Indirect Prediction of Lithium-Ion Battery RUL Based on CEEMDAN and CNN-BiGRU

Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate RUL predictions caused by the nonlinear decay resulting from capacity regeneration, this paper proposes an indirect lithium-ion battery RUL pr...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 17; no. 7; p. 1704
Main Authors Lv, Kai, Ma, Zhiqiang, Bao, Caijilahu, Liu, Guangchen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate RUL predictions caused by the nonlinear decay resulting from capacity regeneration, this paper proposes an indirect lithium-ion battery RUL prediction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and convolutional neural network (CNN)–bidirectional gated recurrent unit (BiGRU). The method extracts Health Indicators (HI) from the battery-charging stage and employs CEEMDAN to decompose HI into several components. These components are then input into a component prediction model for forecasting. Finally, the predicted component results are fused and input into a capacity prediction model to achieve indirect RUL prediction. Validation is conducted using the lithium-ion battery dataset provided by NASA. The results indicate that, under prediction starting points (STs) of 80 and 100, the maximum average absolute errors do not exceed 0.0096 and 0.0081, and the maximum root mean square errors do not exceed 0.0196 and 0.0115, demonstrating high precision and reliability.
AbstractList Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate RUL predictions caused by the nonlinear decay resulting from capacity regeneration, this paper proposes an indirect lithium-ion battery RUL prediction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and convolutional neural network (CNN)–bidirectional gated recurrent unit (BiGRU). The method extracts Health Indicators (HI) from the battery-charging stage and employs CEEMDAN to decompose HI into several components. These components are then input into a component prediction model for forecasting. Finally, the predicted component results are fused and input into a capacity prediction model to achieve indirect RUL prediction. Validation is conducted using the lithium-ion battery dataset provided by NASA. The results indicate that, under prediction starting points (STs) of 80 and 100, the maximum average absolute errors do not exceed 0.0096 and 0.0081, and the maximum root mean square errors do not exceed 0.0196 and 0.0115, demonstrating high precision and reliability.
Audience Academic
Author Ma, Zhiqiang
Lv, Kai
Bao, Caijilahu
Liu, Guangchen
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0009-0002-6572-9508
  surname: Lv
  fullname: Lv, Kai
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0003-0006-2044
  surname: Ma
  fullname: Ma, Zhiqiang
– sequence: 3
  givenname: Caijilahu
  surname: Bao
  fullname: Bao, Caijilahu
– sequence: 4
  givenname: Guangchen
  orcidid: 0000-0003-4979-6487
  surname: Liu
  fullname: Liu, Guangchen
BookMark eNptUV1vGyEQRFUiNV8v_QUn9S3SpQscBh4dx00tOU4V1c-IYyHFso-Eww_59yF11VZVWCF2RzPDSnNKjoY0eEI-UbjiXMMXP1AJst7uAzmhWk9aCpIf_dN_JBfjuIF6OKec8xNytxgwZu9K8z17jK7ENDQpNMtYfsb9rl3U8dqW4vNL87Be1n702FRwNp_f3UxXjR2wma1W7XW8fVifk-Ngt6O_-P2ekfXX-Y_Zt3Z5f7uYTZet6wBKiyAZauaEEF4oLYJz3GnGKA8aUEoBrA9CC0SkvWS8U6g02s4prb2Dnp-RxcEXk92Ypxx3Nr-YZKP5BaT8aGwu0W29CT2ikopB9euEsBqU7SmyHoKcMMWr1-eD11NOz3s_FrNJ-zzU9Q0HLkU3AQmVdXVgPdpqGoeQSrauFvpddDWHECs-lRqAKs5kFVweBC6nccw-_FmTgnmLy_yNq5LhP7KLxb5lUX-J2_ckr7Plk_k
CitedBy_id crossref_primary_10_1038_s41598_025_92262_8
crossref_primary_10_3390_en18051114
crossref_primary_10_1038_s41598_024_78984_1
crossref_primary_10_3390_app14135847
Cites_doi 10.1016/j.jclepro.2020.120813
10.3389/fenrg.2022.937035
10.1098/rspa.1998.0193
10.1109/ACCESS.2019.2936822
10.3390/en11061420
10.1016/j.neucom.2020.03.041
10.1109/TMECH.2022.3202642
10.1016/j.apenergy.2020.115338
10.1109/TIM.2021.3125108
10.1115/1.4042987
10.1016/j.energy.2021.121269
10.1109/TNNLS.2023.3311443
10.3934/energy.2023043
10.3390/en12122247
10.1109/TTE.2017.2776558
10.1016/j.asoc.2021.107195
10.1016/j.egypro.2017.03.582
10.1016/j.measurement.2021.109935
10.1142/S1793536909000047
10.1016/j.jclepro.2018.09.065
10.1016/j.microrel.2022.114625
10.1109/ACCESS.2020.2968939
10.1016/j.est.2022.104750
10.1016/j.egyr.2023.05.121
10.1016/j.energy.2022.123622
10.1109/ACCESS.2020.3006157
10.1109/ICASSP.2011.5947265
10.3390/app9091890
10.1016/j.est.2018.12.011
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en17071704
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_fbdd87820595455a908ab1d2b0f76283
A790018327
10_3390_en17071704
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c400t-d072d92c555e5895fcc3c92213f90d77502bf595ddd1b72348d89da4c899ec0b3
IEDL.DBID BENPR
ISSN 1996-1073
IngestDate Wed Aug 27 01:22:12 EDT 2025
Mon Jun 30 13:30:52 EDT 2025
Tue Jun 10 21:11:25 EDT 2025
Tue Jul 01 04:12:55 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-d072d92c555e5895fcc3c92213f90d77502bf595ddd1b72348d89da4c899ec0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0006-2044
0000-0003-4979-6487
0009-0002-6572-9508
OpenAccessLink https://www.proquest.com/docview/3037546070?pq-origsite=%requestingapplication%
PQID 3037546070
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_fbdd87820595455a908ab1d2b0f76283
proquest_journals_3037546070
gale_infotracacademiconefile_A790018327
crossref_primary_10_3390_en17071704
crossref_citationtrail_10_3390_en17071704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yao (ref_10) 2022; 248
Park (ref_31) 2020; 8
Lipu (ref_3) 2018; 205
ref_12
Zhang (ref_13) 2022; 28
Guo (ref_32) 2023; 9
Li (ref_15) 2019; 21
Wu (ref_22) 2009; 1
ref_19
Wang (ref_14) 2017; 105
Li (ref_26) 2021; 184
Sarmah (ref_1) 2019; 16
Yu (ref_11) 2020; 402
Yang (ref_17) 2021; 70
Ji (ref_25) 2021; 104
Ma (ref_27) 2022; 52
Wu (ref_28) 2023; 10
ref_24
ref_23
Zheng (ref_30) 2023; 11
Lin (ref_5) 2020; 275
Guha (ref_8) 2017; 4
ref_20
Tian (ref_2) 2020; 261
Liu (ref_7) 2020; 8
ref_29
Huang (ref_21) 1998; 454
ref_9
Chen (ref_16) 2021; 234
Zhu (ref_4) 2019; 7
Lyu (ref_18) 2022; 138
ref_6
References_xml – volume: 261
  start-page: 120813
  year: 2020
  ident: ref_2
  article-title: A review of the state of health for lithium-ion batteries: Research status and suggestions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120813
– volume: 10
  start-page: 937035
  year: 2023
  ident: ref_28
  article-title: Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.937035
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_21
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 7
  start-page: 125176
  year: 2019
  ident: ref_4
  article-title: RUL prediction of lithium-ion battery based on improved DGWO-ELM method in a random discharge rates environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936822
– ident: ref_9
  doi: 10.3390/en11061420
– ident: ref_24
– volume: 402
  start-page: 134
  year: 2020
  ident: ref_11
  article-title: Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.041
– volume: 28
  start-page: 632
  year: 2022
  ident: ref_13
  article-title: Remaining useful life prediction of lithium-ion battery with adaptive noise estimation and capacity regeneration detection
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2022.3202642
– volume: 275
  start-page: 115338
  year: 2020
  ident: ref_5
  article-title: Battery state of health modeling and remaining useful life prediction through time series model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115338
– volume: 70
  start-page: 2517011
  year: 2021
  ident: ref_17
  article-title: Remaining useful life prediction of lithium-ion batteries based on a mixture of ensemble empirical mode decomposition and GWO-SVR model
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3125108
– volume: 16
  start-page: 040801
  year: 2019
  ident: ref_1
  article-title: A review of state of health estimation of energy storage systems: Challenges and possible solutions for futuristic applications of li-ion battery packs in electric vehicles
  publication-title: J. Electrochem. Energy Convers. Storage
  doi: 10.1115/1.4042987
– volume: 234
  start-page: 121269
  year: 2021
  ident: ref_16
  article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121269
– ident: ref_29
  doi: 10.1109/TNNLS.2023.3311443
– volume: 11
  start-page: 896
  year: 2023
  ident: ref_30
  article-title: Remaining useful life indirect prediction of lithium-ion batteries using CNN-BiGRU fusion model and TPE optimization
  publication-title: AIMS Energy
  doi: 10.3934/energy.2023043
– ident: ref_6
  doi: 10.3390/en12122247
– volume: 4
  start-page: 135
  year: 2017
  ident: ref_8
  article-title: State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models
  publication-title: IEEE Trans. Transp. Electrif.
  doi: 10.1109/TTE.2017.2776558
– volume: 104
  start-page: 107195
  year: 2021
  ident: ref_25
  article-title: An RUL prediction approach for lithium-ion battery based on SADE-MESN
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107195
– ident: ref_23
– volume: 105
  start-page: 2053
  year: 2017
  ident: ref_14
  article-title: Remaining useful life prediction of lithium-ion battery based on discrete wavelet transform
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.582
– volume: 184
  start-page: 109935
  year: 2021
  ident: ref_26
  article-title: An online dual filters RUL prediction method of lithium-ion battery based on unscented particle filter and least squares support vector machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109935
– volume: 1
  start-page: 1
  year: 2009
  ident: ref_22
  article-title: Ensemble empirical mode decomposition: A noise-assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 205
  start-page: 115
  year: 2018
  ident: ref_3
  article-title: A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.065
– volume: 138
  start-page: 114625
  year: 2022
  ident: ref_18
  article-title: An interpretable remaining useful life prediction scheme of lithium-ion battery considering capacity regeneration
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2022.114625
– volume: 8
  start-page: 20786
  year: 2020
  ident: ref_31
  article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968939
– volume: 52
  start-page: 104750
  year: 2022
  ident: ref_27
  article-title: State of health estimation and remaining useful life prediction for lithium-ion batteries by improved particle swarm optimization-back propagation neural network
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104750
– volume: 9
  start-page: 1299
  year: 2023
  ident: ref_32
  article-title: RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.05.121
– volume: 248
  start-page: 123622
  year: 2022
  ident: ref_10
  article-title: Remaining useful life prediction of lithium-ion batteries using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123622
– volume: 8
  start-page: 126661
  year: 2020
  ident: ref_7
  article-title: The remaining useful life prediction by using electrochemical model in the particle filter framework for lithium-ion batteries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006157
– ident: ref_19
– ident: ref_20
  doi: 10.1109/ICASSP.2011.5947265
– ident: ref_12
  doi: 10.3390/app9091890
– volume: 21
  start-page: 510
  year: 2019
  ident: ref_15
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.12.011
SSID ssj0000331333
Score 2.399037
Snippet Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1704
SubjectTerms Accuracy
Aging
Algorithms
Analysis
Batteries
bidirectional gate recurrent unit network
capacity regeneration
complete ensemble empirical mode decomposition with adaptive noise
Datasets
Lithium
lithium-ion battery
Methods
Neural networks
remaining useful life
Time series
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSysxFA7iShfi9YG9PggoiIvgJJl0Jsta6wtbRCy4C0lOggUdL1oX_ntPZqbahXI37mZCFsl3cs7JR5LvEHLAQ7QZSMU4OM3yYAWzgecseu9zpxzGzfR2eDjqXozzq3t1P1fqK90Ja-SBG-COowMok6ib0pjsldVZaR0H4bKIflzWOp-Y8-bIVB2DpUTyJRs9Uom8_jhUvEjcpa3INstAtVD_T-G4zjFnq2Sl3RzSXjOoP2QhVGtkeU4ycJ0ML6smC9Gbl3TGknClz5FeT6YPk7cndom_jWbmO70dX-P3awCKjf3BYHjaG1FbAe2PRuxkcn473iDjs8Fd_4K1JRGYR2ebMsgKAVp4pVRQpVYIqfRaCC6jzqDA9C9cRKQAgLtCyLyEUoPNPdKq4DMnN8li9VyFLUJLCzbqIna1z3Kfext0OpTlSIggKl50yNEMJuNbvfBUtuLRIG9IkJovSDtk_7Pvv0Yl49teJwntzx5J2bpuQHub1t7mf_bukMNkK5P8D4fjbfuMACeVlKxMr9Cp0KAUOIGdmTlN65ivRtY1f7sY6P7-xmi2yZLAXU5zlWeHLE5f3sIu7lKmbq9ekB_hL-CW
  priority: 102
  providerName: Directory of Open Access Journals
Title Indirect Prediction of Lithium-Ion Battery RUL Based on CEEMDAN and CNN-BiGRU
URI https://www.proquest.com/docview/3037546070
https://doaj.org/article/fbdd87820595455a908ab1d2b0f76283
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swECaaZGmHoE_UbWoISIGiAxHxZYlTYLu2kyIWAqMGvBF8pgZaObGdof8-R4l2OrRZBIniIB55x_tI6vsQ-kx80LljAhNnJOZeU6w94ThYa7kRBuJm_Hd4WvUu5vz7QizSgtsmHavcxcQmULuVjWvkZ6wRa-3BCD2_vcNRNSruriYJjQN0BCG4BPB1NBhV17P9KkvOGIAw1vKSMsD3Z74mRcQwSZltNxM1hP3_C8vNXDN-iY5Tkpj12159hZ75-jV68Rd14Bs0vazb2Si7Xse9lmjfbBWyq-X25_L-N76Ex5Y78082m1_B_ca7DAqHo9H0W7_KdO2yYVXhwXIym79F8_Hox_ACJ2kEbMHpttjlBXWSWiGEF6UUYFpmJaWEBZm7AtIAaoKQwjlHTEEZL10pneYW4JW3uWHv0GG9qv17lJXa6SCL0JM255Zb7WXcnCUAjFwQpOigrzszKZt4w6N8xS8F-CGaVD2atINO93VvW7aMf9YaRGvva0SG66Zgtb5RyWFUMM6VkcwPWsGF0DIvtSGOmjxA_C5ZB32JfaWiH8LnWJ1-J4BGRUYr1S9kFBxkFBpwsutOlRx0ox6H04enX39EzynkMe1hnRN0uF3f-0-Qh2xNFx2U40k3Dblug-bhOlmQB5et3NU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOUAPiKcIFLAECHGwuutHdn2oUJomTWiyQlUj9Wb8LJFgU5JUqH-qv5HxPlIOwK23XdtarWfGMx4_vg-hd6kPOnFMkNQZSbjXlGifchKstdwIA34z3h2eFt3RjH8-E2db6Lq9CxOPVbY-sXLUbmHjGvkeq8hau2Chny5-ksgaFXdXWwqN2iyO_dUvSNlW--ND0O97SoeD0_6INKwCxIK9rolLMuoktUIIL3Ip4K-YlZSmLMjEZRBBqQlCCudcajLKeO5y6TS3kJl4mxgG372D7nLGZBxR-fBos6aTMAYpH6tRUKE-2fNlmsWMqeGBa-NeRQ_wryBQRbbhQ_SgmZLiXm1Dj9CWLx-jnT-ACp-g6bisYx_-sow7O1GbeBHwZL7-Nr_8QcbwWiN1XuGT2QSeV95hKOwPBtPDXoF16XC_KMjB_Ohk9hTNbkVkz9B2uSj9c4Rz7XSQWehKm3DLrfYybgWnkIa5INKsgz62YlK2QSmPZBnfFWQrUaTqRqQd9HbT9qLG5vhrq4Mo7U2LiKddFSyW56oZnioY5_IIHQi94EJomeTapI6aJEC0yFkHfYi6UnHUw-9Y3VxegE5F_CzVy2SkN2QUOrDbqlM17mClboz3xf-r36B7o9PpRE3GxfFLdJ_CDKo-JrSLttfLS_8KZkBr87oyO4y-3rad_wZMbBUk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QFxFYYAlQIgHq44dN_EDQr2ysjaqKirtLfjKKo10tJ3Q_hq_juNcOh6At70ljhXFx1_O8fHl-xB6EzmvqOWCRFZLEjvFiHJRTLwxJtZCg98MZ4dnWfd4GX8-FacH6FdzFiZsq2x8Yumo7dqEOfIOL8Vau4DQjq-3RcyH448XP0hQkAorrY2cRgWRE3f1E9K37YfJEPr6LWPj0ZfBMakVBogB7O6IpQmzkhkhhBOpFPCF3EjGIu4ltQlEU6a9kMJaG-mE8Ti1qbQqNpClOEM1h_feQocJZEW0hQ77o2y-2M_wUM4hAeQVJyrnknZcESUhf6pV4ZooWIoF_CsklHFufB_dqweouFch6gE6cMVDdPcP2sJHaDYpqkiI55uwzhP6Fq89nq52Z6vL72QCtxVv5xVeLKdwvXUWQ-FgNJoNexlWhcWDLCP91afF8jFa3ojRnqBWsS7cU4RTZZWXie9KQ2MTG-VkWBiOICmzXkRJG71vzJSbmrM8SGec55C7BJPm1yZto9f7uhcVU8dfa_WDtfc1Art2WbDefMvrnzX32to0EAlCK2IhlKSp0pFlmnqIHSlvo3ehr_LgA-BzjKqPMkCjAptW3ktkEDvkDBpw1HRnXjuHbX4N5Wf_f_wK3QaM59NJdvIc3WEwnKr2DB2h1m5z6V7AcGinX9a4w-jrTUP9N_MDGrY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indirect+Prediction+of+Lithium-Ion+Battery+RUL+Based+on+CEEMDAN+and+CNN-BiGRU&rft.jtitle=Energies+%28Basel%29&rft.au=Lv%2C+Kai&rft.au=Ma%2C+Zhiqiang&rft.au=Bao%2C+Caijilahu&rft.au=Liu%2C+Guangchen&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=7&rft.spage=1704&rft_id=info:doi/10.3390%2Fen17071704&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon