Indirect Prediction of Lithium-Ion Battery RUL Based on CEEMDAN and CNN-BiGRU
Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate RUL predictions caused by the nonlinear decay resulting from capacity regeneration, this paper proposes an indirect lithium-ion battery RUL pr...
Saved in:
Published in | Energies (Basel) Vol. 17; no. 7; p. 1704 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate RUL predictions caused by the nonlinear decay resulting from capacity regeneration, this paper proposes an indirect lithium-ion battery RUL prediction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and convolutional neural network (CNN)–bidirectional gated recurrent unit (BiGRU). The method extracts Health Indicators (HI) from the battery-charging stage and employs CEEMDAN to decompose HI into several components. These components are then input into a component prediction model for forecasting. Finally, the predicted component results are fused and input into a capacity prediction model to achieve indirect RUL prediction. Validation is conducted using the lithium-ion battery dataset provided by NASA. The results indicate that, under prediction starting points (STs) of 80 and 100, the maximum average absolute errors do not exceed 0.0096 and 0.0081, and the maximum root mean square errors do not exceed 0.0196 and 0.0115, demonstrating high precision and reliability. |
---|---|
AbstractList | Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate RUL predictions caused by the nonlinear decay resulting from capacity regeneration, this paper proposes an indirect lithium-ion battery RUL prediction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and convolutional neural network (CNN)–bidirectional gated recurrent unit (BiGRU). The method extracts Health Indicators (HI) from the battery-charging stage and employs CEEMDAN to decompose HI into several components. These components are then input into a component prediction model for forecasting. Finally, the predicted component results are fused and input into a capacity prediction model to achieve indirect RUL prediction. Validation is conducted using the lithium-ion battery dataset provided by NASA. The results indicate that, under prediction starting points (STs) of 80 and 100, the maximum average absolute errors do not exceed 0.0096 and 0.0081, and the maximum root mean square errors do not exceed 0.0196 and 0.0115, demonstrating high precision and reliability. |
Audience | Academic |
Author | Ma, Zhiqiang Lv, Kai Bao, Caijilahu Liu, Guangchen |
Author_xml | – sequence: 1 givenname: Kai orcidid: 0009-0002-6572-9508 surname: Lv fullname: Lv, Kai – sequence: 2 givenname: Zhiqiang orcidid: 0000-0003-0006-2044 surname: Ma fullname: Ma, Zhiqiang – sequence: 3 givenname: Caijilahu surname: Bao fullname: Bao, Caijilahu – sequence: 4 givenname: Guangchen orcidid: 0000-0003-4979-6487 surname: Liu fullname: Liu, Guangchen |
BookMark | eNptUV1vGyEQRFUiNV8v_QUn9S3SpQscBh4dx00tOU4V1c-IYyHFso-Eww_59yF11VZVWCF2RzPDSnNKjoY0eEI-UbjiXMMXP1AJst7uAzmhWk9aCpIf_dN_JBfjuIF6OKec8xNytxgwZu9K8z17jK7ENDQpNMtYfsb9rl3U8dqW4vNL87Be1n702FRwNp_f3UxXjR2wma1W7XW8fVifk-Ngt6O_-P2ekfXX-Y_Zt3Z5f7uYTZet6wBKiyAZauaEEF4oLYJz3GnGKA8aUEoBrA9CC0SkvWS8U6g02s4prb2Dnp-RxcEXk92Ypxx3Nr-YZKP5BaT8aGwu0W29CT2ikopB9euEsBqU7SmyHoKcMMWr1-eD11NOz3s_FrNJ-zzU9Q0HLkU3AQmVdXVgPdpqGoeQSrauFvpddDWHECs-lRqAKs5kFVweBC6nccw-_FmTgnmLy_yNq5LhP7KLxb5lUX-J2_ckr7Plk_k |
CitedBy_id | crossref_primary_10_1038_s41598_025_92262_8 crossref_primary_10_3390_en18051114 crossref_primary_10_1038_s41598_024_78984_1 crossref_primary_10_3390_app14135847 |
Cites_doi | 10.1016/j.jclepro.2020.120813 10.3389/fenrg.2022.937035 10.1098/rspa.1998.0193 10.1109/ACCESS.2019.2936822 10.3390/en11061420 10.1016/j.neucom.2020.03.041 10.1109/TMECH.2022.3202642 10.1016/j.apenergy.2020.115338 10.1109/TIM.2021.3125108 10.1115/1.4042987 10.1016/j.energy.2021.121269 10.1109/TNNLS.2023.3311443 10.3934/energy.2023043 10.3390/en12122247 10.1109/TTE.2017.2776558 10.1016/j.asoc.2021.107195 10.1016/j.egypro.2017.03.582 10.1016/j.measurement.2021.109935 10.1142/S1793536909000047 10.1016/j.jclepro.2018.09.065 10.1016/j.microrel.2022.114625 10.1109/ACCESS.2020.2968939 10.1016/j.est.2022.104750 10.1016/j.egyr.2023.05.121 10.1016/j.energy.2022.123622 10.1109/ACCESS.2020.3006157 10.1109/ICASSP.2011.5947265 10.3390/app9091890 10.1016/j.est.2018.12.011 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en17071704 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_fbdd87820595455a908ab1d2b0f76283 A790018327 10_3390_en17071704 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c400t-d072d92c555e5895fcc3c92213f90d77502bf595ddd1b72348d89da4c899ec0b3 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:22:12 EDT 2025 Mon Jun 30 13:30:52 EDT 2025 Tue Jun 10 21:11:25 EDT 2025 Tue Jul 01 04:12:55 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-d072d92c555e5895fcc3c92213f90d77502bf595ddd1b72348d89da4c899ec0b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0006-2044 0000-0003-4979-6487 0009-0002-6572-9508 |
OpenAccessLink | https://www.proquest.com/docview/3037546070?pq-origsite=%requestingapplication% |
PQID | 3037546070 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fbdd87820595455a908ab1d2b0f76283 proquest_journals_3037546070 gale_infotracacademiconefile_A790018327 crossref_primary_10_3390_en17071704 crossref_citationtrail_10_3390_en17071704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yao (ref_10) 2022; 248 Park (ref_31) 2020; 8 Lipu (ref_3) 2018; 205 ref_12 Zhang (ref_13) 2022; 28 Guo (ref_32) 2023; 9 Li (ref_15) 2019; 21 Wu (ref_22) 2009; 1 ref_19 Wang (ref_14) 2017; 105 Li (ref_26) 2021; 184 Sarmah (ref_1) 2019; 16 Yu (ref_11) 2020; 402 Yang (ref_17) 2021; 70 Ji (ref_25) 2021; 104 Ma (ref_27) 2022; 52 Wu (ref_28) 2023; 10 ref_24 ref_23 Zheng (ref_30) 2023; 11 Lin (ref_5) 2020; 275 Guha (ref_8) 2017; 4 ref_20 Tian (ref_2) 2020; 261 Liu (ref_7) 2020; 8 ref_29 Huang (ref_21) 1998; 454 ref_9 Chen (ref_16) 2021; 234 Zhu (ref_4) 2019; 7 Lyu (ref_18) 2022; 138 ref_6 |
References_xml | – volume: 261 start-page: 120813 year: 2020 ident: ref_2 article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120813 – volume: 10 start-page: 937035 year: 2023 ident: ref_28 article-title: Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.937035 – volume: 454 start-page: 903 year: 1998 ident: ref_21 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 7 start-page: 125176 year: 2019 ident: ref_4 article-title: RUL prediction of lithium-ion battery based on improved DGWO-ELM method in a random discharge rates environment publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936822 – ident: ref_9 doi: 10.3390/en11061420 – ident: ref_24 – volume: 402 start-page: 134 year: 2020 ident: ref_11 article-title: Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.041 – volume: 28 start-page: 632 year: 2022 ident: ref_13 article-title: Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection publication-title: IEEE/ASME Trans. Mechatronics doi: 10.1109/TMECH.2022.3202642 – volume: 275 start-page: 115338 year: 2020 ident: ref_5 article-title: Battery state of health modeling and remaining useful life prediction through time series model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115338 – volume: 70 start-page: 2517011 year: 2021 ident: ref_17 article-title: Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3125108 – volume: 16 start-page: 040801 year: 2019 ident: ref_1 article-title: A review of state of health estimation of energy storage systems: Challenges and possible solutions for futuristic applications of li-ion battery packs in electric vehicles publication-title: J. Electrochem. Energy Convers. Storage doi: 10.1115/1.4042987 – volume: 234 start-page: 121269 year: 2021 ident: ref_16 article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM publication-title: Energy doi: 10.1016/j.energy.2021.121269 – ident: ref_29 doi: 10.1109/TNNLS.2023.3311443 – volume: 11 start-page: 896 year: 2023 ident: ref_30 article-title: Remaining useful life indirect prediction of lithium-ion batteries using CNN-BiGRU fusion model and TPE optimization publication-title: AIMS Energy doi: 10.3934/energy.2023043 – ident: ref_6 doi: 10.3390/en12122247 – volume: 4 start-page: 135 year: 2017 ident: ref_8 article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models publication-title: IEEE Trans. Transp. Electrif. doi: 10.1109/TTE.2017.2776558 – volume: 104 start-page: 107195 year: 2021 ident: ref_25 article-title: An RUL prediction approach for lithium-ion battery based on SADE-MESN publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107195 – ident: ref_23 – volume: 105 start-page: 2053 year: 2017 ident: ref_14 article-title: Remaining useful life prediction of lithium-ion battery based on discrete wavelet transform publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.582 – volume: 184 start-page: 109935 year: 2021 ident: ref_26 article-title: An online dual filters RUL prediction method of lithium-ion battery based on unscented particle filter and least squares support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2021.109935 – volume: 1 start-page: 1 year: 2009 ident: ref_22 article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – volume: 205 start-page: 115 year: 2018 ident: ref_3 article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.09.065 – volume: 138 start-page: 114625 year: 2022 ident: ref_18 article-title: An interpretable remaining useful life prediction scheme of lithium-ion battery considering capacity regeneration publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2022.114625 – volume: 8 start-page: 20786 year: 2020 ident: ref_31 article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968939 – volume: 52 start-page: 104750 year: 2022 ident: ref_27 article-title: State of health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104750 – volume: 9 start-page: 1299 year: 2023 ident: ref_32 article-title: RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.05.121 – volume: 248 start-page: 123622 year: 2022 ident: ref_10 article-title: Remaining useful life prediction of lithium-ion batteries using a hybrid model publication-title: Energy doi: 10.1016/j.energy.2022.123622 – volume: 8 start-page: 126661 year: 2020 ident: ref_7 article-title: The remaining useful life prediction by using electrochemical model in the particle filter framework for lithium-ion batteries publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006157 – ident: ref_19 – ident: ref_20 doi: 10.1109/ICASSP.2011.5947265 – ident: ref_12 doi: 10.3390/app9091890 – volume: 21 start-page: 510 year: 2019 ident: ref_15 article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks publication-title: J. Energy Storage doi: 10.1016/j.est.2018.12.011 |
SSID | ssj0000331333 |
Score | 2.399037 |
Snippet | Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1704 |
SubjectTerms | Accuracy Aging Algorithms Analysis Batteries bidirectional gate recurrent unit network capacity regeneration complete ensemble empirical mode decomposition with adaptive noise Datasets Lithium lithium-ion battery Methods Neural networks remaining useful life Time series Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSysxFA7iShfi9YG9PggoiIvgJJl0Jsta6wtbRCy4C0lOggUdL1oX_ntPZqbahXI37mZCFsl3cs7JR5LvEHLAQ7QZSMU4OM3yYAWzgecseu9zpxzGzfR2eDjqXozzq3t1P1fqK90Ja-SBG-COowMok6ib0pjsldVZaR0H4bKIflzWOp-Y8-bIVB2DpUTyJRs9Uom8_jhUvEjcpa3INstAtVD_T-G4zjFnq2Sl3RzSXjOoP2QhVGtkeU4ycJ0ML6smC9Gbl3TGknClz5FeT6YPk7cndom_jWbmO70dX-P3awCKjf3BYHjaG1FbAe2PRuxkcn473iDjs8Fd_4K1JRGYR2ebMsgKAVp4pVRQpVYIqfRaCC6jzqDA9C9cRKQAgLtCyLyEUoPNPdKq4DMnN8li9VyFLUJLCzbqIna1z3Kfext0OpTlSIggKl50yNEMJuNbvfBUtuLRIG9IkJovSDtk_7Pvv0Yl49teJwntzx5J2bpuQHub1t7mf_bukMNkK5P8D4fjbfuMACeVlKxMr9Cp0KAUOIGdmTlN65ivRtY1f7sY6P7-xmi2yZLAXU5zlWeHLE5f3sIu7lKmbq9ekB_hL-CW priority: 102 providerName: Directory of Open Access Journals |
Title | Indirect Prediction of Lithium-Ion Battery RUL Based on CEEMDAN and CNN-BiGRU |
URI | https://www.proquest.com/docview/3037546070 https://doaj.org/article/fbdd87820595455a908ab1d2b0f76283 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swECaaZGmHoE_UbWoISIGiAxHxZYlTYLu2kyIWAqMGvBF8pgZaObGdof8-R4l2OrRZBIniIB55x_tI6vsQ-kx80LljAhNnJOZeU6w94ThYa7kRBuJm_Hd4WvUu5vz7QizSgtsmHavcxcQmULuVjWvkZ6wRa-3BCD2_vcNRNSruriYJjQN0BCG4BPB1NBhV17P9KkvOGIAw1vKSMsD3Z74mRcQwSZltNxM1hP3_C8vNXDN-iY5Tkpj12159hZ75-jV68Rd14Bs0vazb2Si7Xse9lmjfbBWyq-X25_L-N76Ex5Y78082m1_B_ca7DAqHo9H0W7_KdO2yYVXhwXIym79F8_Hox_ACJ2kEbMHpttjlBXWSWiGEF6UUYFpmJaWEBZm7AtIAaoKQwjlHTEEZL10pneYW4JW3uWHv0GG9qv17lJXa6SCL0JM255Zb7WXcnCUAjFwQpOigrzszKZt4w6N8xS8F-CGaVD2atINO93VvW7aMf9YaRGvva0SG66Zgtb5RyWFUMM6VkcwPWsGF0DIvtSGOmjxA_C5ZB32JfaWiH8LnWJ1-J4BGRUYr1S9kFBxkFBpwsutOlRx0ox6H04enX39EzynkMe1hnRN0uF3f-0-Qh2xNFx2U40k3Dblug-bhOlmQB5et3NU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOUAPiKcIFLAECHGwuutHdn2oUJomTWiyQlUj9Wb8LJFgU5JUqH-qv5HxPlIOwK23XdtarWfGMx4_vg-hd6kPOnFMkNQZSbjXlGifchKstdwIA34z3h2eFt3RjH8-E2db6Lq9CxOPVbY-sXLUbmHjGvkeq8hau2Chny5-ksgaFXdXWwqN2iyO_dUvSNlW--ND0O97SoeD0_6INKwCxIK9rolLMuoktUIIL3Ip4K-YlZSmLMjEZRBBqQlCCudcajLKeO5y6TS3kJl4mxgG372D7nLGZBxR-fBos6aTMAYpH6tRUKE-2fNlmsWMqeGBa-NeRQ_wryBQRbbhQ_SgmZLiXm1Dj9CWLx-jnT-ACp-g6bisYx_-sow7O1GbeBHwZL7-Nr_8QcbwWiN1XuGT2QSeV95hKOwPBtPDXoF16XC_KMjB_Ohk9hTNbkVkz9B2uSj9c4Rz7XSQWehKm3DLrfYybgWnkIa5INKsgz62YlK2QSmPZBnfFWQrUaTqRqQd9HbT9qLG5vhrq4Mo7U2LiKddFSyW56oZnioY5_IIHQi94EJomeTapI6aJEC0yFkHfYi6UnHUw-9Y3VxegE5F_CzVy2SkN2QUOrDbqlM17mClboz3xf-r36B7o9PpRE3GxfFLdJ_CDKo-JrSLttfLS_8KZkBr87oyO4y-3rad_wZMbBUk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QFxFYYAlQIgHq44dN_EDQr2ysjaqKirtLfjKKo10tJ3Q_hq_juNcOh6At70ljhXFx1_O8fHl-xB6EzmvqOWCRFZLEjvFiHJRTLwxJtZCg98MZ4dnWfd4GX8-FacH6FdzFiZsq2x8Yumo7dqEOfIOL8Vau4DQjq-3RcyH448XP0hQkAorrY2cRgWRE3f1E9K37YfJEPr6LWPj0ZfBMakVBogB7O6IpQmzkhkhhBOpFPCF3EjGIu4ltQlEU6a9kMJaG-mE8Ti1qbQqNpClOEM1h_feQocJZEW0hQ77o2y-2M_wUM4hAeQVJyrnknZcESUhf6pV4ZooWIoF_CsklHFufB_dqweouFch6gE6cMVDdPcP2sJHaDYpqkiI55uwzhP6Fq89nq52Z6vL72QCtxVv5xVeLKdwvXUWQ-FgNJoNexlWhcWDLCP91afF8jFa3ojRnqBWsS7cU4RTZZWXie9KQ2MTG-VkWBiOICmzXkRJG71vzJSbmrM8SGec55C7BJPm1yZto9f7uhcVU8dfa_WDtfc1Art2WbDefMvrnzX32to0EAlCK2IhlKSp0pFlmnqIHSlvo3ehr_LgA-BzjKqPMkCjAptW3ktkEDvkDBpw1HRnXjuHbX4N5Wf_f_wK3QaM59NJdvIc3WEwnKr2DB2h1m5z6V7AcGinX9a4w-jrTUP9N_MDGrY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+Prediction+of+Lithium-Ion+Battery+RUL+Based+on+CEEMDAN+and+CNN-BiGRU&rft.jtitle=Energies+%28Basel%29&rft.au=Lv%2C+Kai&rft.au=Ma%2C+Zhiqiang&rft.au=Bao%2C+Caijilahu&rft.au=Liu%2C+Guangchen&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=7&rft.spage=1704&rft_id=info:doi/10.3390%2Fen17071704&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |