Type-II tunable SiC/InSe heterostructures under an electric field and biaxial strain

In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a notic...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 17; pp. 9647 - 9655
Main Authors Wang, Zhu, Zhang, Yan, Wei, Xing, Guo, Tingting, Fan, Jibin, Ni, Lei, Weng, Yijun, Zha, Zhengdi, Liu, Jian, Tian, Ye, Li, Ting, Duan, Li
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 06.05.2020
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d0cp00291g

Cover

Loading…
Abstract In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics. A novel type II band alignment with lower carrier effective mass can be adjusted by an electric field and strain.
AbstractList In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics.
In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics. A novel type II band alignment with lower carrier effective mass can be adjusted by an electric field and strain.
In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics.In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics.
Author Wang, Zhu
Wei, Xing
Fan, Jibin
Guo, Tingting
Liu, Jian
Li, Ting
Zha, Zhengdi
Zhang, Yan
Tian, Ye
Duan, Li
Ni, Lei
Weng, Yijun
AuthorAffiliation Institute of Physics
Chinese Academy of Sciences
School of Materials Science and Engineering
Shandong University
Chang'an University
School of Physics
AuthorAffiliation_xml – name: School of Physics
– name: Chang'an University
– name: Shandong University
– name: Chinese Academy of Sciences
– name: Institute of Physics
– name: School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Zhu
  surname: Wang
  fullname: Wang, Zhu
– sequence: 2
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
– sequence: 3
  givenname: Xing
  surname: Wei
  fullname: Wei, Xing
– sequence: 4
  givenname: Tingting
  surname: Guo
  fullname: Guo, Tingting
– sequence: 5
  givenname: Jibin
  surname: Fan
  fullname: Fan, Jibin
– sequence: 6
  givenname: Lei
  surname: Ni
  fullname: Ni, Lei
– sequence: 7
  givenname: Yijun
  surname: Weng
  fullname: Weng, Yijun
– sequence: 8
  givenname: Zhengdi
  surname: Zha
  fullname: Zha, Zhengdi
– sequence: 9
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
– sequence: 10
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
– sequence: 11
  givenname: Ting
  surname: Li
  fullname: Li, Ting
– sequence: 12
  givenname: Li
  surname: Duan
  fullname: Duan, Li
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32328602$$D View this record in MEDLINE/PubMed
BookMark eNp90d9rFDEQB_AgFftDX3xXIr5IYe1ks7e3eZRT24OCQs_nMJtMNGUvuyZZsP-9Oa-tUEofQkL4zJDM95gdhDEQY68FfBQg1ZkFMwHUSvx8xo5E08pKQdcc3J-X7SE7TukaAMRCyBfsUNay7lqoj9hmczNRtV7zPAfsB-JXfnW2DlfEf1GmOKYcZ5PnSInPwVLkGDgNZHL0hjtPgy03lvce_3gceOHow0v23OGQ6NXtfsJ-fP2yWV1Ul9_O16tPl5VpAHJlzUIs-mVTlqkXDk0rsFVoRS3Q1Q0qaxQoA7jsTataidQ5oXqJEpxwqOQJ-7DvO8Xx90wp661PhoYBA41z0rVUTbdspBSFvn9Ar8c5hvK6neoapVrRFfX2Vs39lqyeot9ivNF38yoA9sCU0aRIThufMfsx7D4-aAF6F4n-DKvv_yI5LyWnD0ruuj6K3-1xTObe_c9XT9YV8-YpI_8CnNOfkw
CitedBy_id crossref_primary_10_1016_j_tsf_2022_139332
crossref_primary_10_1016_j_mssp_2023_107443
crossref_primary_10_1039_D0TC05943A
crossref_primary_10_1016_j_apsusc_2024_161848
crossref_primary_10_1039_D1NJ03867B
crossref_primary_10_1016_j_chemphys_2023_112087
crossref_primary_10_1016_j_micrna_2024_207953
crossref_primary_10_1039_D2MA01061E
crossref_primary_10_1016_j_mssp_2023_107822
crossref_primary_10_1016_j_jlumin_2022_119256
crossref_primary_10_1016_j_mssp_2020_105588
crossref_primary_10_1039_D0CE01633K
crossref_primary_10_1016_j_mtcomm_2025_112162
crossref_primary_10_1063_5_0060994
crossref_primary_10_1016_j_physe_2022_115456
crossref_primary_10_1360_SSPMA_2021_0351
crossref_primary_10_1016_j_tsf_2022_139419
crossref_primary_10_1016_j_mssp_2023_107753
crossref_primary_10_1016_j_ijhydene_2023_03_158
crossref_primary_10_1088_1361_648X_acd09b
crossref_primary_10_6023_A21120543
crossref_primary_10_1039_D3TA01479G
crossref_primary_10_1039_D0CP02721A
crossref_primary_10_1016_j_mssp_2024_108163
crossref_primary_10_2139_ssrn_4022222
crossref_primary_10_1016_j_apsusc_2022_156261
crossref_primary_10_1016_j_mssp_2023_107695
crossref_primary_10_1016_j_apsusc_2020_147825
crossref_primary_10_1016_j_chemphys_2025_112654
crossref_primary_10_1039_D1YA00047K
crossref_primary_10_1021_acsomega_1c01562
crossref_primary_10_1016_j_ceramint_2024_02_018
crossref_primary_10_1016_j_diamond_2020_108157
crossref_primary_10_1063_5_0234852
crossref_primary_10_3390_nano10102037
crossref_primary_10_7498_aps_72_20230836
crossref_primary_10_1016_j_commatsci_2024_113463
crossref_primary_10_1016_j_cjph_2024_12_029
Cites_doi 10.1016/j.apsusc.2019.03.344
10.1021/acs.jpclett.5b00976
10.1126/science.1102896
10.1039/C8CP06170J
10.1126/science.1158877
10.1021/acs.jpcc.7b05650
10.1038/nnano.2016.42
10.1002/adma.201500889
10.1038/nnano.2012.193
10.1039/C9TA01219B
10.1016/S0009-2614(97)01466-8
10.1021/acs.jpcc.7b11584
10.1016/j.matchemphys.2018.05.063
10.1039/c3tc00629h
10.1088/0268-1242/7/7/001
10.1103/PhysRevLett.108.235502
10.1063/1.3382344
10.1039/C5CE01986A
10.1016/j.apsusc.2018.12.135
10.1039/C8CP03508C
10.1021/nl204562j
10.1002/adma.201202920
10.1002/pssr.201800102
10.1021/acsnano.7b01168
10.1063/1.4962434
10.1038/nature11458
10.1039/C9TA01451A
10.1021/acs.jpclett.5b00365
10.1021/acs.jpcc.5b09092
10.1021/acs.jpcc.9b01175
10.1038/nnano.2014.167
10.1039/C8TC01533C
10.1039/C8CP07407K
10.1038/s41598-018-30614-3
10.1002/adma.201402427
10.1103/PhysRevLett.105.136805
10.1039/C6TC01988A
10.1103/PhysRevB.94.035125
10.1039/C7CP07270H
10.1039/C6NR05976G
10.1002/adma.201504657
10.1016/0038-1098(80)90656-0
10.1039/C7RA03748A
10.1039/B414111C
10.1103/PhysRevB.95.045302
10.1021/nn402919d
10.1039/C8TC03047B
10.1038/nmat1849
10.1039/C8CP07680D
10.1039/C9TC01873E
10.1103/PhysRevLett.80.891
10.1103/PhysRevB.80.155453
10.1063/1.4942368
10.1103/PhysRevB.97.115416
10.1038/nnano.2016.242
10.1103/PhysRevLett.96.066102
10.1063/1.4943548
10.1126/science.1218461
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp00291g
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 9655
ExternalDocumentID 32328602
10_1039_D0CP00291G
d0cp00291g
Genre Journal Article
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c400t-dc515b745b7c25fac61a69ad121af24a9dc909c0a7bc6963ae8f19b3a30f1fa93
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 16:16:17 EDT 2025
Mon Jun 30 06:36:51 EDT 2025
Wed Feb 19 02:30:16 EST 2025
Tue Jul 01 00:53:42 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Sat Jan 08 03:56:29 EST 2022
Wed Nov 11 00:26:56 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-dc515b745b7c25fac61a69ad121af24a9dc909c0a7bc6963ae8f19b3a30f1fa93
Notes 10.1039/d0cp00291g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2030-0011
0000-0003-0072-5442
PMID 32328602
PQID 2398499618
PQPubID 2047499
PageCount 9
ParticipantIDs proquest_miscellaneous_2394874331
crossref_primary_10_1039_D0CP00291G
rsc_primary_d0cp00291g
proquest_journals_2398499618
crossref_citationtrail_10_1039_D0CP00291G
pubmed_primary_32328602
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200506
PublicationDateYYYYMMDD 2020-05-06
PublicationDate_xml – month: 5
  year: 2020
  text: 20200506
  day: 6
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yang (D0CP00291G-(cit24)/*[position()=1]) 2017; 11
Mudd (D0CP00291G-(cit25)/*[position()=1]) 2015; 27
Dong (D0CP00291G-(cit10)/*[position()=1]) 2017; 121
Chen (D0CP00291G-(cit33)/*[position()=1]) 2017; 95
Ji (D0CP00291G-(cit9)/*[position()=1]) 2018; 122
Bjorkman (D0CP00291G-(cit47)/*[position()=1]) 2012; 108
Zhang (D0CP00291G-(cit55)/*[position()=1]) 2019; 21
Benedict (D0CP00291G-(cit46)/*[position()=1]) 1998; 286
Li (D0CP00291G-(cit51)/*[position()=1]) 2018; 6
Freeman (D0CP00291G-(cit30)/*[position()=1]) 2006; 96
Huang (D0CP00291G-(cit59)/*[position()=1]) 2016; 108
Grimme (D0CP00291G-(cit39)/*[position()=1]) 2010; 132
Li (D0CP00291G-(cit48)/*[position()=1]) 2018; 20
He (D0CP00291G-(cit53)/*[position()=1]) 2019; 123
Özçelik (D0CP00291G-(cit57)/*[position()=1]) 2016; 94
Shang (D0CP00291G-(cit50)/*[position()=1]) 2018; 6
Hong (D0CP00291G-(cit35)/*[position()=1]) 2014; 9
Şahin (D0CP00291G-(cit44)/*[position()=1]) 2009; 80
Tang (D0CP00291G-(cit32)/*[position()=1]) 2018; 20
Feng (D0CP00291G-(cit23)/*[position()=1]) 2014; 26
Segall (D0CP00291G-(cit37)/*[position()=1]) 2002; 14
Myoung (D0CP00291G-(cit14)/*[position()=1]) 2013; 7
Kuroda (D0CP00291G-(cit19)/*[position()=1]) 1980; 34
Lin (D0CP00291G-(cit31)/*[position()=1]) 2015; 34
Perdew (D0CP00291G-(cit38)/*[position()=1]) 1998; 80
Wang (D0CP00291G-(cit7)/*[position()=1]) 2012; 7
Chen (D0CP00291G-(cit45)/*[position()=1]) 2018; 12
Xu (D0CP00291G-(cit5)/*[position()=1]) 2016; 28
Ren (D0CP00291G-(cit52)/*[position()=1]) 2019; 21
Geim (D0CP00291G-(cit4)/*[position()=1]) 2009; 324
Claeyssens (D0CP00291G-(cit29)/*[position()=1]) 2005; 15
Geim (D0CP00291G-(cit2)/*[position()=1]) 2007; 6
Wang (D0CP00291G-(cit15)/*[position()=1]) 2019; 7
Xu (D0CP00291G-(cit17)/*[position()=1]) 2016; 8
Huang (D0CP00291G-(cit58)/*[position()=1]) 2015; 6
Li (D0CP00291G-(cit54)/*[position()=1]) 2018; 216
Li (D0CP00291G-(cit21)/*[position()=1]) 2016; 11
Shi (D0CP00291G-(cit12)/*[position()=1]) 2012; 12
Novoselov (D0CP00291G-(cit3)/*[position()=1]) 2012; 490
Wang (D0CP00291G-(cit49)/*[position()=1]) 2018; 20
Bandurin (D0CP00291G-(cit18)/*[position()=1]) 2017; 12
Ivanov (D0CP00291G-(cit28)/*[position()=1]) 1992; 7
Lin (D0CP00291G-(cit34)/*[position()=1]) 2013; 1
Chang (D0CP00291G-(cit36)/*[position()=1]) 2013; 25
Li (D0CP00291G-(cit61)/*[position()=1]) 2017; 7
Huang (D0CP00291G-(cit8)/*[position()=1]) 2016; 18
Qin (D0CP00291G-(cit26)/*[position()=1]) 2015; 6
Mao (D0CP00291G-(cit16)/*[position()=1]) 2019; 7
Mak (D0CP00291G-(cit6)/*[position()=1]) 2010; 105
Yu (D0CP00291G-(cit43)/*[position()=1]) 2016; 109
Liu (D0CP00291G-(cit11)/*[position()=1]) 2015; 119
Tang (D0CP00291G-(cit27)/*[position()=1]) 2018; 20
Hu (D0CP00291G-(cit42)/*[position()=1]) 2019; 7
Wang (D0CP00291G-(cit41)/*[position()=1]) 2019; 485
Novoselov (D0CP00291G-(cit1)/*[position()=1]) 2004; 306
Chen (D0CP00291G-(cit40)/*[position()=1]) 2016; 4
Wang (D0CP00291G-(cit56)/*[position()=1]) 2018; 8
Xia (D0CP00291G-(cit22)/*[position()=1]) 2018; 97
Britnell (D0CP00291G-(cit13)/*[position()=1]) 2012; 335
Xie (D0CP00291G-(cit20)/*[position()=1]) 2019; 475
Wang (D0CP00291G-(cit60)/*[position()=1]) 2016; 6
References_xml – volume: 485
  start-page: 375
  year: 2019
  ident: D0CP00291G-(cit41)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.03.344
– volume: 6
  start-page: 2483
  year: 2015
  ident: D0CP00291G-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00976
– volume: 306
  start-page: 666
  year: 2004
  ident: D0CP00291G-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 20
  start-page: 29333
  year: 2018
  ident: D0CP00291G-(cit27)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP06170J
– volume: 34
  start-page: 119
  year: 2015
  ident: D0CP00291G-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. C
– volume: 324
  start-page: 1530
  year: 2009
  ident: D0CP00291G-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 121
  start-page: 22040
  year: 2017
  ident: D0CP00291G-(cit10)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b05650
– volume: 11
  start-page: 593
  year: 2016
  ident: D0CP00291G-(cit21)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.42
– volume: 20
  start-page: 29333
  year: 2018
  ident: D0CP00291G-(cit32)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP06170J
– volume: 27
  start-page: 3760
  year: 2015
  ident: D0CP00291G-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500889
– volume: 7
  start-page: 699
  year: 2012
  ident: D0CP00291G-(cit7)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 7
  start-page: 11265
  year: 2019
  ident: D0CP00291G-(cit16)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01219B
– volume: 286
  start-page: 490
  year: 1998
  ident: D0CP00291G-(cit46)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)01466-8
– volume: 122
  start-page: 3123
  year: 2018
  ident: D0CP00291G-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11584
– volume: 216
  start-page: 64
  year: 2018
  ident: D0CP00291G-(cit54)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.05.063
– volume: 1
  start-page: 2131
  year: 2013
  ident: D0CP00291G-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc00629h
– volume: 7
  start-page: 863
  year: 1992
  ident: D0CP00291G-(cit28)/*[position()=1]
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/7/7/001
– volume: 108
  start-page: 235502
  year: 2012
  ident: D0CP00291G-(cit47)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.235502
– volume: 132
  start-page: 154104
  year: 2010
  ident: D0CP00291G-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 18
  start-page: 3968
  year: 2016
  ident: D0CP00291G-(cit8)/*[position()=1]
  publication-title: CrystEngComm
  doi: 10.1039/C5CE01986A
– volume: 475
  start-page: 839
  year: 2019
  ident: D0CP00291G-(cit20)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.12.135
– volume: 20
  start-page: 24726
  year: 2018
  ident: D0CP00291G-(cit48)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP03508C
– volume: 12
  start-page: 2784
  year: 2012
  ident: D0CP00291G-(cit12)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl204562j
– volume: 25
  start-page: 756
  year: 2013
  ident: D0CP00291G-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202920
– volume: 12
  start-page: 1800102
  year: 2018
  ident: D0CP00291G-(cit45)/*[position()=1]
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201800102
– volume: 11
  start-page: 4225
  year: 2017
  ident: D0CP00291G-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01168
– volume: 109
  start-page: 103104
  year: 2016
  ident: D0CP00291G-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4962434
– volume: 490
  start-page: 192
  year: 2012
  ident: D0CP00291G-(cit3)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11458
– volume: 7
  start-page: 10684
  year: 2019
  ident: D0CP00291G-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01451A
– volume: 6
  start-page: 1333
  year: 2015
  ident: D0CP00291G-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00365
– volume: 119
  start-page: 28417
  year: 2015
  ident: D0CP00291G-(cit11)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09092
– volume: 123
  start-page: 12781
  year: 2019
  ident: D0CP00291G-(cit53)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01175
– volume: 9
  start-page: 682
  year: 2014
  ident: D0CP00291G-(cit35)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.167
– volume: 6
  start-page: 7201
  year: 2018
  ident: D0CP00291G-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC01533C
– volume: 21
  start-page: 5627
  year: 2019
  ident: D0CP00291G-(cit55)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP07407K
– volume: 8
  start-page: 12009
  year: 2018
  ident: D0CP00291G-(cit56)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30614-3
– volume: 26
  start-page: 6587
  year: 2014
  ident: D0CP00291G-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402427
– volume: 105
  start-page: 136805
  year: 2010
  ident: D0CP00291G-(cit6)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 4
  start-page: 7406
  year: 2016
  ident: D0CP00291G-(cit40)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01988A
– volume: 94
  start-page: 5125
  year: 2016
  ident: D0CP00291G-(cit57)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.035125
– volume: 20
  start-page: 6945
  year: 2018
  ident: D0CP00291G-(cit49)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07270H
– volume: 8
  start-page: 16802
  year: 2016
  ident: D0CP00291G-(cit17)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR05976G
– volume: 28
  start-page: 3333
  year: 2016
  ident: D0CP00291G-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504657
– volume: 34
  start-page: 481
  year: 1980
  ident: D0CP00291G-(cit19)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(80)90656-0
– volume: 7
  start-page: 28393
  year: 2017
  ident: D0CP00291G-(cit61)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03748A
– volume: 15
  start-page: 139
  year: 2005
  ident: D0CP00291G-(cit29)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B414111C
– volume: 95
  start-page: 045302
  year: 2017
  ident: D0CP00291G-(cit33)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.045302
– volume: 7
  start-page: 7021
  year: 2013
  ident: D0CP00291G-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn402919d
– volume: 6
  start-page: 10010
  year: 2018
  ident: D0CP00291G-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03047B
– volume: 6
  start-page: 183
  year: 2007
  ident: D0CP00291G-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 21
  start-page: 9949
  year: 2019
  ident: D0CP00291G-(cit52)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP07680D
– volume: 7
  start-page: 7798
  year: 2019
  ident: D0CP00291G-(cit42)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC01873E
– volume: 80
  start-page: 891
  year: 1998
  ident: D0CP00291G-(cit38)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.891
– volume: 80
  start-page: 155453
  year: 2009
  ident: D0CP00291G-(cit44)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.80.155453
– volume: 108
  start-page: 083101
  year: 2016
  ident: D0CP00291G-(cit59)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4942368
– volume: 97
  start-page: 115416
  year: 2018
  ident: D0CP00291G-(cit22)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.115416
– volume: 12
  start-page: 223
  year: 2017
  ident: D0CP00291G-(cit18)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.242
– volume: 96
  start-page: 066102
  year: 2006
  ident: D0CP00291G-(cit30)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.066102
– volume: 6
  start-page: 035204
  year: 2016
  ident: D0CP00291G-(cit60)/*[position()=1]
  publication-title: AIP Adv.
  doi: 10.1063/1.4943548
– volume: 335
  start-page: 947
  year: 2012
  ident: D0CP00291G-(cit13)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1218461
– volume: 14
  start-page: 2717
  year: 2002
  ident: D0CP00291G-(cit37)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
SSID ssj0001513
Score 2.505196
Snippet In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9647
SubjectTerms Compressive properties
Density functional theory
Electric fields
Energy gap
First principles
Heterostructures
Optoelectronics
Stark effect
Tensile strain
Title Type-II tunable SiC/InSe heterostructures under an electric field and biaxial strain
URI https://www.ncbi.nlm.nih.gov/pubmed/32328602
https://www.proquest.com/docview/2398499618
https://www.proquest.com/docview/2394874331
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeELdBxkBG8IKqsMR20_pxCoMVAaq0Tis8EDm2MypBWrFGQvx6jm9JYUUCHhpFtuu0_r7Y59jngtAzs9E4ZlLGnEgSM63SWJRcxIlMREapHOuh8R1-9z47OWNv5sN5r_dpw2qpWZcv5I-tfiX_gyqUAa7GS_YfkG07hQK4B3zhCgjD9e8wBiUynkwG68Z5QJ0ucuhsUp9qEABhwJYuOmwDKrXNd2vsJQcu8c1CDqzxmj08KBfiu3ccET4St5dXpwFGGRLDuTtT5DZFLu2mwjTPW0exc78F_fFzc2Vb-kNHxnNtDQnmYe00RkDN0vGnvliHYr8jQexheuLjWbtZlGU05onL_RamWUI26TTamDSNM-zW2TyhJhiqSuTKHB6mF5uN4L-tvlpcKQiFJpNWt6K1doah6hraIaBGkD7aOTqeTd62azXIOzQEraX8sHvULroevvyrxHJFDQGh5FtIFmOFktktdNNrE_jIUeM26un6DrqRB6zuopmnCPYUwUCRQ0MQ_DtBsCUIFjUOBMGWIFCisCcIdgS5h85eHc_yk9gn0oglTNHrWEmQWssRg48kw0rILBUZFyolqagIE1xJnnB4O0elzGBGFnpcpbykgiZVWglO91C_Xtb6AcK8qhhXVaKklEyVkpdMUqo1Y2rIiCwj9DwMViF9lHnz074U1tqB8uJlkk_tGL-O0NO27crFVtna6iCMeeHfvcvCRK0EXT1LxxF60lbD2JrjLlHrZWPbgDZuPAIjdN9h1T4mYBuhPQCvLe7wj9D-9opipar9P_b3EO12b8QB6gOI-hFIrevysafeT_cTl64
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type-II+tunable+SiC%2FInSe+heterostructures+under+an+electric+field+and+biaxial+strain&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Wang%2C+Zhu&rft.au=Zhang%2C+Yan&rft.au=Wei%2C+Xing&rft.au=Guo%2C+Tingting&rft.date=2020-05-06&rft.eissn=1463-9084&rft.volume=22&rft.issue=17&rft.spage=9647&rft_id=info:doi/10.1039%2Fd0cp00291g&rft_id=info%3Apmid%2F32328602&rft.externalDocID=32328602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon