Ionic silver-infused peroxidase-like metal-organic frameworks as versatile "antibiotic" for enhanced bacterial elimination
The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the fu...
Saved in:
Published in | Nanoscale Vol. 12; no. 3; pp. 1633 - 16338 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH
2
-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(
i
) to construct NH
2
-MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H
2
O
2
into the more toxic &z.rad;OH and release Ag(
i
) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H
2
O
2
and high concentration of Ag(
i
). More importantly, the
in vivo
results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.
A biocompatible ionic silver-metal organic framework composite with intrinsic peroxidase-like activity is successfully constructed for combating bacterial infection. |
---|---|
AbstractList | The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH2-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH2-MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H2O2 into the more toxic ˙OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H2O2 and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH2-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH2-MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H2O2 into the more toxic ˙OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H2O2 and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics. The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH -MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH -MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H O into the more toxic ˙OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H O and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics. The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH 2 -MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag( i ) to construct NH 2 -MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H 2 O 2 into the more toxic &z.rad;OH and release Ag( i ) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H 2 O 2 and high concentration of Ag( i ). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics. A biocompatible ionic silver-metal organic framework composite with intrinsic peroxidase-like activity is successfully constructed for combating bacterial infection. The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of “antibiotics” with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH2-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH2-MIL-88B(Fe)-Ag, a potent and benign “antibiotic” with the ability to eliminate bacteria completely. This versatile system could efficiently convert H2O2 into the more toxic ·OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H2O2 and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics. The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of “antibiotics” with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH 2 -MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag( i ) to construct NH 2 -MIL-88B(Fe)-Ag, a potent and benign “antibiotic” with the ability to eliminate bacteria completely. This versatile system could efficiently convert H 2 O 2 into the more toxic ˙OH and release Ag( i ) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H 2 O 2 and high concentration of Ag( i ). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics. |
Author | Ren, Xinyi Li, Min Liu, Lizhi Yue, Tianli Wang, Jianlong Han, Ximei Sun, Jing Zhang, Wentao Shi, Shuo Zhu, Wenxin |
AuthorAffiliation | Chinese Academy of Sciences University of Eastern Finland Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources College of Food Science and Engineering Department of Applied Physics Northwest A&F University Northwest Institute of Plateau Biology |
AuthorAffiliation_xml | – name: Northwest Institute of Plateau Biology – name: Northwest A&F University – name: University of Eastern Finland – name: Department of Applied Physics – name: Chinese Academy of Sciences – name: Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources – name: College of Food Science and Engineering |
Author_xml | – sequence: 1 givenname: Wentao surname: Zhang fullname: Zhang, Wentao – sequence: 2 givenname: Xinyi surname: Ren fullname: Ren, Xinyi – sequence: 3 givenname: Shuo surname: Shi fullname: Shi, Shuo – sequence: 4 givenname: Min surname: Li fullname: Li, Min – sequence: 5 givenname: Lizhi surname: Liu fullname: Liu, Lizhi – sequence: 6 givenname: Ximei surname: Han fullname: Han, Ximei – sequence: 7 givenname: Wenxin surname: Zhu fullname: Zhu, Wenxin – sequence: 8 givenname: Tianli surname: Yue fullname: Yue, Tianli – sequence: 9 givenname: Jing surname: Sun fullname: Sun, Jing – sequence: 10 givenname: Jianlong surname: Wang fullname: Wang, Jianlong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32724949$$D View this record in MEDLINE/PubMed |
BookMark | eNp90klvFDEQBWALBZEFLtxBTbggpIbyMt3TRxS2iAgkBGerxl0GZ9z2YLvZfj2eTBKkCHGyD189-dk-ZHshBmLsPodnHOTwfISQgKuer2-xAwEKWil7sXe979Q-O8z5HKAbZCfvsH0peqEGNRyw36cxONNk579Tal2wc6ax2VCKP92ImVrv1tRMVNC3MX3BLbYJJ_oR0zo3mJs6l7E4T80xhuJWLhZnjhsbU0PhKwZT81ZoCiWHviHvJheqj-Euu23RZ7p3uR6xz69ffTp52559eHN68uKsNQqgtATDQtYQK0kYqSz2ktPCAoqOyIwSJe84dhKRQPClgaE2XtTmSnQAwsoj9mSXu0nx20y56MllQ95joDhnLZRYKr4cln2lj2_Q8zinUE9XlYROdT1XVT28VPNqolFvkpsw_dJXt1oB7IBJMedEVhtXLjqXhM5rDnr7cPolvP948XDv6sjTGyNXqf_Ej3Y4ZXPt_v4CvRm3rR_8z8g_BNiuUA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2025_216539 crossref_primary_10_1016_j_ccr_2021_214216 crossref_primary_10_1016_j_nano_2023_102683 crossref_primary_10_3390_antibiotics11030390 crossref_primary_10_3390_molecules26123747 crossref_primary_10_1016_j_foodchem_2021_130325 crossref_primary_10_1002_admi_202101605 crossref_primary_10_1016_j_cej_2022_140903 crossref_primary_10_1021_acs_analchem_4c00589 crossref_primary_10_1016_j_cej_2022_134975 crossref_primary_10_1039_D3MD00581J crossref_primary_10_1021_acsabm_2c00047 crossref_primary_10_1016_j_msec_2021_112522 crossref_primary_10_1039_D2NR01213H crossref_primary_10_1002_smll_202303594 crossref_primary_10_1016_j_cej_2021_129431 crossref_primary_10_1016_j_ccr_2024_215937 crossref_primary_10_1088_2752_5724_ac7068 crossref_primary_10_1016_j_foodchem_2021_129623 crossref_primary_10_1016_j_ijbiomac_2022_07_212 crossref_primary_10_1016_j_cej_2022_134915 crossref_primary_10_3390_molecules29163739 crossref_primary_10_3390_bios14010040 crossref_primary_10_1016_j_indcrop_2024_118293 crossref_primary_10_1016_j_foodcont_2023_110104 crossref_primary_10_1016_j_mtchem_2021_100670 crossref_primary_10_1016_j_cclet_2023_109381 crossref_primary_10_1021_acsanm_4c04482 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_1016_j_ccr_2023_215431 crossref_primary_10_1016_j_isci_2022_105922 crossref_primary_10_1021_acsabm_1c00982 crossref_primary_10_1021_acs_analchem_1c03381 crossref_primary_10_1016_j_snb_2020_129024 crossref_primary_10_1016_j_cej_2021_133079 crossref_primary_10_1016_j_biomaterials_2021_120951 crossref_primary_10_1016_j_crbiot_2024_100205 crossref_primary_10_1007_s00604_022_05504_1 crossref_primary_10_1007_s41664_022_00246_8 crossref_primary_10_1016_j_apcatb_2021_120315 crossref_primary_10_1021_acs_molpharmaceut_1c00765 crossref_primary_10_1002_adfm_202110635 crossref_primary_10_1002_adfm_202304907 crossref_primary_10_1002_SMMD_20220025 crossref_primary_10_1007_s10876_021_02212_3 |
Cites_doi | 10.1039/C3CS60218D 10.3389/fmicb.2010.00134 10.1016/j.biomaterials.2016.10.041 10.1016/j.carbpol.2020.115839 10.1021/acsnano.8b01152 10.1016/j.biomaterials.2014.02.005 10.1039/C9NR01284B 10.1021/acsnano.6b05810 10.1016/j.cej.2018.05.010 10.1016/j.bej.2007.06.008 10.1016/j.celrep.2017.08.101 10.1002/anie.201310843 10.1021/acsnano.7b00343 10.1021/la203570h 10.3390/nano7010007 10.1016/j.jscs.2019.06.004 10.1016/j.biomaterials.2017.01.028 10.1002/adma.201904106 10.1080/00914037.2018.1552863 10.1039/C4NR03393K 10.1021/tx300083s 10.1016/0030-4220(80)90072-9 10.1128/CMR.00030-10 10.1016/j.snb.2019.127565 10.1055/s-2007-1008563 10.1039/c3an00560g 10.1002/adfm.201706375 10.1016/j.apcatb.2016.09.073 10.1002/anie.200461471 10.1021/ic9014652 10.1039/C8CS00457A 10.1039/C9NR03612A 10.1016/j.jhazmat.2015.01.048 10.1093/clinids/2.1.129 10.1038/nature06536 10.1021/nn501640q 10.1016/j.snb.2019.04.020 10.1021/acsami.5b08376 10.1371/journal.pone.0049215 10.1021/nn200088x 10.1002/ejic.201800709. 10.1021/acs.inorgchem.7b00429 10.1002/adfm.201304202 10.1021/acs.analchem.7b02895 10.1016/j.biomaterials.2020.119763 10.3390/polym3010340 10.1002/chem.201103524 10.1016/j.cej.2019.05.229 10.1002/anie.201205923 10.1021/am9002155 10.1016/j.actbio.2018.08.023 10.1016/j.apcatb.2020.118970 10.1002/anie.201813994 10.1586/erd.09.36 10.1021/am401459c |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0nr01471k |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 16338 |
ExternalDocumentID | 32724949 10_1039_D0NR01471K d0nr01471k |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c400t-e0953cedf3e2c34fa731e5f0a26eecd3a3161a63aae0218c093365040426002f3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 09:49:16 EDT 2025 Mon Jun 30 04:45:38 EDT 2025 Mon Jul 21 05:56:28 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Tue Jul 01 01:13:59 EDT 2025 Sat Jan 08 03:53:01 EST 2022 Wed Nov 11 00:27:41 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-e0953cedf3e2c34fa731e5f0a26eecd3a3161a63aae0218c093365040426002f3 |
Notes | Electronic supplementary information (ESI) available: Supporting figures (Fig. S1-S9) and Tables (S1 and S2). See DOI 10.1039/d0nr01471k ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0903-3306 0000-0002-2879-9489 |
PMID | 32724949 |
PQID | 2430646714 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2430646714 proquest_miscellaneous_2428418987 pubmed_primary_32724949 crossref_primary_10_1039_D0NR01471K rsc_primary_d0nr01471k crossref_citationtrail_10_1039_D0NR01471K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-14 |
PublicationDateYYYYMMDD | 2020-08-14 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Pallavicini (D0NR01471K-(cit18)/*[position()=1]) 2018 Aminov (D0NR01471K-(cit1)/*[position()=1]) 2010; 1 Zhang (D0NR01471K-(cit7)/*[position()=1]) 2019; 11 Zhang (D0NR01471K-(cit26)/*[position()=1]) 2019; 374 Liu (D0NR01471K-(cit45)/*[position()=1]) 2020; 306 Bowden (D0NR01471K-(cit30)/*[position()=1]) 2011; 38 Gopalakrishnan (D0NR01471K-(cit24)/*[position()=1]) 2020; 69 Cao (D0NR01471K-(cit33)/*[position()=1]) 2017; 11 Zhang (D0NR01471K-(cit55)/*[position()=1]) 2018; 28 Liu (D0NR01471K-(cit49)/*[position()=1]) 2013; 138 Zhu (D0NR01471K-(cit41)/*[position()=1]) 2011; 5 Silver (D0NR01471K-(cit6)/*[position()=1]) 2011; 24 Wang (D0NR01471K-(cit27)/*[position()=1]) 2017; 124 Yin (D0NR01471K-(cit14)/*[position()=1]) 2016; 10 Fan (D0NR01471K-(cit43)/*[position()=1]) 2014; 24 Lloyd (D0NR01471K-(cit3)/*[position()=1]) 2005; 44 Labas (D0NR01471K-(cit10)/*[position()=1]) 2008; 38 Mortada (D0NR01471K-(cit17)/*[position()=1]) 2017; 56 Shi (D0NR01471K-(cit40)/*[position()=1]) 2013; 5 Vasilev (D0NR01471K-(cit22)/*[position()=1]) 2009; 6 Plack (D0NR01471K-(cit31)/*[position()=1]) 1980; 49 Cheng (D0NR01471K-(cit50)/*[position()=1]) 2017; 89 Chernousova (D0NR01471K-(cit19)/*[position()=1]) 2013; 52 Ashkarran (D0NR01471K-(cit53)/*[position()=1]) 2012; 25 Mei (D0NR01471K-(cit29)/*[position()=1]) 2014; 35 Wang (D0NR01471K-(cit42)/*[position()=1]) 2009; 48 Yang (D0NR01471K-(cit9)/*[position()=1]) 2020; 272 Knetsch (D0NR01471K-(cit23)/*[position()=1]) 2011; 3 Wang (D0NR01471K-(cit12)/*[position()=1]) 2018; 348 Lin (D0NR01471K-(cit48)/*[position()=1]) 2014; 6 Pu (D0NR01471K-(cit52)/*[position()=1]) 2012; 18 Jones (D0NR01471K-(cit8)/*[position()=1]) 2008; 451 Huang (D0NR01471K-(cit44)/*[position()=1]) 2019; 290 He (D0NR01471K-(cit28)/*[position()=1]) 2020; 234 Wright (D0NR01471K-(cit4)/*[position()=1]) 2014; 53 Fleming (D0NR01471K-(cit2)/*[position()=1]) 1980; 2 Beutler (D0NR01471K-(cit5)/*[position()=1]) 2009 Ren (D0NR01471K-(cit37)/*[position()=1]) 2019; 11 Stammberger (D0NR01471K-(cit32)/*[position()=1]) 1982; 61 Moeini (D0NR01471K-(cit54)/*[position()=1]) 2020; 233 Sun (D0NR01471K-(cit15)/*[position()=1]) 2014; 8 Eby (D0NR01471K-(cit21)/*[position()=1]) 2009; 1 Li (D0NR01471K-(cit38)/*[position()=1]) 2017; 202 Queval (D0NR01471K-(cit34)/*[position()=1]) 2017; 20 Wang (D0NR01471K-(cit35)/*[position()=1]) 2020; 32 Minh-Hao (D0NR01471K-(cit36)/*[position()=1]) 2011; 27 Jose (D0NR01471K-(cit25)/*[position()=1]) 2019; 23 Kim (D0NR01471K-(cit51)/*[position()=1]) 2018; 79 Rizzello (D0NR01471K-(cit16)/*[position()=1]) 2014; 43 Wu (D0NR01471K-(cit13)/*[position()=1]) 2019; 48 Xu (D0NR01471K-(cit47)/*[position()=1]) 2019; 58 D'Agostino (D0NR01471K-(cit20)/*[position()=1]) 2017; 7 Loo (D0NR01471K-(cit11)/*[position()=1]) 2012; 7 Gharibi (D0NR01471K-(cit56)/*[position()=1]) 2015; 7 Wang (D0NR01471K-(cit46)/*[position()=1]) 2017; 113 Liang (D0NR01471K-(cit39)/*[position()=1]) 2015; 287 Xi (D0NR01471K-(cit57)/*[position()=1]) 2018; 12 |
References_xml | – issn: 2009 publication-title: Current protocols in pharmacology doi: Beutler – volume: 43 start-page: 1501 year: 2014 ident: D0NR01471K-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60218D – volume: 1 start-page: 134 year: 2010 ident: D0NR01471K-(cit1)/*[position()=1] publication-title: Front. Microbiol. doi: 10.3389/fmicb.2010.00134 – volume: 38 start-page: 832 year: 2011 ident: D0NR01471K-(cit30)/*[position()=1] publication-title: J. Cutaneous Pathol. – volume: 113 start-page: 145 year: 2017 ident: D0NR01471K-(cit46)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.10.041 – volume: 233 start-page: 115839 year: 2020 ident: D0NR01471K-(cit54)/*[position()=1] publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.115839 – volume: 12 start-page: 10772 year: 2018 ident: D0NR01471K-(cit57)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b01152 – volume: 35 start-page: 4255 year: 2014 ident: D0NR01471K-(cit29)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.02.005 – volume: 11 start-page: 9468 year: 2019 ident: D0NR01471K-(cit7)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR01284B – volume: 10 start-page: 11000 year: 2016 ident: D0NR01471K-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b05810 – volume: 348 start-page: 292 year: 2018 ident: D0NR01471K-(cit12)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.010 – volume: 38 start-page: 78 year: 2008 ident: D0NR01471K-(cit10)/*[position()=1] publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2007.06.008 – volume: 20 start-page: 3188 year: 2017 ident: D0NR01471K-(cit34)/*[position()=1] publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.08.101 – volume: 53 start-page: 8840 year: 2014 ident: D0NR01471K-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201310843 – volume: 11 start-page: 4651 year: 2017 ident: D0NR01471K-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00343 – volume: 27 start-page: 15261 year: 2011 ident: D0NR01471K-(cit36)/*[position()=1] publication-title: Langmuir doi: 10.1021/la203570h – volume: 7 start-page: 7 year: 2017 ident: D0NR01471K-(cit20)/*[position()=1] publication-title: Nanomaterials doi: 10.3390/nano7010007 – volume: 23 start-page: 1090 year: 2019 ident: D0NR01471K-(cit25)/*[position()=1] publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2019.06.004 – volume: 124 start-page: 25 year: 2017 ident: D0NR01471K-(cit27)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.01.028 – volume: 32 start-page: 1904106 year: 2020 ident: D0NR01471K-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904106 – volume: 69 start-page: 186 year: 2020 ident: D0NR01471K-(cit24)/*[position()=1] publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2018.1552863 – volume: 6 start-page: 11856 year: 2014 ident: D0NR01471K-(cit48)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03393K – volume: 25 start-page: 1231 year: 2012 ident: D0NR01471K-(cit53)/*[position()=1] publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300083s – volume: 49 start-page: 504 year: 1980 ident: D0NR01471K-(cit31)/*[position()=1] publication-title: Oral Surg., Oral Med., Oral Pathol. doi: 10.1016/0030-4220(80)90072-9 – volume: 24 start-page: 71 year: 2011 ident: D0NR01471K-(cit6)/*[position()=1] publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00030-10 – volume: 306 start-page: 127565 year: 2020 ident: D0NR01471K-(cit45)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2019.127565 – volume: 61 start-page: 234 year: 1982 ident: D0NR01471K-(cit32)/*[position()=1] publication-title: Laryngol., Rhinol., Otol. doi: 10.1055/s-2007-1008563 – volume: 138 start-page: 4526 year: 2013 ident: D0NR01471K-(cit49)/*[position()=1] publication-title: Analyst doi: 10.1039/c3an00560g – volume-title: Current protocols in pharmacology year: 2009 ident: D0NR01471K-(cit5)/*[position()=1] – volume: 28 start-page: 1706375 year: 2018 ident: D0NR01471K-(cit55)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706375 – volume: 202 start-page: 653 year: 2017 ident: D0NR01471K-(cit38)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.09.073 – volume: 44 start-page: 941 year: 2005 ident: D0NR01471K-(cit3)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461471 – volume: 48 start-page: 10697 year: 2009 ident: D0NR01471K-(cit42)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic9014652 – volume: 48 start-page: 1004 year: 2019 ident: D0NR01471K-(cit13)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00457A – volume: 11 start-page: 11830 year: 2019 ident: D0NR01471K-(cit37)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR03612A – volume: 287 start-page: 364 year: 2015 ident: D0NR01471K-(cit39)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.01.048 – volume: 2 start-page: 129 year: 1980 ident: D0NR01471K-(cit2)/*[position()=1] publication-title: Rev. Infect. Dis. doi: 10.1093/clinids/2.1.129 – volume: 451 start-page: U990 year: 2008 ident: D0NR01471K-(cit8)/*[position()=1] publication-title: Nature doi: 10.1038/nature06536 – volume: 8 start-page: 6202 year: 2014 ident: D0NR01471K-(cit15)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501640q – volume: 290 start-page: 573 year: 2019 ident: D0NR01471K-(cit44)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2019.04.020 – volume: 7 start-page: 24296 year: 2015 ident: D0NR01471K-(cit56)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08376 – volume: 7 start-page: e49215 year: 2012 ident: D0NR01471K-(cit11)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0049215 – volume: 5 start-page: 4529 year: 2011 ident: D0NR01471K-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn200088x – start-page: 4846 year: 2018 ident: D0NR01471K-(cit18)/*[position()=1] publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201800709. – volume: 56 start-page: 4739 year: 2017 ident: D0NR01471K-(cit17)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00429 – volume: 24 start-page: 3933 year: 2014 ident: D0NR01471K-(cit43)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201304202 – volume: 89 start-page: 11552 year: 2017 ident: D0NR01471K-(cit50)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02895 – volume: 234 start-page: 119763 year: 2020 ident: D0NR01471K-(cit28)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119763 – volume: 3 start-page: 340 year: 2011 ident: D0NR01471K-(cit23)/*[position()=1] publication-title: Polymers doi: 10.3390/polym3010340 – volume: 18 start-page: 4322 year: 2012 ident: D0NR01471K-(cit52)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201103524 – volume: 374 start-page: 596 year: 2019 ident: D0NR01471K-(cit26)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.229 – volume: 52 start-page: 1636 year: 2013 ident: D0NR01471K-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205923 – volume: 1 start-page: 1553 year: 2009 ident: D0NR01471K-(cit21)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am9002155 – volume: 79 start-page: 344 year: 2018 ident: D0NR01471K-(cit51)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.08.023 – volume: 272 start-page: 118970 year: 2020 ident: D0NR01471K-(cit9)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118970 – volume: 58 start-page: 4911 year: 2019 ident: D0NR01471K-(cit47)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813994 – volume: 6 start-page: 553 year: 2009 ident: D0NR01471K-(cit22)/*[position()=1] publication-title: Expert Rev. Med. Devices doi: 10.1586/erd.09.36 – volume: 5 start-page: 6959 year: 2013 ident: D0NR01471K-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401459c |
SSID | ssj0069363 |
Score | 2.513953 |
Snippet | The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly,... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1633 |
SubjectTerms | Anti-Bacterial Agents - pharmacology Antibiotics Antiinfectives and antibacterials Bacteria Biocompatibility Clinical medicine Hydrogen Peroxide Metal-Organic Frameworks Nanomaterials Peroxidase Peroxidases Silver |
Title | Ionic silver-infused peroxidase-like metal-organic frameworks as versatile "antibiotic" for enhanced bacterial elimination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32724949 https://www.proquest.com/docview/2430646714 https://www.proquest.com/docview/2428418987 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8ABjY9BxkBmcEFTRmKnaXMcsDFYKRK0Wm-RnThatCiZmlYa--t5z06clvUwuESN4zpRfr88v2e_D0LehRjeKVPlgjIv9dKNK1TG9LJYyJXnySHGDn8fh6fT4NusP-tCCHR0yUIeJjcb40r-B1VoA1wxSvYfkLWDQgP8BnzhCAjD8U4Yf9Xla-ocvZtdGHBZg_qImb-v8xRmJ7fILxXWiBaFa6o3JQdZ64xVY4UZ9MmAsQpUNBm841zmFdwFTkwq8PLCOAhIk9MZ4FSFLgNm4Wz0WhDSVQ1wW5rYhehzdE6v7L6OkXKzvPyd28UdXVf44NfF0nYb5calv1xdlGDaJc4EgxrZxdBRkXNTledQbWhrhS9bIVmzQ2NEKSiK5vyWkPc45khNvXIO9t3Av-ymsnb7fvwjPpmORvHkeDa5T7YYmBCsR7aOzj5-OW_n6TDius6efaw2eS2PPnRjr6srt2wQ0EjmbaUYrZFMtsmjxpSgR4YXj8k9VT4hD1cSTD4lN5ohdJ0h9C-G0DWG0I4hVNTUMoTud_zYp8AO2rKDWnbQFXY8I9OT48mnU7eptuEmIMcXrsLMg_CnjCuW8CATA-6rfuYJFiqVpFxwMA5EyIVQqBcmuBQG6n1gahywjO-QXlmV6gWhUgnmKwHGQJgGqh-JBIaWzE_6PEoFkw55377UOGlS0WNFlCLWLhE8ij97458agDOHvLV9r0wClo299lps4uYDrWMWoHkdDvzAIW_sZRCfuCcmSlUtsQ_oZ_4wGg4c8txgam_D2YBh8iaH7ADItrkjh0N2N1-Ir9Js9w73fEkedF_PHukt5kv1CpTchXzdsPUPJXKqpw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+silver-infused+peroxidase-like+metal-organic+frameworks+as+versatile+%22antibiotic%22+for+enhanced+bacterial+elimination&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Wentao&rft.au=Ren%2C+Xinyi&rft.au=Shi%2C+Shuo&rft.au=Li%2C+Min&rft.date=2020-08-14&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=12&rft.issue=30&rft.spage=16330&rft_id=info:doi/10.1039%2Fd0nr01471k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |