGA%2C+Henerica&rft.au=XIAOHUA+XIA&rft.au=JIANGFENG+ZHANG&rft.date=2013-10-01&rft.pub=Elsevier&rft.issn=0038-092X&rft.volume=96&rft.spage=292&rft.epage=299&rft_id=info:doi/10.1016%2Fj.solener.2013.07.030&rft.externalDBID=n%2Fa&rft.externalDocID=27745487 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |