Drawing and Recognizing Chinese Characters with Recurrent Neural Network

Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 40; no. 4; pp. 849 - 862
Main Authors Xu-Yao Zhang, Fei Yin, Yan-Ming Zhang, Cheng-Lin Liu, Bengio, Yoshua
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters.
AbstractList Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters.
Author Xu-Yao Zhang
Yan-Ming Zhang
Cheng-Lin Liu
Fei Yin
Bengio, Yoshua
Author_xml – sequence: 1
  surname: Xu-Yao Zhang
  fullname: Xu-Yao Zhang
  email: xyz@nlpr.ia.ac.cn
  organization: NLPR, Inst. of Autom., Beijing, China
– sequence: 2
  surname: Fei Yin
  fullname: Fei Yin
  email: fyin@nlpr.ia.ac.cn
  organization: NLPR, Inst. of Autom., Beijing, China
– sequence: 3
  surname: Yan-Ming Zhang
  fullname: Yan-Ming Zhang
  email: ymzhang@nlpr.ia.ac.cn
  organization: NLPR, Inst. of Autom., Beijing, China
– sequence: 4
  surname: Cheng-Lin Liu
  fullname: Cheng-Lin Liu
  email: liucl@nlpr.ia.ac.cn
  organization: NLPR, Inst. of Autom., Beijing, China
– sequence: 5
  givenname: Yoshua
  surname: Bengio
  fullname: Bengio, Yoshua
  email: yoshua.bengio@umontreal.ca
  organization: MILA Lab., Univ. of Montreal, Montreal, QC, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28436845$$D View this record in MEDLINE/PubMed
BookMark eNpdkEtLAzEQx4Mo9qFfQEEKXrxszXOTHKU-WvCF6Dlks1Pd2mY12aXopze1tQdP_xnymyHz66FdX3tA6IjgISFYnz8_XtxNhhQTOaS5FoLpHdQlmumMpXoXdTHJaaYUVR3Ui3GGMeECs33UoYqzXHHRRePLYJeVfx1YXw6ewNWvvvpe9aO3ykOElDZY10CIg2XVvK2YNgTwzeAe2mDnKZplHd4P0N7UziMcbrKPXq6vnkfj7PbhZjK6uM0cx7jJnIW8zJkgeiqlAiq1I1ZJKnDpiFbAGJFFkauSQel4SblSUOh0ArOOclqwPjpb7_0I9WcLsTGLKjqYz62Huo2GKJ2uFAKLhJ7-Q2d1G3z6naFEcq5ZTnii6JpyoY4xwNR8hGphw5ch2Kw8m1_PZuXZbDynoZPN6rZYQLkd-RObgOM1UAHA9llqzCTD7AcKlYIk
CODEN ITPIDJ
CitedBy_id crossref_primary_10_3389_feart_2022_984589
crossref_primary_10_1007_s11042_017_5457_4
crossref_primary_10_1587_transinf_2018EDL8027
crossref_primary_10_3390_app8050814
crossref_primary_10_1016_j_energy_2019_01_075
crossref_primary_10_1155_2022_1805128
crossref_primary_10_3390_app11146387
crossref_primary_10_1016_j_patcog_2019_04_015
crossref_primary_10_1109_ACCESS_2019_2930799
crossref_primary_10_1016_j_patcog_2022_108859
crossref_primary_10_1007_s11042_023_15326_9
crossref_primary_10_1002_widm_1255
crossref_primary_10_1016_j_eswa_2023_122405
crossref_primary_10_1007_s11760_020_01703_6
crossref_primary_10_1016_j_patrec_2021_01_016
crossref_primary_10_1109_TPAMI_2021_3122572
crossref_primary_10_1016_j_neunet_2020_01_030
crossref_primary_10_1142_S0219622019300052
crossref_primary_10_3390_app12146862
crossref_primary_10_1108_K_12_2021_1289
crossref_primary_10_3390_electronics12061388
crossref_primary_10_1109_ACCESS_2020_3007487
crossref_primary_10_1016_j_engappai_2020_103489
crossref_primary_10_1007_s11263_021_01457_9
crossref_primary_10_1007_s10044_021_01003_w
crossref_primary_10_1109_TMM_2022_3143324
crossref_primary_10_1016_j_jclepro_2021_128024
crossref_primary_10_1109_TPAMI_2023_3319557
crossref_primary_10_1252_jcej_21we004
crossref_primary_10_1007_s00521_020_04746_5
crossref_primary_10_1007_s12555_022_0598_2
crossref_primary_10_1016_j_enbuild_2023_113584
crossref_primary_10_1109_TSTE_2021_3104656
crossref_primary_10_1038_s41598_022_07571_z
crossref_primary_10_1155_2022_4372168
crossref_primary_10_1016_j_patcog_2023_109538
crossref_primary_10_4218_etrij_2021_0129
crossref_primary_10_1016_j_jfranklin_2023_09_005
crossref_primary_10_1134_S0005117921110011
crossref_primary_10_1016_j_cma_2019_112734
crossref_primary_10_1109_ACCESS_2024_3409425
crossref_primary_10_1109_TAI_2022_3212981
crossref_primary_10_1155_2022_6450469
crossref_primary_10_1007_s10032_022_00426_3
crossref_primary_10_1007_s10032_024_00468_9
crossref_primary_10_1109_ACCESS_2020_3020621
crossref_primary_10_1155_2021_5583287
crossref_primary_10_3724_SP_J_1089_2022_19125
crossref_primary_10_1007_s11042_020_10037_x
crossref_primary_10_1111_cgf_13861
crossref_primary_10_1111_cgf_14950
crossref_primary_10_1016_j_ymssp_2020_107057
crossref_primary_10_1155_2020_6535834
crossref_primary_10_1007_s11042_022_13644_y
crossref_primary_10_1016_j_chemolab_2020_103932
crossref_primary_10_1016_j_knosys_2020_105638
crossref_primary_10_1016_j_asoc_2021_108062
crossref_primary_10_12677_jsta_2024_123032
crossref_primary_10_1111_coin_12392
crossref_primary_10_1109_TCSS_2022_3182375
crossref_primary_10_1016_j_jclepro_2019_117993
crossref_primary_10_1007_s00138_019_01006_y
crossref_primary_10_1016_j_eswa_2020_114405
crossref_primary_10_1109_ACCESS_2020_2997969
crossref_primary_10_1109_TIFS_2018_2883152
crossref_primary_10_1007_s11042_020_09825_2
crossref_primary_10_1016_j_bspc_2019_101756
crossref_primary_10_1007_s00371_021_02230_2
crossref_primary_10_1007_s00521_024_10015_6
crossref_primary_10_1016_j_engappai_2018_08_014
crossref_primary_10_1007_s00521_023_09051_5
crossref_primary_10_1002_cam4_5203
crossref_primary_10_1016_j_patcog_2023_109593
crossref_primary_10_11834_jig_220894
crossref_primary_10_1007_s11276_021_02651_w
crossref_primary_10_1155_2021_9922017
crossref_primary_10_3390_chemosensors10050164
crossref_primary_10_1002_asi_24322
crossref_primary_10_1109_TIE_2019_2927197
crossref_primary_10_1016_j_isatra_2022_03_013
crossref_primary_10_1007_s10489_022_03737_4
crossref_primary_10_1007_s10723_018_9444_4
crossref_primary_10_1142_S0218001422530020
crossref_primary_10_1007_s13369_023_08340_4
crossref_primary_10_1016_j_neucom_2024_127481
crossref_primary_10_1007_s10462_020_09919_1
crossref_primary_10_1016_j_eswa_2023_121074
crossref_primary_10_1109_ACCESS_2019_2892836
crossref_primary_10_1109_TMM_2020_3011316
crossref_primary_10_1007_s11263_022_01654_0
crossref_primary_10_1007_s11227_017_2218_0
crossref_primary_10_1016_j_neucom_2019_06_022
crossref_primary_10_1109_TED_2022_3217116
crossref_primary_10_4028_p_HGFj4z
crossref_primary_10_3390_solar4030016
crossref_primary_10_1109_ACCESS_2019_2930873
crossref_primary_10_1142_S0219519423400535
crossref_primary_10_1016_j_patcog_2021_108416
crossref_primary_10_3390_rs13193864
crossref_primary_10_3390_s23114993
crossref_primary_10_1109_TIE_2019_2903770
crossref_primary_10_1007_s11042_023_16396_5
crossref_primary_10_1016_j_mlwa_2021_100037
crossref_primary_10_1007_s11390_021_0722_4
crossref_primary_10_1109_JSYST_2020_2983044
crossref_primary_10_1109_ACCESS_2022_3206832
crossref_primary_10_1007_s10489_021_02448_6
crossref_primary_10_32604_iasc_2021_020184
crossref_primary_10_3390_su11010189
crossref_primary_10_1109_TIP_2020_2995062
crossref_primary_10_1016_j_asoc_2021_107475
crossref_primary_10_1109_ACCESS_2023_3301564
crossref_primary_10_1016_j_ins_2018_11_035
crossref_primary_10_1109_TCYB_2020_2969705
crossref_primary_10_1016_j_patcog_2023_110208
crossref_primary_10_1145_3550070
crossref_primary_10_1007_s11276_021_02650_x
crossref_primary_10_1007_s12652_022_03770_8
crossref_primary_10_1007_s44196_023_00302_w
crossref_primary_10_3390_data3040063
crossref_primary_10_1016_j_patrec_2019_10_001
crossref_primary_10_1155_2022_4659567
crossref_primary_10_1007_s10032_020_00350_4
crossref_primary_10_1007_s10032_020_00354_0
crossref_primary_10_1109_TVT_2021_3063738
crossref_primary_10_1109_TIFS_2024_3377903
crossref_primary_10_1177_01423312211052213
crossref_primary_10_1007_s10489_021_02970_7
crossref_primary_10_1109_ACCESS_2021_3123726
crossref_primary_10_1007_s10489_020_01632_4
crossref_primary_10_1186_s13634_019_0636_2
crossref_primary_10_1007_s00521_023_09264_8
crossref_primary_10_1016_j_neucom_2019_10_029
crossref_primary_10_1007_s12652_018_0805_4
crossref_primary_10_1049_iet_ipr_2019_0009
crossref_primary_10_1109_ACCESS_2020_3004861
crossref_primary_10_3390_designs5020027
crossref_primary_10_1145_3506700
crossref_primary_10_1109_TNNLS_2022_3151477
crossref_primary_10_1016_j_patcog_2020_107305
crossref_primary_10_1007_s00521_020_05556_5
crossref_primary_10_1021_acs_iecr_9b06412
crossref_primary_10_1016_j_epsr_2019_106073
crossref_primary_10_1111_cgf_142621
crossref_primary_10_1007_s00500_023_07883_w
crossref_primary_10_1109_TMM_2022_3146771
crossref_primary_10_1007_s11042_021_11777_0
crossref_primary_10_1007_s11071_023_08411_z
crossref_primary_10_1016_j_engappai_2021_104292
crossref_primary_10_1007_s11042_020_09771_z
crossref_primary_10_1007_s00034_019_01116_y
crossref_primary_10_1007_s11042_020_10470_y
crossref_primary_10_1016_j_engappai_2021_104455
crossref_primary_10_1109_ACCESS_2023_3248508
crossref_primary_10_1109_TSMC_2020_3048892
crossref_primary_10_1109_TMM_2018_2844689
crossref_primary_10_1109_ACCESS_2018_2873942
crossref_primary_10_1007_s10209_024_01095_1
crossref_primary_10_3390_app11157026
crossref_primary_10_1007_s10462_022_10330_1
crossref_primary_10_1109_LSP_2019_2895967
crossref_primary_10_1016_j_patcog_2019_107080
crossref_primary_10_1007_s00521_018_3728_2
crossref_primary_10_1142_S0219720022500093
crossref_primary_10_1155_2022_5203122
crossref_primary_10_1109_TMM_2023_3339589
crossref_primary_10_1007_s11042_020_09653_4
crossref_primary_10_1007_s11042_022_13082_w
crossref_primary_10_3390_su11051262
crossref_primary_10_1016_j_patcog_2023_109317
crossref_primary_10_3390_ijms23074037
crossref_primary_10_1155_2022_8669298
crossref_primary_10_1016_j_eswa_2023_122154
Cites_doi 10.1016/j.patcog.2005.04.019
10.1109/ICDAR.2013.218
10.1109/ICDAR.2011.291
10.1109/ICDAR.2015.7333746
10.1038/nature14539
10.1016/j.patcog.2012.06.021
10.1109/TMM.2015.2477044
10.1109/72.279181
10.1109/TPAMI.2011.264
10.1109/TPAMI.2004.1262182
10.1145/1143844.1143891
10.1109/34.824821
10.1109/ICFHR.2014.56
10.1109/ACPR.2015.7486592
10.1109/ICDAR.2015.7333821
10.1109/5.726791
10.1109/ICDAR.2015.7333881
10.1162/neco.1997.9.8.1735
10.1162/089976600300015015
10.1038/323533a0
10.1109/TPAMI.2006.216
10.1007/s10032-015-0256-9
10.1109/ICDAR.2011.17
10.1109/78.650093
10.3115/v1/D14-1179
10.1109/PROC.1980.11675
10.1016/j.patcog.2016.08.005
10.1109/34.877517
10.1109/CCPR.2010.5659229
10.1109/TPAMI.2008.137
10.1126/science.1127647
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2017.2695539
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
2160-9292
EndPage 862
ExternalDocumentID 10_1109_TPAMI_2017_2695539
28436845
7903730
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDB02060009
– fundername: National Natural Science Foundation of China
  grantid: 61403380; 61573355
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AI.
AIBXA
ALLEH
F20
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RNI
RZB
VH1
XJT
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c400t-cae6d63519f778e279c1a87250dc198e3317bb68d3edc4d2488eb98283ac242b3
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Fri Aug 16 08:08:06 EDT 2024
Thu Oct 10 17:57:57 EDT 2024
Fri Aug 23 01:56:02 EDT 2024
Sat Sep 28 08:35:50 EDT 2024
Wed Jun 26 19:28:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-cae6d63519f778e279c1a87250dc198e3317bb68d3edc4d2488eb98283ac242b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9260-188X
PMID 28436845
PQID 2174493614
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_1891455505
ieee_primary_7903730
proquest_journals_2174493614
pubmed_primary_28436845
crossref_primary_10_1109_TPAMI_2017_2695539
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
goodfellow (ref24) 2014
zhou (ref53) 2013; 35
plamondon (ref2) 0; 22
ref55
ref11
ref54
ref10
xu (ref50) 2015
ref17
bergstra (ref46) 2010
ref16
ref19
radford (ref26) 2015
ref18
gregor (ref23) 2015
larochelle (ref21) 2011
lamb (ref58) 2016
kingma (ref22) 2013
srivastava (ref36) 2014; 15
ref48
ref47
ref42
ref44
ref43
(ref28) 2015
ref49
ref8
ref7
kingma (ref41) 2015
bastien (ref45) 2012
ref5
graham (ref14) 2013
ref35
liu (ref3) 2004; 26
ref34
graves (ref4) 2013
ref30
chung (ref33) 2014
ref32
ref1
ref38
jozefowicz (ref40) 2015
yang (ref15) 2015
graves (ref51) 2014
bouthillier (ref37) 2015
im (ref59) 2016
ref20
weston (ref52) 2015
hinton (ref6) 2006; 313
goodfellow (ref31) 2016
ciresan (ref9) 2013
ref29
(ref27) 2015
denton (ref25) 2015
yang (ref39) 2015
bengio (ref13) 1994
References_xml – ident: ref30
  doi: 10.1016/j.patcog.2005.04.019
– ident: ref20
  doi: 10.1109/ICDAR.2013.218
– year: 2015
  ident: ref25
  article-title: Deep generative image models using a Laplacian pyramid of adversarial networks
  contributor:
    fullname: denton
– ident: ref43
  doi: 10.1109/ICDAR.2011.291
– start-page: 1
  year: 2012
  ident: ref45
  article-title: Theano: New features and speed improvements
  publication-title: NIPS Deep Learning Workshop
  contributor:
    fullname: bastien
– ident: ref55
  doi: 10.1109/ICDAR.2015.7333746
– start-page: 1
  year: 2010
  ident: ref46
  article-title: Theano: A CPU and GPU math expression compiler
  publication-title: Proc Python Sci Comput Conf
  contributor:
    fullname: bergstra
– start-page: 1
  year: 2014
  ident: ref33
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: Proc Adv Neu Inf Proc Sys
  contributor:
    fullname: chung
– year: 2013
  ident: ref14
  article-title: Sparse arrays of signatures for online character recognition
  contributor:
    fullname: graham
– ident: ref7
  doi: 10.1038/nature14539
– ident: ref47
  doi: 10.1016/j.patcog.2012.06.021
– ident: ref49
  doi: 10.1109/TMM.2015.2477044
– year: 2015
  ident: ref26
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  contributor:
    fullname: radford
– ident: ref29
  doi: 10.1109/72.279181
– ident: ref54
  doi: 10.1109/TPAMI.2011.264
– volume: 26
  start-page: 198
  year: 2004
  ident: ref3
  article-title: Online recognition of Chinese characters: The state-of-the-art
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1262182
  contributor:
    fullname: liu
– ident: ref32
  doi: 10.1145/1143844.1143891
– volume: 22
  start-page: 63
  year: 0
  ident: ref2
  article-title: Online and offline handwriting recognition: A comprehensive survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.824821
  contributor:
    fullname: plamondon
– start-page: 2672
  year: 2014
  ident: ref24
  article-title: Generative adversarial nets
  publication-title: Proc Advances Neural Inf Process Syst
  contributor:
    fullname: goodfellow
– ident: ref10
  doi: 10.1109/ICFHR.2014.56
– start-page: 937
  year: 1994
  ident: ref13
  article-title: Globally trained handwritten word recognizer using spatial representation, space displacement neural networks and hidden Markov models
  publication-title: Proc Adv Neu Inf Proc Sys
  contributor:
    fullname: bengio
– ident: ref12
  doi: 10.1109/ACPR.2015.7486592
– start-page: 1462
  year: 2015
  ident: ref23
  article-title: DRAW: A recurrent neural network for image generation
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: gregor
– ident: ref38
  doi: 10.1109/ICDAR.2015.7333821
– ident: ref8
  doi: 10.1109/5.726791
– year: 2015
  ident: ref39
  article-title: DeepWriterID: An end-to-end online text-independent writer identification system
  contributor:
    fullname: yang
– start-page: 2048
  year: 2015
  ident: ref50
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: xu
– ident: ref11
  doi: 10.1109/ICDAR.2015.7333881
– ident: ref16
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 2342
  year: 2015
  ident: ref40
  article-title: An empirical exploration of recurrent network architectures
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: jozefowicz
– start-page: 1
  year: 2015
  ident: ref41
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
  contributor:
    fullname: kingma
– year: 2013
  ident: ref9
  article-title: Multi-column deep neural networks for offline handwritten Chinese character classification
  contributor:
    fullname: ciresan
– year: 2013
  ident: ref22
  article-title: Auto-encoding variational bayes
  contributor:
    fullname: kingma
– year: 2016
  ident: ref58
  article-title: Discriminative regularization for generative models
  contributor:
    fullname: lamb
– ident: ref17
  doi: 10.1162/089976600300015015
– ident: ref35
  doi: 10.1038/323533a0
– year: 2015
  ident: ref15
  article-title: DropSample: A new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition
  contributor:
    fullname: yang
– year: 2013
  ident: ref4
  article-title: Generating sequences with recurrent neural networks
  contributor:
    fullname: graves
– year: 2016
  ident: ref31
  publication-title: Deep Learning
  contributor:
    fullname: goodfellow
– ident: ref57
  doi: 10.1109/TPAMI.2006.216
– ident: ref48
  doi: 10.1007/s10032-015-0256-9
– ident: ref44
  doi: 10.1109/ICDAR.2011.17
– ident: ref34
  doi: 10.1109/78.650093
– year: 2016
  ident: ref59
  article-title: Generating images with recurrent adversarial networks
  contributor:
    fullname: im
– volume: 35
  start-page: 2484
  year: 2013
  ident: ref53
  article-title: Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields
  publication-title: IEEE Trans Pattern Anal Mach Intell
  contributor:
    fullname: zhou
– ident: ref18
  doi: 10.3115/v1/D14-1179
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref36
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
  contributor:
    fullname: srivastava
– year: 2015
  ident: ref27
– ident: ref1
  doi: 10.1109/PROC.1980.11675
– ident: ref5
  doi: 10.1016/j.patcog.2016.08.005
– start-page: 29
  year: 2011
  ident: ref21
  article-title: The neural autoregressive distribution estimator
  publication-title: Proc Int Conf Artif Intell Statist
  contributor:
    fullname: larochelle
– year: 2014
  ident: ref51
  article-title: Neural turing machines
  publication-title: arXiv 1410 5401
  contributor:
    fullname: graves
– ident: ref56
  doi: 10.1109/34.877517
– year: 2015
  ident: ref28
– start-page: 1
  year: 2015
  ident: ref52
  article-title: Memory networks
  publication-title: Proc Int Conf Learn Representations
  contributor:
    fullname: weston
– year: 2015
  ident: ref37
  article-title: Dropout as data augmentation
  contributor:
    fullname: bouthillier
– ident: ref42
  doi: 10.1109/CCPR.2010.5659229
– ident: ref19
  doi: 10.1109/TPAMI.2008.137
– volume: 313
  start-page: 504
  year: 2006
  ident: ref6
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
  contributor:
    fullname: hinton
SSID ssj0014503
Score 2.6740067
Snippet Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 849
SubjectTerms Artificial neural networks
Character recognition
discriminative model
generative model
GRU
Handwriting
Handwriting recognition
LSTM
Machine learning
Model accuracy
Neural networks
Recurrent neural network
Recurrent neural networks
Shape
State of the art
Trajectory
Writing
Title Drawing and Recognizing Chinese Characters with Recurrent Neural Network
URI https://ieeexplore.ieee.org/document/7903730
https://www.ncbi.nlm.nih.gov/pubmed/28436845
https://www.proquest.com/docview/2174493614
https://search.proquest.com/docview/1891455505
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58P-qLCt60a7tpm-QoPliFFREFbyVNZi9CV_aB4K93pmmLiIK3lIYmzcwk32ReAKejJI8dAY3IpaSbpCnpKSo2SWSdkykKN8pGfN8xfMgHL-n9a_a6AOddLAwi1s5n2ONmbct3Yzvnq7ILqWNBHLkIi1JrH6vVWQzSrK6CTAiGJJzUiDZAJtYXz4-Xwzv24pK9fq6zTHCqUNqWRa44iunbeVQXWPkba9Znzu0aDNvZeleTt958Vvbs549Ejv_9nXVYbcBneOm5ZQMWsNqEtbawQ9jI-SasfMtSuAWD64n5oFZoKhc-eYejT37m2ts4xfCqTfo8Dflal_v4rE8hp_6gAR-8r_k2vNzePF8NoqYAQ2RJtGeRNZi7nEv4jaRU2JfaJkZJQk3OJlqhIPBRlrlyAp1NXZ82Ayw1Lb4wlo7-UuzAUjWucA9CbWJjucCoZVuvdTopjUsQdZwZ6VQSwFlLhuLd59koav0k1kVNv4LpVzT0C2CLl7Pr2axkAIct5YpGFKcF61ypFgRDAjjpXpMQsWXEVDieT4tEaU7YTmgwgF1P8e7bLaPs_z7mASzTzJR35jmEpdlkjkeEU2blcc2gX59t4PI
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOACHQqHQAG1TiRvNbrLOwz4iKFpadoXQInGzHHv2Uilb7UOV-PWdiZMIIZC4OYoVO54Z-xvPC-BsmuSxI6ARuZR0kzQlPUXGJomsc0WKwk2zKd93jMb58CH99Zg9rsGPLhYGEWvnM-xxs7blu5ld8VVZv1CxII5ch03C1TL30VqdzSDN6jrIhGFIxkmRaENkYtWf3F2MbtiPq-gNcpVlgpOF0sYscslxTM9OpLrEyttosz51rndh1M7XO5v86a2WZc8-vUjl-N4f2oMPDfwMLzy_fIQ1rPZhty3tEDaSvg87z_IUHsDwam7-USs0lQvvvcvREz9z9W1cYHjZpn1ehHyxy3183qeQk3_QgGPvbf4JHq5_Ti6HUVOCIbIk3MvIGsxdzkX8pkUhcVAomxhZEG5yNlESBcGPssylE-hs6ga0HWCpaPGFsXT4l-IQNqpZhZ8hVCY2lkuMWrb2WqeS0rgEUcWZKZxMAjhvyaD_-kwbutZQYqVr-mmmn27oF8ABL2fXs1nJAE5byulGGBeata5UCQIiAXzvXpMYsW3EVDhbLXQiFadsJzwYwJGnePftllGOXx_zG2wNJ6NbfXsz_n0C2zRL6V17TmFjOV_hF0Ity_Jrzaz_AYtt5D0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drawing+and+Recognizing+Chinese+Characters+with+Recurrent+Neural+Network&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Xu-Yao+Zhang&rft.au=Fei+Yin&rft.au=Yan-Ming+Zhang&rft.au=Cheng-Lin+Liu&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=40&rft.issue=4&rft.spage=849&rft.epage=862&rft_id=info:doi/10.1109%2FTPAMI.2017.2695539&rft_id=info%3Apmid%2F28436845&rft.externalDocID=7903730
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon