Micromagnetic and morphological characterization of heteropolymer human ferritin cores

The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were emp...

Full description

Saved in:
Bibliographic Details
Published inNanoscale advances Vol. 5; no. 1; pp. 28 - 219
Main Authors Longo, Thomas, Kim, Steve, Srivastava, Ayush K, Hurley, Lauren, Ji, Kaixuan, Viescas, Arthur J, Flint, Nicholas, Foucher, Alexandre C, Yates, Douglas, Stach, Eric A, Bou-Abdallah, Fadi, Papaefthymiou, Georgia C
Format Journal Article
LanguageEnglish
Published England RSC 20.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H 21 /L 3 ) and L-rich (H 2 /L 22 ) ferritins reconstituted at 1000 57 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10 −11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 4 J m −3 and 2.75 × 10 4 J m −3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology. The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated.
AbstractList The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H 21 /L 3 ) and L-rich (H 2 /L 22 ) ferritins reconstituted at 1000 57 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10 −11 s, the Néel–Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 4 J m −3 and 2.75 × 10 4 J m −3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.
The physical properties of iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H /L ) and L-rich (H /L ) ferritins reconstituted at 1000 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of = 10 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 J m and 2.75 × 10 J m for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H 21 /L 3 ) and L-rich (H 2 /L 22 ) ferritins reconstituted at 1000 57 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10 −11 s, the Néel–Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 4 J m −3 and 2.75 × 10 4 J m −3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology. The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated.
Author Yates, Douglas
Longo, Thomas
Flint, Nicholas
Viescas, Arthur J
Ji, Kaixuan
Stach, Eric A
Kim, Steve
Bou-Abdallah, Fadi
Foucher, Alexandre C
Papaefthymiou, Georgia C
Srivastava, Ayush K
Hurley, Lauren
AuthorAffiliation Department of Chemistry
Singh Center for Nanotechnology
Villanova University
University of Pennsylvania
Department of Materials Science and Engineering
State University of New York
Department of Physics
AuthorAffiliation_xml – name: University of Pennsylvania
– name: Department of Chemistry
– name: Villanova University
– name: Department of Physics
– name: State University of New York
– name: Department of Materials Science and Engineering
– name: Singh Center for Nanotechnology
Author_xml – sequence: 1
  givenname: Thomas
  surname: Longo
  fullname: Longo, Thomas
– sequence: 2
  givenname: Steve
  surname: Kim
  fullname: Kim, Steve
– sequence: 3
  givenname: Ayush K
  surname: Srivastava
  fullname: Srivastava, Ayush K
– sequence: 4
  givenname: Lauren
  surname: Hurley
  fullname: Hurley, Lauren
– sequence: 5
  givenname: Kaixuan
  surname: Ji
  fullname: Ji, Kaixuan
– sequence: 6
  givenname: Arthur J
  surname: Viescas
  fullname: Viescas, Arthur J
– sequence: 7
  givenname: Nicholas
  surname: Flint
  fullname: Flint, Nicholas
– sequence: 8
  givenname: Alexandre C
  surname: Foucher
  fullname: Foucher, Alexandre C
– sequence: 9
  givenname: Douglas
  surname: Yates
  fullname: Yates, Douglas
– sequence: 10
  givenname: Eric A
  surname: Stach
  fullname: Stach, Eric A
– sequence: 11
  givenname: Fadi
  surname: Bou-Abdallah
  fullname: Bou-Abdallah, Fadi
– sequence: 12
  givenname: Georgia C
  surname: Papaefthymiou
  fullname: Papaefthymiou, Georgia C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36605807$$D View this record in MEDLINE/PubMed
BookMark eNptkc1P3DAQxS0EAgpcuFPlWFVaOv5IvL5UWlFakGh7ob1ak4mzcZXYWztbif71BJbPqqfxyL95T3rvDdsOMTjGjjmccpDmQyMCApRK4RbbFyWvZiAkbL9477GjnH8BgOBKKW122Z6sKijnoPfZz6-eUhxwGdzoqcDQFENMqy72cekJ-4I6TEijS_4vjj6GIrZF56Y9rmJ_M7hUdOsBQ9G6lPzoQ0ExuXzIdlrsszt6mAfsx-fz67OL2dX3L5dni6sZKYBx1lBblY5E3da85vO6NEIZ3RiDSiM1SpSVbJQWBDVVUoOUrTBNjQI4GnKtPGAfN7qrdT24hlwYE_Z2lfyA6cZG9Pb1T_CdXcY_1uhqymw-Cbx7EEjx99rl0Q4-k-t7DC6usxW64kabUt-hb196PZk8hjkBsAGmRHNOrrXkx_vQJmvfWw72rjL7SXxb3Fe2mE7e_3PyqPpf-GQDp0xP3HP_8habmaLP
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_135044
crossref_primary_10_1021_jacs_3c13830
crossref_primary_10_1038_s41598_023_46880_9
crossref_primary_10_1007_s11664_023_10569_6
crossref_primary_10_1002_pro_5104
Cites_doi 10.1021/acs.biochem.7b00024
10.1016/j.jmb.2021.167198
10.1021/ja800492z
10.1042/BJ20060063
10.1021/bi990377l
10.1073/pnas.0910170107
10.1126/science.1636086
10.1016/j.bbagen.2010.03.018
10.1088/0957-4484/27/3/035702
10.1021/ja8054035
10.1021/ic400484n
10.1016/0167-4838(93)90201-2
10.1126/science.1142525
10.1016/0005-2728(96)00022-9
10.1088/0957-4484/27/46/46LT02
10.1002/mrm.1910400208
10.1021/acs.accounts.1c00267
10.1021/cr5004908
10.1016/S1357-2725(01)00063-2
10.1016/j.cbpa.2011.01.004
10.1074/jbc.M117.777201
10.1039/C1DT11205H
10.1107/S1399004715002333
10.3390/ijms20102426
10.1016/j.talanta.2017.06.057
10.1021/cr400011b
10.1070/RCR5006
10.1103/PhysRevB.55.R14717
10.1007/BF01141308
10.1016/j.ultramic.2012.03.002
10.1039/C9NR01541H
10.1021/ar500469e
10.1103/PhysRevLett.72.282
10.1016/0022-2836(87)90290-7
10.1073/pnas.0805083105
10.1107/S1399004715013073
10.1201/9781315157016
10.1103/PhysRev.130.1677
10.1016/j.saa.2012.02.083
10.1002/adma.19940060103
10.1039/c9mt00001a
10.1039/C9NR03823J
10.3390/ph11040120
10.1016/j.bbagen.2010.03.021
10.1016/0304-8853(94)00626-1
10.1016/j.nantod.2009.08.006
10.1180/claymin.1993.028.2.02
10.1016/j.jsb.2008.12.001
10.3390/ijms141121266
10.1073/pnas.1614302114
10.1088/1361-6463/ab353b
10.1021/bi020215g
10.1073/pnas.82.11.3640
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2023 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2023 RSC
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1039/d2na00544a
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2516-0230
EndPage 219
ExternalDocumentID PMC9765448
36605807
10_1039_D2NA00544A
d2na00544a
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R15 GM104879
– fundername: ;
  grantid: NNCI-2025608, DMR-1720530
– fundername: ;
  grantid: 1934666
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BCNDV
C6K
EBS
GROUPED_DOAJ
OK1
RPM
SMJ
AAFWJ
AAYXX
AFPKN
CITATION
H13
M~E
NPM
7X8
5PM
ID FETCH-LOGICAL-c400t-dcf65ec2bfb1b18b592497d99a47acd42563d472c0bc637033f29dba201a9cef3
ISSN 2516-0230
IngestDate Thu Aug 21 18:38:16 EDT 2025
Fri Jul 11 07:08:30 EDT 2025
Thu Apr 03 07:10:01 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Tue Jul 01 04:28:18 EDT 2025
Wed Dec 21 06:15:23 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-dcf65ec2bfb1b18b592497d99a47acd42563d472c0bc637033f29dba201a9cef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8557-1827
0000-0002-8755-3024
0000-0002-0880-1369
0000-0002-3366-2153
0000-0002-2423-7788
0000-0003-1713-8893
OpenAccessLink http://dx.doi.org/10.1039/d2na00544a
PMID 36605807
PQID 2761979578
PQPubID 23479
PageCount 12
ParticipantIDs rsc_primary_d2na00544a
pubmed_primary_36605807
crossref_citationtrail_10_1039_D2NA00544A
crossref_primary_10_1039_D2NA00544A
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9765448
proquest_miscellaneous_2761979578
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-20
PublicationDateYYYYMMDD 2022-12-20
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale advances
PublicationTitleAlternate Nanoscale Adv
PublicationYear 2022
Publisher RSC
Publisher_xml – name: RSC
References Papaefthymiou (D2NA00544A/cit56/1) 2009; 4
Kilcoyne (D2NA00544A/cit36/1) 1995; 140–144
Cai (D2NA00544A/cit21/1) 2015; 10
Bødker (D2NA00544A/cit61/1) 1994; 72
Bou-Abdallah (D2NA00544A/cit7/1) 2019; 11
Tan (D2NA00544A/cit54/1) 2012; 116
Wofford (D2NA00544A/cit46/1) 2017; 292
Michel (D2NA00544A/cit31/1) 2007; 316
Meldrum (D2NA00544A/cit39/1) 1992; 257
Papaefthymiou (D2NA00544A/cit45/1) 2010; 1800
Pan (D2NA00544A/cit18/1) 2009; 166
Theil (D2NA00544A/cit26/1) 2013; 52
Pozzi (D2NA00544A/cit10/1) 2017; 114
Makhlouf (D2NA00544A/cit59/1) 1997; 55
Jian (D2NA00544A/cit17/1) 2016; 27
Néel (D2NA00544A/cit34/1) 1961; 253
St Pierre (D2NA00544A/cit25/1) 1991; 4
Galvez (D2NA00544A/cit22/1) 2008; 130
Mann (D2NA00544A/cit29/1) 1988; 198
Wang (D2NA00544A/cit53/1) 2016; 27
Narayanan (D2NA00544A/cit16/1) 2019; 11
Brooks (D2NA00544A/cit55/1) 1998; 40
Papaefthymiou (D2NA00544A/cit60/1) 2022
Michel (D2NA00544A/cit30/1) 2010; 107
Bou-Abdallah (D2NA00544A/cit50/1) 2018; 11
Néel (D2NA00544A/cit57/1); 5
Mehlenbacher (D2NA00544A/cit6/1) 2017; 56
Theil (D2NA00544A/cit5/1) 2016; 49
Smeets (D2NA00544A/cit52/1)
Kamnev (D2NA00544A/cit43/1) 2017; 174
Kamnev (D2NA00544A/cit49/1) 2021; 90
Papaefthymiou (D2NA00544A/cit37/1) 2014
Lopez-Castro (D2NA00544A/cit19/1) 2012; 41
Heywood (D2NA00544A/cit51/1) 1994; 6
Watt (D2NA00544A/cit48/1) 1985; 82
Tosha (D2NA00544A/cit8/1) 2008; 105
Néel (D2NA00544A/cit33/1) 1961; 252
Bou-Abdallah (D2NA00544A/cit11/1) 2008; 130
Issa (D2NA00544A/cit63/1) 2013; 14
Wilkinson IV (D2NA00544A/cit2/1) 2006; 395
Srivastava (D2NA00544A/cit15/1) 2021; 433
Song (D2NA00544A/cit64/1) 2021; 54
Harrison (D2NA00544A/cit3/1) 1996; 1275
Alenkina (D2NA00544A/cit23/1) 2013; 100
Néel (D2NA00544A/cit35/1) 1961; 253
Jin (D2NA00544A/cit62/1) 2019; 11
Narayanan (D2NA00544A/cit20/1) 2019; 52
Lopez-Castro (D2NA00544A/cit9/1) 2012; 41
Bauminger (D2NA00544A/cit47/1) 1999; 38
Ebrahimi (D2NA00544A/cit44/1) 2015; 115
Bou-Abdallah (D2NA00544A/cit12/1) 2002; 41
Papaefthymiou (D2NA00544A/cit38/1) 2014
Pozzi (D2NA00544A/cit13/1) 2015; 71
Brown (D2NA00544A/cit58/1) 1963; 130
Wade (D2NA00544A/cit28/1) 1993; 1161
Papaefthymiou (D2NA00544A/cit42/1) 2022
Mann (D2NA00544A/cit27/1) 1987; 198
Le Xue (D2NA00544A/cit40/1) 2019; 20
Jutz (D2NA00544A/cit41/1) 2015; 115
Pozzi (D2NA00544A/cit14/1) 2015; 71
Bou-Abdallah (D2NA00544A/cit1/1) 2010; 1800
Drits (D2NA00544A/cit32/1) 1993; 28
Theil (D2NA00544A/cit24/1) 2011; 15
Aisen (D2NA00544A/cit4/1) 2001; 33
References_xml – issn: 2022
  publication-title: Nanomagnetism: An Interdisciplinary Approach
  doi: Papaefthymiou
– issn: 2014
  volume-title: Bio-inspired Magnetic Nanoparticles
  publication-title: Nanobiomaterials, Development and Applications
  doi: Papaefthymiou Devlin
– publication-title: A Classical View on Nonclassical Nucleation
  doi: Smeets Finney Habraken Sommerdijk
– issn: 2022
  end-page: 150
  publication-title: Nanomagnetism: An Interdisciplinary Approach
  doi: Papaefthymiou
– issn: 2014
  volume-title: Biogenic and Biomimetic Magnetic Nanoparticles and their Assemblies
  publication-title: Magnetic Nanoparticle Assemblies
  doi: Papaefthymiou
– volume: 56
  start-page: 3900
  year: 2017
  ident: D2NA00544A/cit6/1
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00024
– volume: 433
  start-page: 167198
  issue: 19
  year: 2021
  ident: D2NA00544A/cit15/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2021.167198
– volume: 130
  start-page: 8062
  issue: 25
  year: 2008
  ident: D2NA00544A/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800492z
– volume: 395
  start-page: 501
  year: 2006
  ident: D2NA00544A/cit2/1
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060063
– volume: 38
  start-page: 7791
  year: 1999
  ident: D2NA00544A/cit47/1
  publication-title: Biochemistry
  doi: 10.1021/bi990377l
– volume: 107
  start-page: 2787
  year: 2010
  ident: D2NA00544A/cit30/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0910170107
– volume: 257
  start-page: 522
  year: 1992
  ident: D2NA00544A/cit39/1
  publication-title: Science
  doi: 10.1126/science.1636086
– volume: 253
  start-page: 203
  year: 1961
  ident: D2NA00544A/cit34/1
  publication-title: Comptes Rendus, Acad. Sci.
– volume: 1800
  start-page: 886
  year: 2010
  ident: D2NA00544A/cit45/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.03.018
– volume: 27
  start-page: 035702
  year: 2016
  ident: D2NA00544A/cit53/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/3/035702
– volume: 130
  start-page: 17801
  issue: 52
  year: 2008
  ident: D2NA00544A/cit11/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8054035
– volume: 52
  start-page: 12223
  issue: 21
  year: 2013
  ident: D2NA00544A/cit26/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic400484n
– volume: 1161
  start-page: 91
  year: 1993
  ident: D2NA00544A/cit28/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4838(93)90201-2
– volume: 316
  start-page: 1726
  issue: 5832
  year: 2007
  ident: D2NA00544A/cit31/1
  publication-title: Science
  doi: 10.1126/science.1142525
– volume: 1275
  start-page: 161
  year: 1996
  ident: D2NA00544A/cit3/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2728(96)00022-9
– volume: 27
  start-page: 46LT02
  year: 2016
  ident: D2NA00544A/cit17/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/46/46LT02
– volume: 40
  start-page: 227
  year: 1998
  ident: D2NA00544A/cit55/1
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910400208
– volume: 54
  start-page: 3313
  issue: 17
  year: 2021
  ident: D2NA00544A/cit64/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00267
– volume-title: A Classical View on Nonclassical Nucleation
  ident: D2NA00544A/cit52/1
– volume: 115
  start-page: 295
  year: 2015
  ident: D2NA00544A/cit44/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr5004908
– volume: 33
  start-page: 940
  year: 2001
  ident: D2NA00544A/cit4/1
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(01)00063-2
– volume: 15
  start-page: 304
  year: 2011
  ident: D2NA00544A/cit24/1
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2011.01.004
– volume: 292
  start-page: 5546
  year: 2017
  ident: D2NA00544A/cit46/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.777201
– volume: 41
  start-page: 1320
  year: 2012
  ident: D2NA00544A/cit9/1
  publication-title: Dalton Trans.
  doi: 10.1039/C1DT11205H
– volume: 71
  start-page: 941
  year: 2015
  ident: D2NA00544A/cit13/1
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
  doi: 10.1107/S1399004715002333
– volume: 20
  start-page: 2426
  year: 2019
  ident: D2NA00544A/cit40/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20102426
– volume: 174
  start-page: 819
  year: 2017
  ident: D2NA00544A/cit43/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.06.057
– volume: 115
  start-page: 1653
  year: 2015
  ident: D2NA00544A/cit41/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr400011b
– volume: 90
  start-page: 141
  issue: 11
  year: 2021
  ident: D2NA00544A/cit49/1
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RCR5006
– volume: 55
  start-page: R14717(R)
  year: 1997
  ident: D2NA00544A/cit59/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.R14717
– volume: 4
  start-page: 162
  issue: 3
  year: 1991
  ident: D2NA00544A/cit25/1
  publication-title: Biol. Met.
  doi: 10.1007/BF01141308
– volume-title: Magnetic Nanoparticle Assemblies
  year: 2014
  ident: D2NA00544A/cit38/1
– volume: 116
  start-page: 24
  year: 2012
  ident: D2NA00544A/cit54/1
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2012.03.002
– volume: 11
  start-page: 16868
  year: 2019
  ident: D2NA00544A/cit16/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR01541H
– volume: 49
  start-page: 784
  year: 2016
  ident: D2NA00544A/cit5/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500469e
– volume-title: Nanobiomaterials, Development and Applications
  year: 2014
  ident: D2NA00544A/cit37/1
– volume: 72
  start-page: 282
  year: 1994
  ident: D2NA00544A/cit61/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.282
– volume: 198
  start-page: 405
  year: 1987
  ident: D2NA00544A/cit27/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90290-7
– volume: 105
  start-page: 18182
  year: 2008
  ident: D2NA00544A/cit8/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0805083105
– volume: 71
  start-page: 1909
  year: 2015
  ident: D2NA00544A/cit14/1
  publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr.
  doi: 10.1107/S1399004715013073
– volume-title: Nanomagnetism: An Interdisciplinary Approach
  year: 2022
  ident: D2NA00544A/cit42/1
  doi: 10.1201/9781315157016
– volume: 130
  start-page: 1677
  issue: 5
  year: 1963
  ident: D2NA00544A/cit58/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.130.1677
– volume: 100
  start-page: 88
  year: 2013
  ident: D2NA00544A/cit23/1
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2012.02.083
– volume: 6
  start-page: 9
  year: 1994
  ident: D2NA00544A/cit51/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19940060103
– volume: 11
  start-page: 774
  issue: 4
  year: 2019
  ident: D2NA00544A/cit7/1
  publication-title: Metallomics
  doi: 10.1039/c9mt00001a
– volume: 11
  start-page: 12449
  year: 2019
  ident: D2NA00544A/cit62/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR03823J
– volume: 5
  start-page: 99
  ident: D2NA00544A/cit57/1
  publication-title: Ann. Geophys.
– volume: 41
  start-page: 1320
  year: 2012
  ident: D2NA00544A/cit19/1
  publication-title: Dalton Trans.
  doi: 10.1039/C1DT11205H
– volume: 11
  start-page: 120
  issue: 4
  year: 2018
  ident: D2NA00544A/cit50/1
  publication-title: Pharmaceuticals
  doi: 10.3390/ph11040120
– volume: 1800
  start-page: 719
  issue: 8
  year: 2010
  ident: D2NA00544A/cit1/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2010.03.021
– volume: 140–144
  start-page: 1466
  issue: 2
  year: 1995
  ident: D2NA00544A/cit36/1
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(94)00626-1
– volume: 4
  start-page: 438
  year: 2009
  ident: D2NA00544A/cit56/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2009.08.006
– volume: 28
  start-page: 185
  year: 1993
  ident: D2NA00544A/cit32/1
  publication-title: Clay Miner.
  doi: 10.1180/claymin.1993.028.2.02
– volume: 166
  start-page: 22
  year: 2009
  ident: D2NA00544A/cit18/1
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2008.12.001
– volume: 10
  start-page: 2619
  year: 2015
  ident: D2NA00544A/cit21/1
  publication-title: Int. J. Nanomed.
– volume: 198
  start-page: 405
  issue: 3
  year: 1988
  ident: D2NA00544A/cit29/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90290-7
– start-page: 150
  volume-title: Nanomagnetism: An Interdisciplinary Approach
  year: 2022
  ident: D2NA00544A/cit60/1
  doi: 10.1201/9781315157016
– volume: 253
  start-page: 1286
  year: 1961
  ident: D2NA00544A/cit35/1
  publication-title: Comptes Rendus, Acad. Sci.
– volume: 14
  start-page: 21266
  year: 2013
  ident: D2NA00544A/cit63/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms141121266
– volume: 252
  start-page: 4075
  year: 1961
  ident: D2NA00544A/cit33/1
  publication-title: Comptes Rendus, Acad. Sci.
– volume: 114
  start-page: 2580
  year: 2017
  ident: D2NA00544A/cit10/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1614302114
– volume: 52
  start-page: 453001
  year: 2019
  ident: D2NA00544A/cit20/1
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab353b
– volume: 41
  start-page: 11184
  issue: 37
  year: 2002
  ident: D2NA00544A/cit12/1
  publication-title: Biochemistry
  doi: 10.1021/bi020215g
– volume: 82
  start-page: 3640
  year: 1985
  ident: D2NA00544A/cit48/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.82.11.3640
SSID ssj0002144479
Score 2.2464406
Snippet The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular...
The physical properties of iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field...
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Chemistry
Title Micromagnetic and morphological characterization of heteropolymer human ferritin cores
URI https://www.ncbi.nlm.nih.gov/pubmed/36605807
https://www.proquest.com/docview/2761979578
https://pubmed.ncbi.nlm.nih.gov/PMC9765448
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25cIFgUpheVSu4IJQStbOY32sgKoqtKcW9Rb52VaiCcomldpfz9jrOJvNHgqXaNfreK3MZObzePwNQh_jxKQc_HiUExnDAiUzEaCMPJJa5ZQZsJnGLhRPz7Lji-TkMr2cTNrV0yWNOJAPG8-V_I9UoQ3kak_J_oNkw6DQAJ9BvnAFCcP1UTI-ddl0_KrUHe3qbQXPLdgzGdiYH1aQIXy3lRHub3XtS_QZS8_YuIz02ucUerwKxrdawFC6SxYIEPxnVV5VaylGPFRndsXSQvSmvrnjgELvljHc-3Zx_fnHQa9QdRc35213Ms3HIYgriULi3lwBULLpzH6XRW9o8_Y2HamVt53xfMUNe0s6svAxtQSp38jZoUWbSeBI7Wm019xbSDp02-2UFf29W-gJgdUFXQnyWAduWeQSx9IY5t8R21L2pb99CGVG65Nxmu1W3VWVcejl_Dl65pcd-HCpQy_QRJc76NdAfzDoDx7oD17XH1wZPNAf7PQHd_qDnf68RBdH38-_Hke-zkYkwYI3kZImS7UkwoiZmM1FatfkuWKMJzmXCqx6RlViX2YhMwoughrClOCAHTmT2tBdtF1WpX6NsFGxnAsiGU15omAsRe1hbTkjMyEJ11P0qXtkhfQk9LYWyu9iLJ0p-hD6_llSr2zstd89-QIso93u4qWu2kVBbIQuZ-CSpujVUhJhHJrZdIA4n6J8IKPQwbKuD38pb64d-zrgd_hfGHMXpBn6K1JyNyH-5lHTfoue9i_RO7Td1K1-D_C2EXsuLLTnVPIveEKpcA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micromagnetic+and+morphological+characterization+of+heteropolymer+human+ferritin+cores&rft.jtitle=Nanoscale+advances&rft.au=Longo%2C+Thomas&rft.au=Kim%2C+Steve&rft.au=Srivastava%2C+Ayush+K.&rft.au=Hurley%2C+Lauren&rft.date=2022-12-20&rft.issn=2516-0230&rft.eissn=2516-0230&rft.volume=5&rft.issue=1&rft.spage=208&rft.epage=219&rft_id=info:doi/10.1039%2FD2NA00544A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2NA00544A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon