Type-II tunable SiC/InSe heterostructures under an electric field and biaxial strain
In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a notic...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 22; no. 17; pp. 9647 - 9655 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
06.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/d0cp00291g |
Cover
Loading…
Abstract | In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics.
A novel type II band alignment with lower carrier effective mass can be adjusted by an electric field and strain. |
---|---|
AbstractList | In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics. In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics. A novel type II band alignment with lower carrier effective mass can be adjusted by an electric field and strain. In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics.In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe heterostructures. According to our results, the SiC/InSe heterostructure possesses an inherent type-II band alignment, which displays a noticeable Stark effect on the band gap under a stable electric field. Besides, the heterostructure exhibits a low carrier effective mass and a narrower band gap when it is subject to tensile strain. More interestingly, the transition from an indirect to a direct band gap occurs when 8% of compressive strain is applied. Taken together, findings in this study indicate that the SiC/InSe heterostructure opens up a new avenue for its application in the fields of optoelectronics and microelectronics. |
Author | Wang, Zhu Wei, Xing Fan, Jibin Guo, Tingting Liu, Jian Li, Ting Zha, Zhengdi Zhang, Yan Tian, Ye Duan, Li Ni, Lei Weng, Yijun |
AuthorAffiliation | Institute of Physics Chinese Academy of Sciences School of Materials Science and Engineering Shandong University Chang'an University School of Physics |
AuthorAffiliation_xml | – name: School of Physics – name: Chang'an University – name: Shandong University – name: Chinese Academy of Sciences – name: Institute of Physics – name: School of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Zhu surname: Wang fullname: Wang, Zhu – sequence: 2 givenname: Yan surname: Zhang fullname: Zhang, Yan – sequence: 3 givenname: Xing surname: Wei fullname: Wei, Xing – sequence: 4 givenname: Tingting surname: Guo fullname: Guo, Tingting – sequence: 5 givenname: Jibin surname: Fan fullname: Fan, Jibin – sequence: 6 givenname: Lei surname: Ni fullname: Ni, Lei – sequence: 7 givenname: Yijun surname: Weng fullname: Weng, Yijun – sequence: 8 givenname: Zhengdi surname: Zha fullname: Zha, Zhengdi – sequence: 9 givenname: Jian surname: Liu fullname: Liu, Jian – sequence: 10 givenname: Ye surname: Tian fullname: Tian, Ye – sequence: 11 givenname: Ting surname: Li fullname: Li, Ting – sequence: 12 givenname: Li surname: Duan fullname: Duan, Li |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32328602$$D View this record in MEDLINE/PubMed |
BookMark | eNp90d9rFDEQB_AgFftDX3xXIr5IYe1ks7e3eZRT24OCQs_nMJtMNGUvuyZZsP-9Oa-tUEofQkL4zJDM95gdhDEQY68FfBQg1ZkFMwHUSvx8xo5E08pKQdcc3J-X7SE7TukaAMRCyBfsUNay7lqoj9hmczNRtV7zPAfsB-JXfnW2DlfEf1GmOKYcZ5PnSInPwVLkGDgNZHL0hjtPgy03lvce_3gceOHow0v23OGQ6NXtfsJ-fP2yWV1Ul9_O16tPl5VpAHJlzUIs-mVTlqkXDk0rsFVoRS3Q1Q0qaxQoA7jsTataidQ5oXqJEpxwqOQJ-7DvO8Xx90wp661PhoYBA41z0rVUTbdspBSFvn9Ar8c5hvK6neoapVrRFfX2Vs39lqyeot9ivNF38yoA9sCU0aRIThufMfsx7D4-aAF6F4n-DKvv_yI5LyWnD0ruuj6K3-1xTObe_c9XT9YV8-YpI_8CnNOfkw |
CitedBy_id | crossref_primary_10_1016_j_tsf_2022_139332 crossref_primary_10_1016_j_mssp_2023_107443 crossref_primary_10_1039_D0TC05943A crossref_primary_10_1016_j_apsusc_2024_161848 crossref_primary_10_1039_D1NJ03867B crossref_primary_10_1016_j_chemphys_2023_112087 crossref_primary_10_1016_j_micrna_2024_207953 crossref_primary_10_1039_D2MA01061E crossref_primary_10_1016_j_mssp_2023_107822 crossref_primary_10_1016_j_jlumin_2022_119256 crossref_primary_10_1016_j_mssp_2020_105588 crossref_primary_10_1039_D0CE01633K crossref_primary_10_1016_j_mtcomm_2025_112162 crossref_primary_10_1063_5_0060994 crossref_primary_10_1016_j_physe_2022_115456 crossref_primary_10_1360_SSPMA_2021_0351 crossref_primary_10_1016_j_tsf_2022_139419 crossref_primary_10_1016_j_mssp_2023_107753 crossref_primary_10_1016_j_ijhydene_2023_03_158 crossref_primary_10_1088_1361_648X_acd09b crossref_primary_10_6023_A21120543 crossref_primary_10_1039_D3TA01479G crossref_primary_10_1039_D0CP02721A crossref_primary_10_1016_j_mssp_2024_108163 crossref_primary_10_2139_ssrn_4022222 crossref_primary_10_1016_j_apsusc_2022_156261 crossref_primary_10_1016_j_mssp_2023_107695 crossref_primary_10_1016_j_apsusc_2020_147825 crossref_primary_10_1016_j_chemphys_2025_112654 crossref_primary_10_1039_D1YA00047K crossref_primary_10_1021_acsomega_1c01562 crossref_primary_10_1016_j_ceramint_2024_02_018 crossref_primary_10_1016_j_diamond_2020_108157 crossref_primary_10_1063_5_0234852 crossref_primary_10_3390_nano10102037 crossref_primary_10_7498_aps_72_20230836 crossref_primary_10_1016_j_commatsci_2024_113463 crossref_primary_10_1016_j_cjph_2024_12_029 |
Cites_doi | 10.1016/j.apsusc.2019.03.344 10.1021/acs.jpclett.5b00976 10.1126/science.1102896 10.1039/C8CP06170J 10.1126/science.1158877 10.1021/acs.jpcc.7b05650 10.1038/nnano.2016.42 10.1002/adma.201500889 10.1038/nnano.2012.193 10.1039/C9TA01219B 10.1016/S0009-2614(97)01466-8 10.1021/acs.jpcc.7b11584 10.1016/j.matchemphys.2018.05.063 10.1039/c3tc00629h 10.1088/0268-1242/7/7/001 10.1103/PhysRevLett.108.235502 10.1063/1.3382344 10.1039/C5CE01986A 10.1016/j.apsusc.2018.12.135 10.1039/C8CP03508C 10.1021/nl204562j 10.1002/adma.201202920 10.1002/pssr.201800102 10.1021/acsnano.7b01168 10.1063/1.4962434 10.1038/nature11458 10.1039/C9TA01451A 10.1021/acs.jpclett.5b00365 10.1021/acs.jpcc.5b09092 10.1021/acs.jpcc.9b01175 10.1038/nnano.2014.167 10.1039/C8TC01533C 10.1039/C8CP07407K 10.1038/s41598-018-30614-3 10.1002/adma.201402427 10.1103/PhysRevLett.105.136805 10.1039/C6TC01988A 10.1103/PhysRevB.94.035125 10.1039/C7CP07270H 10.1039/C6NR05976G 10.1002/adma.201504657 10.1016/0038-1098(80)90656-0 10.1039/C7RA03748A 10.1039/B414111C 10.1103/PhysRevB.95.045302 10.1021/nn402919d 10.1039/C8TC03047B 10.1038/nmat1849 10.1039/C8CP07680D 10.1039/C9TC01873E 10.1103/PhysRevLett.80.891 10.1103/PhysRevB.80.155453 10.1063/1.4942368 10.1103/PhysRevB.97.115416 10.1038/nnano.2016.242 10.1103/PhysRevLett.96.066102 10.1063/1.4943548 10.1126/science.1218461 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/d0cp00291g |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 9655 |
ExternalDocumentID | 32328602 10_1039_D0CP00291G d0cp00291g |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 123 1TJ 29O 4.4 53G 70 705 70J 7~J 87K AAEMU AAGNR AAIWI AANOJ ABDVN ABFLS ABGFH ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 D0L DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3G J3I JG M4U N9A NHB O9- OK1 P2P R7B R7C RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 X YNT --- -DZ -~X 0R~ 2WC 70~ AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF -JG NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c400t-dc515b745b7c25fac61a69ad121af24a9dc909c0a7bc6963ae8f19b3a30f1fa93 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 16:16:17 EDT 2025 Mon Jun 30 06:36:51 EDT 2025 Wed Feb 19 02:30:16 EST 2025 Tue Jul 01 00:53:42 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Sat Jan 08 03:56:29 EST 2022 Wed Nov 11 00:26:56 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-dc515b745b7c25fac61a69ad121af24a9dc909c0a7bc6963ae8f19b3a30f1fa93 |
Notes | 10.1039/d0cp00291g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2030-0011 0000-0003-0072-5442 |
PMID | 32328602 |
PQID | 2398499618 |
PQPubID | 2047499 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2394874331 crossref_primary_10_1039_D0CP00291G rsc_primary_d0cp00291g proquest_journals_2398499618 crossref_citationtrail_10_1039_D0CP00291G pubmed_primary_32328602 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200506 |
PublicationDateYYYYMMDD | 2020-05-06 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200506 day: 6 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Yang (D0CP00291G-(cit24)/*[position()=1]) 2017; 11 Mudd (D0CP00291G-(cit25)/*[position()=1]) 2015; 27 Dong (D0CP00291G-(cit10)/*[position()=1]) 2017; 121 Chen (D0CP00291G-(cit33)/*[position()=1]) 2017; 95 Ji (D0CP00291G-(cit9)/*[position()=1]) 2018; 122 Bjorkman (D0CP00291G-(cit47)/*[position()=1]) 2012; 108 Zhang (D0CP00291G-(cit55)/*[position()=1]) 2019; 21 Benedict (D0CP00291G-(cit46)/*[position()=1]) 1998; 286 Li (D0CP00291G-(cit51)/*[position()=1]) 2018; 6 Freeman (D0CP00291G-(cit30)/*[position()=1]) 2006; 96 Huang (D0CP00291G-(cit59)/*[position()=1]) 2016; 108 Grimme (D0CP00291G-(cit39)/*[position()=1]) 2010; 132 Li (D0CP00291G-(cit48)/*[position()=1]) 2018; 20 He (D0CP00291G-(cit53)/*[position()=1]) 2019; 123 Özçelik (D0CP00291G-(cit57)/*[position()=1]) 2016; 94 Shang (D0CP00291G-(cit50)/*[position()=1]) 2018; 6 Hong (D0CP00291G-(cit35)/*[position()=1]) 2014; 9 Şahin (D0CP00291G-(cit44)/*[position()=1]) 2009; 80 Tang (D0CP00291G-(cit32)/*[position()=1]) 2018; 20 Feng (D0CP00291G-(cit23)/*[position()=1]) 2014; 26 Segall (D0CP00291G-(cit37)/*[position()=1]) 2002; 14 Myoung (D0CP00291G-(cit14)/*[position()=1]) 2013; 7 Kuroda (D0CP00291G-(cit19)/*[position()=1]) 1980; 34 Lin (D0CP00291G-(cit31)/*[position()=1]) 2015; 34 Perdew (D0CP00291G-(cit38)/*[position()=1]) 1998; 80 Wang (D0CP00291G-(cit7)/*[position()=1]) 2012; 7 Chen (D0CP00291G-(cit45)/*[position()=1]) 2018; 12 Xu (D0CP00291G-(cit5)/*[position()=1]) 2016; 28 Ren (D0CP00291G-(cit52)/*[position()=1]) 2019; 21 Geim (D0CP00291G-(cit4)/*[position()=1]) 2009; 324 Claeyssens (D0CP00291G-(cit29)/*[position()=1]) 2005; 15 Geim (D0CP00291G-(cit2)/*[position()=1]) 2007; 6 Wang (D0CP00291G-(cit15)/*[position()=1]) 2019; 7 Xu (D0CP00291G-(cit17)/*[position()=1]) 2016; 8 Huang (D0CP00291G-(cit58)/*[position()=1]) 2015; 6 Li (D0CP00291G-(cit54)/*[position()=1]) 2018; 216 Li (D0CP00291G-(cit21)/*[position()=1]) 2016; 11 Shi (D0CP00291G-(cit12)/*[position()=1]) 2012; 12 Novoselov (D0CP00291G-(cit3)/*[position()=1]) 2012; 490 Wang (D0CP00291G-(cit49)/*[position()=1]) 2018; 20 Bandurin (D0CP00291G-(cit18)/*[position()=1]) 2017; 12 Ivanov (D0CP00291G-(cit28)/*[position()=1]) 1992; 7 Lin (D0CP00291G-(cit34)/*[position()=1]) 2013; 1 Chang (D0CP00291G-(cit36)/*[position()=1]) 2013; 25 Li (D0CP00291G-(cit61)/*[position()=1]) 2017; 7 Huang (D0CP00291G-(cit8)/*[position()=1]) 2016; 18 Qin (D0CP00291G-(cit26)/*[position()=1]) 2015; 6 Mao (D0CP00291G-(cit16)/*[position()=1]) 2019; 7 Mak (D0CP00291G-(cit6)/*[position()=1]) 2010; 105 Yu (D0CP00291G-(cit43)/*[position()=1]) 2016; 109 Liu (D0CP00291G-(cit11)/*[position()=1]) 2015; 119 Tang (D0CP00291G-(cit27)/*[position()=1]) 2018; 20 Hu (D0CP00291G-(cit42)/*[position()=1]) 2019; 7 Wang (D0CP00291G-(cit41)/*[position()=1]) 2019; 485 Novoselov (D0CP00291G-(cit1)/*[position()=1]) 2004; 306 Chen (D0CP00291G-(cit40)/*[position()=1]) 2016; 4 Wang (D0CP00291G-(cit56)/*[position()=1]) 2018; 8 Xia (D0CP00291G-(cit22)/*[position()=1]) 2018; 97 Britnell (D0CP00291G-(cit13)/*[position()=1]) 2012; 335 Xie (D0CP00291G-(cit20)/*[position()=1]) 2019; 475 Wang (D0CP00291G-(cit60)/*[position()=1]) 2016; 6 |
References_xml | – volume: 485 start-page: 375 year: 2019 ident: D0CP00291G-(cit41)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.344 – volume: 6 start-page: 2483 year: 2015 ident: D0CP00291G-(cit58)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00976 – volume: 306 start-page: 666 year: 2004 ident: D0CP00291G-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1102896 – volume: 20 start-page: 29333 year: 2018 ident: D0CP00291G-(cit27)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP06170J – volume: 34 start-page: 119 year: 2015 ident: D0CP00291G-(cit31)/*[position()=1] publication-title: J. Phys. Chem. C – volume: 324 start-page: 1530 year: 2009 ident: D0CP00291G-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1158877 – volume: 121 start-page: 22040 year: 2017 ident: D0CP00291G-(cit10)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b05650 – volume: 11 start-page: 593 year: 2016 ident: D0CP00291G-(cit21)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.42 – volume: 20 start-page: 29333 year: 2018 ident: D0CP00291G-(cit32)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP06170J – volume: 27 start-page: 3760 year: 2015 ident: D0CP00291G-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500889 – volume: 7 start-page: 699 year: 2012 ident: D0CP00291G-(cit7)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 7 start-page: 11265 year: 2019 ident: D0CP00291G-(cit16)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01219B – volume: 286 start-page: 490 year: 1998 ident: D0CP00291G-(cit46)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)01466-8 – volume: 122 start-page: 3123 year: 2018 ident: D0CP00291G-(cit9)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b11584 – volume: 216 start-page: 64 year: 2018 ident: D0CP00291G-(cit54)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.05.063 – volume: 1 start-page: 2131 year: 2013 ident: D0CP00291G-(cit34)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/c3tc00629h – volume: 7 start-page: 863 year: 1992 ident: D0CP00291G-(cit28)/*[position()=1] publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/7/7/001 – volume: 108 start-page: 235502 year: 2012 ident: D0CP00291G-(cit47)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.235502 – volume: 132 start-page: 154104 year: 2010 ident: D0CP00291G-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 18 start-page: 3968 year: 2016 ident: D0CP00291G-(cit8)/*[position()=1] publication-title: CrystEngComm doi: 10.1039/C5CE01986A – volume: 475 start-page: 839 year: 2019 ident: D0CP00291G-(cit20)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.12.135 – volume: 20 start-page: 24726 year: 2018 ident: D0CP00291G-(cit48)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP03508C – volume: 12 start-page: 2784 year: 2012 ident: D0CP00291G-(cit12)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl204562j – volume: 25 start-page: 756 year: 2013 ident: D0CP00291G-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201202920 – volume: 12 start-page: 1800102 year: 2018 ident: D0CP00291G-(cit45)/*[position()=1] publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201800102 – volume: 11 start-page: 4225 year: 2017 ident: D0CP00291G-(cit24)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01168 – volume: 109 start-page: 103104 year: 2016 ident: D0CP00291G-(cit43)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4962434 – volume: 490 start-page: 192 year: 2012 ident: D0CP00291G-(cit3)/*[position()=1] publication-title: Nature doi: 10.1038/nature11458 – volume: 7 start-page: 10684 year: 2019 ident: D0CP00291G-(cit15)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01451A – volume: 6 start-page: 1333 year: 2015 ident: D0CP00291G-(cit26)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00365 – volume: 119 start-page: 28417 year: 2015 ident: D0CP00291G-(cit11)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09092 – volume: 123 start-page: 12781 year: 2019 ident: D0CP00291G-(cit53)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01175 – volume: 9 start-page: 682 year: 2014 ident: D0CP00291G-(cit35)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.167 – volume: 6 start-page: 7201 year: 2018 ident: D0CP00291G-(cit50)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC01533C – volume: 21 start-page: 5627 year: 2019 ident: D0CP00291G-(cit55)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP07407K – volume: 8 start-page: 12009 year: 2018 ident: D0CP00291G-(cit56)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-30614-3 – volume: 26 start-page: 6587 year: 2014 ident: D0CP00291G-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201402427 – volume: 105 start-page: 136805 year: 2010 ident: D0CP00291G-(cit6)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 4 start-page: 7406 year: 2016 ident: D0CP00291G-(cit40)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C6TC01988A – volume: 94 start-page: 5125 year: 2016 ident: D0CP00291G-(cit57)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.035125 – volume: 20 start-page: 6945 year: 2018 ident: D0CP00291G-(cit49)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07270H – volume: 8 start-page: 16802 year: 2016 ident: D0CP00291G-(cit17)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR05976G – volume: 28 start-page: 3333 year: 2016 ident: D0CP00291G-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504657 – volume: 34 start-page: 481 year: 1980 ident: D0CP00291G-(cit19)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/0038-1098(80)90656-0 – volume: 7 start-page: 28393 year: 2017 ident: D0CP00291G-(cit61)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA03748A – volume: 15 start-page: 139 year: 2005 ident: D0CP00291G-(cit29)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B414111C – volume: 95 start-page: 045302 year: 2017 ident: D0CP00291G-(cit33)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.045302 – volume: 7 start-page: 7021 year: 2013 ident: D0CP00291G-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn402919d – volume: 6 start-page: 10010 year: 2018 ident: D0CP00291G-(cit51)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC03047B – volume: 6 start-page: 183 year: 2007 ident: D0CP00291G-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 21 start-page: 9949 year: 2019 ident: D0CP00291G-(cit52)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP07680D – volume: 7 start-page: 7798 year: 2019 ident: D0CP00291G-(cit42)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C9TC01873E – volume: 80 start-page: 891 year: 1998 ident: D0CP00291G-(cit38)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.891 – volume: 80 start-page: 155453 year: 2009 ident: D0CP00291G-(cit44)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.80.155453 – volume: 108 start-page: 083101 year: 2016 ident: D0CP00291G-(cit59)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4942368 – volume: 97 start-page: 115416 year: 2018 ident: D0CP00291G-(cit22)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.115416 – volume: 12 start-page: 223 year: 2017 ident: D0CP00291G-(cit18)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.242 – volume: 96 start-page: 066102 year: 2006 ident: D0CP00291G-(cit30)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.066102 – volume: 6 start-page: 035204 year: 2016 ident: D0CP00291G-(cit60)/*[position()=1] publication-title: AIP Adv. doi: 10.1063/1.4943548 – volume: 335 start-page: 947 year: 2012 ident: D0CP00291G-(cit13)/*[position()=1] publication-title: Science doi: 10.1126/science.1218461 – volume: 14 start-page: 2717 year: 2002 ident: D0CP00291G-(cit37)/*[position()=1] publication-title: J. Phys.: Condens. Matter |
SSID | ssj0001513 |
Score | 2.505196 |
Snippet | In this study, first-principles calculations based on the density functional theory (DFT) are exploited to investigate the electronic capabilities of SiC/InSe... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9647 |
SubjectTerms | Compressive properties Density functional theory Electric fields Energy gap First principles Heterostructures Optoelectronics Stark effect Tensile strain |
Title | Type-II tunable SiC/InSe heterostructures under an electric field and biaxial strain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32328602 https://www.proquest.com/docview/2398499618 https://www.proquest.com/docview/2394874331 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ8FeELdBxkBG8IKqsMR20_pxCoMVAaq0Tis8EDm2MypBWrFGQvx6jm9JYUUCHhpFtuu0_r7Y59jngtAzs9E4ZlLGnEgSM63SWJRcxIlMREapHOuh8R1-9z47OWNv5sN5r_dpw2qpWZcv5I-tfiX_gyqUAa7GS_YfkG07hQK4B3zhCgjD9e8wBiUynkwG68Z5QJ0ucuhsUp9qEABhwJYuOmwDKrXNd2vsJQcu8c1CDqzxmj08KBfiu3ccET4St5dXpwFGGRLDuTtT5DZFLu2mwjTPW0exc78F_fFzc2Vb-kNHxnNtDQnmYe00RkDN0vGnvliHYr8jQexheuLjWbtZlGU05onL_RamWUI26TTamDSNM-zW2TyhJhiqSuTKHB6mF5uN4L-tvlpcKQiFJpNWt6K1doah6hraIaBGkD7aOTqeTd62azXIOzQEraX8sHvULroevvyrxHJFDQGh5FtIFmOFktktdNNrE_jIUeM26un6DrqRB6zuopmnCPYUwUCRQ0MQ_DtBsCUIFjUOBMGWIFCisCcIdgS5h85eHc_yk9gn0oglTNHrWEmQWssRg48kw0rILBUZFyolqagIE1xJnnB4O0elzGBGFnpcpbykgiZVWglO91C_Xtb6AcK8qhhXVaKklEyVkpdMUqo1Y2rIiCwj9DwMViF9lHnz074U1tqB8uJlkk_tGL-O0NO27crFVtna6iCMeeHfvcvCRK0EXT1LxxF60lbD2JrjLlHrZWPbgDZuPAIjdN9h1T4mYBuhPQCvLe7wj9D-9opipar9P_b3EO12b8QB6gOI-hFIrevysafeT_cTl64 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type-II+tunable+SiC%2FInSe+heterostructures+under+an+electric+field+and+biaxial+strain&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Wang%2C+Zhu&rft.au=Zhang%2C+Yan&rft.au=Wei%2C+Xing&rft.au=Guo%2C+Tingting&rft.date=2020-05-06&rft.eissn=1463-9084&rft.volume=22&rft.issue=17&rft.spage=9647&rft_id=info:doi/10.1039%2Fd0cp00291g&rft_id=info%3Apmid%2F32328602&rft.externalDocID=32328602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |