Reactions of DGEBA epoxy cured with diethanolamine: Isoconversional kinetics and implications to network structure
[Display omitted] •Tertiary amine activated cure in hydroxyl rich environment.•Primary mechanism is a zwitterion initiated anionic chain-growth polymerization.•Isoconversional times show slowing down and broadening of reaction at high T.•Temperature jumps illustrate cure history dependence of reacti...
Saved in:
Published in | Thermochimica acta Vol. 671; no. C; pp. 149 - 160 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.01.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Tertiary amine activated cure in hydroxyl rich environment.•Primary mechanism is a zwitterion initiated anionic chain-growth polymerization.•Isoconversional times show slowing down and broadening of reaction at high T.•Temperature jumps illustrate cure history dependence of reaction rate.•Proton transfer results in high extent of reaction at gel - unusual for chain-growth.
The curing of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine (DEA) is studied. DEA has three reactive groups, a secondary amine hydrogen and two hydroxyls. The secondary amine reacts rapidly, forming an adduct containing tertiary amines, epoxides and hydroxyls. The epoxides and hydroxyls then react in the presence of the amines to crosslink and vitrify the epoxy in the “gelation” reaction. The gelation reaction, the subject of this study, is not simple. The reaction exhibits unusual dependencies on both temperature and degree of cure. Previously, the general mechanisms of this curing process were explored by a number of us. In the present paper, both differential scanning calorimetry (DSC) and isothermal microcalorimetry (IMC) are used to determine a number of characteristic times associated with the reaction. The characteristic times show that the reaction rate has different functional forms at different temperatures and extents of reaction. This results from the reaction rate not depending solely upon the temperature and over-all extent-of-reaction. The concentration of a number of auxiliary reactive species that are generated in the course of the reaction (as well as their mobility and steric hindrance) appear to be key factors in defining the reaction kinetics. The dependence of the final network structure on cure schedule for this type of tertiary amine activated reaction is then discussed in the context of the literature. Finally, in the Supplementary Material, Kamal-like functions are fit to the isothermal reaction kinetics, with the reader cautioned in applying the functions to non-isothermal cures. |
---|---|
AbstractList | The curing of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine (DEA) is studied. DEA has three reactive groups, a secondary amine hydrogen and two hydroxyls. The secondary amine reacts rapidly, forming an adduct containing tertiary amines, epoxides and hydroxyls. The epoxides and hydroxyls then react in the presence of the amines to crosslink and vitrify the epoxy in the “gelation” reaction. The gelation reaction, the subject of this study, is not simple. The reaction exhibits unusual dependencies on both temperature and degree of cure. Previously, the general mechanisms of this curing process were explored by a number of us. In the present paper, both differential scanning calorimetry (DSC) and isothermal microcalorimetry (IMC) are used to determine a number of characteristic times associated with the reaction. The characteristic times show that the reaction rate has different functional forms at different temperatures and extents of reaction. This results from the reaction rate not depending solely upon the temperature and over-all extent-of-reaction. The concentration of a number of auxiliary reactive species that are generated in the course of the reaction (as well as their mobility and steric hindrance) appear to be key factors in defining the reaction kinetics. The dependence of the final network structure on cure schedule for this type of tertiary amine activated reaction is then discussed in the context of the literature. Finally, in the Supplementary Material, Kamal-like functions are fit to the isothermal reaction kinetics, with the reader cautioned in applying the functions to non-isothermal cures. [Display omitted] •Tertiary amine activated cure in hydroxyl rich environment.•Primary mechanism is a zwitterion initiated anionic chain-growth polymerization.•Isoconversional times show slowing down and broadening of reaction at high T.•Temperature jumps illustrate cure history dependence of reaction rate.•Proton transfer results in high extent of reaction at gel - unusual for chain-growth. The curing of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine (DEA) is studied. DEA has three reactive groups, a secondary amine hydrogen and two hydroxyls. The secondary amine reacts rapidly, forming an adduct containing tertiary amines, epoxides and hydroxyls. The epoxides and hydroxyls then react in the presence of the amines to crosslink and vitrify the epoxy in the “gelation” reaction. The gelation reaction, the subject of this study, is not simple. The reaction exhibits unusual dependencies on both temperature and degree of cure. Previously, the general mechanisms of this curing process were explored by a number of us. In the present paper, both differential scanning calorimetry (DSC) and isothermal microcalorimetry (IMC) are used to determine a number of characteristic times associated with the reaction. The characteristic times show that the reaction rate has different functional forms at different temperatures and extents of reaction. This results from the reaction rate not depending solely upon the temperature and over-all extent-of-reaction. The concentration of a number of auxiliary reactive species that are generated in the course of the reaction (as well as their mobility and steric hindrance) appear to be key factors in defining the reaction kinetics. The dependence of the final network structure on cure schedule for this type of tertiary amine activated reaction is then discussed in the context of the literature. Finally, in the Supplementary Material, Kamal-like functions are fit to the isothermal reaction kinetics, with the reader cautioned in applying the functions to non-isothermal cures. The curing of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine (DEA) is studied. DEA has three reactive groups, a secondary amine hydrogen and two hydroxyls. The secondary amine reacts rapidly, forming an adduct containing tertiary amines, epoxides and hydroxyls. The epoxides and hydroxyls then react in the presence of the amines to crosslink and vitrify the epoxy in the “gelation” reaction. The gelation reaction, the subject of this study, is not simple. The reaction exhibits unusual dependencies on both temperature and degree of cure. Previously, the general mechanisms of this curing process were explored by a number of us. In the present paper, both differential scanning calorimetry (DSC) and isothermal microcalorimetry (IMC) are used to determine a number of characteristic times associated with the reaction. The characteristic times show that the reaction rate has different functional forms at different temperatures and extents of reaction. This results from the reaction rate not depending solely upon the temperature and over-all extent-of-reaction. The concentration of a number of auxiliary reactive species that are generated in the course of the reaction (as well as their mobility and steric hindrance) appear to be key factors in defining the reaction kinetics. The dependence of the final network structure on cure schedule for this type of tertiary amine activated reaction is then discussed in the context of the literature. Lastly, in the Supplementary Material, Kamal-like functions are fit to the isothermal reaction kinetics, with the reader cautioned in applying the functions to non-isothermal cures. |
Author | Ancipink, Windy B. Maestas, Salomon R. Devries, David B. Kropka, Jamie M. Draelos, Lara R. McCoy, John D. |
Author_xml | – sequence: 1 givenname: John D. orcidid: 0000-0001-5404-1404 surname: McCoy fullname: McCoy, John D. email: john.mccoy@nmt.edu organization: New Mexico Institute of Mining and Technology, Socorro, NM, United States – sequence: 2 givenname: Windy B. surname: Ancipink fullname: Ancipink, Windy B. organization: New Mexico Institute of Mining and Technology, Socorro, NM, United States – sequence: 3 givenname: Salomon R. surname: Maestas fullname: Maestas, Salomon R. organization: New Mexico Institute of Mining and Technology, Socorro, NM, United States – sequence: 4 givenname: Lara R. surname: Draelos fullname: Draelos, Lara R. organization: New Mexico Institute of Mining and Technology, Socorro, NM, United States – sequence: 5 givenname: David B. surname: Devries fullname: Devries, David B. organization: New Mexico Institute of Mining and Technology, Socorro, NM, United States – sequence: 6 givenname: Jamie M. surname: Kropka fullname: Kropka, Jamie M. organization: Sandia National Laboratories, Albuquerque, NM, United States |
BackLink | https://www.osti.gov/servlets/purl/1524642$$D View this record in Osti.gov |
BookMark | eNp9kU9v1DAQxS1UJLaFD8DN4sQlYeykiQ2nUtpSqRJSVSRulv9MtN5m7cX2tvTb10s4cehppJn3e5qZd0yOQgxIyHsGLQM2fNq0xeqWAxMtYy2w7hVZMTHyZhz4ryOyAuihGaBjb8hxzhsAYFzAiqRb1Lb4GDKNE_12dfH1jOIu_nmidp_Q0Udf1tR5LGsd4qy3PuBnep2jjeEBU66gnul97RZvM9XBUb_dzd7qxbNEWkePMd3TXNLelmr6lrye9Jzx3b96Qn5eXtydf29uflxdn5_dNLYHKI0VgnPXyVFLieOkhdZyQNPD5IyQbpTO9EacghV85NawChk-Dm4YjDRyMt0J-bD4xly8ytYXtOu6d0BbFDvl_dDzKvq4iHYp_t5jLmrrs8V51gHjPivOOQjZdQKqlC1Sm2LOCSe1S36r05NioA4hqI2qIahDCIoxVUOozPgfU9f4-5uStJ9fJL8sJNYXPXhMhwswWHQ-HQ5w0b9APwP8F6Vp |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2022_111362 crossref_primary_10_1016_j_polymer_2019_121937 crossref_primary_10_1021_acsapm_2c01728 crossref_primary_10_1002_marc_202400323 crossref_primary_10_1016_j_energy_2025_134651 crossref_primary_10_1002_mame_202300267 crossref_primary_10_1016_j_eurpolymj_2019_109460 crossref_primary_10_1021_acs_jafc_0c01592 crossref_primary_10_1016_j_compositesa_2024_108344 crossref_primary_10_1016_j_polymer_2023_126233 crossref_primary_10_1177_15280837211059213 crossref_primary_10_1039_D1NJ04623C crossref_primary_10_1016_j_compositesb_2024_111574 crossref_primary_10_1016_j_radphyschem_2022_110551 crossref_primary_10_1016_j_polymdegradstab_2023_110473 |
Cites_doi | 10.1016/0040-6031(76)80056-1 10.1016/j.cemconres.2010.03.017 10.1039/j29690001062 10.1080/00218464.2013.779559 10.1007/BF00265465 10.1021/ma9614048 10.1021/ie50553a028 10.1021/ma00025a025 10.1002/pi.2675 10.1021/ma00191a020 10.1016/0040-6031(94)85058-5 10.1016/j.polymer.2016.10.028 10.1016/j.apsusc.2018.03.197 10.1021/i360075a009 10.1002/pi.4259 10.1007/BFb0017916 10.1002/app.28336 10.1002/pen.760130110 10.1016/j.polymer.2016.07.038 10.1016/S0032-3861(97)00372-8 10.1021/ja01384a014 10.1016/0032-3861(93)90485-S 10.1016/0040-6031(95)02362-3 10.1295/polymj.28.407 10.1016/j.tca.2012.09.012 10.1002/pen.20468 10.1016/0032-3861(92)90691-O 10.1016/j.eurpolymj.2014.01.015 10.1002/pola.26972 10.1016/j.polymer.2009.11.013 10.1016/j.tca.2017.09.001 10.1002/pol.1983.170210520 10.1002/pen.760320804 10.1016/j.eurpolymj.2014.03.022 10.1021/ma981547p 10.1016/S0032-3861(97)00077-3 10.1016/j.polymer.2018.04.050 10.1002/(SICI)1097-4628(19980207)67:6<1101::AID-APP18>3.0.CO;2-2 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
CorporateAuthor | Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
DBID | AAYXX CITATION 7S9 L.6 OIOZB OTOTI |
DOI | 10.1016/j.tca.2018.11.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1872-762X |
EndPage | 160 |
ExternalDocumentID | 1524642 10_1016_j_tca_2018_11_013 S0040603118305926 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSM SSZ T5K T9H WH7 WUQ XPP YK3 ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 AALMO AAPBV ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c400t-c8822d397a99e7fa8aa96eb40fdb89d79db4b850c8272cb1400b276d66b9b9fb3 |
IEDL.DBID | .~1 |
ISSN | 0040-6031 |
IngestDate | Fri May 19 01:47:11 EDT 2023 Fri Jul 11 10:09:57 EDT 2025 Tue Jul 01 00:46:31 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Fri Feb 23 02:48:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Tertiary amine Diethanolamine Epoxy DGEBA |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-c8822d397a99e7fa8aa96eb40fdb89d79db4b850c8272cb1400b276d66b9b9fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC04-94AL85000 USDOE National Nuclear Security Administration (NNSA) SAND-2019-5970J |
ORCID | 0000-0001-5404-1404 0000000154041404 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1524642 |
PQID | 2220893380 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1524642 proquest_miscellaneous_2220893380 crossref_primary_10_1016_j_tca_2018_11_013 crossref_citationtrail_10_1016_j_tca_2018_11_013 elsevier_sciencedirect_doi_10_1016_j_tca_2018_11_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Thermochimica acta |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Adolf, Martin (bib0225) 1991; 24 Dell’Erba, Williams (bib0125) 2006; 46 Dusek, Lunak, Matejka (bib0195) 1982; 7 Quant (bib0015) 1961 Tian, Ning, Kong (bib0025) 2016; 99 Lundberg (bib0010) 1980; 19 Marcus, Blaine (bib0065) 1994 Doszlop, Vargha, Horkay (bib0070) 1978; 22 Park, Lee, Kwon (bib0105) 1996; 28 Celina, Quintana, Giron (bib0230) 2015 Fernandez-Francos, Salla, Mantecon, Serra, Ramis (bib0130) 2008; 109 Barton, Hamerton, Howlin, Jones, Liu (bib0145) 1998; 39 Chang (bib0150) 1992; 33 Carbas, Marques, da Silva, Lopes (bib0155) 2014; 90 Fernandez-Francos, Ramis, Serra (bib0170) 2014; 52 Heckert, Mack (bib0090) 1929; 51 Fernandez-Francos, Cook, Serra, Ramis, Liang, Salla (bib0205) 2010; 51 Weeks, Adolf, McCoy (bib0140) 1999; 32 Wadso (bib0045) 2010; 40 Wadso (bib0050) 2007 Rozenberg (bib0095) 1986; 75 Fernandez-Francos (bib0135) 2014; 55 Wischmann, Thomas (bib0210) 1991 Previously work gave 65% extent of reaction at gel point based on 240 J/g total heat of reaction. Here we multiply by 1.18 to get 185 J/g at the gel point. Li, Xiao, Wu, Peng, Han, Xiang, Dai (bib0030) 2016; 137 Marcus, Blaine (bib0060) 1994; 243 Li, Li, Meng (bib0185) 2012; 549 Heise, Martin (bib0190) 1989; 22 Shechter, Wynstra (bib0075) 1956; 48 Fernandez-Francos, Serra, Ramis (bib0180) 2014; 53 Adolf, Chambers (bib0040) 1997; 38 McCoy, Ancipink, Clarkson, Kropka, Celina, Giron, Hailesilassie, Fredj (bib0005) 2016; 105 Adolf, Stavig, Berry (bib0215) 2007 Sourour, Kamal (bib0240) 1976; 14 Ricciardi, Romanchick, Joullie (bib0200) 1983; 21 Kropka, Long (bib0020) 2018; 145 Hagnauer (bib0035) 1979 Jouyandeh, Jazani, Navarchian, Shabanian, Vahabi, Saeb (bib0220) 2018; 447 Tanzer, Reinhardt, Fedtke (bib0085) 1993; 34 Park, Lee (bib0110) 1998; 67 Montserrat, Flaqué, Calafell, Andreu, Málek (bib0115) 1995; 269 Arechederra, Draelos, Ancipink, McCoy, Kropka (bib0055) 2017; 656 Laird, Parker (bib0080) 1969; 9 Fernandez-Francos, Cook, Salla, Serra, Ramis (bib0160) 2009; 58 Heise, Martin, Gotro (bib0165) 1992; 32 Kamal, Sourour (bib0235) 1973; 13 Mauri, Galego, Riccardi, Williams (bib0175) 1997; 30 Fernandez-Francos, Rybak, Sekula, Ramis, Serra (bib0120) 2012; 61 Adolf (10.1016/j.tca.2018.11.013_bib0040) 1997; 38 Tanzer (10.1016/j.tca.2018.11.013_bib0085) 1993; 34 Lundberg (10.1016/j.tca.2018.11.013_bib0010) 1980; 19 Montserrat (10.1016/j.tca.2018.11.013_bib0115) 1995; 269 Mauri (10.1016/j.tca.2018.11.013_bib0175) 1997; 30 Chang (10.1016/j.tca.2018.11.013_bib0150) 1992; 33 Carbas (10.1016/j.tca.2018.11.013_bib0155) 2014; 90 Fernandez-Francos (10.1016/j.tca.2018.11.013_bib0120) 2012; 61 Barton (10.1016/j.tca.2018.11.013_bib0145) 1998; 39 McCoy (10.1016/j.tca.2018.11.013_bib0005) 2016; 105 Quant (10.1016/j.tca.2018.11.013_bib0015) 1961 Rozenberg (10.1016/j.tca.2018.11.013_bib0095) 1986; 75 Heise (10.1016/j.tca.2018.11.013_bib0190) 1989; 22 Fernandez-Francos (10.1016/j.tca.2018.11.013_bib0130) 2008; 109 Marcus (10.1016/j.tca.2018.11.013_bib0065) 1994 Fernandez-Francos (10.1016/j.tca.2018.11.013_bib0135) 2014; 55 Park (10.1016/j.tca.2018.11.013_bib0105) 1996; 28 Dell’Erba (10.1016/j.tca.2018.11.013_bib0125) 2006; 46 Fernandez-Francos (10.1016/j.tca.2018.11.013_bib0170) 2014; 52 Ricciardi (10.1016/j.tca.2018.11.013_bib0200) 1983; 21 Tian (10.1016/j.tca.2018.11.013_bib0025) 2016; 99 Celina (10.1016/j.tca.2018.11.013_bib0230) 2015 Kamal (10.1016/j.tca.2018.11.013_bib0235) 1973; 13 Wadso (10.1016/j.tca.2018.11.013_bib0045) 2010; 40 Li (10.1016/j.tca.2018.11.013_bib0030) 2016; 137 Dusek (10.1016/j.tca.2018.11.013_bib0195) 1982; 7 Heise (10.1016/j.tca.2018.11.013_bib0165) 1992; 32 Jouyandeh (10.1016/j.tca.2018.11.013_bib0220) 2018; 447 Laird (10.1016/j.tca.2018.11.013_bib0080) 1969; 9 Sourour (10.1016/j.tca.2018.11.013_bib0240) 1976; 14 Adolf (10.1016/j.tca.2018.11.013_bib0225) 1991; 24 Weeks (10.1016/j.tca.2018.11.013_bib0140) 1999; 32 Fernandez-Francos (10.1016/j.tca.2018.11.013_bib0180) 2014; 53 Wadso (10.1016/j.tca.2018.11.013_bib0050) 2007 Doszlop (10.1016/j.tca.2018.11.013_bib0070) 1978; 22 Fernandez-Francos (10.1016/j.tca.2018.11.013_bib0160) 2009; 58 Fernandez-Francos (10.1016/j.tca.2018.11.013_bib0205) 2010; 51 Wischmann (10.1016/j.tca.2018.11.013_bib0210) 1991 Arechederra (10.1016/j.tca.2018.11.013_bib0055) 2017; 656 Kropka (10.1016/j.tca.2018.11.013_bib0020) 2018; 145 Hagnauer (10.1016/j.tca.2018.11.013_bib0035) 1979 Marcus (10.1016/j.tca.2018.11.013_bib0060) 1994; 243 Park (10.1016/j.tca.2018.11.013_bib0110) 1998; 67 Heckert (10.1016/j.tca.2018.11.013_bib0090) 1929; 51 Adolf (10.1016/j.tca.2018.11.013_bib0215) 2007 Shechter (10.1016/j.tca.2018.11.013_bib0075) 1956; 48 Li (10.1016/j.tca.2018.11.013_bib0185) 2012; 549 10.1016/j.tca.2018.11.013_bib0100 |
References_xml | – volume: 24 start-page: 6721 year: 1991 end-page: 6724 ident: bib0225 article-title: Ultraslow relaxations in networks: evidence for remnant fractal structures publication-title: Macromolecules – volume: 656 start-page: 144 year: 2017 end-page: 150 ident: bib0055 article-title: The insulating effect of the low thermal conductivity of epoxy on the resolution of the heat of reaction during polymerization by differential scanning calorimetry publication-title: Thermochim. Acta – year: 1961 ident: bib0015 article-title: A Low Density Potting Compound – volume: 447 start-page: 152 year: 2018 end-page: 164 ident: bib0220 article-title: Surface engineering of nanoparticles with macromolecules for epoxy curing: development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation publication-title: Appl. Surf. Sci. – volume: 55 start-page: 35 year: 2014 end-page: 47 ident: bib0135 article-title: Theoretical modeling of the effect of proton donors and regeneration reactions in the network build-up of epoxy thermosets using tertiary amines as initiators publication-title: Eur. Polym. J. – year: 2015 ident: bib0230 article-title: Cure Chemistry Behavior in Epoxy Materials, SAND2015-7857C – year: 2007 ident: bib0215 article-title: Materials-Based Process Tolerances for Neutron Generator Encapsulation, SAND Report SAND2007-2287 – volume: 14 start-page: 41 year: 1976 end-page: 59 ident: bib0240 article-title: Differential scanning calorimetry of epoxy cure - isothermal cure kinetics publication-title: Thermochim. Acta – volume: 13 start-page: 59 year: 1973 end-page: 64 ident: bib0235 article-title: Kinetics and thermal characterization of thermoset cure publication-title: Polym. Eng. Sci. – volume: 90 start-page: 104 year: 2014 end-page: 119 ident: bib0155 article-title: Effect of cure temperature on the glass transition temperature and mechanical properties of epoxy adhesives publication-title: J. Adhes. – volume: 19 start-page: 319 year: 1980 end-page: 326 ident: bib0010 article-title: Diethanolamine as a hardener for epoxy-resins publication-title: Ind. Eng. Chem. Prod. Res. Dev. – volume: 58 start-page: 1401 year: 2009 end-page: 1410 ident: bib0160 article-title: Crosslinking of mixtures of diglycidylether of bisphenol-A with 1,6-dioxaspiro 4.4 nonan-2,7-dione initiated by tertiary amines: III. Effect of hydroxyl groups on network formation publication-title: Polym. Int. – year: 1979 ident: bib0035 article-title: HPLC and GPC analysis of EPON 828 epoxy resins publication-title: Army Materials and Mechanics Research Division AMMRC-TR-79-59 – volume: 52 start-page: 61 year: 2014 end-page: 75 ident: bib0170 article-title: From curing kinetics to network structure: a novel approach to the modeling of the network buildup of epoxy-anhydride thermosets publication-title: Journal of Polymer Science Part a-Polymer Chemistry – volume: 38 start-page: 5481 year: 1997 end-page: 5490 ident: bib0040 article-title: Verification of the capability for quantitative stress prediction during epoxy cure publication-title: Polymer – volume: 40 start-page: 1129 year: 2010 ident: bib0045 article-title: Operational issues in isothermal calorimetry publication-title: Cem. Concr. Res. – volume: 48 start-page: 86 year: 1956 end-page: 93 ident: bib0075 article-title: Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides publication-title: Ind. Eng. Chem. – volume: 109 start-page: 2304 year: 2008 end-page: 2315 ident: bib0130 article-title: Crosslinking of mixtures of DGEBA with 1,6-dioxaspiro 4,4 nonan-2,7-dione initiated by tertiary amines. I. Study of the reaction and kinetic analysis publication-title: J. Appl. Polym. Sci. – volume: 32 start-page: 529 year: 1992 end-page: 534 ident: bib0165 article-title: Analysis of gel formation in imidazole-catalyzed epoxies publication-title: Polym. Eng. Sci. – volume: 22 start-page: 253 year: 1978 end-page: 275 ident: bib0070 article-title: Reactions of epoxy with other functional-groups and arising sec-hydroxyl groups publication-title: Periodica Polytechnica-Chemical Engineering – volume: 145 start-page: 54 year: 2018 end-page: 61 ident: bib0020 article-title: Predicting the counter-intuitive stress relaxation behavior of glass forming materials publication-title: Polymer – volume: 46 start-page: 351 year: 2006 end-page: 359 ident: bib0125 article-title: Homopolymerization of epoxy monomers initiated by 4-(dimethylamino)pyridine publication-title: Polym. Eng. Sci. – volume: 39 start-page: 1929 year: 1998 end-page: 1937 ident: bib0145 article-title: Studies of cure schedule and final property relationships of a commercial epoxy resin using modified imidazole curing agents publication-title: Polymer – volume: 67 start-page: 1101 year: 1998 end-page: 1108 ident: bib0110 article-title: A study on isothermal cure behavior of an epoxy-rich/anhydride system by differential scanning calorimetry publication-title: J. Appl. Polym. Sci. – volume: 9 start-page: 1062 year: 1969 end-page: 1068 ident: bib0080 article-title: The mechanism of epoxide reactions. Part XII. Reactions of ethylene oxide with alcohols in the presence of sodium alkoxides and of tertiary amines publication-title: Journal of the Chemical Society B - Physical Organic – volume: 21 start-page: 1475 year: 1983 end-page: 1490 ident: bib0200 article-title: Mechanism of imidazole catalysis in the curing of epoxy resins publication-title: Journal of Polymer Science Part a-Polymer Chemistry – volume: 105 start-page: 243 year: 2016 end-page: 254 ident: bib0005 article-title: Cure mechanisms of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine publication-title: Polymer – volume: 269 start-page: 213 year: 1995 end-page: 229 ident: bib0115 article-title: Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system publication-title: Thermochim. Acta – volume: 22 start-page: 99 year: 1989 end-page: 104 ident: bib0190 article-title: Curing mechanism and thermal properties of epoxy imidazole systems publication-title: Macromolecules – year: 1994 ident: bib0065 article-title: Thermal conductivity of polymers, glasses and ceramics by modulated DSC b publication-title: TA Instruments Technical Notes TA086 – volume: 51 start-page: 2706 year: 1929 end-page: 2717 ident: bib0090 article-title: The thermal decomposition of gaseous ethylene oxide publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 22 year: 2014 end-page: 36 ident: bib0180 article-title: Comparative analysis of stochastic network build-up methods for the curing of epoxy-anhydride thermosets publication-title: Eur. Polym. J. – volume: 33 start-page: 4768 year: 1992 end-page: 4778 ident: bib0150 article-title: Effect of curing history on ultimate glass-transition temperature and network structure of cross-linked polymers publication-title: Polymer – volume: 549 start-page: 69 year: 2012 end-page: 80 ident: bib0185 article-title: Curing of DGEBA epoxy using a phenol-terminated hyperbranched curing agent: cure kinetics, gelation, and the TTT cure diagram publication-title: Thermochim. Acta – volume: 243 start-page: 231 year: 1994 end-page: 239 ident: bib0060 article-title: Thermal conductivity of polymers, glasses and ceramics by modulated DSC publication-title: Thermochim. Acta – volume: 7 start-page: 145 year: 1982 end-page: 152 ident: bib0195 article-title: Gelation in the curing of epoxy resins with anhydrides publication-title: Polym. Bull. – volume: 137 year: 2016 ident: bib0030 article-title: Effects of epoxy/hardener stoichiometry on structures and properties of a diethanolamine-cured epoxy encapsulant publication-title: IOP Conference Series: Materials Science and Engineering – volume: 51 start-page: 26 year: 2010 end-page: 34 ident: bib0205 article-title: Crosslinking of mixtures of DGEBA with 1,6-dioxaspiro 4,4 nonan-2,7-dione initiated by tertiary amines. Part IV. Effect of hydroxyl groups on initiation and curing kinetics publication-title: Polymer – volume: 30 start-page: 1616 year: 1997 end-page: 1620 ident: bib0175 article-title: Kinetic model for gelation in the diepoxide-cyclic anhydride copolymerization initiated by tertiary amines publication-title: Macromolecules – volume: 32 start-page: 1918 year: 1999 ident: bib0140 article-title: Cohesive failure in partially cured epoxies publication-title: Macromolecules – reference: Previously work gave 65% extent of reaction at gel point based on 240 J/g total heat of reaction. Here we multiply by 1.18 to get 185 J/g at the gel point. – volume: 99 start-page: 376 year: 2016 end-page: 385 ident: bib0025 article-title: Self-toughening of epoxy resin through controlling topology of cross-linked networks publication-title: Polymer – volume: 28 start-page: 407 year: 1996 end-page: 411 ident: bib0105 article-title: Cure behavior of an epoxy-anhydride-imidazole system publication-title: Polym. J. – volume: 34 start-page: 3520 year: 1993 end-page: 3525 ident: bib0085 article-title: Reaction of glycidyl ethers with aliphatic-alcohols in the presence of benzyl dimethylamine publication-title: Polymer – year: 1991 ident: bib0210 article-title: An Evaluation of the Effects of Varying Composition and Processing on Several Encapsulating Resins SAND Report – year: 2007 ident: bib0050 article-title: Curing of epoxy adhesive studied by TAM air publication-title: TA Instruments Application Note M135 – volume: 75 start-page: 113 year: 1986 end-page: 165 ident: bib0095 article-title: Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines publication-title: Adv. Polym. Sci. – volume: 61 start-page: 1710 year: 2012 end-page: 1725 ident: bib0120 article-title: Modification of epoxy-anhydride thermosets using a hyperbranched poly(ester-amide): I. Kinetic study publication-title: Polym. Int. – volume: 14 start-page: 41 issue: 1-2 year: 1976 ident: 10.1016/j.tca.2018.11.013_bib0240 article-title: Differential scanning calorimetry of epoxy cure - isothermal cure kinetics publication-title: Thermochim. Acta doi: 10.1016/0040-6031(76)80056-1 – year: 2007 ident: 10.1016/j.tca.2018.11.013_bib0050 article-title: Curing of epoxy adhesive studied by TAM air publication-title: TA Instruments Application Note M135 – volume: 40 start-page: 1129 year: 2010 ident: 10.1016/j.tca.2018.11.013_bib0045 article-title: Operational issues in isothermal calorimetry publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.03.017 – volume: 9 start-page: 1062 year: 1969 ident: 10.1016/j.tca.2018.11.013_bib0080 article-title: The mechanism of epoxide reactions. Part XII. Reactions of ethylene oxide with alcohols in the presence of sodium alkoxides and of tertiary amines publication-title: Journal of the Chemical Society B - Physical Organic doi: 10.1039/j29690001062 – volume: 137 issue: 1 year: 2016 ident: 10.1016/j.tca.2018.11.013_bib0030 article-title: Effects of epoxy/hardener stoichiometry on structures and properties of a diethanolamine-cured epoxy encapsulant publication-title: IOP Conference Series: Materials Science and Engineering – ident: 10.1016/j.tca.2018.11.013_bib0100 – volume: 90 start-page: 104 issue: 1 year: 2014 ident: 10.1016/j.tca.2018.11.013_bib0155 article-title: Effect of cure temperature on the glass transition temperature and mechanical properties of epoxy adhesives publication-title: J. Adhes. doi: 10.1080/00218464.2013.779559 – volume: 7 start-page: 145 issue: 2-3 year: 1982 ident: 10.1016/j.tca.2018.11.013_bib0195 article-title: Gelation in the curing of epoxy resins with anhydrides publication-title: Polym. Bull. doi: 10.1007/BF00265465 – year: 1994 ident: 10.1016/j.tca.2018.11.013_bib0065 article-title: Thermal conductivity of polymers, glasses and ceramics by modulated DSC b publication-title: TA Instruments Technical Notes TA086 – volume: 30 start-page: 1616 issue: 6 year: 1997 ident: 10.1016/j.tca.2018.11.013_bib0175 article-title: Kinetic model for gelation in the diepoxide-cyclic anhydride copolymerization initiated by tertiary amines publication-title: Macromolecules doi: 10.1021/ma9614048 – volume: 48 start-page: 86 issue: 1 year: 1956 ident: 10.1016/j.tca.2018.11.013_bib0075 article-title: Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides publication-title: Ind. Eng. Chem. doi: 10.1021/ie50553a028 – volume: 24 start-page: 6721 issue: 25 year: 1991 ident: 10.1016/j.tca.2018.11.013_bib0225 article-title: Ultraslow relaxations in networks: evidence for remnant fractal structures publication-title: Macromolecules doi: 10.1021/ma00025a025 – volume: 58 start-page: 1401 issue: 12 year: 2009 ident: 10.1016/j.tca.2018.11.013_bib0160 article-title: Crosslinking of mixtures of diglycidylether of bisphenol-A with 1,6-dioxaspiro 4.4 nonan-2,7-dione initiated by tertiary amines: III. Effect of hydroxyl groups on network formation publication-title: Polym. Int. doi: 10.1002/pi.2675 – volume: 22 start-page: 99 issue: 1 year: 1989 ident: 10.1016/j.tca.2018.11.013_bib0190 article-title: Curing mechanism and thermal properties of epoxy imidazole systems publication-title: Macromolecules doi: 10.1021/ma00191a020 – volume: 243 start-page: 231 issue: 2 year: 1994 ident: 10.1016/j.tca.2018.11.013_bib0060 article-title: Thermal conductivity of polymers, glasses and ceramics by modulated DSC publication-title: Thermochim. Acta doi: 10.1016/0040-6031(94)85058-5 – volume: 105 start-page: 243 year: 2016 ident: 10.1016/j.tca.2018.11.013_bib0005 article-title: Cure mechanisms of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine publication-title: Polymer doi: 10.1016/j.polymer.2016.10.028 – volume: 447 start-page: 152 year: 2018 ident: 10.1016/j.tca.2018.11.013_bib0220 article-title: Surface engineering of nanoparticles with macromolecules for epoxy curing: development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.197 – volume: 19 start-page: 319 issue: 3 year: 1980 ident: 10.1016/j.tca.2018.11.013_bib0010 article-title: Diethanolamine as a hardener for epoxy-resins publication-title: Ind. Eng. Chem. Prod. Res. Dev. doi: 10.1021/i360075a009 – volume: 61 start-page: 1710 issue: 12 year: 2012 ident: 10.1016/j.tca.2018.11.013_bib0120 article-title: Modification of epoxy-anhydride thermosets using a hyperbranched poly(ester-amide): I. Kinetic study publication-title: Polym. Int. doi: 10.1002/pi.4259 – volume: 75 start-page: 113 year: 1986 ident: 10.1016/j.tca.2018.11.013_bib0095 article-title: Kinetics, thermodynamics and mechanism of reactions of epoxy oligomers with amines publication-title: Adv. Polym. Sci. doi: 10.1007/BFb0017916 – volume: 109 start-page: 2304 issue: 4 year: 2008 ident: 10.1016/j.tca.2018.11.013_bib0130 article-title: Crosslinking of mixtures of DGEBA with 1,6-dioxaspiro 4,4 nonan-2,7-dione initiated by tertiary amines. I. Study of the reaction and kinetic analysis publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28336 – volume: 13 start-page: 59 issue: 1 year: 1973 ident: 10.1016/j.tca.2018.11.013_bib0235 article-title: Kinetics and thermal characterization of thermoset cure publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760130110 – year: 1961 ident: 10.1016/j.tca.2018.11.013_bib0015 – volume: 99 start-page: 376 year: 2016 ident: 10.1016/j.tca.2018.11.013_bib0025 article-title: Self-toughening of epoxy resin through controlling topology of cross-linked networks publication-title: Polymer doi: 10.1016/j.polymer.2016.07.038 – volume: 39 start-page: 1929 issue: 10 year: 1998 ident: 10.1016/j.tca.2018.11.013_bib0145 article-title: Studies of cure schedule and final property relationships of a commercial epoxy resin using modified imidazole curing agents publication-title: Polymer doi: 10.1016/S0032-3861(97)00372-8 – year: 1991 ident: 10.1016/j.tca.2018.11.013_bib0210 – volume: 51 start-page: 2706 issue: 9 year: 1929 ident: 10.1016/j.tca.2018.11.013_bib0090 article-title: The thermal decomposition of gaseous ethylene oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01384a014 – volume: 34 start-page: 3520 issue: 16 year: 1993 ident: 10.1016/j.tca.2018.11.013_bib0085 article-title: Reaction of glycidyl ethers with aliphatic-alcohols in the presence of benzyl dimethylamine publication-title: Polymer doi: 10.1016/0032-3861(93)90485-S – volume: 269 start-page: 213 year: 1995 ident: 10.1016/j.tca.2018.11.013_bib0115 article-title: Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system publication-title: Thermochim. Acta doi: 10.1016/0040-6031(95)02362-3 – volume: 28 start-page: 407 issue: 5 year: 1996 ident: 10.1016/j.tca.2018.11.013_bib0105 article-title: Cure behavior of an epoxy-anhydride-imidazole system publication-title: Polym. J. doi: 10.1295/polymj.28.407 – volume: 549 start-page: 69 year: 2012 ident: 10.1016/j.tca.2018.11.013_bib0185 article-title: Curing of DGEBA epoxy using a phenol-terminated hyperbranched curing agent: cure kinetics, gelation, and the TTT cure diagram publication-title: Thermochim. Acta doi: 10.1016/j.tca.2012.09.012 – volume: 46 start-page: 351 issue: 3 year: 2006 ident: 10.1016/j.tca.2018.11.013_bib0125 article-title: Homopolymerization of epoxy monomers initiated by 4-(dimethylamino)pyridine publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20468 – year: 2007 ident: 10.1016/j.tca.2018.11.013_bib0215 – year: 1979 ident: 10.1016/j.tca.2018.11.013_bib0035 article-title: HPLC and GPC analysis of EPON 828 epoxy resins publication-title: Army Materials and Mechanics Research Division AMMRC-TR-79-59 – volume: 33 start-page: 4768 issue: 22 year: 1992 ident: 10.1016/j.tca.2018.11.013_bib0150 article-title: Effect of curing history on ultimate glass-transition temperature and network structure of cross-linked polymers publication-title: Polymer doi: 10.1016/0032-3861(92)90691-O – volume: 53 start-page: 22 year: 2014 ident: 10.1016/j.tca.2018.11.013_bib0180 article-title: Comparative analysis of stochastic network build-up methods for the curing of epoxy-anhydride thermosets publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.01.015 – volume: 52 start-page: 61 issue: 1 year: 2014 ident: 10.1016/j.tca.2018.11.013_bib0170 article-title: From curing kinetics to network structure: a novel approach to the modeling of the network buildup of epoxy-anhydride thermosets publication-title: Journal of Polymer Science Part a-Polymer Chemistry doi: 10.1002/pola.26972 – volume: 51 start-page: 26 issue: 1 year: 2010 ident: 10.1016/j.tca.2018.11.013_bib0205 article-title: Crosslinking of mixtures of DGEBA with 1,6-dioxaspiro 4,4 nonan-2,7-dione initiated by tertiary amines. Part IV. Effect of hydroxyl groups on initiation and curing kinetics publication-title: Polymer doi: 10.1016/j.polymer.2009.11.013 – volume: 656 start-page: 144 issue: Supplement C year: 2017 ident: 10.1016/j.tca.2018.11.013_bib0055 article-title: The insulating effect of the low thermal conductivity of epoxy on the resolution of the heat of reaction during polymerization by differential scanning calorimetry publication-title: Thermochim. Acta doi: 10.1016/j.tca.2017.09.001 – volume: 21 start-page: 1475 issue: 5 year: 1983 ident: 10.1016/j.tca.2018.11.013_bib0200 article-title: Mechanism of imidazole catalysis in the curing of epoxy resins publication-title: Journal of Polymer Science Part a-Polymer Chemistry doi: 10.1002/pol.1983.170210520 – volume: 22 start-page: 253 issue: 3 year: 1978 ident: 10.1016/j.tca.2018.11.013_bib0070 article-title: Reactions of epoxy with other functional-groups and arising sec-hydroxyl groups publication-title: Periodica Polytechnica-Chemical Engineering – volume: 32 start-page: 529 issue: 8 year: 1992 ident: 10.1016/j.tca.2018.11.013_bib0165 article-title: Analysis of gel formation in imidazole-catalyzed epoxies publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760320804 – volume: 55 start-page: 35 year: 2014 ident: 10.1016/j.tca.2018.11.013_bib0135 article-title: Theoretical modeling of the effect of proton donors and regeneration reactions in the network build-up of epoxy thermosets using tertiary amines as initiators publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.03.022 – volume: 32 start-page: 1918 issue: 6 year: 1999 ident: 10.1016/j.tca.2018.11.013_bib0140 article-title: Cohesive failure in partially cured epoxies publication-title: Macromolecules doi: 10.1021/ma981547p – volume: 38 start-page: 5481 issue: 21 year: 1997 ident: 10.1016/j.tca.2018.11.013_bib0040 article-title: Verification of the capability for quantitative stress prediction during epoxy cure publication-title: Polymer doi: 10.1016/S0032-3861(97)00077-3 – year: 2015 ident: 10.1016/j.tca.2018.11.013_bib0230 – volume: 145 start-page: 54 year: 2018 ident: 10.1016/j.tca.2018.11.013_bib0020 article-title: Predicting the counter-intuitive stress relaxation behavior of glass forming materials publication-title: Polymer doi: 10.1016/j.polymer.2018.04.050 – volume: 67 start-page: 1101 issue: 6 year: 1998 ident: 10.1016/j.tca.2018.11.013_bib0110 article-title: A study on isothermal cure behavior of an epoxy-rich/anhydride system by differential scanning calorimetry publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19980207)67:6<1101::AID-APP18>3.0.CO;2-2 |
SSID | ssj0001280 |
Score | 2.3346505 |
Snippet | [Display omitted]
•Tertiary amine activated cure in hydroxyl rich environment.•Primary mechanism is a zwitterion initiated anionic chain-growth... The curing of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine (DEA) is studied. DEA has three reactive groups, a secondary amine hydrogen and... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 149 |
SubjectTerms | bisphenol A DGEBA Diethanolamine differential scanning calorimetry epoxides Epoxy gelation hydrogen INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY reaction kinetics temperature Tertiary amine tertiary amines |
Title | Reactions of DGEBA epoxy cured with diethanolamine: Isoconversional kinetics and implications to network structure |
URI | https://dx.doi.org/10.1016/j.tca.2018.11.013 https://www.proquest.com/docview/2220893380 https://www.osti.gov/servlets/purl/1524642 |
Volume | 671 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF1F4VAuVYGiBtpoK3Gq5MSxN7aXW5pCk0bigBqR22q_LIUWG4VEai_89r6J7UKF4NCTZctjW57xzJv127eMnRhquQaU_aS0ARKeCTInZZAA3QufyhSGxLa4SCZz8W0xXLTYuJkLQ7TKOvdXOX2bresj_fpt9m-XS5rji2KEmERQAiNEJLstREpR3rt_oHkg_4YNc47Obv5sbjlea0vSQ4OsR0Keg_i52tQu8bk9SdbbCnT-hr2uoSMfVU-3x1q-2Gevxs2KbQdsdemraQp3vMz5l69nn0cc-PrXb243K-84jblyt_Q0Wo6O9gYA85RP4R5inq8qeQ7-A0dJupnrwvHlI745X5e8qEjjvFKdxUXfsvn52ffxJKjXVAgsvtZ1YIGoIwcQoqX0aa4zrWXijQhzZzLpUumMMNkwtFmURtag_QpNlCYuSYw0MjfxIWsXZeHfMR57Ev7RGSq8FjoXxorIDMNY5GmUxEJ3WNi8TWVrwXFa9-Knaphl1woOUOQANCIKDuiwT39Nbiu1jZdOFo2L1D8ho1ANXjI7JneSCcnkWuITwQY4RqAX67CPjZcVvEd_T3Thy82dApAKAe7iLDz6vxsfs13syWr85j1rw1P-AxDN2nS3IdtlO6PpbHJB29nl1ewPCPv2vw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RcKCXqh9UTenHVuoJyeDYG9vLLQ3QpNAcEEjcVvtlKdDaKASp_fe8iW1UhODQq52xI7_1zJv127dEXy23XAPOfkq5CAnPRoVXKsrA7mXIVY5AVlvMssmZ_HE-PF-jcbcWhmWVbe5vcvoqW7dHdtunuXs1n_MaXxQjjEkMSnCEJHtG6-xONezR-mh6NJndJWSk4LgTz3FA93FzJfNaOnYfGhQ77OU5SB8rT70ab9yDfL0qQocv6UXLHsWo-YOvaC1Ur2lj3G3a9oYWJ6FZqXAt6lLsfz_4NhKg2H_-CnezCF7wtKvw88AT5mhqf4Nj7okpEGLx-aJx6BCXOMruzcJUXsz_kZyLZS2qRjcuGuNZXHSTzg4PTseTqN1WIXJ4YZeRA6lOPHiIUSrkpSmMUVmwMi69LZTPlbfSFsPYFUmeOIsOLLZJnvkss8qq0qZvqVfVVXhHIg3s_WMKFHkjTSmtk4kdxqks8yRLpelT3D1N7VrPcd764pfuxGUXGgBoBgC9iAYAfdq-C7lqDDee-rHsINL3Ro1GQXgqbIvh5BB2ynUsKUIMqIxEO9anLx3KGujxBxRThfrmWoNLxeB3aRG__78bf6aNyenPY308nR1t0XOcUc10zgfqAbXwEQRnaT-1A_gWv1n3zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactions+of+DGEBA+epoxy+cured+with+diethanolamine%3A+Isoconversional+kinetics+and+implications+to+network+structure&rft.jtitle=Thermochimica+acta&rft.au=McCoy%2C+John+D.&rft.au=Ancipink%2C+Windy+B.&rft.au=Maestas%2C+Salomon+R.&rft.au=Draelos%2C+Lara+R.&rft.date=2019-01-01&rft.pub=Elsevier&rft.issn=0040-6031&rft.eissn=1872-762X&rft.volume=671&rft.issue=C&rft_id=info:doi/10.1016%2Fj.tca.2018.11.013&rft.externalDocID=1524642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6031&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6031&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6031&client=summon |