Micromagnetic and morphological characterization of heteropolymer human ferritin cores
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were emp...
Saved in:
Published in | Nanoscale advances Vol. 5; no. 1; pp. 28 - 219 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
RSC
20.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The physical properties of
in vitro
iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and
57
Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H
21
/L
3
) and L-rich (H
2
/L
22
) ferritins reconstituted at 1000
57
Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of
τ
0
= 10
−11
s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10
4
J m
−3
and 2.75 × 10
4
J m
−3
for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.
The physical properties of
in vitro
iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. |
---|---|
AbstractList | The physical properties of
in vitro
iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and
57
Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H
21
/L
3
) and L-rich (H
2
/L
22
) ferritins reconstituted at 1000
57
Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of
τ
0
= 10
−11
s, the Néel–Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10
4
J m
−3
and 2.75 × 10
4
J m
−3
for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology. The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H21/L3) and L-rich (H2/L22) ferritins reconstituted at 1000 57Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10-11 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 104 J m-3 and 2.75 × 104 J m-3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology. The physical properties of iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H /L ) and L-rich (H /L ) ferritins reconstituted at 1000 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of = 10 s, the Néel-Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 J m and 2.75 × 10 J m for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology. The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H 21 /L 3 ) and L-rich (H 2 /L 22 ) ferritins reconstituted at 1000 57 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10 −11 s, the Néel–Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 4 J m −3 and 2.75 × 10 4 J m −3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology. The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. |
Author | Yates, Douglas Longo, Thomas Flint, Nicholas Viescas, Arthur J Ji, Kaixuan Stach, Eric A Kim, Steve Bou-Abdallah, Fadi Foucher, Alexandre C Papaefthymiou, Georgia C Srivastava, Ayush K Hurley, Lauren |
AuthorAffiliation | Department of Chemistry Singh Center for Nanotechnology Villanova University University of Pennsylvania Department of Materials Science and Engineering State University of New York Department of Physics |
AuthorAffiliation_xml | – name: University of Pennsylvania – name: Department of Chemistry – name: Villanova University – name: Department of Physics – name: State University of New York – name: Department of Materials Science and Engineering – name: Singh Center for Nanotechnology |
Author_xml | – sequence: 1 givenname: Thomas surname: Longo fullname: Longo, Thomas – sequence: 2 givenname: Steve surname: Kim fullname: Kim, Steve – sequence: 3 givenname: Ayush K surname: Srivastava fullname: Srivastava, Ayush K – sequence: 4 givenname: Lauren surname: Hurley fullname: Hurley, Lauren – sequence: 5 givenname: Kaixuan surname: Ji fullname: Ji, Kaixuan – sequence: 6 givenname: Arthur J surname: Viescas fullname: Viescas, Arthur J – sequence: 7 givenname: Nicholas surname: Flint fullname: Flint, Nicholas – sequence: 8 givenname: Alexandre C surname: Foucher fullname: Foucher, Alexandre C – sequence: 9 givenname: Douglas surname: Yates fullname: Yates, Douglas – sequence: 10 givenname: Eric A surname: Stach fullname: Stach, Eric A – sequence: 11 givenname: Fadi surname: Bou-Abdallah fullname: Bou-Abdallah, Fadi – sequence: 12 givenname: Georgia C surname: Papaefthymiou fullname: Papaefthymiou, Georgia C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36605807$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1P3DAQxS0EAgpcuFPlWFVaOv5IvL5UWlFakGh7ob1ak4mzcZXYWztbif71BJbPqqfxyL95T3rvDdsOMTjGjjmccpDmQyMCApRK4RbbFyWvZiAkbL9477GjnH8BgOBKKW122Z6sKijnoPfZz6-eUhxwGdzoqcDQFENMqy72cekJ-4I6TEijS_4vjj6GIrZF56Y9rmJ_M7hUdOsBQ9G6lPzoQ0ExuXzIdlrsszt6mAfsx-fz67OL2dX3L5dni6sZKYBx1lBblY5E3da85vO6NEIZ3RiDSiM1SpSVbJQWBDVVUoOUrTBNjQI4GnKtPGAfN7qrdT24hlwYE_Z2lfyA6cZG9Pb1T_CdXcY_1uhqymw-Cbx7EEjx99rl0Q4-k-t7DC6usxW64kabUt-hb196PZk8hjkBsAGmRHNOrrXkx_vQJmvfWw72rjL7SXxb3Fe2mE7e_3PyqPpf-GQDp0xP3HP_8habmaLP |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_135044 crossref_primary_10_1021_jacs_3c13830 crossref_primary_10_1038_s41598_023_46880_9 crossref_primary_10_1007_s11664_023_10569_6 crossref_primary_10_1002_pro_5104 |
Cites_doi | 10.1021/acs.biochem.7b00024 10.1016/j.jmb.2021.167198 10.1021/ja800492z 10.1042/BJ20060063 10.1021/bi990377l 10.1073/pnas.0910170107 10.1126/science.1636086 10.1016/j.bbagen.2010.03.018 10.1088/0957-4484/27/3/035702 10.1021/ja8054035 10.1021/ic400484n 10.1016/0167-4838(93)90201-2 10.1126/science.1142525 10.1016/0005-2728(96)00022-9 10.1088/0957-4484/27/46/46LT02 10.1002/mrm.1910400208 10.1021/acs.accounts.1c00267 10.1021/cr5004908 10.1016/S1357-2725(01)00063-2 10.1016/j.cbpa.2011.01.004 10.1074/jbc.M117.777201 10.1039/C1DT11205H 10.1107/S1399004715002333 10.3390/ijms20102426 10.1016/j.talanta.2017.06.057 10.1021/cr400011b 10.1070/RCR5006 10.1103/PhysRevB.55.R14717 10.1007/BF01141308 10.1016/j.ultramic.2012.03.002 10.1039/C9NR01541H 10.1021/ar500469e 10.1103/PhysRevLett.72.282 10.1016/0022-2836(87)90290-7 10.1073/pnas.0805083105 10.1107/S1399004715013073 10.1201/9781315157016 10.1103/PhysRev.130.1677 10.1016/j.saa.2012.02.083 10.1002/adma.19940060103 10.1039/c9mt00001a 10.1039/C9NR03823J 10.3390/ph11040120 10.1016/j.bbagen.2010.03.021 10.1016/0304-8853(94)00626-1 10.1016/j.nantod.2009.08.006 10.1180/claymin.1993.028.2.02 10.1016/j.jsb.2008.12.001 10.3390/ijms141121266 10.1073/pnas.1614302114 10.1088/1361-6463/ab353b 10.1021/bi020215g 10.1073/pnas.82.11.3640 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2023 RSC |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2023 RSC |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1039/d2na00544a |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2516-0230 |
EndPage | 219 |
ExternalDocumentID | PMC9765448 36605807 10_1039_D2NA00544A d2na00544a |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R15 GM104879 – fundername: ; grantid: NNCI-2025608, DMR-1720530 – fundername: ; grantid: 1934666 |
GroupedDBID | ADBBV ALMA_UNASSIGNED_HOLDINGS ANUXI BCNDV C6K EBS GROUPED_DOAJ OK1 RPM SMJ AAFWJ AAYXX AFPKN CITATION H13 M~E NPM 7X8 5PM |
ID | FETCH-LOGICAL-c400t-dcf65ec2bfb1b18b592497d99a47acd42563d472c0bc637033f29dba201a9cef3 |
ISSN | 2516-0230 |
IngestDate | Thu Aug 21 18:38:16 EDT 2025 Fri Jul 11 07:08:30 EDT 2025 Thu Apr 03 07:10:01 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Tue Jul 01 04:28:18 EDT 2025 Wed Dec 21 06:15:23 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-dcf65ec2bfb1b18b592497d99a47acd42563d472c0bc637033f29dba201a9cef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8557-1827 0000-0002-8755-3024 0000-0002-0880-1369 0000-0002-3366-2153 0000-0002-2423-7788 0000-0003-1713-8893 |
OpenAccessLink | http://dx.doi.org/10.1039/d2na00544a |
PMID | 36605807 |
PQID | 2761979578 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | rsc_primary_d2na00544a pubmed_primary_36605807 crossref_citationtrail_10_1039_D2NA00544A crossref_primary_10_1039_D2NA00544A pubmedcentral_primary_oai_pubmedcentral_nih_gov_9765448 proquest_miscellaneous_2761979578 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-20 |
PublicationDateYYYYMMDD | 2022-12-20 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale advances |
PublicationTitleAlternate | Nanoscale Adv |
PublicationYear | 2022 |
Publisher | RSC |
Publisher_xml | – name: RSC |
References | Papaefthymiou (D2NA00544A/cit56/1) 2009; 4 Kilcoyne (D2NA00544A/cit36/1) 1995; 140–144 Cai (D2NA00544A/cit21/1) 2015; 10 Bødker (D2NA00544A/cit61/1) 1994; 72 Bou-Abdallah (D2NA00544A/cit7/1) 2019; 11 Tan (D2NA00544A/cit54/1) 2012; 116 Wofford (D2NA00544A/cit46/1) 2017; 292 Michel (D2NA00544A/cit31/1) 2007; 316 Meldrum (D2NA00544A/cit39/1) 1992; 257 Papaefthymiou (D2NA00544A/cit45/1) 2010; 1800 Pan (D2NA00544A/cit18/1) 2009; 166 Theil (D2NA00544A/cit26/1) 2013; 52 Pozzi (D2NA00544A/cit10/1) 2017; 114 Makhlouf (D2NA00544A/cit59/1) 1997; 55 Jian (D2NA00544A/cit17/1) 2016; 27 Néel (D2NA00544A/cit34/1) 1961; 253 St Pierre (D2NA00544A/cit25/1) 1991; 4 Galvez (D2NA00544A/cit22/1) 2008; 130 Mann (D2NA00544A/cit29/1) 1988; 198 Wang (D2NA00544A/cit53/1) 2016; 27 Narayanan (D2NA00544A/cit16/1) 2019; 11 Brooks (D2NA00544A/cit55/1) 1998; 40 Papaefthymiou (D2NA00544A/cit60/1) 2022 Michel (D2NA00544A/cit30/1) 2010; 107 Bou-Abdallah (D2NA00544A/cit50/1) 2018; 11 Néel (D2NA00544A/cit57/1); 5 Mehlenbacher (D2NA00544A/cit6/1) 2017; 56 Theil (D2NA00544A/cit5/1) 2016; 49 Smeets (D2NA00544A/cit52/1) Kamnev (D2NA00544A/cit43/1) 2017; 174 Kamnev (D2NA00544A/cit49/1) 2021; 90 Papaefthymiou (D2NA00544A/cit37/1) 2014 Lopez-Castro (D2NA00544A/cit19/1) 2012; 41 Heywood (D2NA00544A/cit51/1) 1994; 6 Watt (D2NA00544A/cit48/1) 1985; 82 Tosha (D2NA00544A/cit8/1) 2008; 105 Néel (D2NA00544A/cit33/1) 1961; 252 Bou-Abdallah (D2NA00544A/cit11/1) 2008; 130 Issa (D2NA00544A/cit63/1) 2013; 14 Wilkinson IV (D2NA00544A/cit2/1) 2006; 395 Srivastava (D2NA00544A/cit15/1) 2021; 433 Song (D2NA00544A/cit64/1) 2021; 54 Harrison (D2NA00544A/cit3/1) 1996; 1275 Alenkina (D2NA00544A/cit23/1) 2013; 100 Néel (D2NA00544A/cit35/1) 1961; 253 Jin (D2NA00544A/cit62/1) 2019; 11 Narayanan (D2NA00544A/cit20/1) 2019; 52 Lopez-Castro (D2NA00544A/cit9/1) 2012; 41 Bauminger (D2NA00544A/cit47/1) 1999; 38 Ebrahimi (D2NA00544A/cit44/1) 2015; 115 Bou-Abdallah (D2NA00544A/cit12/1) 2002; 41 Papaefthymiou (D2NA00544A/cit38/1) 2014 Pozzi (D2NA00544A/cit13/1) 2015; 71 Brown (D2NA00544A/cit58/1) 1963; 130 Wade (D2NA00544A/cit28/1) 1993; 1161 Papaefthymiou (D2NA00544A/cit42/1) 2022 Mann (D2NA00544A/cit27/1) 1987; 198 Le Xue (D2NA00544A/cit40/1) 2019; 20 Jutz (D2NA00544A/cit41/1) 2015; 115 Pozzi (D2NA00544A/cit14/1) 2015; 71 Bou-Abdallah (D2NA00544A/cit1/1) 2010; 1800 Drits (D2NA00544A/cit32/1) 1993; 28 Theil (D2NA00544A/cit24/1) 2011; 15 Aisen (D2NA00544A/cit4/1) 2001; 33 |
References_xml | – issn: 2022 publication-title: Nanomagnetism: An Interdisciplinary Approach doi: Papaefthymiou – issn: 2014 volume-title: Bio-inspired Magnetic Nanoparticles publication-title: Nanobiomaterials, Development and Applications doi: Papaefthymiou Devlin – publication-title: A Classical View on Nonclassical Nucleation doi: Smeets Finney Habraken Sommerdijk – issn: 2022 end-page: 150 publication-title: Nanomagnetism: An Interdisciplinary Approach doi: Papaefthymiou – issn: 2014 volume-title: Biogenic and Biomimetic Magnetic Nanoparticles and their Assemblies publication-title: Magnetic Nanoparticle Assemblies doi: Papaefthymiou – volume: 56 start-page: 3900 year: 2017 ident: D2NA00544A/cit6/1 publication-title: Biochemistry doi: 10.1021/acs.biochem.7b00024 – volume: 433 start-page: 167198 issue: 19 year: 2021 ident: D2NA00544A/cit15/1 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2021.167198 – volume: 130 start-page: 8062 issue: 25 year: 2008 ident: D2NA00544A/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800492z – volume: 395 start-page: 501 year: 2006 ident: D2NA00544A/cit2/1 publication-title: Biochem. J. doi: 10.1042/BJ20060063 – volume: 38 start-page: 7791 year: 1999 ident: D2NA00544A/cit47/1 publication-title: Biochemistry doi: 10.1021/bi990377l – volume: 107 start-page: 2787 year: 2010 ident: D2NA00544A/cit30/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0910170107 – volume: 257 start-page: 522 year: 1992 ident: D2NA00544A/cit39/1 publication-title: Science doi: 10.1126/science.1636086 – volume: 253 start-page: 203 year: 1961 ident: D2NA00544A/cit34/1 publication-title: Comptes Rendus, Acad. Sci. – volume: 1800 start-page: 886 year: 2010 ident: D2NA00544A/cit45/1 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2010.03.018 – volume: 27 start-page: 035702 year: 2016 ident: D2NA00544A/cit53/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/27/3/035702 – volume: 130 start-page: 17801 issue: 52 year: 2008 ident: D2NA00544A/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8054035 – volume: 52 start-page: 12223 issue: 21 year: 2013 ident: D2NA00544A/cit26/1 publication-title: Inorg. Chem. doi: 10.1021/ic400484n – volume: 1161 start-page: 91 year: 1993 ident: D2NA00544A/cit28/1 publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(93)90201-2 – volume: 316 start-page: 1726 issue: 5832 year: 2007 ident: D2NA00544A/cit31/1 publication-title: Science doi: 10.1126/science.1142525 – volume: 1275 start-page: 161 year: 1996 ident: D2NA00544A/cit3/1 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(96)00022-9 – volume: 27 start-page: 46LT02 year: 2016 ident: D2NA00544A/cit17/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/27/46/46LT02 – volume: 40 start-page: 227 year: 1998 ident: D2NA00544A/cit55/1 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910400208 – volume: 54 start-page: 3313 issue: 17 year: 2021 ident: D2NA00544A/cit64/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00267 – volume-title: A Classical View on Nonclassical Nucleation ident: D2NA00544A/cit52/1 – volume: 115 start-page: 295 year: 2015 ident: D2NA00544A/cit44/1 publication-title: Chem. Rev. doi: 10.1021/cr5004908 – volume: 33 start-page: 940 year: 2001 ident: D2NA00544A/cit4/1 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(01)00063-2 – volume: 15 start-page: 304 year: 2011 ident: D2NA00544A/cit24/1 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2011.01.004 – volume: 292 start-page: 5546 year: 2017 ident: D2NA00544A/cit46/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.777201 – volume: 41 start-page: 1320 year: 2012 ident: D2NA00544A/cit9/1 publication-title: Dalton Trans. doi: 10.1039/C1DT11205H – volume: 71 start-page: 941 year: 2015 ident: D2NA00544A/cit13/1 publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. doi: 10.1107/S1399004715002333 – volume: 20 start-page: 2426 year: 2019 ident: D2NA00544A/cit40/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20102426 – volume: 174 start-page: 819 year: 2017 ident: D2NA00544A/cit43/1 publication-title: Talanta doi: 10.1016/j.talanta.2017.06.057 – volume: 115 start-page: 1653 year: 2015 ident: D2NA00544A/cit41/1 publication-title: Chem. Rev. doi: 10.1021/cr400011b – volume: 90 start-page: 141 issue: 11 year: 2021 ident: D2NA00544A/cit49/1 publication-title: Russ. Chem. Rev. doi: 10.1070/RCR5006 – volume: 55 start-page: R14717(R) year: 1997 ident: D2NA00544A/cit59/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.R14717 – volume: 4 start-page: 162 issue: 3 year: 1991 ident: D2NA00544A/cit25/1 publication-title: Biol. Met. doi: 10.1007/BF01141308 – volume-title: Magnetic Nanoparticle Assemblies year: 2014 ident: D2NA00544A/cit38/1 – volume: 116 start-page: 24 year: 2012 ident: D2NA00544A/cit54/1 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.03.002 – volume: 11 start-page: 16868 year: 2019 ident: D2NA00544A/cit16/1 publication-title: Nanoscale doi: 10.1039/C9NR01541H – volume: 49 start-page: 784 year: 2016 ident: D2NA00544A/cit5/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500469e – volume-title: Nanobiomaterials, Development and Applications year: 2014 ident: D2NA00544A/cit37/1 – volume: 72 start-page: 282 year: 1994 ident: D2NA00544A/cit61/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.282 – volume: 198 start-page: 405 year: 1987 ident: D2NA00544A/cit27/1 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90290-7 – volume: 105 start-page: 18182 year: 2008 ident: D2NA00544A/cit8/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805083105 – volume: 71 start-page: 1909 year: 2015 ident: D2NA00544A/cit14/1 publication-title: Acta Crystallogr., Sect. D: Biol. Crystallogr. doi: 10.1107/S1399004715013073 – volume-title: Nanomagnetism: An Interdisciplinary Approach year: 2022 ident: D2NA00544A/cit42/1 doi: 10.1201/9781315157016 – volume: 130 start-page: 1677 issue: 5 year: 1963 ident: D2NA00544A/cit58/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.130.1677 – volume: 100 start-page: 88 year: 2013 ident: D2NA00544A/cit23/1 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2012.02.083 – volume: 6 start-page: 9 year: 1994 ident: D2NA00544A/cit51/1 publication-title: Adv. Mater. doi: 10.1002/adma.19940060103 – volume: 11 start-page: 774 issue: 4 year: 2019 ident: D2NA00544A/cit7/1 publication-title: Metallomics doi: 10.1039/c9mt00001a – volume: 11 start-page: 12449 year: 2019 ident: D2NA00544A/cit62/1 publication-title: Nanoscale doi: 10.1039/C9NR03823J – volume: 5 start-page: 99 ident: D2NA00544A/cit57/1 publication-title: Ann. Geophys. – volume: 41 start-page: 1320 year: 2012 ident: D2NA00544A/cit19/1 publication-title: Dalton Trans. doi: 10.1039/C1DT11205H – volume: 11 start-page: 120 issue: 4 year: 2018 ident: D2NA00544A/cit50/1 publication-title: Pharmaceuticals doi: 10.3390/ph11040120 – volume: 1800 start-page: 719 issue: 8 year: 2010 ident: D2NA00544A/cit1/1 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2010.03.021 – volume: 140–144 start-page: 1466 issue: 2 year: 1995 ident: D2NA00544A/cit36/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(94)00626-1 – volume: 4 start-page: 438 year: 2009 ident: D2NA00544A/cit56/1 publication-title: Nano Today doi: 10.1016/j.nantod.2009.08.006 – volume: 28 start-page: 185 year: 1993 ident: D2NA00544A/cit32/1 publication-title: Clay Miner. doi: 10.1180/claymin.1993.028.2.02 – volume: 166 start-page: 22 year: 2009 ident: D2NA00544A/cit18/1 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2008.12.001 – volume: 10 start-page: 2619 year: 2015 ident: D2NA00544A/cit21/1 publication-title: Int. J. Nanomed. – volume: 198 start-page: 405 issue: 3 year: 1988 ident: D2NA00544A/cit29/1 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90290-7 – start-page: 150 volume-title: Nanomagnetism: An Interdisciplinary Approach year: 2022 ident: D2NA00544A/cit60/1 doi: 10.1201/9781315157016 – volume: 253 start-page: 1286 year: 1961 ident: D2NA00544A/cit35/1 publication-title: Comptes Rendus, Acad. Sci. – volume: 14 start-page: 21266 year: 2013 ident: D2NA00544A/cit63/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms141121266 – volume: 252 start-page: 4075 year: 1961 ident: D2NA00544A/cit33/1 publication-title: Comptes Rendus, Acad. Sci. – volume: 114 start-page: 2580 year: 2017 ident: D2NA00544A/cit10/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1614302114 – volume: 52 start-page: 453001 year: 2019 ident: D2NA00544A/cit20/1 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab353b – volume: 41 start-page: 11184 issue: 37 year: 2002 ident: D2NA00544A/cit12/1 publication-title: Biochemistry doi: 10.1021/bi020215g – volume: 82 start-page: 3640 year: 1985 ident: D2NA00544A/cit48/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.82.11.3640 |
SSID | ssj0002144479 |
Score | 2.2464406 |
Snippet | The physical properties of
in vitro
iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular... The physical properties of iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field... The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28 |
SubjectTerms | Chemistry |
Title | Micromagnetic and morphological characterization of heteropolymer human ferritin cores |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36605807 https://www.proquest.com/docview/2761979578 https://pubmed.ncbi.nlm.nih.gov/PMC9765448 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25cIFgUpheVSu4IJQStbOY32sgKoqtKcW9Rb52VaiCcomldpfz9jrOJvNHgqXaNfreK3MZObzePwNQh_jxKQc_HiUExnDAiUzEaCMPJJa5ZQZsJnGLhRPz7Lji-TkMr2cTNrV0yWNOJAPG8-V_I9UoQ3kak_J_oNkw6DQAJ9BvnAFCcP1UTI-ddl0_KrUHe3qbQXPLdgzGdiYH1aQIXy3lRHub3XtS_QZS8_YuIz02ucUerwKxrdawFC6SxYIEPxnVV5VaylGPFRndsXSQvSmvrnjgELvljHc-3Zx_fnHQa9QdRc35213Ms3HIYgriULi3lwBULLpzH6XRW9o8_Y2HamVt53xfMUNe0s6svAxtQSp38jZoUWbSeBI7Wm019xbSDp02-2UFf29W-gJgdUFXQnyWAduWeQSx9IY5t8R21L2pb99CGVG65Nxmu1W3VWVcejl_Dl65pcd-HCpQy_QRJc76NdAfzDoDx7oD17XH1wZPNAf7PQHd_qDnf68RBdH38-_Hke-zkYkwYI3kZImS7UkwoiZmM1FatfkuWKMJzmXCqx6RlViX2YhMwoughrClOCAHTmT2tBdtF1WpX6NsFGxnAsiGU15omAsRe1hbTkjMyEJ11P0qXtkhfQk9LYWyu9iLJ0p-hD6_llSr2zstd89-QIso93u4qWu2kVBbIQuZ-CSpujVUhJhHJrZdIA4n6J8IKPQwbKuD38pb64d-zrgd_hfGHMXpBn6K1JyNyH-5lHTfoue9i_RO7Td1K1-D_C2EXsuLLTnVPIveEKpcA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micromagnetic+and+morphological+characterization+of+heteropolymer+human+ferritin+cores&rft.jtitle=Nanoscale+advances&rft.au=Longo%2C+Thomas&rft.au=Kim%2C+Steve&rft.au=Srivastava%2C+Ayush+K.&rft.au=Hurley%2C+Lauren&rft.date=2022-12-20&rft.issn=2516-0230&rft.eissn=2516-0230&rft.volume=5&rft.issue=1&rft.spage=208&rft.epage=219&rft_id=info:doi/10.1039%2FD2NA00544A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2NA00544A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon |