Power-efficient neural network with artificial dendrites
In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance...
Saved in:
Published in | Nature nanotechnology Vol. 15; no. 9; pp. 776 - 782 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.
A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption. |
---|---|
AbstractList | In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption. In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption. In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. |
Author | Deng, Ning Qian, He Zhang, Wenqiang Tang, Jianshi Yao, Peng Wu, Wei Xie, Yuan Gao, Bin Song, Sen Wu, Huaqiang Deng, Lei Zhang, Qingtian Li, Xinyi Yang, J. Joshua |
Author_xml | – sequence: 1 givenname: Xinyi surname: Li fullname: Li, Xinyi organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 2 givenname: Jianshi orcidid: 0000-0001-8369-0067 surname: Tang fullname: Tang, Jianshi organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University – sequence: 3 givenname: Qingtian orcidid: 0000-0003-2732-3419 surname: Zhang fullname: Zhang, Qingtian organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 4 givenname: Bin orcidid: 0000-0002-2417-983X surname: Gao fullname: Gao, Bin organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University – sequence: 5 givenname: J. Joshua orcidid: 0000-0003-0671-6010 surname: Yang fullname: Yang, J. Joshua organization: Department of Electrical and Computer Engineering, University of Massachusetts – sequence: 6 givenname: Sen surname: Song fullname: Song, Sen organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University – sequence: 7 givenname: Wei surname: Wu fullname: Wu, Wei organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 8 givenname: Wenqiang orcidid: 0000-0001-8615-0162 surname: Zhang fullname: Zhang, Wenqiang organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 9 givenname: Peng surname: Yao fullname: Yao, Peng organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University – sequence: 10 givenname: Ning surname: Deng fullname: Deng, Ning organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University – sequence: 11 givenname: Lei surname: Deng fullname: Deng, Lei organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara – sequence: 12 givenname: Yuan surname: Xie fullname: Xie, Yuan organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Alibaba DAMO Academy – sequence: 13 givenname: He surname: Qian fullname: Qian, He organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University – sequence: 14 givenname: Huaqiang orcidid: 0000-0001-8359-7997 surname: Wu fullname: Wu, Huaqiang email: wuhq@tsinghua.edu.cn organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32601451$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1LBCEchyU22t4-QJdY6NJlytdxPMbSGwR1qLM4jpbbrJY6LH37XHbbIKhOf9Hn0R_-9sDIB28AOELwDEHSnCeKWM0qiGEFOcYV2wK7iNOmIkSw0Wbd8DHYS2kGIcMC0x0wJriGiDK0C5qHsDCxMtY67YzPE2-GqPoy8iLE18nC5ZeJitktz8t-Z3wXXTbpAGxb1SdzuJ774Onq8nF6U93dX99OL-4qTSHMlW66ErUWLbc1ElR3lggtlOWYtTVlrYJYEWE6RhS3DeNUcIFt1wqhUdOpluyD09W9bzG8DyZlOXdJm75X3oQhSUyRgA3Bghb05Ac6C0P0JV2hOINUiPofikKMkCCkUMdramjnppNv0c1V_JBfP1cAtAJ0DClFYzcIgnLZjly1I0s7ctmOZMXhPxztssou-ByV6_808cpM5RX_bOJ36N-lTw9SoJU |
CitedBy_id | crossref_primary_10_1126_sciadv_abh0648 crossref_primary_10_1088_1674_4926_24090042 crossref_primary_10_3389_fncom_2022_859874 crossref_primary_10_1016_j_jallcom_2022_163873 crossref_primary_10_1021_acsanm_4c01087 crossref_primary_10_1016_j_eswa_2024_125874 crossref_primary_10_1088_1674_4926_44_5_053102 crossref_primary_10_1002_smsc_202100049 crossref_primary_10_1109_JIOT_2023_3307405 crossref_primary_10_1039_D4MH01676A crossref_primary_10_1016_j_scib_2023_11_042 crossref_primary_10_1063_5_0047641 crossref_primary_10_1038_s41467_020_20692_1 crossref_primary_10_1038_s41928_022_00838_3 crossref_primary_10_1063_5_0174863 crossref_primary_10_1109_JAS_2021_1004284 crossref_primary_10_1002_flm2_25 crossref_primary_10_1021_acs_nanolett_4c00739 crossref_primary_10_1039_D3NR05401B crossref_primary_10_7498_aps_71_20220463 crossref_primary_10_1021_acsami_2c11016 crossref_primary_10_1002_aisy_202100017 crossref_primary_10_1038_s41928_023_00984_2 crossref_primary_10_35848_1882_0786_ad1fa7 crossref_primary_10_1088_2634_4386_ac8a6a crossref_primary_10_1088_2631_7990_acef79 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1002_adfm_202302290 crossref_primary_10_1016_j_mattod_2024_08_027 crossref_primary_10_1016_j_mattod_2025_02_008 crossref_primary_10_3390_s25051533 crossref_primary_10_1063_5_0138363 crossref_primary_10_1002_aisy_202200034 crossref_primary_10_1021_acs_chemrev_4c00587 crossref_primary_10_1002_aelm_202300839 crossref_primary_10_1109_ACCESS_2020_3032948 crossref_primary_10_1126_sciadv_adj7867 crossref_primary_10_1021_acs_nanolett_4c01319 crossref_primary_10_1038_s41565_023_01379_2 crossref_primary_10_1002_aelm_202201195 crossref_primary_10_1002_adem_202300237 crossref_primary_10_1063_5_0209676 crossref_primary_10_3389_fpls_2022_862558 crossref_primary_10_3390_app132413309 crossref_primary_10_1002_adma_202301063 crossref_primary_10_1021_acsnano_3c07384 crossref_primary_10_1038_s41467_022_35747_8 crossref_primary_10_1016_j_cej_2025_161293 crossref_primary_10_1088_2632_2153_ad734a crossref_primary_10_1002_adma_202200734 crossref_primary_10_1039_D3NA00025G crossref_primary_10_1021_acsami_0c13020 crossref_primary_10_1016_j_chip_2023_100044 crossref_primary_10_1021_acsaelm_3c01623 crossref_primary_10_1063_5_0194136 crossref_primary_10_3390_en15197069 crossref_primary_10_1002_aisy_202000149 crossref_primary_10_1021_acs_nanolett_4c02658 crossref_primary_10_1038_s41467_024_48103_9 crossref_primary_10_1002_adma_202203684 crossref_primary_10_1002_inf2_12637 crossref_primary_10_1007_s11432_021_3326_6 crossref_primary_10_1002_adma_202311288 crossref_primary_10_1016_j_scib_2023_09_006 crossref_primary_10_1002_inf2_12471 crossref_primary_10_1021_acsnano_4c12884 crossref_primary_10_1016_j_jmat_2024_03_011 crossref_primary_10_1088_1361_6528_abfa51 crossref_primary_10_7498_aps_70_20201632 crossref_primary_10_1002_sstr_202000109 crossref_primary_10_1016_j_fmre_2021_06_020 crossref_primary_10_1038_s41928_021_00591_z crossref_primary_10_1007_s40820_024_01368_7 crossref_primary_10_1038_s41467_023_42172_y crossref_primary_10_3390_s23063118 crossref_primary_10_1002_aisy_202200058 crossref_primary_10_1002_aisy_202200179 crossref_primary_10_1007_s42514_022_00092_1 crossref_primary_10_1016_j_isci_2020_101846 crossref_primary_10_1038_s41467_024_52982_3 crossref_primary_10_1021_acsami_3c12244 crossref_primary_10_1002_aelm_202400421 crossref_primary_10_1002_adma_202101339 crossref_primary_10_1038_s41467_024_50488_6 crossref_primary_10_1021_acs_nanolett_3c00389 crossref_primary_10_1002_aelm_202100669 crossref_primary_10_15541_jim20230405 crossref_primary_10_1021_acs_jpclett_1c00704 crossref_primary_10_1021_acs_nanolett_2c04599 crossref_primary_10_1002_aelm_202100827 crossref_primary_10_1088_2632_959X_acd70c crossref_primary_10_1016_j_neunet_2022_03_001 crossref_primary_10_1063_5_0158341 crossref_primary_10_1155_2022_8045968 crossref_primary_10_1126_sciadv_adk9928 crossref_primary_10_1016_j_jnlest_2022_100177 crossref_primary_10_1088_1361_6641_ac3f21 crossref_primary_10_7498_aps_73_20241022 crossref_primary_10_1038_s41467_023_44614_z crossref_primary_10_1557_s43577_021_00205_1 crossref_primary_10_1039_D0NH00348D crossref_primary_10_1109_MED_2023_3296084 crossref_primary_10_1088_2752_5724_ad7c6c crossref_primary_10_1016_j_ins_2023_02_008 crossref_primary_10_1038_s41928_024_01171_7 crossref_primary_10_1155_2022_9323646 crossref_primary_10_1002_aelm_202400633 crossref_primary_10_3389_felec_2022_825077 crossref_primary_10_1002_aelm_202300904 crossref_primary_10_3389_fnins_2022_853010 crossref_primary_10_1002_adfm_202302899 crossref_primary_10_1051_e3sconf_202346004012 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1038_s41467_023_43542_2 crossref_primary_10_1039_D2MH00466F crossref_primary_10_1016_j_mejo_2022_105674 crossref_primary_10_1002_adma_202401821 crossref_primary_10_1002_adma_202400977 crossref_primary_10_1002_adma_202309708 crossref_primary_10_1002_agt2_302 crossref_primary_10_1002_adfm_202206163 crossref_primary_10_1002_adhm_202100027 crossref_primary_10_1002_aelm_202200733 crossref_primary_10_1002_aelm_202200334 crossref_primary_10_1186_s42400_024_00306_9 crossref_primary_10_1007_s12200_022_00025_4 crossref_primary_10_1080_14686996_2023_2188878 crossref_primary_10_1002_aelm_202100050 crossref_primary_10_1038_s41467_022_35160_1 crossref_primary_10_18287_2412_6179_CO_1002 crossref_primary_10_1021_acsami_3c07684 crossref_primary_10_1002_adhm_202400624 crossref_primary_10_1002_adma_202205047 crossref_primary_10_1007_s44258_024_00042_2 crossref_primary_10_1039_D4TC00473F crossref_primary_10_1109_TED_2022_3212325 crossref_primary_10_1063_5_0151312 crossref_primary_10_1016_j_ceramint_2022_02_175 crossref_primary_10_1021_acs_nanolett_1c01990 crossref_primary_10_1002_aelm_202201155 crossref_primary_10_1063_5_0131524 crossref_primary_10_1109_TAI_2024_3416236 crossref_primary_10_1039_D2NH00536K crossref_primary_10_7498_aps_71_20220397 crossref_primary_10_3389_fsuep_2024_1343339 crossref_primary_10_1016_j_techfore_2023_123070 crossref_primary_10_1088_1674_4926_23120037 crossref_primary_10_1038_s41586_021_04362_w crossref_primary_10_1088_2631_7990_ad88bb crossref_primary_10_1021_acs_jpclett_3c03558 crossref_primary_10_1002_adma_202006469 crossref_primary_10_1039_D4TC02677B crossref_primary_10_1177_00219983221135055 crossref_primary_10_1016_j_conb_2024_102853 crossref_primary_10_1038_s41467_024_47764_w crossref_primary_10_1002_advs_202406242 crossref_primary_10_1002_aelm_202400212 crossref_primary_10_1002_smm2_1290 crossref_primary_10_1016_j_mtchem_2024_101999 crossref_primary_10_1109_TED_2024_3379159 crossref_primary_10_1360_TB_2024_0922 crossref_primary_10_1021_acsnano_1c05836 crossref_primary_10_1016_j_cossms_2024_101199 crossref_primary_10_1021_acsomega_4c00320 crossref_primary_10_1126_sciadv_adm7221 crossref_primary_10_3390_electronics13061076 crossref_primary_10_1021_acsnano_4c11133 crossref_primary_10_1109_LED_2023_3347333 crossref_primary_10_1002_admt_202400895 crossref_primary_10_1016_j_isci_2020_101809 crossref_primary_10_1016_j_knosys_2023_110788 crossref_primary_10_1021_acsami_4c19627 crossref_primary_10_1002_elan_202100462 crossref_primary_10_1088_2631_7990_acfcf1 crossref_primary_10_1109_TAI_2024_3379968 crossref_primary_10_1016_j_conb_2021_04_007 crossref_primary_10_1080_15472450_2024_2425304 crossref_primary_10_1016_j_conb_2023_102812 crossref_primary_10_1109_TCSII_2021_3103553 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_1016_j_chaos_2024_115525 crossref_primary_10_1016_j_orgel_2020_106019 crossref_primary_10_1093_nsr_nwac158 crossref_primary_10_1021_acsaelm_2c00198 |
Cites_doi | 10.1002/adma.201902761 10.1038/nrn1938 10.1038/nnano.2016.70 10.1021/nn202983n 10.3389/fncir.2016.00023 10.1038/nn.3851 10.1038/nnano.2015.221 10.1038/s41928-018-0023-2 10.1002/jnr.22444 10.1126/science.aag2599 10.1016/j.neuron.2018.08.032 10.1038/s41586-018-0180-5 10.1038/nmat3510 10.1126/science.1189664 10.3389/fnana.2016.00110 10.1038/nnano.2017.83 10.1109/IEDM.2016.7838367 10.1126/science.aaj1497 10.1038/nmat4756 10.1038/nature11451 10.1038/nature21056 10.1038/s41563-017-0001-5 10.3389/fnsys.2015.00186 10.1038/nature16961 10.1038/nn.3646 10.1038/nmat3054 10.1038/nature14539 10.1162/neco_a_01045 10.1126/science.aax6239 10.1109/ICCV.2015.312 10.1038/nature14441 10.1038/s41467-017-00740-z 10.1126/science.aah6066 10.1038/s41586-020-1942-4 10.1002/adfm.201604740 10.1016/j.neuron.2006.02.017 10.1126/science.1210362 10.1038/30505 10.1109/IJCNN.2017.7966124 10.1109/VLSIT.2012.6242510 10.1038/nn.4157 10.1109/ICASSP.2013.6639345 10.1007/s00339-008-4975-3 10.1038/nn.3562 10.1038/s41586-019-1424-8 10.1038/35044552 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41565-020-0722-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 782 |
ExternalDocumentID | 32601451 10_1038_s41565_020_0722_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61674089; 91964104; 61851404 funderid: https://doi.org/10.13039/501100001809 – fundername: Beijing Municipal Science and Technology Commission grantid: Z191100007519008 funderid: https://doi.org/10.13039/501100009592 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 03:50:25 EDT 2025 Sat Aug 23 13:04:23 EDT 2025 Sat Aug 23 12:25:32 EDT 2025 Thu Apr 03 07:10:33 EDT 2025 Tue Jul 01 01:56:30 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 21 02:41:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2417-983X 0000-0003-2732-3419 0000-0001-8369-0067 0000-0001-8615-0162 0000-0001-8359-7997 0000-0003-0671-6010 |
PMID | 32601451 |
PQID | 2440211933 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2419083294 proquest_journals_2475049964 proquest_journals_2440211933 pubmed_primary_32601451 crossref_primary_10_1038_s41565_020_0722_5 crossref_citationtrail_10_1038_s41565_020_0722_5 springer_journals_10_1038_s41565_020_0722_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | SilverDMastering the game of Go with deep neural networks and tree searchNature20165294844891:CAS:528:DC%2BC28Xhs12is7w%3D BrancoTClarkBAHausserMDendritic discrimination of temporal input sequences in cortical neuronsScience2010329167116751:CAS:528:DC%2BC3cXhtFOqsrvP StuartGJSprustonNDendritic integration: 60 years of progressNat. Neurosci.201518171317211:CAS:528:DC%2BC2MXhvFamu7jP LaiHCJanLYThe distribution and targeting of neuronal voltage-gated ion channelsNat. Rev. Neurosci.200675485621:CAS:528:DC%2BD28XmtVSgtro%3D TsienJZPrinciples of intelligence: on evolutionary logic of the brainFront. Syst. Neurosci.20169186 WangZFully memristive neural networks for pattern classification with unsupervised learningNat. Electron.20181137145 ChangTJoS-HLuWShort-term memory to long-term memory transition in a nanoscale memristorACS Nano20115766976761:CAS:528:DC%2BC3MXhtVylsb%2FN Schemmel, J., Kriener, L., Müller, P. & Meier, K. An accelerated analog neuromorphic hardware system emulating NMDA- and calcium-based non-linear dendrites. In Proc.International Joint Conference on Neural Networks (IJCNN) 2217–2226 (IEEE, 2017). PeiJTowards artificial general intelligence with hybrid Tianjic chip architectureNature20195721061111:CAS:528:DC%2BC1MXhsFShu7bF StoliarPA leaky-integrate-and-fire neuron analog realized with a Mott insulatorAdv. Funct. Mater.2017271604740 PalmerLMNMDA spikes enhance action potential generation during sensory inputNat. Neurosci.2014173833901:CAS:528:DC%2BC2cXhs1Sju70%3D Quoc, V. L. Building high-level features using large scale unsupervised learning. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 8595–8598 (IEEE, 2013). AnticSDZhouW-LMooreARShortSMIkonomuKDThe decade of the dendritic NMDA spikeJ. Neurosci. Res.201088299130011:CAS:528:DC%2BC3cXhtFOqsr%2FI Goux, L. et al. Ultralow sub-500 nA operating current high-performance TiN/Al2O3/HfO2/Hf/TiN bipolar RRAM achieved through understanding-based stack-engineering. In Proc.Symposium on VLSI Technology (VLSIT) 159–160 (IEEE, 2012). BonoJClopathCModeling somatic and dendritic spike mediated plasticity at the single neuron and network levelNat. Commun.20178 Agmon-SnirHCarrCERinzelJThe role of dendrites in auditory coincidence detectionNature19983932682721:CAS:528:DyaK1cXjtlyltb0%3D EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151181:CAS:528:DC%2BC2sXhsFGltrY%3D AmbrogioSEquivalent-accuracy accelerated neural-network training using analogue memoryNature201855860671:CAS:528:DC%2BC1cXhtV2lsr3O Netzer, Y. et al. Reading digits in natural images with unsupervised feature learning. In Proc.NIPS Workshop on Deep Learning and Unsupervised Feature Learning 1–9 (ACM, 2011). ChoiSSiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocationsNat. Mater.2018173353401:CAS:528:DC%2BC1cXltFOktbc%3D Kamiya, K. et al. Physics in designing desirable ReRAM stack structure—atomistic recipes based on oxygen chemical potential control and charge injection/removal. In Proc.International Electron Devices Meeting 20.22.21–20.22.24 (IEEE, 2012). MuñozWTremblayRLevensteinDRudyBLayer-specific modulation of neocortical dendritic inhibition during active wakefulnessScience2017355954959 VaidyaSPJohnstonDTemporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neuronsNat. Neurosci.201316181218201:CAS:528:DC%2BC3sXhslWju7nJ LavzinMRapoportSPolskyAGarionLSchillerJNonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivoNature20124903974011:CAS:528:DC%2BC38Xht1ynt7jJ OhnoTShort-term plasticity and long-term potentiation mimicked in single inorganic synapsesNat. Mater.2011105915951:CAS:528:DC%2BC3MXotV2ju7w%3D Chen, C., Seff, A., Kornhauser, A. & Xiao, J. Deepdriving: learning affordance for direct perception in autonomous driving. In Proc.IEEE International Conference on Computer Vision (ICCV) 2722–2730 (IEEE, 2015). Simonyan, K. & Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the 27th International Conference on Neural Information Processing Systems 568–576 (MIT Press, 2014). YaoPFully hardware-implemented memristor convolutional neural networkNature20205776416461:CAS:528:DC%2BB3cXktFegt74%3D Gao, B., Wu, H., Kang, J., Yu, H. & Qian, H. Oxide-based analog synapse: physical modeling, experimental characterization and optimization. In Proc.IEEE International Electron Devices Meeting (IEDM) 7.3.1–7.3.4 (IEEE, 2016). StrukovDBWilliamsRSExponential ionic drift: fast switching and low volatility of thin-film memristorsAppl. Phys. A200894515519 TangJBridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress and challengesAdv. Mater.20193119027611:CAS:528:DC%2BC1MXhvVCmsLvI PreziosoMTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature201552161641:CAS:528:DC%2BC2MXnvFWjtb4%3D UjfalussyBBMakaraJKLengyelMBrancoTGlobal and multiplexed dendritic computations under in vivo-like conditionsNeuron20181005795921:CAS:528:DC%2BC1cXitFejtL%2FE Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017). MooreJJDynamics of cortical dendritic membrane potential and spikes in freely behaving ratsScience2017355eaaj1497 TrenholmSNonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlationsNat. Neurosci.201417175917661:CAS:528:DC%2BC2cXhvVSqsbnK WangZMemristors with diffusive dynamics as synaptic emulators for neuromorphic computingNat. Mater.201616101108 MageeJCDendritic integration of excitatory synaptic inputNat. Rev. Neurosci.200011811901:CAS:528:DC%2BD3MXivVSjsrs%3D TrongTMHMotleySEWagnerJKerrRRKozloskiJDendritic spines modify action potential back-propagation in a multicompartment neuronal modelIBM J. Res. Dev.20176111:1111:13 SheridanPMSparse coding with memristor networksNat. Nanotechnol.2017127847891:CAS:528:DC%2BC2sXot1yrsLg%3D PickettMDMedeiros-RibeiroGWilliamsRSA scalable neuristor built with Mott memristorsNat. Mater.201212114117 GidonADendritic action potentials and computation in human layer 2/3 cortical neuronsScience202036783871:CAS:528:DC%2BB3cXmvFemuw%3D%3D TakahashiNOertnerTGHegemannPLarkumMEActive cortical dendrites modulate perceptionScience2016354158715901:CAS:528:DC%2BC28XitFCntbnP LeCunYBengioYHintonGDeep learningNature20155214364441:CAS:528:DC%2BC2MXht1WlurzP TumaTPantaziALe GalloMSebastianAEleftheriouEStochastic phase-change neuronsNat. Nanotechnol.2016116936991:CAS:528:DC%2BC28XotV2nt74%3D FuZ-XDendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticityNat. Commun.20178 HawkinsJAhmadSWhy neurons have thousands of synapses, a theory of sequence memory in neocortexFront. Neural Circuits20161023 BhaduriABanerjeeARoySKarSBasuASpiking neural classifier with lumped dendritic nonlinearity and binary synapses: a current mode VLSI implementation and analysisNeural Comput.201830723760 Deng, L. et al. Recent advances in deep learning for speech research at Microsoft. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing 8604–8608 (IEEE, 2013). TakahashiNLocally synchronized synaptic inputsScience20123353533561:CAS:528:DC%2BC38XntlGhtw%3D%3D WedigANanoscale cation motion in TaOx, HfOx and TiOx memristive systemsNat. Nanotechnol.2015116774 De PaolaVCell type-specific structural plasticity of axonal branches and boutons in the adult neocortexNeuron200649861875 CazemierJLClascáFTiesingaPHEConnectomic analysis of brain networks: novel techniques and future directionsFront. Neuroanat.201610110 YaoPFace classification using electronic synapsesNat. Commun.201781:CAS:528:DC%2BC2sXnslKntr4%3D N Takahashi (722_CR13) 2012; 335 P Yao (722_CR30) 2020; 577 P Yao (722_CR51) 2017; 8 MD Pickett (722_CR25) 2012; 12 722_CR7 JJ Moore (722_CR11) 2017; 355 GJ Stuart (722_CR35) 2015; 18 S Ambrogio (722_CR27) 2018; 558 DB Strukov (722_CR41) 2008; 94 T Tuma (722_CR24) 2016; 11 722_CR6 722_CR5 J Pei (722_CR53) 2019; 572 T Chang (722_CR48) 2011; 5 722_CR2 722_CR1 Z-X Fu (722_CR37) 2017; 8 722_CR43 722_CR44 A Gidon (722_CR54) 2020; 367 J Hawkins (722_CR18) 2016; 10 TMH Trong (722_CR17) 2017; 61 J Bono (722_CR38) 2017; 8 P Stoliar (722_CR26) 2017; 27 LM Palmer (722_CR45) 2014; 17 V De Paola (722_CR39) 2006; 49 J Tang (722_CR9) 2019; 31 Z Wang (722_CR29) 2018; 1 H Agmon-Snir (722_CR31) 1998; 393 T Ohno (722_CR49) 2011; 10 722_CR52 HC Lai (722_CR40) 2006; 7 722_CR50 PM Sheridan (722_CR28) 2017; 12 W Muñoz (722_CR47) 2017; 355 722_CR19 JL Cazemier (722_CR36) 2016; 10 N Takahashi (722_CR12) 2016; 354 A Esteva (722_CR3) 2017; 542 S Trenholm (722_CR14) 2014; 17 A Bhaduri (722_CR20) 2018; 30 A Wedig (722_CR42) 2015; 11 JC Magee (722_CR32) 2000; 1 Y LeCun (722_CR8) 2015; 521 S Choi (722_CR23) 2018; 17 SP Vaidya (722_CR34) 2013; 16 D Silver (722_CR4) 2016; 529 M Prezioso (722_CR22) 2015; 521 SD Antic (722_CR15) 2010; 88 M Lavzin (722_CR16) 2012; 490 T Branco (722_CR33) 2010; 329 Z Wang (722_CR21) 2016; 16 BB Ujfalussy (722_CR46) 2018; 100 JZ Tsien (722_CR10) 2016; 9 |
References_xml | – reference: EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151181:CAS:528:DC%2BC2sXhsFGltrY%3D – reference: Simonyan, K. & Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the 27th International Conference on Neural Information Processing Systems 568–576 (MIT Press, 2014). – reference: MooreJJDynamics of cortical dendritic membrane potential and spikes in freely behaving ratsScience2017355eaaj1497 – reference: FuZ-XDendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticityNat. Commun.20178 – reference: WangZFully memristive neural networks for pattern classification with unsupervised learningNat. Electron.20181137145 – reference: PeiJTowards artificial general intelligence with hybrid Tianjic chip architectureNature20195721061111:CAS:528:DC%2BC1MXhsFShu7bF – reference: SilverDMastering the game of Go with deep neural networks and tree searchNature20165294844891:CAS:528:DC%2BC28Xhs12is7w%3D – reference: TakahashiNLocally synchronized synaptic inputsScience20123353533561:CAS:528:DC%2BC38XntlGhtw%3D%3D – reference: UjfalussyBBMakaraJKLengyelMBrancoTGlobal and multiplexed dendritic computations under in vivo-like conditionsNeuron20181005795921:CAS:528:DC%2BC1cXitFejtL%2FE – reference: TangJBridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress and challengesAdv. Mater.20193119027611:CAS:528:DC%2BC1MXhvVCmsLvI – reference: GidonADendritic action potentials and computation in human layer 2/3 cortical neuronsScience202036783871:CAS:528:DC%2BB3cXmvFemuw%3D%3D – reference: StrukovDBWilliamsRSExponential ionic drift: fast switching and low volatility of thin-film memristorsAppl. Phys. A200894515519 – reference: Goux, L. et al. Ultralow sub-500 nA operating current high-performance TiN/Al2O3/HfO2/Hf/TiN bipolar RRAM achieved through understanding-based stack-engineering. In Proc.Symposium on VLSI Technology (VLSIT) 159–160 (IEEE, 2012). – reference: Schemmel, J., Kriener, L., Müller, P. & Meier, K. An accelerated analog neuromorphic hardware system emulating NMDA- and calcium-based non-linear dendrites. In Proc.International Joint Conference on Neural Networks (IJCNN) 2217–2226 (IEEE, 2017). – reference: TsienJZPrinciples of intelligence: on evolutionary logic of the brainFront. Syst. Neurosci.20169186 – reference: BhaduriABanerjeeARoySKarSBasuASpiking neural classifier with lumped dendritic nonlinearity and binary synapses: a current mode VLSI implementation and analysisNeural Comput.201830723760 – reference: SheridanPMSparse coding with memristor networksNat. Nanotechnol.2017127847891:CAS:528:DC%2BC2sXot1yrsLg%3D – reference: ChangTJoS-HLuWShort-term memory to long-term memory transition in a nanoscale memristorACS Nano20115766976761:CAS:528:DC%2BC3MXhtVylsb%2FN – reference: OhnoTShort-term plasticity and long-term potentiation mimicked in single inorganic synapsesNat. Mater.2011105915951:CAS:528:DC%2BC3MXotV2ju7w%3D – reference: MuñozWTremblayRLevensteinDRudyBLayer-specific modulation of neocortical dendritic inhibition during active wakefulnessScience2017355954959 – reference: MageeJCDendritic integration of excitatory synaptic inputNat. Rev. Neurosci.200011811901:CAS:528:DC%2BD3MXivVSjsrs%3D – reference: AnticSDZhouW-LMooreARShortSMIkonomuKDThe decade of the dendritic NMDA spikeJ. Neurosci. Res.201088299130011:CAS:528:DC%2BC3cXhtFOqsr%2FI – reference: Deng, L. et al. Recent advances in deep learning for speech research at Microsoft. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing 8604–8608 (IEEE, 2013). – reference: HawkinsJAhmadSWhy neurons have thousands of synapses, a theory of sequence memory in neocortexFront. Neural Circuits20161023 – reference: LavzinMRapoportSPolskyAGarionLSchillerJNonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivoNature20124903974011:CAS:528:DC%2BC38Xht1ynt7jJ – reference: LaiHCJanLYThe distribution and targeting of neuronal voltage-gated ion channelsNat. Rev. Neurosci.200675485621:CAS:528:DC%2BD28XmtVSgtro%3D – reference: VaidyaSPJohnstonDTemporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neuronsNat. Neurosci.201316181218201:CAS:528:DC%2BC3sXhslWju7nJ – reference: BonoJClopathCModeling somatic and dendritic spike mediated plasticity at the single neuron and network levelNat. Commun.20178 – reference: TrongTMHMotleySEWagnerJKerrRRKozloskiJDendritic spines modify action potential back-propagation in a multicompartment neuronal modelIBM J. Res. Dev.20176111:1111:13 – reference: PreziosoMTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature201552161641:CAS:528:DC%2BC2MXnvFWjtb4%3D – reference: TakahashiNOertnerTGHegemannPLarkumMEActive cortical dendrites modulate perceptionScience2016354158715901:CAS:528:DC%2BC28XitFCntbnP – reference: TumaTPantaziALe GalloMSebastianAEleftheriouEStochastic phase-change neuronsNat. Nanotechnol.2016116936991:CAS:528:DC%2BC28XotV2nt74%3D – reference: YaoPFully hardware-implemented memristor convolutional neural networkNature20205776416461:CAS:528:DC%2BB3cXktFegt74%3D – reference: PickettMDMedeiros-RibeiroGWilliamsRSA scalable neuristor built with Mott memristorsNat. Mater.201212114117 – reference: YaoPFace classification using electronic synapsesNat. Commun.201781:CAS:528:DC%2BC2sXnslKntr4%3D – reference: Kamiya, K. et al. Physics in designing desirable ReRAM stack structure—atomistic recipes based on oxygen chemical potential control and charge injection/removal. In Proc.International Electron Devices Meeting 20.22.21–20.22.24 (IEEE, 2012). – reference: Agmon-SnirHCarrCERinzelJThe role of dendrites in auditory coincidence detectionNature19983932682721:CAS:528:DyaK1cXjtlyltb0%3D – reference: Netzer, Y. et al. Reading digits in natural images with unsupervised feature learning. In Proc.NIPS Workshop on Deep Learning and Unsupervised Feature Learning 1–9 (ACM, 2011). – reference: LeCunYBengioYHintonGDeep learningNature20155214364441:CAS:528:DC%2BC2MXht1WlurzP – reference: ChoiSSiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocationsNat. Mater.2018173353401:CAS:528:DC%2BC1cXltFOktbc%3D – reference: WedigANanoscale cation motion in TaOx, HfOx and TiOx memristive systemsNat. Nanotechnol.2015116774 – reference: Gao, B., Wu, H., Kang, J., Yu, H. & Qian, H. Oxide-based analog synapse: physical modeling, experimental characterization and optimization. In Proc.IEEE International Electron Devices Meeting (IEDM) 7.3.1–7.3.4 (IEEE, 2016). – reference: WangZMemristors with diffusive dynamics as synaptic emulators for neuromorphic computingNat. Mater.201616101108 – reference: PalmerLMNMDA spikes enhance action potential generation during sensory inputNat. Neurosci.2014173833901:CAS:528:DC%2BC2cXhs1Sju70%3D – reference: TrenholmSNonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlationsNat. Neurosci.201417175917661:CAS:528:DC%2BC2cXhvVSqsbnK – reference: BrancoTClarkBAHausserMDendritic discrimination of temporal input sequences in cortical neuronsScience2010329167116751:CAS:528:DC%2BC3cXhtFOqsrvP – reference: Chen, C., Seff, A., Kornhauser, A. & Xiao, J. Deepdriving: learning affordance for direct perception in autonomous driving. In Proc.IEEE International Conference on Computer Vision (ICCV) 2722–2730 (IEEE, 2015). – reference: StoliarPA leaky-integrate-and-fire neuron analog realized with a Mott insulatorAdv. Funct. Mater.2017271604740 – reference: Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017). – reference: AmbrogioSEquivalent-accuracy accelerated neural-network training using analogue memoryNature201855860671:CAS:528:DC%2BC1cXhtV2lsr3O – reference: StuartGJSprustonNDendritic integration: 60 years of progressNat. Neurosci.201518171317211:CAS:528:DC%2BC2MXhvFamu7jP – reference: Quoc, V. L. Building high-level features using large scale unsupervised learning. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 8595–8598 (IEEE, 2013). – reference: De PaolaVCell type-specific structural plasticity of axonal branches and boutons in the adult neocortexNeuron200649861875 – reference: CazemierJLClascáFTiesingaPHEConnectomic analysis of brain networks: novel techniques and future directionsFront. Neuroanat.201610110 – volume: 31 start-page: 1902761 year: 2019 ident: 722_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201902761 – volume: 7 start-page: 548 year: 2006 ident: 722_CR40 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1938 – volume: 8 year: 2017 ident: 722_CR51 publication-title: Nat. Commun. – volume: 11 start-page: 693 year: 2016 ident: 722_CR24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.70 – volume: 5 start-page: 7669 year: 2011 ident: 722_CR48 publication-title: ACS Nano doi: 10.1021/nn202983n – volume: 10 start-page: 23 year: 2016 ident: 722_CR18 publication-title: Front. Neural Circuits doi: 10.3389/fncir.2016.00023 – volume: 17 start-page: 1759 year: 2014 ident: 722_CR14 publication-title: Nat. Neurosci. doi: 10.1038/nn.3851 – ident: 722_CR6 – volume: 11 start-page: 67 year: 2015 ident: 722_CR42 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.221 – volume: 1 start-page: 137 year: 2018 ident: 722_CR29 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0023-2 – volume: 88 start-page: 2991 year: 2010 ident: 722_CR15 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22444 – volume: 355 start-page: 954 year: 2017 ident: 722_CR47 publication-title: Science doi: 10.1126/science.aag2599 – volume: 100 start-page: 579 year: 2018 ident: 722_CR46 publication-title: Neuron doi: 10.1016/j.neuron.2018.08.032 – volume: 558 start-page: 60 year: 2018 ident: 722_CR27 publication-title: Nature doi: 10.1038/s41586-018-0180-5 – volume: 12 start-page: 114 year: 2012 ident: 722_CR25 publication-title: Nat. Mater. doi: 10.1038/nmat3510 – volume: 329 start-page: 1671 year: 2010 ident: 722_CR33 publication-title: Science doi: 10.1126/science.1189664 – volume: 10 start-page: 110 year: 2016 ident: 722_CR36 publication-title: Front. Neuroanat. doi: 10.3389/fnana.2016.00110 – volume: 12 start-page: 784 year: 2017 ident: 722_CR28 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.83 – ident: 722_CR50 doi: 10.1109/IEDM.2016.7838367 – volume: 355 start-page: eaaj1497 year: 2017 ident: 722_CR11 publication-title: Science doi: 10.1126/science.aaj1497 – volume: 16 start-page: 101 year: 2016 ident: 722_CR21 publication-title: Nat. Mater. doi: 10.1038/nmat4756 – ident: 722_CR7 – volume: 490 start-page: 397 year: 2012 ident: 722_CR16 publication-title: Nature doi: 10.1038/nature11451 – volume: 542 start-page: 115 year: 2017 ident: 722_CR3 publication-title: Nature doi: 10.1038/nature21056 – volume: 17 start-page: 335 year: 2018 ident: 722_CR23 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0001-5 – ident: 722_CR52 – volume: 9 start-page: 186 year: 2016 ident: 722_CR10 publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2015.00186 – volume: 529 start-page: 484 year: 2016 ident: 722_CR4 publication-title: Nature doi: 10.1038/nature16961 – volume: 8 year: 2017 ident: 722_CR37 publication-title: Nat. Commun. – volume: 17 start-page: 383 year: 2014 ident: 722_CR45 publication-title: Nat. Neurosci. doi: 10.1038/nn.3646 – volume: 10 start-page: 591 year: 2011 ident: 722_CR49 publication-title: Nat. Mater. doi: 10.1038/nmat3054 – volume: 521 start-page: 436 year: 2015 ident: 722_CR8 publication-title: Nature doi: 10.1038/nature14539 – volume: 30 start-page: 723 year: 2018 ident: 722_CR20 publication-title: Neural Comput. doi: 10.1162/neco_a_01045 – volume: 367 start-page: 83 year: 2020 ident: 722_CR54 publication-title: Science doi: 10.1126/science.aax6239 – ident: 722_CR5 doi: 10.1109/ICCV.2015.312 – volume: 521 start-page: 61 year: 2015 ident: 722_CR22 publication-title: Nature doi: 10.1038/nature14441 – volume: 8 year: 2017 ident: 722_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00740-z – volume: 354 start-page: 1587 year: 2016 ident: 722_CR12 publication-title: Science doi: 10.1126/science.aah6066 – volume: 577 start-page: 641 year: 2020 ident: 722_CR30 publication-title: Nature doi: 10.1038/s41586-020-1942-4 – volume: 27 start-page: 1604740 year: 2017 ident: 722_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604740 – volume: 49 start-page: 861 year: 2006 ident: 722_CR39 publication-title: Neuron doi: 10.1016/j.neuron.2006.02.017 – volume: 335 start-page: 353 year: 2012 ident: 722_CR13 publication-title: Science doi: 10.1126/science.1210362 – ident: 722_CR43 – volume: 393 start-page: 268 year: 1998 ident: 722_CR31 publication-title: Nature doi: 10.1038/30505 – ident: 722_CR19 doi: 10.1109/IJCNN.2017.7966124 – ident: 722_CR44 doi: 10.1109/VLSIT.2012.6242510 – volume: 18 start-page: 1713 year: 2015 ident: 722_CR35 publication-title: Nat. Neurosci. doi: 10.1038/nn.4157 – ident: 722_CR2 doi: 10.1109/ICASSP.2013.6639345 – volume: 94 start-page: 515 year: 2008 ident: 722_CR41 publication-title: Appl. Phys. A doi: 10.1007/s00339-008-4975-3 – volume: 16 start-page: 1812 year: 2013 ident: 722_CR34 publication-title: Nat. Neurosci. doi: 10.1038/nn.3562 – volume: 572 start-page: 106 year: 2019 ident: 722_CR53 publication-title: Nature doi: 10.1038/s41586-019-1424-8 – volume: 1 start-page: 181 year: 2000 ident: 722_CR32 publication-title: Nat. Rev. Neurosci. doi: 10.1038/35044552 – ident: 722_CR1 – volume: 61 start-page: 11:11 year: 2017 ident: 722_CR17 publication-title: IBM J. Res. Dev. |
SSID | ssj0052924 |
Score | 2.660103 |
Snippet | In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 776 |
SubjectTerms | 639/166/987 639/925/927/1007 Animals Application specific integrated circuits Artificial Cells Artificial neural networks Background noise Central processing units Chemistry and Materials Science Computer simulation CPUs Databases, Factual Dendrites Dendrites - physiology Electronics Energy efficiency Equipment Design Image Processing, Computer-Assisted Integrated circuits Materials Science Memristors Mice Models, Neurological Multilayers Nanotechnology Nanotechnology and Microengineering Nervous system Neural networks Neural Networks, Computer Neurons - physiology Oxygen - chemistry Power consumption Power management Signal processing Synapses Task complexity |
Title | Power-efficient neural network with artificial dendrites |
URI | https://link.springer.com/article/10.1038/s41565-020-0722-5 https://www.ncbi.nlm.nih.gov/pubmed/32601451 https://www.proquest.com/docview/2440211933 https://www.proquest.com/docview/2475049964 https://www.proquest.com/docview/2419083294 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgvq2PsoInJbjdJJvkJCqtRbCIKPS2JNnkJNvax_93Zh9VEb3sJcmSTGYm80i-IeTCcceZ61nqjE0plyJQq4KnoBe5kTzl0mEc8mmUDt_441iM64DbvL5W2ejEUlHnE4cx8uuEIxA5WOf8ZvpBsWoUZlfrEhrrpI3QZcjVcrxyuESiq6K2kisKrphssppMXc_RccG3yTGNJfpjP8-lX8bmr0Rpef4MtslWbThGt9VO75A1X-ySzW9wgntEPWPJM-pLVAg4TCIEq4QxRXXVO8KYa4SsUqFGRKBy8hksb75P3gb91_shrSsjUAcyt6BO5bCKVFsZMArh8sC00ybIRNiUC2vixDDtc8GMDEpIrqVOQm61dj2VG8sOSKuYFP6IRLHIgwnOSXCTeaqsDTxNPAiyYA6sN9EhcUOXzNWw4Vi94j0r09dMZRUpMyBlhqTMYMjlasi0wsz4r_NpQ-ysFp95BjZHjNBzjP3R3PBCh5yvmkEuMNlhCj9ZYh8wdUBdaehzWO3hajIMcdS46HXIVbOpXz__c6bH_0_lhGwkJTvh_bNT0lrMlv4MDJaF7ZZcCV81eOiS9l1_9PzyCUgf5ng |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOUAPiGdZKDBIcAFFnc1jkhwQQsCypQ9xaKXeQpJJTmi27W6F-FP8RuyZzQKq2lvPeShynM92nHwGeBVllCKOA4s-NExqlVkwOTHERem1bKSOdA-5f9BMj-TXY3W8Br_LXxh6VlkwsQfqdhbpjnybSyIiR-9cvj85ZVQ1irKrpYTGoBa76ddPDNnm73Y-4f6-5nzy-fDjlC2rCrCI-rpg0bRjhG0bdKYIPrZZ2Gh91lyFRqrga-6FTa0SXmejtLTa8twGa-PYtD4InPcG3JQCLTn9TJ98KcivuB2K6GppGIZ-umRRhdmeU6BEf6FrVmuK__63gxec2wuJ2d7eTe7CnaWjWn0YNOserKXuPmz8Q1_4AMw3KrHGUs9CgcarInJMHNMNT8sruuOtSDUHlooKIa49Q3HOH8LRtcjsEax3sy49hqpWbfY5Ro1huWxMCFk2PCFwKBHRW1QjqItcXFzSlFO1jB-uT5cL4wZROhSlI1E6HPJmNeRk4Oi4qvNWEbZbHte5Qx-nJqo7IS5pLro3gperZjyHlFzxXZqdUx90rRAeLfbZHPZwtRhBvG1SjUfwtmzq38kvXemTq5fyAm5ND_f33N7Owe5TuM171aK3b1uwvjg7T8_QWVqE572GVvD9uo_EH-YVIT8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQOWdUmCR4AKysvFjvT5UCGijlkIUISr1trW99glt2iYV6l_rr2Nmdx1AVXvr2Q9Z43l6xt8AvPXSS-HHjnnrCia1isyVMTDUi9JqWUjt6R3y-7TYO5Rfj9TRGlymvzBUVpl0Yquo67mnN_IRlwREjt65HMW-LGK2M_l4csqogxRlWlM7jY5FDsLFbwzfFtv7O3jX7zif7P78ssf6DgPMI-8umS_rMapw43SkaN7XURhvbNRcuUIqZ3NuhQm1ElbHUmlptOGxdsb4cVlbJ3DfO7CuKSoawPrn3ensR7IDipuupa6WJcNAUKecqihHCwqb6Gd0znJN0eD_VvGKq3slTdtav8kGPOjd1uxTx2cPYS00j-D-P2CGj6GcUcM1FlpMCjRlGUFl4pqmKzTP6MU3I0btMCsyVHj1GRJ08QQOb4VqT2HQzJvwHLJc1dFG7zUG6bIonYuy4AHViBIefUc1hDzRpfI9aDn1zvhVtclzUVYdKSskZUWkrHDJ-9WSkw6x46bJW4nYVS-8iwo9npyA74S4Zjhx4hDerIZRKinVYpswP6c56GihsjQ451l3h6vDCEJxk2o8hA_pUv9ufu1JN28-ymu4i-JQfdufHryAe7zlLCqE24LB8uw8vETPaele9SyawfFtS8UfcnEm0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power-efficient+neural+network+with+artificial+dendrites&rft.jtitle=Nature+nanotechnology&rft.au=Li%2C+Xinyi&rft.au=Tang+Jianshi&rft.au=Zhang+Qingtian&rft.au=Gao%2C+Bin&rft.date=2020-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=9&rft.spage=776&rft.epage=782&rft_id=info:doi/10.1038%2Fs41565-020-0722-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |