Ionic silver-infused peroxidase-like metal-organic frameworks as versatile "antibiotic" for enhanced bacterial elimination

The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the fu...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 3; pp. 1633 - 16338
Main Authors Zhang, Wentao, Ren, Xinyi, Shi, Shuo, Li, Min, Liu, Lizhi, Han, Ximei, Zhu, Wenxin, Yue, Tianli, Sun, Jing, Wang, Jianlong
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH 2 -MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag( i ) to construct NH 2 -MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H 2 O 2 into the more toxic &z.rad;OH and release Ag( i ) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H 2 O 2 and high concentration of Ag( i ). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics. A biocompatible ionic silver-metal organic framework composite with intrinsic peroxidase-like activity is successfully constructed for combating bacterial infection.
AbstractList The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH2-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH2-MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H2O2 into the more toxic ˙OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H2O2 and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH2-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH2-MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H2O2 into the more toxic ˙OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H2O2 and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.
The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH -MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH -MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H O into the more toxic ˙OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H O and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.
The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of "antibiotics" with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH 2 -MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag( i ) to construct NH 2 -MIL-88B(Fe)-Ag, a potent and benign "antibiotic" with the ability to eliminate bacteria completely. This versatile system could efficiently convert H 2 O 2 into the more toxic &z.rad;OH and release Ag( i ) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H 2 O 2 and high concentration of Ag( i ). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics. A biocompatible ionic silver-metal organic framework composite with intrinsic peroxidase-like activity is successfully constructed for combating bacterial infection.
The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of “antibiotics” with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH2-MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag(i) to construct NH2-MIL-88B(Fe)-Ag, a potent and benign “antibiotic” with the ability to eliminate bacteria completely. This versatile system could efficiently convert H2O2 into the more toxic ·OH and release Ag(i) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H2O2 and high concentration of Ag(i). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.
The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly, nanozymes have emerged as a new generation of “antibiotics” with broad-spectrum antibacterial potency and high stability; however, the further application of nanozymes in clinical medicine is still limited by their single-modal antibacterial process, which cannot eradicate bacteria totally. Herein, we infused the NH 2 -MIL-88B(Fe) peroxidase-like nanomaterial with a small amount of Ag( i ) to construct NH 2 -MIL-88B(Fe)-Ag, a potent and benign “antibiotic” with the ability to eliminate bacteria completely. This versatile system could efficiently convert H 2 O 2 into the more toxic ˙OH and release Ag( i ) simultaneously, making pathogenic bacteria more vulnerable to be eliminated, which decreased the requirement for the toxic H 2 O 2 and high concentration of Ag( i ). More importantly, the in vivo results indicated that the synergistic germicidal system could be used for wound disinfection successfully with excellent antibacterial efficacy and negligible biotoxicity. This strategy paves the way for the development of integrated antibacterial agents with enhanced antibacterial function and alternative antibiotics.
Author Ren, Xinyi
Li, Min
Liu, Lizhi
Yue, Tianli
Wang, Jianlong
Han, Ximei
Sun, Jing
Zhang, Wentao
Shi, Shuo
Zhu, Wenxin
AuthorAffiliation Chinese Academy of Sciences
University of Eastern Finland
Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources
College of Food Science and Engineering
Department of Applied Physics
Northwest A&F University
Northwest Institute of Plateau Biology
AuthorAffiliation_xml – name: Northwest Institute of Plateau Biology
– name: Northwest A&F University
– name: University of Eastern Finland
– name: Department of Applied Physics
– name: Chinese Academy of Sciences
– name: Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources
– name: College of Food Science and Engineering
Author_xml – sequence: 1
  givenname: Wentao
  surname: Zhang
  fullname: Zhang, Wentao
– sequence: 2
  givenname: Xinyi
  surname: Ren
  fullname: Ren, Xinyi
– sequence: 3
  givenname: Shuo
  surname: Shi
  fullname: Shi, Shuo
– sequence: 4
  givenname: Min
  surname: Li
  fullname: Li, Min
– sequence: 5
  givenname: Lizhi
  surname: Liu
  fullname: Liu, Lizhi
– sequence: 6
  givenname: Ximei
  surname: Han
  fullname: Han, Ximei
– sequence: 7
  givenname: Wenxin
  surname: Zhu
  fullname: Zhu, Wenxin
– sequence: 8
  givenname: Tianli
  surname: Yue
  fullname: Yue, Tianli
– sequence: 9
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
– sequence: 10
  givenname: Jianlong
  surname: Wang
  fullname: Wang, Jianlong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32724949$$D View this record in MEDLINE/PubMed
BookMark eNp90klvFDEQBWALBZEFLtxBTbggpIbyMt3TRxS2iAgkBGerxl0GZ9z2YLvZfj2eTBKkCHGyD189-dk-ZHshBmLsPodnHOTwfISQgKuer2-xAwEKWil7sXe979Q-O8z5HKAbZCfvsH0peqEGNRyw36cxONNk579Tal2wc6ax2VCKP92ImVrv1tRMVNC3MX3BLbYJJ_oR0zo3mJs6l7E4T80xhuJWLhZnjhsbU0PhKwZT81ZoCiWHviHvJheqj-Euu23RZ7p3uR6xz69ffTp52559eHN68uKsNQqgtATDQtYQK0kYqSz2ktPCAoqOyIwSJe84dhKRQPClgaE2XtTmSnQAwsoj9mSXu0nx20y56MllQ95joDhnLZRYKr4cln2lj2_Q8zinUE9XlYROdT1XVT28VPNqolFvkpsw_dJXt1oB7IBJMedEVhtXLjqXhM5rDnr7cPolvP948XDv6sjTGyNXqf_Ej3Y4ZXPt_v4CvRm3rR_8z8g_BNiuUA
CitedBy_id crossref_primary_10_1016_j_ccr_2025_216539
crossref_primary_10_1016_j_ccr_2021_214216
crossref_primary_10_1016_j_nano_2023_102683
crossref_primary_10_3390_antibiotics11030390
crossref_primary_10_3390_molecules26123747
crossref_primary_10_1016_j_foodchem_2021_130325
crossref_primary_10_1002_admi_202101605
crossref_primary_10_1016_j_cej_2022_140903
crossref_primary_10_1021_acs_analchem_4c00589
crossref_primary_10_1016_j_cej_2022_134975
crossref_primary_10_1039_D3MD00581J
crossref_primary_10_1021_acsabm_2c00047
crossref_primary_10_1016_j_msec_2021_112522
crossref_primary_10_1039_D2NR01213H
crossref_primary_10_1002_smll_202303594
crossref_primary_10_1016_j_cej_2021_129431
crossref_primary_10_1016_j_ccr_2024_215937
crossref_primary_10_1088_2752_5724_ac7068
crossref_primary_10_1016_j_foodchem_2021_129623
crossref_primary_10_1016_j_ijbiomac_2022_07_212
crossref_primary_10_1016_j_cej_2022_134915
crossref_primary_10_3390_molecules29163739
crossref_primary_10_3390_bios14010040
crossref_primary_10_1016_j_indcrop_2024_118293
crossref_primary_10_1016_j_foodcont_2023_110104
crossref_primary_10_1016_j_mtchem_2021_100670
crossref_primary_10_1016_j_cclet_2023_109381
crossref_primary_10_1021_acsanm_4c04482
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1016_j_ccr_2023_215431
crossref_primary_10_1016_j_isci_2022_105922
crossref_primary_10_1021_acsabm_1c00982
crossref_primary_10_1021_acs_analchem_1c03381
crossref_primary_10_1016_j_snb_2020_129024
crossref_primary_10_1016_j_cej_2021_133079
crossref_primary_10_1016_j_biomaterials_2021_120951
crossref_primary_10_1016_j_crbiot_2024_100205
crossref_primary_10_1007_s00604_022_05504_1
crossref_primary_10_1007_s41664_022_00246_8
crossref_primary_10_1016_j_apcatb_2021_120315
crossref_primary_10_1021_acs_molpharmaceut_1c00765
crossref_primary_10_1002_adfm_202110635
crossref_primary_10_1002_adfm_202304907
crossref_primary_10_1002_SMMD_20220025
crossref_primary_10_1007_s10876_021_02212_3
Cites_doi 10.1039/C3CS60218D
10.3389/fmicb.2010.00134
10.1016/j.biomaterials.2016.10.041
10.1016/j.carbpol.2020.115839
10.1021/acsnano.8b01152
10.1016/j.biomaterials.2014.02.005
10.1039/C9NR01284B
10.1021/acsnano.6b05810
10.1016/j.cej.2018.05.010
10.1016/j.bej.2007.06.008
10.1016/j.celrep.2017.08.101
10.1002/anie.201310843
10.1021/acsnano.7b00343
10.1021/la203570h
10.3390/nano7010007
10.1016/j.jscs.2019.06.004
10.1016/j.biomaterials.2017.01.028
10.1002/adma.201904106
10.1080/00914037.2018.1552863
10.1039/C4NR03393K
10.1021/tx300083s
10.1016/0030-4220(80)90072-9
10.1128/CMR.00030-10
10.1016/j.snb.2019.127565
10.1055/s-2007-1008563
10.1039/c3an00560g
10.1002/adfm.201706375
10.1016/j.apcatb.2016.09.073
10.1002/anie.200461471
10.1021/ic9014652
10.1039/C8CS00457A
10.1039/C9NR03612A
10.1016/j.jhazmat.2015.01.048
10.1093/clinids/2.1.129
10.1038/nature06536
10.1021/nn501640q
10.1016/j.snb.2019.04.020
10.1021/acsami.5b08376
10.1371/journal.pone.0049215
10.1021/nn200088x
10.1002/ejic.201800709.
10.1021/acs.inorgchem.7b00429
10.1002/adfm.201304202
10.1021/acs.analchem.7b02895
10.1016/j.biomaterials.2020.119763
10.3390/polym3010340
10.1002/chem.201103524
10.1016/j.cej.2019.05.229
10.1002/anie.201205923
10.1021/am9002155
10.1016/j.actbio.2018.08.023
10.1016/j.apcatb.2020.118970
10.1002/anie.201813994
10.1586/erd.09.36
10.1021/am401459c
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr01471k
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 16338
ExternalDocumentID 32724949
10_1039_D0NR01471K
d0nr01471k
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c400t-e0953cedf3e2c34fa731e5f0a26eecd3a3161a63aae0218c093365040426002f3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 09:49:16 EDT 2025
Mon Jun 30 04:45:38 EDT 2025
Mon Jul 21 05:56:28 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Tue Jul 01 01:13:59 EDT 2025
Sat Jan 08 03:53:01 EST 2022
Wed Nov 11 00:27:41 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-e0953cedf3e2c34fa731e5f0a26eecd3a3161a63aae0218c093365040426002f3
Notes Electronic supplementary information (ESI) available: Supporting figures (Fig. S1-S9) and Tables (S1 and S2). See DOI
10.1039/d0nr01471k
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0903-3306
0000-0002-2879-9489
PMID 32724949
PQID 2430646714
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_journals_2430646714
proquest_miscellaneous_2428418987
pubmed_primary_32724949
crossref_primary_10_1039_D0NR01471K
rsc_primary_d0nr01471k
crossref_citationtrail_10_1039_D0NR01471K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-14
PublicationDateYYYYMMDD 2020-08-14
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Pallavicini (D0NR01471K-(cit18)/*[position()=1]) 2018
Aminov (D0NR01471K-(cit1)/*[position()=1]) 2010; 1
Zhang (D0NR01471K-(cit7)/*[position()=1]) 2019; 11
Zhang (D0NR01471K-(cit26)/*[position()=1]) 2019; 374
Liu (D0NR01471K-(cit45)/*[position()=1]) 2020; 306
Bowden (D0NR01471K-(cit30)/*[position()=1]) 2011; 38
Gopalakrishnan (D0NR01471K-(cit24)/*[position()=1]) 2020; 69
Cao (D0NR01471K-(cit33)/*[position()=1]) 2017; 11
Zhang (D0NR01471K-(cit55)/*[position()=1]) 2018; 28
Liu (D0NR01471K-(cit49)/*[position()=1]) 2013; 138
Zhu (D0NR01471K-(cit41)/*[position()=1]) 2011; 5
Silver (D0NR01471K-(cit6)/*[position()=1]) 2011; 24
Wang (D0NR01471K-(cit27)/*[position()=1]) 2017; 124
Yin (D0NR01471K-(cit14)/*[position()=1]) 2016; 10
Fan (D0NR01471K-(cit43)/*[position()=1]) 2014; 24
Lloyd (D0NR01471K-(cit3)/*[position()=1]) 2005; 44
Labas (D0NR01471K-(cit10)/*[position()=1]) 2008; 38
Mortada (D0NR01471K-(cit17)/*[position()=1]) 2017; 56
Shi (D0NR01471K-(cit40)/*[position()=1]) 2013; 5
Vasilev (D0NR01471K-(cit22)/*[position()=1]) 2009; 6
Plack (D0NR01471K-(cit31)/*[position()=1]) 1980; 49
Cheng (D0NR01471K-(cit50)/*[position()=1]) 2017; 89
Chernousova (D0NR01471K-(cit19)/*[position()=1]) 2013; 52
Ashkarran (D0NR01471K-(cit53)/*[position()=1]) 2012; 25
Mei (D0NR01471K-(cit29)/*[position()=1]) 2014; 35
Wang (D0NR01471K-(cit42)/*[position()=1]) 2009; 48
Yang (D0NR01471K-(cit9)/*[position()=1]) 2020; 272
Knetsch (D0NR01471K-(cit23)/*[position()=1]) 2011; 3
Wang (D0NR01471K-(cit12)/*[position()=1]) 2018; 348
Lin (D0NR01471K-(cit48)/*[position()=1]) 2014; 6
Pu (D0NR01471K-(cit52)/*[position()=1]) 2012; 18
Jones (D0NR01471K-(cit8)/*[position()=1]) 2008; 451
Huang (D0NR01471K-(cit44)/*[position()=1]) 2019; 290
He (D0NR01471K-(cit28)/*[position()=1]) 2020; 234
Wright (D0NR01471K-(cit4)/*[position()=1]) 2014; 53
Fleming (D0NR01471K-(cit2)/*[position()=1]) 1980; 2
Beutler (D0NR01471K-(cit5)/*[position()=1]) 2009
Ren (D0NR01471K-(cit37)/*[position()=1]) 2019; 11
Stammberger (D0NR01471K-(cit32)/*[position()=1]) 1982; 61
Moeini (D0NR01471K-(cit54)/*[position()=1]) 2020; 233
Sun (D0NR01471K-(cit15)/*[position()=1]) 2014; 8
Eby (D0NR01471K-(cit21)/*[position()=1]) 2009; 1
Li (D0NR01471K-(cit38)/*[position()=1]) 2017; 202
Queval (D0NR01471K-(cit34)/*[position()=1]) 2017; 20
Wang (D0NR01471K-(cit35)/*[position()=1]) 2020; 32
Minh-Hao (D0NR01471K-(cit36)/*[position()=1]) 2011; 27
Jose (D0NR01471K-(cit25)/*[position()=1]) 2019; 23
Kim (D0NR01471K-(cit51)/*[position()=1]) 2018; 79
Rizzello (D0NR01471K-(cit16)/*[position()=1]) 2014; 43
Wu (D0NR01471K-(cit13)/*[position()=1]) 2019; 48
Xu (D0NR01471K-(cit47)/*[position()=1]) 2019; 58
D'Agostino (D0NR01471K-(cit20)/*[position()=1]) 2017; 7
Loo (D0NR01471K-(cit11)/*[position()=1]) 2012; 7
Gharibi (D0NR01471K-(cit56)/*[position()=1]) 2015; 7
Wang (D0NR01471K-(cit46)/*[position()=1]) 2017; 113
Liang (D0NR01471K-(cit39)/*[position()=1]) 2015; 287
Xi (D0NR01471K-(cit57)/*[position()=1]) 2018; 12
References_xml – issn: 2009
  publication-title: Current protocols in pharmacology
  doi: Beutler
– volume: 43
  start-page: 1501
  year: 2014
  ident: D0NR01471K-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60218D
– volume: 1
  start-page: 134
  year: 2010
  ident: D0NR01471K-(cit1)/*[position()=1]
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2010.00134
– volume: 38
  start-page: 832
  year: 2011
  ident: D0NR01471K-(cit30)/*[position()=1]
  publication-title: J. Cutaneous Pathol.
– volume: 113
  start-page: 145
  year: 2017
  ident: D0NR01471K-(cit46)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.10.041
– volume: 233
  start-page: 115839
  year: 2020
  ident: D0NR01471K-(cit54)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.115839
– volume: 12
  start-page: 10772
  year: 2018
  ident: D0NR01471K-(cit57)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01152
– volume: 35
  start-page: 4255
  year: 2014
  ident: D0NR01471K-(cit29)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.02.005
– volume: 11
  start-page: 9468
  year: 2019
  ident: D0NR01471K-(cit7)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR01284B
– volume: 10
  start-page: 11000
  year: 2016
  ident: D0NR01471K-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05810
– volume: 348
  start-page: 292
  year: 2018
  ident: D0NR01471K-(cit12)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.010
– volume: 38
  start-page: 78
  year: 2008
  ident: D0NR01471K-(cit10)/*[position()=1]
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2007.06.008
– volume: 20
  start-page: 3188
  year: 2017
  ident: D0NR01471K-(cit34)/*[position()=1]
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.101
– volume: 53
  start-page: 8840
  year: 2014
  ident: D0NR01471K-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310843
– volume: 11
  start-page: 4651
  year: 2017
  ident: D0NR01471K-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00343
– volume: 27
  start-page: 15261
  year: 2011
  ident: D0NR01471K-(cit36)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la203570h
– volume: 7
  start-page: 7
  year: 2017
  ident: D0NR01471K-(cit20)/*[position()=1]
  publication-title: Nanomaterials
  doi: 10.3390/nano7010007
– volume: 23
  start-page: 1090
  year: 2019
  ident: D0NR01471K-(cit25)/*[position()=1]
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2019.06.004
– volume: 124
  start-page: 25
  year: 2017
  ident: D0NR01471K-(cit27)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.01.028
– volume: 32
  start-page: 1904106
  year: 2020
  ident: D0NR01471K-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904106
– volume: 69
  start-page: 186
  year: 2020
  ident: D0NR01471K-(cit24)/*[position()=1]
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2018.1552863
– volume: 6
  start-page: 11856
  year: 2014
  ident: D0NR01471K-(cit48)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR03393K
– volume: 25
  start-page: 1231
  year: 2012
  ident: D0NR01471K-(cit53)/*[position()=1]
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx300083s
– volume: 49
  start-page: 504
  year: 1980
  ident: D0NR01471K-(cit31)/*[position()=1]
  publication-title: Oral Surg., Oral Med., Oral Pathol.
  doi: 10.1016/0030-4220(80)90072-9
– volume: 24
  start-page: 71
  year: 2011
  ident: D0NR01471K-(cit6)/*[position()=1]
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00030-10
– volume: 306
  start-page: 127565
  year: 2020
  ident: D0NR01471K-(cit45)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.127565
– volume: 61
  start-page: 234
  year: 1982
  ident: D0NR01471K-(cit32)/*[position()=1]
  publication-title: Laryngol., Rhinol., Otol.
  doi: 10.1055/s-2007-1008563
– volume: 138
  start-page: 4526
  year: 2013
  ident: D0NR01471K-(cit49)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c3an00560g
– volume-title: Current protocols in pharmacology
  year: 2009
  ident: D0NR01471K-(cit5)/*[position()=1]
– volume: 28
  start-page: 1706375
  year: 2018
  ident: D0NR01471K-(cit55)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706375
– volume: 202
  start-page: 653
  year: 2017
  ident: D0NR01471K-(cit38)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.09.073
– volume: 44
  start-page: 941
  year: 2005
  ident: D0NR01471K-(cit3)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461471
– volume: 48
  start-page: 10697
  year: 2009
  ident: D0NR01471K-(cit42)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9014652
– volume: 48
  start-page: 1004
  year: 2019
  ident: D0NR01471K-(cit13)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00457A
– volume: 11
  start-page: 11830
  year: 2019
  ident: D0NR01471K-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR03612A
– volume: 287
  start-page: 364
  year: 2015
  ident: D0NR01471K-(cit39)/*[position()=1]
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.01.048
– volume: 2
  start-page: 129
  year: 1980
  ident: D0NR01471K-(cit2)/*[position()=1]
  publication-title: Rev. Infect. Dis.
  doi: 10.1093/clinids/2.1.129
– volume: 451
  start-page: U990
  year: 2008
  ident: D0NR01471K-(cit8)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature06536
– volume: 8
  start-page: 6202
  year: 2014
  ident: D0NR01471K-(cit15)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501640q
– volume: 290
  start-page: 573
  year: 2019
  ident: D0NR01471K-(cit44)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2019.04.020
– volume: 7
  start-page: 24296
  year: 2015
  ident: D0NR01471K-(cit56)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08376
– volume: 7
  start-page: e49215
  year: 2012
  ident: D0NR01471K-(cit11)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049215
– volume: 5
  start-page: 4529
  year: 2011
  ident: D0NR01471K-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn200088x
– start-page: 4846
  year: 2018
  ident: D0NR01471K-(cit18)/*[position()=1]
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201800709.
– volume: 56
  start-page: 4739
  year: 2017
  ident: D0NR01471K-(cit17)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00429
– volume: 24
  start-page: 3933
  year: 2014
  ident: D0NR01471K-(cit43)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201304202
– volume: 89
  start-page: 11552
  year: 2017
  ident: D0NR01471K-(cit50)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02895
– volume: 234
  start-page: 119763
  year: 2020
  ident: D0NR01471K-(cit28)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119763
– volume: 3
  start-page: 340
  year: 2011
  ident: D0NR01471K-(cit23)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym3010340
– volume: 18
  start-page: 4322
  year: 2012
  ident: D0NR01471K-(cit52)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201103524
– volume: 374
  start-page: 596
  year: 2019
  ident: D0NR01471K-(cit26)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.229
– volume: 52
  start-page: 1636
  year: 2013
  ident: D0NR01471K-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205923
– volume: 1
  start-page: 1553
  year: 2009
  ident: D0NR01471K-(cit21)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am9002155
– volume: 79
  start-page: 344
  year: 2018
  ident: D0NR01471K-(cit51)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.08.023
– volume: 272
  start-page: 118970
  year: 2020
  ident: D0NR01471K-(cit9)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118970
– volume: 58
  start-page: 4911
  year: 2019
  ident: D0NR01471K-(cit47)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813994
– volume: 6
  start-page: 553
  year: 2009
  ident: D0NR01471K-(cit22)/*[position()=1]
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/erd.09.36
– volume: 5
  start-page: 6959
  year: 2013
  ident: D0NR01471K-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401459c
SSID ssj0069363
Score 2.513953
Snippet The fabrication of multiple antibacterial modalities for combating bacterial pathogens and treating infected wounds is of vital importance. Accordingly,...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1633
SubjectTerms Anti-Bacterial Agents - pharmacology
Antibiotics
Antiinfectives and antibacterials
Bacteria
Biocompatibility
Clinical medicine
Hydrogen Peroxide
Metal-Organic Frameworks
Nanomaterials
Peroxidase
Peroxidases
Silver
Title Ionic silver-infused peroxidase-like metal-organic frameworks as versatile "antibiotic" for enhanced bacterial elimination
URI https://www.ncbi.nlm.nih.gov/pubmed/32724949
https://www.proquest.com/docview/2430646714
https://www.proquest.com/docview/2428418987
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8ABjY9BxkBmcEFTRmKnaXMcsDFYKRK0Wm-RnThatCiZmlYa--t5z06clvUwuESN4zpRfr88v2e_D0LehRjeKVPlgjIv9dKNK1TG9LJYyJXnySHGDn8fh6fT4NusP-tCCHR0yUIeJjcb40r-B1VoA1wxSvYfkLWDQgP8BnzhCAjD8U4Yf9Xla-ocvZtdGHBZg_qImb-v8xRmJ7fILxXWiBaFa6o3JQdZ64xVY4UZ9MmAsQpUNBm841zmFdwFTkwq8PLCOAhIk9MZ4FSFLgNm4Wz0WhDSVQ1wW5rYhehzdE6v7L6OkXKzvPyd28UdXVf44NfF0nYb5calv1xdlGDaJc4EgxrZxdBRkXNTledQbWhrhS9bIVmzQ2NEKSiK5vyWkPc45khNvXIO9t3Av-ymsnb7fvwjPpmORvHkeDa5T7YYmBCsR7aOzj5-OW_n6TDius6efaw2eS2PPnRjr6srt2wQ0EjmbaUYrZFMtsmjxpSgR4YXj8k9VT4hD1cSTD4lN5ohdJ0h9C-G0DWG0I4hVNTUMoTud_zYp8AO2rKDWnbQFXY8I9OT48mnU7eptuEmIMcXrsLMg_CnjCuW8CATA-6rfuYJFiqVpFxwMA5EyIVQqBcmuBQG6n1gahywjO-QXlmV6gWhUgnmKwHGQJgGqh-JBIaWzE_6PEoFkw55377UOGlS0WNFlCLWLhE8ij97458agDOHvLV9r0wClo299lps4uYDrWMWoHkdDvzAIW_sZRCfuCcmSlUtsQ_oZ_4wGg4c8txgam_D2YBh8iaH7ADItrkjh0N2N1-Ir9Js9w73fEkedF_PHukt5kv1CpTchXzdsPUPJXKqpw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+silver-infused+peroxidase-like+metal-organic+frameworks+as+versatile+%22antibiotic%22+for+enhanced+bacterial+elimination&rft.jtitle=Nanoscale&rft.au=Zhang%2C+Wentao&rft.au=Ren%2C+Xinyi&rft.au=Shi%2C+Shuo&rft.au=Li%2C+Min&rft.date=2020-08-14&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=12&rft.issue=30&rft.spage=16330&rft_id=info:doi/10.1039%2Fd0nr01471k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon