Drawing and Recognizing Chinese Characters with Recurrent Neural Network
Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 40; no. 4; pp. 849 - 862 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters. |
---|---|
AbstractList | Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing systems in the world. Previous research has mainly focused on recognizing handwritten Chinese characters. However, recognition is only one aspect for understanding a language, another challenging and interesting task is to teach a machine to automatically write (pictographic) Chinese characters. In this paper, we propose a framework by using the recurrent neural network (RNN) as both a discriminative model for recognizing Chinese characters and a generative model for drawing (generating) Chinese characters. To recognize Chinese characters, previous methods usually adopt the convolutional neural network (CNN) models which require transforming the online handwriting trajectory into image-like representations. Instead, our RNN based approach is an end-to-end system which directly deals with the sequential structure and does not require any domain-specific knowledge. With the RNN system (combining an LSTM and GRU), state-of-the-art performance can be achieved on the ICDAR-2013 competition database. Furthermore, under the RNN framework, a conditional generative model with character embedding is proposed for automatically drawing recognizable Chinese characters. The generated characters (in vector format) are human-readable and also can be recognized by the discriminative RNN model with high accuracy. Experimental results verify the effectiveness of using RNNs as both generative and discriminative models for the tasks of drawing and recognizing Chinese characters. |
Author | Xu-Yao Zhang Yan-Ming Zhang Cheng-Lin Liu Fei Yin Bengio, Yoshua |
Author_xml | – sequence: 1 surname: Xu-Yao Zhang fullname: Xu-Yao Zhang email: xyz@nlpr.ia.ac.cn organization: NLPR, Inst. of Autom., Beijing, China – sequence: 2 surname: Fei Yin fullname: Fei Yin email: fyin@nlpr.ia.ac.cn organization: NLPR, Inst. of Autom., Beijing, China – sequence: 3 surname: Yan-Ming Zhang fullname: Yan-Ming Zhang email: ymzhang@nlpr.ia.ac.cn organization: NLPR, Inst. of Autom., Beijing, China – sequence: 4 surname: Cheng-Lin Liu fullname: Cheng-Lin Liu email: liucl@nlpr.ia.ac.cn organization: NLPR, Inst. of Autom., Beijing, China – sequence: 5 givenname: Yoshua surname: Bengio fullname: Bengio, Yoshua email: yoshua.bengio@umontreal.ca organization: MILA Lab., Univ. of Montreal, Montreal, QC, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28436845$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkEtLAzEQx4Mo9qFfQEEKXrxszXOTHKU-WvCF6Dlks1Pd2mY12aXopze1tQdP_xnymyHz66FdX3tA6IjgISFYnz8_XtxNhhQTOaS5FoLpHdQlmumMpXoXdTHJaaYUVR3Ui3GGMeECs33UoYqzXHHRRePLYJeVfx1YXw6ewNWvvvpe9aO3ykOElDZY10CIg2XVvK2YNgTwzeAe2mDnKZplHd4P0N7UziMcbrKPXq6vnkfj7PbhZjK6uM0cx7jJnIW8zJkgeiqlAiq1I1ZJKnDpiFbAGJFFkauSQel4SblSUOh0ArOOclqwPjpb7_0I9WcLsTGLKjqYz62Huo2GKJ2uFAKLhJ7-Q2d1G3z6naFEcq5ZTnii6JpyoY4xwNR8hGphw5ch2Kw8m1_PZuXZbDynoZPN6rZYQLkd-RObgOM1UAHA9llqzCTD7AcKlYIk |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_3389_feart_2022_984589 crossref_primary_10_1007_s11042_017_5457_4 crossref_primary_10_1587_transinf_2018EDL8027 crossref_primary_10_3390_app8050814 crossref_primary_10_1016_j_energy_2019_01_075 crossref_primary_10_1155_2022_1805128 crossref_primary_10_3390_app11146387 crossref_primary_10_1016_j_patcog_2019_04_015 crossref_primary_10_1109_ACCESS_2019_2930799 crossref_primary_10_1016_j_patcog_2022_108859 crossref_primary_10_1007_s11042_023_15326_9 crossref_primary_10_1002_widm_1255 crossref_primary_10_1016_j_eswa_2023_122405 crossref_primary_10_1007_s11760_020_01703_6 crossref_primary_10_1016_j_patrec_2021_01_016 crossref_primary_10_1109_TPAMI_2021_3122572 crossref_primary_10_1016_j_neunet_2020_01_030 crossref_primary_10_1142_S0219622019300052 crossref_primary_10_3390_app12146862 crossref_primary_10_1108_K_12_2021_1289 crossref_primary_10_3390_electronics12061388 crossref_primary_10_1109_ACCESS_2020_3007487 crossref_primary_10_1016_j_engappai_2020_103489 crossref_primary_10_1007_s11263_021_01457_9 crossref_primary_10_1007_s10044_021_01003_w crossref_primary_10_1109_TMM_2022_3143324 crossref_primary_10_1016_j_jclepro_2021_128024 crossref_primary_10_1109_TPAMI_2023_3319557 crossref_primary_10_1252_jcej_21we004 crossref_primary_10_1007_s00521_020_04746_5 crossref_primary_10_1007_s12555_022_0598_2 crossref_primary_10_1016_j_enbuild_2023_113584 crossref_primary_10_1109_TSTE_2021_3104656 crossref_primary_10_1038_s41598_022_07571_z crossref_primary_10_1155_2022_4372168 crossref_primary_10_1016_j_patcog_2023_109538 crossref_primary_10_4218_etrij_2021_0129 crossref_primary_10_1016_j_jfranklin_2023_09_005 crossref_primary_10_1134_S0005117921110011 crossref_primary_10_1016_j_cma_2019_112734 crossref_primary_10_1109_ACCESS_2024_3409425 crossref_primary_10_1109_TAI_2022_3212981 crossref_primary_10_1155_2022_6450469 crossref_primary_10_1007_s10032_022_00426_3 crossref_primary_10_1007_s10032_024_00468_9 crossref_primary_10_1109_ACCESS_2020_3020621 crossref_primary_10_1155_2021_5583287 crossref_primary_10_3724_SP_J_1089_2022_19125 crossref_primary_10_1007_s11042_020_10037_x crossref_primary_10_1111_cgf_13861 crossref_primary_10_1111_cgf_14950 crossref_primary_10_1016_j_ymssp_2020_107057 crossref_primary_10_1155_2020_6535834 crossref_primary_10_1007_s11042_022_13644_y crossref_primary_10_1016_j_chemolab_2020_103932 crossref_primary_10_1016_j_knosys_2020_105638 crossref_primary_10_1016_j_asoc_2021_108062 crossref_primary_10_12677_jsta_2024_123032 crossref_primary_10_1111_coin_12392 crossref_primary_10_1109_TCSS_2022_3182375 crossref_primary_10_1016_j_jclepro_2019_117993 crossref_primary_10_1007_s00138_019_01006_y crossref_primary_10_1016_j_eswa_2020_114405 crossref_primary_10_1109_ACCESS_2020_2997969 crossref_primary_10_1109_TIFS_2018_2883152 crossref_primary_10_1007_s11042_020_09825_2 crossref_primary_10_1016_j_bspc_2019_101756 crossref_primary_10_1007_s00371_021_02230_2 crossref_primary_10_1007_s00521_024_10015_6 crossref_primary_10_1016_j_engappai_2018_08_014 crossref_primary_10_1007_s00521_023_09051_5 crossref_primary_10_1002_cam4_5203 crossref_primary_10_1016_j_patcog_2023_109593 crossref_primary_10_11834_jig_220894 crossref_primary_10_1007_s11276_021_02651_w crossref_primary_10_1155_2021_9922017 crossref_primary_10_3390_chemosensors10050164 crossref_primary_10_1002_asi_24322 crossref_primary_10_1109_TIE_2019_2927197 crossref_primary_10_1016_j_isatra_2022_03_013 crossref_primary_10_1007_s10489_022_03737_4 crossref_primary_10_1007_s10723_018_9444_4 crossref_primary_10_1142_S0218001422530020 crossref_primary_10_1007_s13369_023_08340_4 crossref_primary_10_1016_j_neucom_2024_127481 crossref_primary_10_1007_s10462_020_09919_1 crossref_primary_10_1016_j_eswa_2023_121074 crossref_primary_10_1109_ACCESS_2019_2892836 crossref_primary_10_1109_TMM_2020_3011316 crossref_primary_10_1007_s11263_022_01654_0 crossref_primary_10_1007_s11227_017_2218_0 crossref_primary_10_1016_j_neucom_2019_06_022 crossref_primary_10_1109_TED_2022_3217116 crossref_primary_10_4028_p_HGFj4z crossref_primary_10_3390_solar4030016 crossref_primary_10_1109_ACCESS_2019_2930873 crossref_primary_10_1142_S0219519423400535 crossref_primary_10_1016_j_patcog_2021_108416 crossref_primary_10_3390_rs13193864 crossref_primary_10_3390_s23114993 crossref_primary_10_1109_TIE_2019_2903770 crossref_primary_10_1007_s11042_023_16396_5 crossref_primary_10_1016_j_mlwa_2021_100037 crossref_primary_10_1007_s11390_021_0722_4 crossref_primary_10_1109_JSYST_2020_2983044 crossref_primary_10_1109_ACCESS_2022_3206832 crossref_primary_10_1007_s10489_021_02448_6 crossref_primary_10_32604_iasc_2021_020184 crossref_primary_10_3390_su11010189 crossref_primary_10_1109_TIP_2020_2995062 crossref_primary_10_1016_j_asoc_2021_107475 crossref_primary_10_1109_ACCESS_2023_3301564 crossref_primary_10_1016_j_ins_2018_11_035 crossref_primary_10_1109_TCYB_2020_2969705 crossref_primary_10_1016_j_patcog_2023_110208 crossref_primary_10_1145_3550070 crossref_primary_10_1007_s11276_021_02650_x crossref_primary_10_1007_s12652_022_03770_8 crossref_primary_10_1007_s44196_023_00302_w crossref_primary_10_3390_data3040063 crossref_primary_10_1016_j_patrec_2019_10_001 crossref_primary_10_1155_2022_4659567 crossref_primary_10_1007_s10032_020_00350_4 crossref_primary_10_1007_s10032_020_00354_0 crossref_primary_10_1109_TVT_2021_3063738 crossref_primary_10_1109_TIFS_2024_3377903 crossref_primary_10_1177_01423312211052213 crossref_primary_10_1007_s10489_021_02970_7 crossref_primary_10_1109_ACCESS_2021_3123726 crossref_primary_10_1007_s10489_020_01632_4 crossref_primary_10_1186_s13634_019_0636_2 crossref_primary_10_1007_s00521_023_09264_8 crossref_primary_10_1016_j_neucom_2019_10_029 crossref_primary_10_1007_s12652_018_0805_4 crossref_primary_10_1049_iet_ipr_2019_0009 crossref_primary_10_1109_ACCESS_2020_3004861 crossref_primary_10_3390_designs5020027 crossref_primary_10_1145_3506700 crossref_primary_10_1109_TNNLS_2022_3151477 crossref_primary_10_1016_j_patcog_2020_107305 crossref_primary_10_1007_s00521_020_05556_5 crossref_primary_10_1021_acs_iecr_9b06412 crossref_primary_10_1016_j_epsr_2019_106073 crossref_primary_10_1111_cgf_142621 crossref_primary_10_1007_s00500_023_07883_w crossref_primary_10_1109_TMM_2022_3146771 crossref_primary_10_1007_s11042_021_11777_0 crossref_primary_10_1007_s11071_023_08411_z crossref_primary_10_1016_j_engappai_2021_104292 crossref_primary_10_1007_s11042_020_09771_z crossref_primary_10_1007_s00034_019_01116_y crossref_primary_10_1007_s11042_020_10470_y crossref_primary_10_1016_j_engappai_2021_104455 crossref_primary_10_1109_ACCESS_2023_3248508 crossref_primary_10_1109_TSMC_2020_3048892 crossref_primary_10_1109_TMM_2018_2844689 crossref_primary_10_1109_ACCESS_2018_2873942 crossref_primary_10_1007_s10209_024_01095_1 crossref_primary_10_3390_app11157026 crossref_primary_10_1007_s10462_022_10330_1 crossref_primary_10_1109_LSP_2019_2895967 crossref_primary_10_1016_j_patcog_2019_107080 crossref_primary_10_1007_s00521_018_3728_2 crossref_primary_10_1142_S0219720022500093 crossref_primary_10_1155_2022_5203122 crossref_primary_10_1109_TMM_2023_3339589 crossref_primary_10_1007_s11042_020_09653_4 crossref_primary_10_1007_s11042_022_13082_w crossref_primary_10_3390_su11051262 crossref_primary_10_1016_j_patcog_2023_109317 crossref_primary_10_3390_ijms23074037 crossref_primary_10_1155_2022_8669298 crossref_primary_10_1016_j_eswa_2023_122154 |
Cites_doi | 10.1016/j.patcog.2005.04.019 10.1109/ICDAR.2013.218 10.1109/ICDAR.2011.291 10.1109/ICDAR.2015.7333746 10.1038/nature14539 10.1016/j.patcog.2012.06.021 10.1109/TMM.2015.2477044 10.1109/72.279181 10.1109/TPAMI.2011.264 10.1109/TPAMI.2004.1262182 10.1145/1143844.1143891 10.1109/34.824821 10.1109/ICFHR.2014.56 10.1109/ACPR.2015.7486592 10.1109/ICDAR.2015.7333821 10.1109/5.726791 10.1109/ICDAR.2015.7333881 10.1162/neco.1997.9.8.1735 10.1162/089976600300015015 10.1038/323533a0 10.1109/TPAMI.2006.216 10.1007/s10032-015-0256-9 10.1109/ICDAR.2011.17 10.1109/78.650093 10.3115/v1/D14-1179 10.1109/PROC.1980.11675 10.1016/j.patcog.2016.08.005 10.1109/34.877517 10.1109/CCPR.2010.5659229 10.1109/TPAMI.2008.137 10.1126/science.1127647 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2017.2695539 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1939-3539 2160-9292 |
EndPage | 862 |
ExternalDocumentID | 10_1109_TPAMI_2017_2695539 28436845 7903730 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDB02060009 – fundername: National Natural Science Foundation of China grantid: 61403380; 61573355 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIC RIE RIG RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYOK ABFSI ADRHT AETIX AI. AIBXA ALLEH F20 FA8 H~9 IBMZZ ICLAB IFJZH NPM RNI RZB VH1 XJT AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c400t-cae6d63519f778e279c1a87250dc198e3317bb68d3edc4d2488eb98283ac242b3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Fri Aug 16 08:08:06 EDT 2024 Thu Oct 10 17:57:57 EDT 2024 Fri Aug 23 01:56:02 EDT 2024 Sat Sep 28 08:35:50 EDT 2024 Wed Jun 26 19:28:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-cae6d63519f778e279c1a87250dc198e3317bb68d3edc4d2488eb98283ac242b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9260-188X |
PMID | 28436845 |
PQID | 2174493614 |
PQPubID | 85458 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1891455505 ieee_primary_7903730 proquest_journals_2174493614 pubmed_primary_28436845 crossref_primary_10_1109_TPAMI_2017_2695539 |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 goodfellow (ref24) 2014 zhou (ref53) 2013; 35 plamondon (ref2) 0; 22 ref55 ref11 ref54 ref10 xu (ref50) 2015 ref17 bergstra (ref46) 2010 ref16 ref19 radford (ref26) 2015 ref18 gregor (ref23) 2015 larochelle (ref21) 2011 lamb (ref58) 2016 kingma (ref22) 2013 srivastava (ref36) 2014; 15 ref48 ref47 ref42 ref44 ref43 (ref28) 2015 ref49 ref8 ref7 kingma (ref41) 2015 bastien (ref45) 2012 ref5 graham (ref14) 2013 ref35 liu (ref3) 2004; 26 ref34 graves (ref4) 2013 ref30 chung (ref33) 2014 ref32 ref1 ref38 jozefowicz (ref40) 2015 yang (ref15) 2015 graves (ref51) 2014 bouthillier (ref37) 2015 im (ref59) 2016 ref20 weston (ref52) 2015 hinton (ref6) 2006; 313 goodfellow (ref31) 2016 ciresan (ref9) 2013 ref29 (ref27) 2015 denton (ref25) 2015 yang (ref39) 2015 bengio (ref13) 1994 |
References_xml | – ident: ref30 doi: 10.1016/j.patcog.2005.04.019 – ident: ref20 doi: 10.1109/ICDAR.2013.218 – year: 2015 ident: ref25 article-title: Deep generative image models using a Laplacian pyramid of adversarial networks contributor: fullname: denton – ident: ref43 doi: 10.1109/ICDAR.2011.291 – start-page: 1 year: 2012 ident: ref45 article-title: Theano: New features and speed improvements publication-title: NIPS Deep Learning Workshop contributor: fullname: bastien – ident: ref55 doi: 10.1109/ICDAR.2015.7333746 – start-page: 1 year: 2010 ident: ref46 article-title: Theano: A CPU and GPU math expression compiler publication-title: Proc Python Sci Comput Conf contributor: fullname: bergstra – start-page: 1 year: 2014 ident: ref33 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: Proc Adv Neu Inf Proc Sys contributor: fullname: chung – year: 2013 ident: ref14 article-title: Sparse arrays of signatures for online character recognition contributor: fullname: graham – ident: ref7 doi: 10.1038/nature14539 – ident: ref47 doi: 10.1016/j.patcog.2012.06.021 – ident: ref49 doi: 10.1109/TMM.2015.2477044 – year: 2015 ident: ref26 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks contributor: fullname: radford – ident: ref29 doi: 10.1109/72.279181 – ident: ref54 doi: 10.1109/TPAMI.2011.264 – volume: 26 start-page: 198 year: 2004 ident: ref3 article-title: Online recognition of Chinese characters: The state-of-the-art publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2004.1262182 contributor: fullname: liu – ident: ref32 doi: 10.1145/1143844.1143891 – volume: 22 start-page: 63 year: 0 ident: ref2 article-title: Online and offline handwriting recognition: A comprehensive survey publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.824821 contributor: fullname: plamondon – start-page: 2672 year: 2014 ident: ref24 article-title: Generative adversarial nets publication-title: Proc Advances Neural Inf Process Syst contributor: fullname: goodfellow – ident: ref10 doi: 10.1109/ICFHR.2014.56 – start-page: 937 year: 1994 ident: ref13 article-title: Globally trained handwritten word recognizer using spatial representation, space displacement neural networks and hidden Markov models publication-title: Proc Adv Neu Inf Proc Sys contributor: fullname: bengio – ident: ref12 doi: 10.1109/ACPR.2015.7486592 – start-page: 1462 year: 2015 ident: ref23 article-title: DRAW: A recurrent neural network for image generation publication-title: Proc Int Conf Mach Learn contributor: fullname: gregor – ident: ref38 doi: 10.1109/ICDAR.2015.7333821 – ident: ref8 doi: 10.1109/5.726791 – year: 2015 ident: ref39 article-title: DeepWriterID: An end-to-end online text-independent writer identification system contributor: fullname: yang – start-page: 2048 year: 2015 ident: ref50 article-title: Show, attend and tell: Neural image caption generation with visual attention publication-title: Proc Int Conf Mach Learn contributor: fullname: xu – ident: ref11 doi: 10.1109/ICDAR.2015.7333881 – ident: ref16 doi: 10.1162/neco.1997.9.8.1735 – start-page: 2342 year: 2015 ident: ref40 article-title: An empirical exploration of recurrent network architectures publication-title: Proc Int Conf Mach Learn contributor: fullname: jozefowicz – start-page: 1 year: 2015 ident: ref41 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Representations contributor: fullname: kingma – year: 2013 ident: ref9 article-title: Multi-column deep neural networks for offline handwritten Chinese character classification contributor: fullname: ciresan – year: 2013 ident: ref22 article-title: Auto-encoding variational bayes contributor: fullname: kingma – year: 2016 ident: ref58 article-title: Discriminative regularization for generative models contributor: fullname: lamb – ident: ref17 doi: 10.1162/089976600300015015 – ident: ref35 doi: 10.1038/323533a0 – year: 2015 ident: ref15 article-title: DropSample: A new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition contributor: fullname: yang – year: 2013 ident: ref4 article-title: Generating sequences with recurrent neural networks contributor: fullname: graves – year: 2016 ident: ref31 publication-title: Deep Learning contributor: fullname: goodfellow – ident: ref57 doi: 10.1109/TPAMI.2006.216 – ident: ref48 doi: 10.1007/s10032-015-0256-9 – ident: ref44 doi: 10.1109/ICDAR.2011.17 – ident: ref34 doi: 10.1109/78.650093 – year: 2016 ident: ref59 article-title: Generating images with recurrent adversarial networks contributor: fullname: im – volume: 35 start-page: 2484 year: 2013 ident: ref53 article-title: Handwritten Chinese/Japanese text recognition using semi-Markov conditional random fields publication-title: IEEE Trans Pattern Anal Mach Intell contributor: fullname: zhou – ident: ref18 doi: 10.3115/v1/D14-1179 – volume: 15 start-page: 1929 year: 2014 ident: ref36 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res contributor: fullname: srivastava – year: 2015 ident: ref27 – ident: ref1 doi: 10.1109/PROC.1980.11675 – ident: ref5 doi: 10.1016/j.patcog.2016.08.005 – start-page: 29 year: 2011 ident: ref21 article-title: The neural autoregressive distribution estimator publication-title: Proc Int Conf Artif Intell Statist contributor: fullname: larochelle – year: 2014 ident: ref51 article-title: Neural turing machines publication-title: arXiv 1410 5401 contributor: fullname: graves – ident: ref56 doi: 10.1109/34.877517 – year: 2015 ident: ref28 – start-page: 1 year: 2015 ident: ref52 article-title: Memory networks publication-title: Proc Int Conf Learn Representations contributor: fullname: weston – year: 2015 ident: ref37 article-title: Dropout as data augmentation contributor: fullname: bouthillier – ident: ref42 doi: 10.1109/CCPR.2010.5659229 – ident: ref19 doi: 10.1109/TPAMI.2008.137 – volume: 313 start-page: 504 year: 2006 ident: ref6 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 contributor: fullname: hinton |
SSID | ssj0014503 |
Score | 2.6740067 |
Snippet | Recent deep learning based approaches have achieved great success on handwriting recognition. Chinese characters are among the most widely adopted writing... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 849 |
SubjectTerms | Artificial neural networks Character recognition discriminative model generative model GRU Handwriting Handwriting recognition LSTM Machine learning Model accuracy Neural networks Recurrent neural network Recurrent neural networks Shape State of the art Trajectory Writing |
Title | Drawing and Recognizing Chinese Characters with Recurrent Neural Network |
URI | https://ieeexplore.ieee.org/document/7903730 https://www.ncbi.nlm.nih.gov/pubmed/28436845 https://www.proquest.com/docview/2174493614 https://search.proquest.com/docview/1891455505 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58P-qLCt60a7tpm-QoPliFFREFbyVNZi9CV_aB4K93pmmLiIK3lIYmzcwk32ReAKejJI8dAY3IpaSbpCnpKSo2SWSdkykKN8pGfN8xfMgHL-n9a_a6AOddLAwi1s5n2ONmbct3Yzvnq7ILqWNBHLkIi1JrH6vVWQzSrK6CTAiGJJzUiDZAJtYXz4-Xwzv24pK9fq6zTHCqUNqWRa44iunbeVQXWPkba9Znzu0aDNvZeleTt958Vvbs549Ejv_9nXVYbcBneOm5ZQMWsNqEtbawQ9jI-SasfMtSuAWD64n5oFZoKhc-eYejT37m2ts4xfCqTfo8Dflal_v4rE8hp_6gAR-8r_k2vNzePF8NoqYAQ2RJtGeRNZi7nEv4jaRU2JfaJkZJQk3OJlqhIPBRlrlyAp1NXZ82Ayw1Lb4wlo7-UuzAUjWucA9CbWJjucCoZVuvdTopjUsQdZwZ6VQSwFlLhuLd59koav0k1kVNv4LpVzT0C2CLl7Pr2axkAIct5YpGFKcF61ypFgRDAjjpXpMQsWXEVDieT4tEaU7YTmgwgF1P8e7bLaPs_z7mASzTzJR35jmEpdlkjkeEU2blcc2gX59t4PI |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOACHQqHQAG1TiRvNbrLOwz4iKFpadoXQInGzHHv2Uilb7UOV-PWdiZMIIZC4OYoVO54Z-xvPC-BsmuSxI6ARuZR0kzQlPUXGJomsc0WKwk2zKd93jMb58CH99Zg9rsGPLhYGEWvnM-xxs7blu5ld8VVZv1CxII5ch03C1TL30VqdzSDN6jrIhGFIxkmRaENkYtWf3F2MbtiPq-gNcpVlgpOF0sYscslxTM9OpLrEyttosz51rndh1M7XO5v86a2WZc8-vUjl-N4f2oMPDfwMLzy_fIQ1rPZhty3tEDaSvg87z_IUHsDwam7-USs0lQvvvcvREz9z9W1cYHjZpn1ehHyxy3183qeQk3_QgGPvbf4JHq5_Ti6HUVOCIbIk3MvIGsxdzkX8pkUhcVAomxhZEG5yNlESBcGPssylE-hs6ga0HWCpaPGFsXT4l-IQNqpZhZ8hVCY2lkuMWrb2WqeS0rgEUcWZKZxMAjhvyaD_-kwbutZQYqVr-mmmn27oF8ABL2fXs1nJAE5byulGGBeata5UCQIiAXzvXpMYsW3EVDhbLXQiFadsJzwYwJGnePftllGOXx_zG2wNJ6NbfXsz_n0C2zRL6V17TmFjOV_hF0Ity_Jrzaz_AYtt5D0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drawing+and+Recognizing+Chinese+Characters+with+Recurrent+Neural+Network&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Xu-Yao+Zhang&rft.au=Fei+Yin&rft.au=Yan-Ming+Zhang&rft.au=Cheng-Lin+Liu&rft.date=2018-04-01&rft.pub=IEEE&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=40&rft.issue=4&rft.spage=849&rft.epage=862&rft_id=info:doi/10.1109%2FTPAMI.2017.2695539&rft_id=info%3Apmid%2F28436845&rft.externalDocID=7903730 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |