Cover

Loading…
Abstract In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.
AbstractList In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.
In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.
In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy. A memristor-based artificial dendrite enables the neural network to perform high-accuracy computation tasks with reduced power consumption.
In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as nonlinear integration of postsynaptic signals. The lack of these critical functions in artificial neural networks compromises their performance, for example in terms of flexibility, energy efficiency and the ability to handle complex tasks. Here, by developing artificial dendrites, we experimentally demonstrate a complete neural network fully integrated with synapses, dendrites and soma, implemented using scalable memristor devices. We perform a digit recognition task and simulate a multilayer network using experimentally derived device characteristics. The power consumption is more than three orders of magnitude lower than that of a central processing unit and 70 times lower than that of a typical application-specific integrated circuit chip. This network, equipped with functional dendrites, shows the potential of substantial overall performance improvement, for example by extracting critical information from a noisy background with significantly reduced power consumption and enhanced accuracy.
Author Deng, Ning
Qian, He
Zhang, Wenqiang
Tang, Jianshi
Yao, Peng
Wu, Wei
Xie, Yuan
Gao, Bin
Song, Sen
Wu, Huaqiang
Deng, Lei
Zhang, Qingtian
Li, Xinyi
Yang, J. Joshua
Author_xml – sequence: 1
  givenname: Xinyi
  surname: Li
  fullname: Li, Xinyi
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 2
  givenname: Jianshi
  orcidid: 0000-0001-8369-0067
  surname: Tang
  fullname: Tang, Jianshi
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
– sequence: 3
  givenname: Qingtian
  orcidid: 0000-0003-2732-3419
  surname: Zhang
  fullname: Zhang, Qingtian
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 4
  givenname: Bin
  orcidid: 0000-0002-2417-983X
  surname: Gao
  fullname: Gao, Bin
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
– sequence: 5
  givenname: J. Joshua
  orcidid: 0000-0003-0671-6010
  surname: Yang
  fullname: Yang, J. Joshua
  organization: Department of Electrical and Computer Engineering, University of Massachusetts
– sequence: 6
  givenname: Sen
  surname: Song
  fullname: Song, Sen
  organization: Department of Biomedical Engineering, School of Medicine, Tsinghua University
– sequence: 7
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 8
  givenname: Wenqiang
  orcidid: 0000-0001-8615-0162
  surname: Zhang
  fullname: Zhang, Wenqiang
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 9
  givenname: Peng
  surname: Yao
  fullname: Yao, Peng
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University
– sequence: 10
  givenname: Ning
  surname: Deng
  fullname: Deng, Ning
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
– sequence: 11
  givenname: Lei
  surname: Deng
  fullname: Deng, Lei
  organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara
– sequence: 12
  givenname: Yuan
  surname: Xie
  fullname: Xie, Yuan
  organization: Department of Electrical and Computer Engineering, University of California at Santa Barbara, Alibaba DAMO Academy
– sequence: 13
  givenname: He
  surname: Qian
  fullname: Qian, He
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
– sequence: 14
  givenname: Huaqiang
  orcidid: 0000-0001-8359-7997
  surname: Wu
  fullname: Wu, Huaqiang
  email: wuhq@tsinghua.edu.cn
  organization: Institute of Microelectronics, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32601451$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LBCEchyU22t4-QJdY6NJlytdxPMbSGwR1qLM4jpbbrJY6LH37XHbbIKhOf9Hn0R_-9sDIB28AOELwDEHSnCeKWM0qiGEFOcYV2wK7iNOmIkSw0Wbd8DHYS2kGIcMC0x0wJriGiDK0C5qHsDCxMtY67YzPE2-GqPoy8iLE18nC5ZeJitktz8t-Z3wXXTbpAGxb1SdzuJ774Onq8nF6U93dX99OL-4qTSHMlW66ErUWLbc1ElR3lggtlOWYtTVlrYJYEWE6RhS3DeNUcIFt1wqhUdOpluyD09W9bzG8DyZlOXdJm75X3oQhSUyRgA3Bghb05Ac6C0P0JV2hOINUiPofikKMkCCkUMdramjnppNv0c1V_JBfP1cAtAJ0DClFYzcIgnLZjly1I0s7ctmOZMXhPxztssou-ByV6_808cpM5RX_bOJ36N-lTw9SoJU
CitedBy_id crossref_primary_10_1126_sciadv_abh0648
crossref_primary_10_1088_1674_4926_24090042
crossref_primary_10_3389_fncom_2022_859874
crossref_primary_10_1016_j_jallcom_2022_163873
crossref_primary_10_1021_acsanm_4c01087
crossref_primary_10_1016_j_eswa_2024_125874
crossref_primary_10_1088_1674_4926_44_5_053102
crossref_primary_10_1002_smsc_202100049
crossref_primary_10_1109_JIOT_2023_3307405
crossref_primary_10_1039_D4MH01676A
crossref_primary_10_1016_j_scib_2023_11_042
crossref_primary_10_1063_5_0047641
crossref_primary_10_1038_s41467_020_20692_1
crossref_primary_10_1038_s41928_022_00838_3
crossref_primary_10_1063_5_0174863
crossref_primary_10_1109_JAS_2021_1004284
crossref_primary_10_1002_flm2_25
crossref_primary_10_1021_acs_nanolett_4c00739
crossref_primary_10_1039_D3NR05401B
crossref_primary_10_7498_aps_71_20220463
crossref_primary_10_1021_acsami_2c11016
crossref_primary_10_1002_aisy_202100017
crossref_primary_10_1038_s41928_023_00984_2
crossref_primary_10_35848_1882_0786_ad1fa7
crossref_primary_10_1088_2634_4386_ac8a6a
crossref_primary_10_1088_2631_7990_acef79
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1002_adfm_202302290
crossref_primary_10_1016_j_mattod_2024_08_027
crossref_primary_10_1016_j_mattod_2025_02_008
crossref_primary_10_3390_s25051533
crossref_primary_10_1063_5_0138363
crossref_primary_10_1002_aisy_202200034
crossref_primary_10_1021_acs_chemrev_4c00587
crossref_primary_10_1002_aelm_202300839
crossref_primary_10_1109_ACCESS_2020_3032948
crossref_primary_10_1126_sciadv_adj7867
crossref_primary_10_1021_acs_nanolett_4c01319
crossref_primary_10_1038_s41565_023_01379_2
crossref_primary_10_1002_aelm_202201195
crossref_primary_10_1002_adem_202300237
crossref_primary_10_1063_5_0209676
crossref_primary_10_3389_fpls_2022_862558
crossref_primary_10_3390_app132413309
crossref_primary_10_1002_adma_202301063
crossref_primary_10_1021_acsnano_3c07384
crossref_primary_10_1038_s41467_022_35747_8
crossref_primary_10_1016_j_cej_2025_161293
crossref_primary_10_1088_2632_2153_ad734a
crossref_primary_10_1002_adma_202200734
crossref_primary_10_1039_D3NA00025G
crossref_primary_10_1021_acsami_0c13020
crossref_primary_10_1016_j_chip_2023_100044
crossref_primary_10_1021_acsaelm_3c01623
crossref_primary_10_1063_5_0194136
crossref_primary_10_3390_en15197069
crossref_primary_10_1002_aisy_202000149
crossref_primary_10_1021_acs_nanolett_4c02658
crossref_primary_10_1038_s41467_024_48103_9
crossref_primary_10_1002_adma_202203684
crossref_primary_10_1002_inf2_12637
crossref_primary_10_1007_s11432_021_3326_6
crossref_primary_10_1002_adma_202311288
crossref_primary_10_1016_j_scib_2023_09_006
crossref_primary_10_1002_inf2_12471
crossref_primary_10_1021_acsnano_4c12884
crossref_primary_10_1016_j_jmat_2024_03_011
crossref_primary_10_1088_1361_6528_abfa51
crossref_primary_10_7498_aps_70_20201632
crossref_primary_10_1002_sstr_202000109
crossref_primary_10_1016_j_fmre_2021_06_020
crossref_primary_10_1038_s41928_021_00591_z
crossref_primary_10_1007_s40820_024_01368_7
crossref_primary_10_1038_s41467_023_42172_y
crossref_primary_10_3390_s23063118
crossref_primary_10_1002_aisy_202200058
crossref_primary_10_1002_aisy_202200179
crossref_primary_10_1007_s42514_022_00092_1
crossref_primary_10_1016_j_isci_2020_101846
crossref_primary_10_1038_s41467_024_52982_3
crossref_primary_10_1021_acsami_3c12244
crossref_primary_10_1002_aelm_202400421
crossref_primary_10_1002_adma_202101339
crossref_primary_10_1038_s41467_024_50488_6
crossref_primary_10_1021_acs_nanolett_3c00389
crossref_primary_10_1002_aelm_202100669
crossref_primary_10_15541_jim20230405
crossref_primary_10_1021_acs_jpclett_1c00704
crossref_primary_10_1021_acs_nanolett_2c04599
crossref_primary_10_1002_aelm_202100827
crossref_primary_10_1088_2632_959X_acd70c
crossref_primary_10_1016_j_neunet_2022_03_001
crossref_primary_10_1063_5_0158341
crossref_primary_10_1155_2022_8045968
crossref_primary_10_1126_sciadv_adk9928
crossref_primary_10_1016_j_jnlest_2022_100177
crossref_primary_10_1088_1361_6641_ac3f21
crossref_primary_10_7498_aps_73_20241022
crossref_primary_10_1038_s41467_023_44614_z
crossref_primary_10_1557_s43577_021_00205_1
crossref_primary_10_1039_D0NH00348D
crossref_primary_10_1109_MED_2023_3296084
crossref_primary_10_1088_2752_5724_ad7c6c
crossref_primary_10_1016_j_ins_2023_02_008
crossref_primary_10_1038_s41928_024_01171_7
crossref_primary_10_1155_2022_9323646
crossref_primary_10_1002_aelm_202400633
crossref_primary_10_3389_felec_2022_825077
crossref_primary_10_1002_aelm_202300904
crossref_primary_10_3389_fnins_2022_853010
crossref_primary_10_1002_adfm_202302899
crossref_primary_10_1051_e3sconf_202346004012
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1038_s41467_023_43542_2
crossref_primary_10_1039_D2MH00466F
crossref_primary_10_1016_j_mejo_2022_105674
crossref_primary_10_1002_adma_202401821
crossref_primary_10_1002_adma_202400977
crossref_primary_10_1002_adma_202309708
crossref_primary_10_1002_agt2_302
crossref_primary_10_1002_adfm_202206163
crossref_primary_10_1002_adhm_202100027
crossref_primary_10_1002_aelm_202200733
crossref_primary_10_1002_aelm_202200334
crossref_primary_10_1186_s42400_024_00306_9
crossref_primary_10_1007_s12200_022_00025_4
crossref_primary_10_1080_14686996_2023_2188878
crossref_primary_10_1002_aelm_202100050
crossref_primary_10_1038_s41467_022_35160_1
crossref_primary_10_18287_2412_6179_CO_1002
crossref_primary_10_1021_acsami_3c07684
crossref_primary_10_1002_adhm_202400624
crossref_primary_10_1002_adma_202205047
crossref_primary_10_1007_s44258_024_00042_2
crossref_primary_10_1039_D4TC00473F
crossref_primary_10_1109_TED_2022_3212325
crossref_primary_10_1063_5_0151312
crossref_primary_10_1016_j_ceramint_2022_02_175
crossref_primary_10_1021_acs_nanolett_1c01990
crossref_primary_10_1002_aelm_202201155
crossref_primary_10_1063_5_0131524
crossref_primary_10_1109_TAI_2024_3416236
crossref_primary_10_1039_D2NH00536K
crossref_primary_10_7498_aps_71_20220397
crossref_primary_10_3389_fsuep_2024_1343339
crossref_primary_10_1016_j_techfore_2023_123070
crossref_primary_10_1088_1674_4926_23120037
crossref_primary_10_1038_s41586_021_04362_w
crossref_primary_10_1088_2631_7990_ad88bb
crossref_primary_10_1021_acs_jpclett_3c03558
crossref_primary_10_1002_adma_202006469
crossref_primary_10_1039_D4TC02677B
crossref_primary_10_1177_00219983221135055
crossref_primary_10_1016_j_conb_2024_102853
crossref_primary_10_1038_s41467_024_47764_w
crossref_primary_10_1002_advs_202406242
crossref_primary_10_1002_aelm_202400212
crossref_primary_10_1002_smm2_1290
crossref_primary_10_1016_j_mtchem_2024_101999
crossref_primary_10_1109_TED_2024_3379159
crossref_primary_10_1360_TB_2024_0922
crossref_primary_10_1021_acsnano_1c05836
crossref_primary_10_1016_j_cossms_2024_101199
crossref_primary_10_1021_acsomega_4c00320
crossref_primary_10_1126_sciadv_adm7221
crossref_primary_10_3390_electronics13061076
crossref_primary_10_1021_acsnano_4c11133
crossref_primary_10_1109_LED_2023_3347333
crossref_primary_10_1002_admt_202400895
crossref_primary_10_1016_j_isci_2020_101809
crossref_primary_10_1016_j_knosys_2023_110788
crossref_primary_10_1021_acsami_4c19627
crossref_primary_10_1002_elan_202100462
crossref_primary_10_1088_2631_7990_acfcf1
crossref_primary_10_1109_TAI_2024_3379968
crossref_primary_10_1016_j_conb_2021_04_007
crossref_primary_10_1080_15472450_2024_2425304
crossref_primary_10_1016_j_conb_2023_102812
crossref_primary_10_1109_TCSII_2021_3103553
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1016_j_chaos_2024_115525
crossref_primary_10_1016_j_orgel_2020_106019
crossref_primary_10_1093_nsr_nwac158
crossref_primary_10_1021_acsaelm_2c00198
Cites_doi 10.1002/adma.201902761
10.1038/nrn1938
10.1038/nnano.2016.70
10.1021/nn202983n
10.3389/fncir.2016.00023
10.1038/nn.3851
10.1038/nnano.2015.221
10.1038/s41928-018-0023-2
10.1002/jnr.22444
10.1126/science.aag2599
10.1016/j.neuron.2018.08.032
10.1038/s41586-018-0180-5
10.1038/nmat3510
10.1126/science.1189664
10.3389/fnana.2016.00110
10.1038/nnano.2017.83
10.1109/IEDM.2016.7838367
10.1126/science.aaj1497
10.1038/nmat4756
10.1038/nature11451
10.1038/nature21056
10.1038/s41563-017-0001-5
10.3389/fnsys.2015.00186
10.1038/nature16961
10.1038/nn.3646
10.1038/nmat3054
10.1038/nature14539
10.1162/neco_a_01045
10.1126/science.aax6239
10.1109/ICCV.2015.312
10.1038/nature14441
10.1038/s41467-017-00740-z
10.1126/science.aah6066
10.1038/s41586-020-1942-4
10.1002/adfm.201604740
10.1016/j.neuron.2006.02.017
10.1126/science.1210362
10.1038/30505
10.1109/IJCNN.2017.7966124
10.1109/VLSIT.2012.6242510
10.1038/nn.4157
10.1109/ICASSP.2013.6639345
10.1007/s00339-008-4975-3
10.1038/nn.3562
10.1038/s41586-019-1424-8
10.1038/35044552
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41565-020-0722-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic

MEDLINE
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 782
ExternalDocumentID 32601451
10_1038_s41565_020_0722_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61674089; 91964104; 61851404
  funderid: https://doi.org/10.13039/501100001809
– fundername: Beijing Municipal Science and Technology Commission
  grantid: Z191100007519008
  funderid: https://doi.org/10.13039/501100009592
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 03:50:25 EDT 2025
Sat Aug 23 13:04:23 EDT 2025
Sat Aug 23 12:25:32 EDT 2025
Thu Apr 03 07:10:33 EDT 2025
Tue Jul 01 01:56:30 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 21 02:41:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-c8d10369b7f6194cdf39c9af725b645ba02a39ed53a7f85749792fdb99c18dab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2417-983X
0000-0003-2732-3419
0000-0001-8369-0067
0000-0001-8615-0162
0000-0001-8359-7997
0000-0003-0671-6010
PMID 32601451
PQID 2440211933
PQPubID 546299
PageCount 7
ParticipantIDs proquest_miscellaneous_2419083294
proquest_journals_2475049964
proquest_journals_2440211933
pubmed_primary_32601451
crossref_primary_10_1038_s41565_020_0722_5
crossref_citationtrail_10_1038_s41565_020_0722_5
springer_journals_10_1038_s41565_020_0722_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References SilverDMastering the game of Go with deep neural networks and tree searchNature20165294844891:CAS:528:DC%2BC28Xhs12is7w%3D
BrancoTClarkBAHausserMDendritic discrimination of temporal input sequences in cortical neuronsScience2010329167116751:CAS:528:DC%2BC3cXhtFOqsrvP
StuartGJSprustonNDendritic integration: 60 years of progressNat. Neurosci.201518171317211:CAS:528:DC%2BC2MXhvFamu7jP
LaiHCJanLYThe distribution and targeting of neuronal voltage-gated ion channelsNat. Rev. Neurosci.200675485621:CAS:528:DC%2BD28XmtVSgtro%3D
TsienJZPrinciples of intelligence: on evolutionary logic of the brainFront. Syst. Neurosci.20169186
WangZFully memristive neural networks for pattern classification with unsupervised learningNat. Electron.20181137145
ChangTJoS-HLuWShort-term memory to long-term memory transition in a nanoscale memristorACS Nano20115766976761:CAS:528:DC%2BC3MXhtVylsb%2FN
Schemmel, J., Kriener, L., Müller, P. & Meier, K. An accelerated analog neuromorphic hardware system emulating NMDA- and calcium-based non-linear dendrites. In Proc.International Joint Conference on Neural Networks (IJCNN) 2217–2226 (IEEE, 2017).
PeiJTowards artificial general intelligence with hybrid Tianjic chip architectureNature20195721061111:CAS:528:DC%2BC1MXhsFShu7bF
StoliarPA leaky-integrate-and-fire neuron analog realized with a Mott insulatorAdv. Funct. Mater.2017271604740
PalmerLMNMDA spikes enhance action potential generation during sensory inputNat. Neurosci.2014173833901:CAS:528:DC%2BC2cXhs1Sju70%3D
Quoc, V. L. Building high-level features using large scale unsupervised learning. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 8595–8598 (IEEE, 2013).
AnticSDZhouW-LMooreARShortSMIkonomuKDThe decade of the dendritic NMDA spikeJ. Neurosci. Res.201088299130011:CAS:528:DC%2BC3cXhtFOqsr%2FI
Goux, L. et al. Ultralow sub-500 nA operating current high-performance TiN/Al2O3/HfO2/Hf/TiN bipolar RRAM achieved through understanding-based stack-engineering. In Proc.Symposium on VLSI Technology (VLSIT) 159–160 (IEEE, 2012).
BonoJClopathCModeling somatic and dendritic spike mediated plasticity at the single neuron and network levelNat. Commun.20178
Agmon-SnirHCarrCERinzelJThe role of dendrites in auditory coincidence detectionNature19983932682721:CAS:528:DyaK1cXjtlyltb0%3D
EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151181:CAS:528:DC%2BC2sXhsFGltrY%3D
AmbrogioSEquivalent-accuracy accelerated neural-network training using analogue memoryNature201855860671:CAS:528:DC%2BC1cXhtV2lsr3O
Netzer, Y. et al. Reading digits in natural images with unsupervised feature learning. In Proc.NIPS Workshop on Deep Learning and Unsupervised Feature Learning 1–9 (ACM, 2011).
ChoiSSiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocationsNat. Mater.2018173353401:CAS:528:DC%2BC1cXltFOktbc%3D
Kamiya, K. et al. Physics in designing desirable ReRAM stack structure—atomistic recipes based on oxygen chemical potential control and charge injection/removal. In Proc.International Electron Devices Meeting 20.22.21–20.22.24 (IEEE, 2012).
MuñozWTremblayRLevensteinDRudyBLayer-specific modulation of neocortical dendritic inhibition during active wakefulnessScience2017355954959
VaidyaSPJohnstonDTemporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neuronsNat. Neurosci.201316181218201:CAS:528:DC%2BC3sXhslWju7nJ
LavzinMRapoportSPolskyAGarionLSchillerJNonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivoNature20124903974011:CAS:528:DC%2BC38Xht1ynt7jJ
OhnoTShort-term plasticity and long-term potentiation mimicked in single inorganic synapsesNat. Mater.2011105915951:CAS:528:DC%2BC3MXotV2ju7w%3D
Chen, C., Seff, A., Kornhauser, A. & Xiao, J. Deepdriving: learning affordance for direct perception in autonomous driving. In Proc.IEEE International Conference on Computer Vision (ICCV) 2722–2730 (IEEE, 2015).
Simonyan, K. & Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the 27th International Conference on Neural Information Processing Systems 568–576 (MIT Press, 2014).
YaoPFully hardware-implemented memristor convolutional neural networkNature20205776416461:CAS:528:DC%2BB3cXktFegt74%3D
Gao, B., Wu, H., Kang, J., Yu, H. & Qian, H. Oxide-based analog synapse: physical modeling, experimental characterization and optimization. In Proc.IEEE International Electron Devices Meeting (IEDM) 7.3.1–7.3.4 (IEEE, 2016).
StrukovDBWilliamsRSExponential ionic drift: fast switching and low volatility of thin-film memristorsAppl. Phys. A200894515519
TangJBridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress and challengesAdv. Mater.20193119027611:CAS:528:DC%2BC1MXhvVCmsLvI
PreziosoMTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature201552161641:CAS:528:DC%2BC2MXnvFWjtb4%3D
UjfalussyBBMakaraJKLengyelMBrancoTGlobal and multiplexed dendritic computations under in vivo-like conditionsNeuron20181005795921:CAS:528:DC%2BC1cXitFejtL%2FE
Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017).
MooreJJDynamics of cortical dendritic membrane potential and spikes in freely behaving ratsScience2017355eaaj1497
TrenholmSNonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlationsNat. Neurosci.201417175917661:CAS:528:DC%2BC2cXhvVSqsbnK
WangZMemristors with diffusive dynamics as synaptic emulators for neuromorphic computingNat. Mater.201616101108
MageeJCDendritic integration of excitatory synaptic inputNat. Rev. Neurosci.200011811901:CAS:528:DC%2BD3MXivVSjsrs%3D
TrongTMHMotleySEWagnerJKerrRRKozloskiJDendritic spines modify action potential back-propagation in a multicompartment neuronal modelIBM J. Res. Dev.20176111:1111:13
SheridanPMSparse coding with memristor networksNat. Nanotechnol.2017127847891:CAS:528:DC%2BC2sXot1yrsLg%3D
PickettMDMedeiros-RibeiroGWilliamsRSA scalable neuristor built with Mott memristorsNat. Mater.201212114117
GidonADendritic action potentials and computation in human layer 2/3 cortical neuronsScience202036783871:CAS:528:DC%2BB3cXmvFemuw%3D%3D
TakahashiNOertnerTGHegemannPLarkumMEActive cortical dendrites modulate perceptionScience2016354158715901:CAS:528:DC%2BC28XitFCntbnP
LeCunYBengioYHintonGDeep learningNature20155214364441:CAS:528:DC%2BC2MXht1WlurzP
TumaTPantaziALe GalloMSebastianAEleftheriouEStochastic phase-change neuronsNat. Nanotechnol.2016116936991:CAS:528:DC%2BC28XotV2nt74%3D
FuZ-XDendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticityNat. Commun.20178
HawkinsJAhmadSWhy neurons have thousands of synapses, a theory of sequence memory in neocortexFront. Neural Circuits20161023
BhaduriABanerjeeARoySKarSBasuASpiking neural classifier with lumped dendritic nonlinearity and binary synapses: a current mode VLSI implementation and analysisNeural Comput.201830723760
Deng, L. et al. Recent advances in deep learning for speech research at Microsoft. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing 8604–8608 (IEEE, 2013).
TakahashiNLocally synchronized synaptic inputsScience20123353533561:CAS:528:DC%2BC38XntlGhtw%3D%3D
WedigANanoscale cation motion in TaOx, HfOx and TiOx memristive systemsNat. Nanotechnol.2015116774
De PaolaVCell type-specific structural plasticity of axonal branches and boutons in the adult neocortexNeuron200649861875
CazemierJLClascáFTiesingaPHEConnectomic analysis of brain networks: novel techniques and future directionsFront. Neuroanat.201610110
YaoPFace classification using electronic synapsesNat. Commun.201781:CAS:528:DC%2BC2sXnslKntr4%3D
N Takahashi (722_CR13) 2012; 335
P Yao (722_CR30) 2020; 577
P Yao (722_CR51) 2017; 8
MD Pickett (722_CR25) 2012; 12
722_CR7
JJ Moore (722_CR11) 2017; 355
GJ Stuart (722_CR35) 2015; 18
S Ambrogio (722_CR27) 2018; 558
DB Strukov (722_CR41) 2008; 94
T Tuma (722_CR24) 2016; 11
722_CR6
722_CR5
J Pei (722_CR53) 2019; 572
T Chang (722_CR48) 2011; 5
722_CR2
722_CR1
Z-X Fu (722_CR37) 2017; 8
722_CR43
722_CR44
A Gidon (722_CR54) 2020; 367
J Hawkins (722_CR18) 2016; 10
TMH Trong (722_CR17) 2017; 61
J Bono (722_CR38) 2017; 8
P Stoliar (722_CR26) 2017; 27
LM Palmer (722_CR45) 2014; 17
V De Paola (722_CR39) 2006; 49
J Tang (722_CR9) 2019; 31
Z Wang (722_CR29) 2018; 1
H Agmon-Snir (722_CR31) 1998; 393
T Ohno (722_CR49) 2011; 10
722_CR52
HC Lai (722_CR40) 2006; 7
722_CR50
PM Sheridan (722_CR28) 2017; 12
W Muñoz (722_CR47) 2017; 355
722_CR19
JL Cazemier (722_CR36) 2016; 10
N Takahashi (722_CR12) 2016; 354
A Esteva (722_CR3) 2017; 542
S Trenholm (722_CR14) 2014; 17
A Bhaduri (722_CR20) 2018; 30
A Wedig (722_CR42) 2015; 11
JC Magee (722_CR32) 2000; 1
Y LeCun (722_CR8) 2015; 521
S Choi (722_CR23) 2018; 17
SP Vaidya (722_CR34) 2013; 16
D Silver (722_CR4) 2016; 529
M Prezioso (722_CR22) 2015; 521
SD Antic (722_CR15) 2010; 88
M Lavzin (722_CR16) 2012; 490
T Branco (722_CR33) 2010; 329
Z Wang (722_CR21) 2016; 16
BB Ujfalussy (722_CR46) 2018; 100
JZ Tsien (722_CR10) 2016; 9
References_xml – reference: EstevaADermatologist-level classification of skin cancer with deep neural networksNature20175421151181:CAS:528:DC%2BC2sXhsFGltrY%3D
– reference: Simonyan, K. & Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the 27th International Conference on Neural Information Processing Systems 568–576 (MIT Press, 2014).
– reference: MooreJJDynamics of cortical dendritic membrane potential and spikes in freely behaving ratsScience2017355eaaj1497
– reference: FuZ-XDendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticityNat. Commun.20178
– reference: WangZFully memristive neural networks for pattern classification with unsupervised learningNat. Electron.20181137145
– reference: PeiJTowards artificial general intelligence with hybrid Tianjic chip architectureNature20195721061111:CAS:528:DC%2BC1MXhsFShu7bF
– reference: SilverDMastering the game of Go with deep neural networks and tree searchNature20165294844891:CAS:528:DC%2BC28Xhs12is7w%3D
– reference: TakahashiNLocally synchronized synaptic inputsScience20123353533561:CAS:528:DC%2BC38XntlGhtw%3D%3D
– reference: UjfalussyBBMakaraJKLengyelMBrancoTGlobal and multiplexed dendritic computations under in vivo-like conditionsNeuron20181005795921:CAS:528:DC%2BC1cXitFejtL%2FE
– reference: TangJBridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress and challengesAdv. Mater.20193119027611:CAS:528:DC%2BC1MXhvVCmsLvI
– reference: GidonADendritic action potentials and computation in human layer 2/3 cortical neuronsScience202036783871:CAS:528:DC%2BB3cXmvFemuw%3D%3D
– reference: StrukovDBWilliamsRSExponential ionic drift: fast switching and low volatility of thin-film memristorsAppl. Phys. A200894515519
– reference: Goux, L. et al. Ultralow sub-500 nA operating current high-performance TiN/Al2O3/HfO2/Hf/TiN bipolar RRAM achieved through understanding-based stack-engineering. In Proc.Symposium on VLSI Technology (VLSIT) 159–160 (IEEE, 2012).
– reference: Schemmel, J., Kriener, L., Müller, P. & Meier, K. An accelerated analog neuromorphic hardware system emulating NMDA- and calcium-based non-linear dendrites. In Proc.International Joint Conference on Neural Networks (IJCNN) 2217–2226 (IEEE, 2017).
– reference: TsienJZPrinciples of intelligence: on evolutionary logic of the brainFront. Syst. Neurosci.20169186
– reference: BhaduriABanerjeeARoySKarSBasuASpiking neural classifier with lumped dendritic nonlinearity and binary synapses: a current mode VLSI implementation and analysisNeural Comput.201830723760
– reference: SheridanPMSparse coding with memristor networksNat. Nanotechnol.2017127847891:CAS:528:DC%2BC2sXot1yrsLg%3D
– reference: ChangTJoS-HLuWShort-term memory to long-term memory transition in a nanoscale memristorACS Nano20115766976761:CAS:528:DC%2BC3MXhtVylsb%2FN
– reference: OhnoTShort-term plasticity and long-term potentiation mimicked in single inorganic synapsesNat. Mater.2011105915951:CAS:528:DC%2BC3MXotV2ju7w%3D
– reference: MuñozWTremblayRLevensteinDRudyBLayer-specific modulation of neocortical dendritic inhibition during active wakefulnessScience2017355954959
– reference: MageeJCDendritic integration of excitatory synaptic inputNat. Rev. Neurosci.200011811901:CAS:528:DC%2BD3MXivVSjsrs%3D
– reference: AnticSDZhouW-LMooreARShortSMIkonomuKDThe decade of the dendritic NMDA spikeJ. Neurosci. Res.201088299130011:CAS:528:DC%2BC3cXhtFOqsr%2FI
– reference: Deng, L. et al. Recent advances in deep learning for speech research at Microsoft. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing 8604–8608 (IEEE, 2013).
– reference: HawkinsJAhmadSWhy neurons have thousands of synapses, a theory of sequence memory in neocortexFront. Neural Circuits20161023
– reference: LavzinMRapoportSPolskyAGarionLSchillerJNonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivoNature20124903974011:CAS:528:DC%2BC38Xht1ynt7jJ
– reference: LaiHCJanLYThe distribution and targeting of neuronal voltage-gated ion channelsNat. Rev. Neurosci.200675485621:CAS:528:DC%2BD28XmtVSgtro%3D
– reference: VaidyaSPJohnstonDTemporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neuronsNat. Neurosci.201316181218201:CAS:528:DC%2BC3sXhslWju7nJ
– reference: BonoJClopathCModeling somatic and dendritic spike mediated plasticity at the single neuron and network levelNat. Commun.20178
– reference: TrongTMHMotleySEWagnerJKerrRRKozloskiJDendritic spines modify action potential back-propagation in a multicompartment neuronal modelIBM J. Res. Dev.20176111:1111:13
– reference: PreziosoMTraining and operation of an integrated neuromorphic network based on metal-oxide memristorsNature201552161641:CAS:528:DC%2BC2MXnvFWjtb4%3D
– reference: TakahashiNOertnerTGHegemannPLarkumMEActive cortical dendrites modulate perceptionScience2016354158715901:CAS:528:DC%2BC28XitFCntbnP
– reference: TumaTPantaziALe GalloMSebastianAEleftheriouEStochastic phase-change neuronsNat. Nanotechnol.2016116936991:CAS:528:DC%2BC28XotV2nt74%3D
– reference: YaoPFully hardware-implemented memristor convolutional neural networkNature20205776416461:CAS:528:DC%2BB3cXktFegt74%3D
– reference: PickettMDMedeiros-RibeiroGWilliamsRSA scalable neuristor built with Mott memristorsNat. Mater.201212114117
– reference: YaoPFace classification using electronic synapsesNat. Commun.201781:CAS:528:DC%2BC2sXnslKntr4%3D
– reference: Kamiya, K. et al. Physics in designing desirable ReRAM stack structure—atomistic recipes based on oxygen chemical potential control and charge injection/removal. In Proc.International Electron Devices Meeting 20.22.21–20.22.24 (IEEE, 2012).
– reference: Agmon-SnirHCarrCERinzelJThe role of dendrites in auditory coincidence detectionNature19983932682721:CAS:528:DyaK1cXjtlyltb0%3D
– reference: Netzer, Y. et al. Reading digits in natural images with unsupervised feature learning. In Proc.NIPS Workshop on Deep Learning and Unsupervised Feature Learning 1–9 (ACM, 2011).
– reference: LeCunYBengioYHintonGDeep learningNature20155214364441:CAS:528:DC%2BC2MXht1WlurzP
– reference: ChoiSSiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocationsNat. Mater.2018173353401:CAS:528:DC%2BC1cXltFOktbc%3D
– reference: WedigANanoscale cation motion in TaOx, HfOx and TiOx memristive systemsNat. Nanotechnol.2015116774
– reference: Gao, B., Wu, H., Kang, J., Yu, H. & Qian, H. Oxide-based analog synapse: physical modeling, experimental characterization and optimization. In Proc.IEEE International Electron Devices Meeting (IEDM) 7.3.1–7.3.4 (IEEE, 2016).
– reference: WangZMemristors with diffusive dynamics as synaptic emulators for neuromorphic computingNat. Mater.201616101108
– reference: PalmerLMNMDA spikes enhance action potential generation during sensory inputNat. Neurosci.2014173833901:CAS:528:DC%2BC2cXhs1Sju70%3D
– reference: TrenholmSNonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlationsNat. Neurosci.201417175917661:CAS:528:DC%2BC2cXhvVSqsbnK
– reference: BrancoTClarkBAHausserMDendritic discrimination of temporal input sequences in cortical neuronsScience2010329167116751:CAS:528:DC%2BC3cXhtFOqsrvP
– reference: Chen, C., Seff, A., Kornhauser, A. & Xiao, J. Deepdriving: learning affordance for direct perception in autonomous driving. In Proc.IEEE International Conference on Computer Vision (ICCV) 2722–2730 (IEEE, 2015).
– reference: StoliarPA leaky-integrate-and-fire neuron analog realized with a Mott insulatorAdv. Funct. Mater.2017271604740
– reference: Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017).
– reference: AmbrogioSEquivalent-accuracy accelerated neural-network training using analogue memoryNature201855860671:CAS:528:DC%2BC1cXhtV2lsr3O
– reference: StuartGJSprustonNDendritic integration: 60 years of progressNat. Neurosci.201518171317211:CAS:528:DC%2BC2MXhvFamu7jP
– reference: Quoc, V. L. Building high-level features using large scale unsupervised learning. In Proc.IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 8595–8598 (IEEE, 2013).
– reference: De PaolaVCell type-specific structural plasticity of axonal branches and boutons in the adult neocortexNeuron200649861875
– reference: CazemierJLClascáFTiesingaPHEConnectomic analysis of brain networks: novel techniques and future directionsFront. Neuroanat.201610110
– volume: 31
  start-page: 1902761
  year: 2019
  ident: 722_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902761
– volume: 7
  start-page: 548
  year: 2006
  ident: 722_CR40
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1938
– volume: 8
  year: 2017
  ident: 722_CR51
  publication-title: Nat. Commun.
– volume: 11
  start-page: 693
  year: 2016
  ident: 722_CR24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.70
– volume: 5
  start-page: 7669
  year: 2011
  ident: 722_CR48
  publication-title: ACS Nano
  doi: 10.1021/nn202983n
– volume: 10
  start-page: 23
  year: 2016
  ident: 722_CR18
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2016.00023
– volume: 17
  start-page: 1759
  year: 2014
  ident: 722_CR14
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3851
– ident: 722_CR6
– volume: 11
  start-page: 67
  year: 2015
  ident: 722_CR42
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.221
– volume: 1
  start-page: 137
  year: 2018
  ident: 722_CR29
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0023-2
– volume: 88
  start-page: 2991
  year: 2010
  ident: 722_CR15
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22444
– volume: 355
  start-page: 954
  year: 2017
  ident: 722_CR47
  publication-title: Science
  doi: 10.1126/science.aag2599
– volume: 100
  start-page: 579
  year: 2018
  ident: 722_CR46
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.08.032
– volume: 558
  start-page: 60
  year: 2018
  ident: 722_CR27
  publication-title: Nature
  doi: 10.1038/s41586-018-0180-5
– volume: 12
  start-page: 114
  year: 2012
  ident: 722_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3510
– volume: 329
  start-page: 1671
  year: 2010
  ident: 722_CR33
  publication-title: Science
  doi: 10.1126/science.1189664
– volume: 10
  start-page: 110
  year: 2016
  ident: 722_CR36
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2016.00110
– volume: 12
  start-page: 784
  year: 2017
  ident: 722_CR28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.83
– ident: 722_CR50
  doi: 10.1109/IEDM.2016.7838367
– volume: 355
  start-page: eaaj1497
  year: 2017
  ident: 722_CR11
  publication-title: Science
  doi: 10.1126/science.aaj1497
– volume: 16
  start-page: 101
  year: 2016
  ident: 722_CR21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4756
– ident: 722_CR7
– volume: 490
  start-page: 397
  year: 2012
  ident: 722_CR16
  publication-title: Nature
  doi: 10.1038/nature11451
– volume: 542
  start-page: 115
  year: 2017
  ident: 722_CR3
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 17
  start-page: 335
  year: 2018
  ident: 722_CR23
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-017-0001-5
– ident: 722_CR52
– volume: 9
  start-page: 186
  year: 2016
  ident: 722_CR10
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2015.00186
– volume: 529
  start-page: 484
  year: 2016
  ident: 722_CR4
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 8
  year: 2017
  ident: 722_CR37
  publication-title: Nat. Commun.
– volume: 17
  start-page: 383
  year: 2014
  ident: 722_CR45
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3646
– volume: 10
  start-page: 591
  year: 2011
  ident: 722_CR49
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3054
– volume: 521
  start-page: 436
  year: 2015
  ident: 722_CR8
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 30
  start-page: 723
  year: 2018
  ident: 722_CR20
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01045
– volume: 367
  start-page: 83
  year: 2020
  ident: 722_CR54
  publication-title: Science
  doi: 10.1126/science.aax6239
– ident: 722_CR5
  doi: 10.1109/ICCV.2015.312
– volume: 521
  start-page: 61
  year: 2015
  ident: 722_CR22
  publication-title: Nature
  doi: 10.1038/nature14441
– volume: 8
  year: 2017
  ident: 722_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00740-z
– volume: 354
  start-page: 1587
  year: 2016
  ident: 722_CR12
  publication-title: Science
  doi: 10.1126/science.aah6066
– volume: 577
  start-page: 641
  year: 2020
  ident: 722_CR30
  publication-title: Nature
  doi: 10.1038/s41586-020-1942-4
– volume: 27
  start-page: 1604740
  year: 2017
  ident: 722_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604740
– volume: 49
  start-page: 861
  year: 2006
  ident: 722_CR39
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.02.017
– volume: 335
  start-page: 353
  year: 2012
  ident: 722_CR13
  publication-title: Science
  doi: 10.1126/science.1210362
– ident: 722_CR43
– volume: 393
  start-page: 268
  year: 1998
  ident: 722_CR31
  publication-title: Nature
  doi: 10.1038/30505
– ident: 722_CR19
  doi: 10.1109/IJCNN.2017.7966124
– ident: 722_CR44
  doi: 10.1109/VLSIT.2012.6242510
– volume: 18
  start-page: 1713
  year: 2015
  ident: 722_CR35
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4157
– ident: 722_CR2
  doi: 10.1109/ICASSP.2013.6639345
– volume: 94
  start-page: 515
  year: 2008
  ident: 722_CR41
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-008-4975-3
– volume: 16
  start-page: 1812
  year: 2013
  ident: 722_CR34
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3562
– volume: 572
  start-page: 106
  year: 2019
  ident: 722_CR53
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– volume: 1
  start-page: 181
  year: 2000
  ident: 722_CR32
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35044552
– ident: 722_CR1
– volume: 61
  start-page: 11:11
  year: 2017
  ident: 722_CR17
  publication-title: IBM J. Res. Dev.
SSID ssj0052924
Score 2.660103
Snippet In the nervous system, dendrites, branches of neurons that transmit signals between synapses and soma, play a critical role in processing functions, such as...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 776
SubjectTerms 639/166/987
639/925/927/1007
Animals
Application specific integrated circuits
Artificial Cells
Artificial neural networks
Background noise
Central processing units
Chemistry and Materials Science
Computer simulation
CPUs
Databases, Factual
Dendrites
Dendrites - physiology
Electronics
Energy efficiency
Equipment Design
Image Processing, Computer-Assisted
Integrated circuits
Materials Science
Memristors
Mice
Models, Neurological
Multilayers
Nanotechnology
Nanotechnology and Microengineering
Nervous system
Neural networks
Neural Networks, Computer
Neurons - physiology
Oxygen - chemistry
Power consumption
Power management
Signal processing
Synapses
Task complexity
Title Power-efficient neural network with artificial dendrites
URI https://link.springer.com/article/10.1038/s41565-020-0722-5
https://www.ncbi.nlm.nih.gov/pubmed/32601451
https://www.proquest.com/docview/2440211933
https://www.proquest.com/docview/2475049964
https://www.proquest.com/docview/2419083294
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgvq2PsoInJbjdJJvkJCqtRbCIKPS2JNnkJNvax_93Zh9VEb3sJcmSTGYm80i-IeTCcceZ61nqjE0plyJQq4KnoBe5kTzl0mEc8mmUDt_441iM64DbvL5W2ejEUlHnE4cx8uuEIxA5WOf8ZvpBsWoUZlfrEhrrpI3QZcjVcrxyuESiq6K2kisKrphssppMXc_RccG3yTGNJfpjP8-lX8bmr0Rpef4MtslWbThGt9VO75A1X-ySzW9wgntEPWPJM-pLVAg4TCIEq4QxRXXVO8KYa4SsUqFGRKBy8hksb75P3gb91_shrSsjUAcyt6BO5bCKVFsZMArh8sC00ybIRNiUC2vixDDtc8GMDEpIrqVOQm61dj2VG8sOSKuYFP6IRLHIgwnOSXCTeaqsDTxNPAiyYA6sN9EhcUOXzNWw4Vi94j0r09dMZRUpMyBlhqTMYMjlasi0wsz4r_NpQ-ysFp95BjZHjNBzjP3R3PBCh5yvmkEuMNlhCj9ZYh8wdUBdaehzWO3hajIMcdS46HXIVbOpXz__c6bH_0_lhGwkJTvh_bNT0lrMlv4MDJaF7ZZcCV81eOiS9l1_9PzyCUgf5ng
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOUAPiGdZKDBIcAFFnc1jkhwQQsCypQ9xaKXeQpJJTmi27W6F-FP8RuyZzQKq2lvPeShynM92nHwGeBVllCKOA4s-NExqlVkwOTHERem1bKSOdA-5f9BMj-TXY3W8Br_LXxh6VlkwsQfqdhbpjnybSyIiR-9cvj85ZVQ1irKrpYTGoBa76ddPDNnm73Y-4f6-5nzy-fDjlC2rCrCI-rpg0bRjhG0bdKYIPrZZ2Gh91lyFRqrga-6FTa0SXmejtLTa8twGa-PYtD4InPcG3JQCLTn9TJ98KcivuB2K6GppGIZ-umRRhdmeU6BEf6FrVmuK__63gxec2wuJ2d7eTe7CnaWjWn0YNOserKXuPmz8Q1_4AMw3KrHGUs9CgcarInJMHNMNT8sruuOtSDUHlooKIa49Q3HOH8LRtcjsEax3sy49hqpWbfY5Ro1huWxMCFk2PCFwKBHRW1QjqItcXFzSlFO1jB-uT5cL4wZROhSlI1E6HPJmNeRk4Oi4qvNWEbZbHte5Qx-nJqo7IS5pLro3gperZjyHlFzxXZqdUx90rRAeLfbZHPZwtRhBvG1SjUfwtmzq38kvXemTq5fyAm5ND_f33N7Owe5TuM171aK3b1uwvjg7T8_QWVqE572GVvD9uo_EH-YVIT8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQOWdUmCR4AKysvFjvT5UCGijlkIUISr1trW99glt2iYV6l_rr2Nmdx1AVXvr2Q9Z43l6xt8AvPXSS-HHjnnrCia1isyVMTDUi9JqWUjt6R3y-7TYO5Rfj9TRGlymvzBUVpl0Yquo67mnN_IRlwREjt65HMW-LGK2M_l4csqogxRlWlM7jY5FDsLFbwzfFtv7O3jX7zif7P78ssf6DgPMI-8umS_rMapw43SkaN7XURhvbNRcuUIqZ3NuhQm1ElbHUmlptOGxdsb4cVlbJ3DfO7CuKSoawPrn3ensR7IDipuupa6WJcNAUKecqihHCwqb6Gd0znJN0eD_VvGKq3slTdtav8kGPOjd1uxTx2cPYS00j-D-P2CGj6GcUcM1FlpMCjRlGUFl4pqmKzTP6MU3I0btMCsyVHj1GRJ08QQOb4VqT2HQzJvwHLJc1dFG7zUG6bIonYuy4AHViBIefUc1hDzRpfI9aDn1zvhVtclzUVYdKSskZUWkrHDJ-9WSkw6x46bJW4nYVS-8iwo9npyA74S4Zjhx4hDerIZRKinVYpswP6c56GihsjQ451l3h6vDCEJxk2o8hA_pUv9ufu1JN28-ymu4i-JQfdufHryAe7zlLCqE24LB8uw8vETPaele9SyawfFtS8UfcnEm0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power-efficient+neural+network+with+artificial+dendrites&rft.jtitle=Nature+nanotechnology&rft.au=Li%2C+Xinyi&rft.au=Tang+Jianshi&rft.au=Zhang+Qingtian&rft.au=Gao%2C+Bin&rft.date=2020-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=15&rft.issue=9&rft.spage=776&rft.epage=782&rft_id=info:doi/10.1038%2Fs41565-020-0722-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon