Influence of dynamic-strain aging due to excess Mg on fatigue crack growth rate scatter in Al6061-T6 alloy

•Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number of test specimens.•Excess Mg promoted small scatter in Mode I fatigue crack growth.•Local plastic deformation affected the FCGR scatter of mic...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied fracture mechanics Vol. 108; p. 102617
Main Authors Anis, Samsol Faizal, Koyama, Motomichi, Hamada, Shigeru, Noguchi, Hiroshi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.08.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number of test specimens.•Excess Mg promoted small scatter in Mode I fatigue crack growth.•Local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks.•Dynamic strain aging of Mg induced stable Mode I crack growth. Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to the need for a large number of test specimens. The purposes of this study are to investigate the influence of dynamic strain aging on fatigue crack growth rate (FCGR) scatter in Al 6061-T6 alloys and to present a new approach to evaluate the scatter of FCGR using a limited number of the test specimen. Rotating bending fatigue tests of 6061-T6-based Al alloys with added Zr and excess Mg were performed under constant amplitude loading using smooth specimens. The scatter behavior of FCGR is investigated by examining the fatigue crack growth on the specimen surface and fractographic observation on the fracture surface. The accounting for the interaction effects of multiple surface cracks and fractographic examination on striation formation from previous findings revealed that excess Mg promoted small scatter in Mode I fatigue crack growth. This study showed that local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks. These findings suggest that dynamic strain aging of Mg induces stable Mode I crack growth due to pinning of dislocation movement on slip planes during the crack growth process.
AbstractList •Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number of test specimens.•Excess Mg promoted small scatter in Mode I fatigue crack growth.•Local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks.•Dynamic strain aging of Mg induced stable Mode I crack growth. Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to the need for a large number of test specimens. The purposes of this study are to investigate the influence of dynamic strain aging on fatigue crack growth rate (FCGR) scatter in Al 6061-T6 alloys and to present a new approach to evaluate the scatter of FCGR using a limited number of the test specimen. Rotating bending fatigue tests of 6061-T6-based Al alloys with added Zr and excess Mg were performed under constant amplitude loading using smooth specimens. The scatter behavior of FCGR is investigated by examining the fatigue crack growth on the specimen surface and fractographic observation on the fracture surface. The accounting for the interaction effects of multiple surface cracks and fractographic examination on striation formation from previous findings revealed that excess Mg promoted small scatter in Mode I fatigue crack growth. This study showed that local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks. These findings suggest that dynamic strain aging of Mg induces stable Mode I crack growth due to pinning of dislocation movement on slip planes during the crack growth process.
Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to the need for a large number of test specimens. The purposes of this study are to investigate the influence of dynamic strain aging on fatigue crack growth rate (FCGR) scatter in Al 6061-T6 alloys and to present a new approach to evaluate the scatter of FCGR using a limited number of the test specimen. Rotating bending fatigue tests of 6061-T6-based Al alloys with added Zr and excess Mg were performed under constant amplitude loading using smooth specimens. The scatter behavior of FCGR is investigated by examining the fatigue crack growth on the specimen surface and fractographic observation on the fracture surface. The accounting for the interaction effects of multiple surface cracks and fractographic examination on striation formation from previous findings revealed that excess Mg promoted small scatter in Mode I fatigue crack growth. This study showed that local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks. These findings suggest that dynamic strain aging of Mg induces stable Mode I crack growth due to pinning of dislocation movement on slip planes during the crack growth process.
ArticleNumber 102617
Author Anis, Samsol Faizal
Koyama, Motomichi
Noguchi, Hiroshi
Hamada, Shigeru
Author_xml – sequence: 1
  givenname: Samsol Faizal
  surname: Anis
  fullname: Anis, Samsol Faizal
  organization: Department of Mechanical Engineering, PPD SPACE, University of Technology Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Motomichi
  surname: Koyama
  fullname: Koyama, Motomichi
  organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
– sequence: 3
  givenname: Shigeru
  surname: Hamada
  fullname: Hamada, Shigeru
  organization: Department of Mechanical Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
– sequence: 4
  givenname: Hiroshi
  surname: Noguchi
  fullname: Noguchi, Hiroshi
  email: nogu@mech.kyushu-u.ac.jp
  organization: Department of Mechanical Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
BookMark eNp9kE9r2zAYxsVoYWnWb9CDYGdnkixL9mUQwtYVUnrJzkK8eu3Kc6RMUrbl28_BPff0wsPzh_d3R25CDEjIA2cbzrj6Mm6K7Y8IG8HEVRKK6w9kxVstKq3q9oasZpuuWinFR3KX88gY17yrV2R8Cv10xgBIY0_dJdijhyqXZH2gdvBhoO6MtESK_wBzps8DjYH2tvhh1iFZ-EWHFP-WV5psQZrBloKJzvHtpJji1UFRO03x8onc9nbKeP921-Tn92-H3Y9q__L4tNvuK5CMlQo0Vw2rnZQKoBPIGtR122nbcXCgAbV0XAqOyIVtalF3dauVswx63VjH6jX5vPSeUvx9xlzMGM8pzJNGzKWiaxolZ5dcXJBizgl7c0r-aNPFcGauVM1oFqrmStUsVOfY1yWG8wd_PCaTwV_xOZ8QinHRv1_wH2mcgkc
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2023_131986
crossref_primary_10_2320_materia_62_24
Cites_doi 10.1016/j.scriptamat.2012.03.018
10.1016/0025-5416(68)90047-5
10.1016/j.ijfatigue.2016.10.010
10.1016/0001-6160(85)90148-8
10.1016/j.engfracmech.2007.07.015
10.1016/j.ijfatigue.2017.07.019
10.1016/j.ijfatigue.2017.02.009
10.1016/j.ijfatigue.2016.01.003
10.1016/j.matdes.2011.04.034
10.1016/j.ijfatigue.2007.05.012
10.1016/j.ijfatigue.2018.01.003
10.1007/s11661-003-0153-6
10.1016/j.tafmec.2019.102340
10.1299/kikaia.62.671
10.1016/j.msea.2015.06.051
10.1111/j.1460-2695.1992.tb00024.x
10.2472/jsms.35.564
10.1016/j.actamat.2013.05.044
10.1016/0001-6160(76)90104-8
10.1016/S0921-5093(97)00129-9
10.1016/j.tafmec.2020.102561
10.1016/j.engfailanal.2012.01.005
10.1016/j.matchar.2014.02.013
10.1016/j.ijfatigue.2015.01.016
10.4028/www.scientific.net/MSF.889.143
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Aug 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2020
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.tafmec.2020.102617
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7638
ExternalDocumentID 10_1016_j_tafmec_2020_102617
S0167844220301932
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UHS
WUQ
XPP
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c400t-c716503d446cc92e05e73897a91cdc7ce74d1421ee12a532393876da0cf75ad03
IEDL.DBID AIKHN
ISSN 0167-8442
IngestDate Thu Oct 10 20:10:37 EDT 2024
Thu Sep 26 17:25:34 EDT 2024
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aluminum alloys
Scatter
Fatigue crack growth rate
Rotating bending fatigue test
Smooth specimen
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-c716503d446cc92e05e73897a91cdc7ce74d1421ee12a532393876da0cf75ad03
PQID 2446295564
PQPubID 2045390
ParticipantIDs proquest_journals_2446295564
crossref_primary_10_1016_j_tafmec_2020_102617
elsevier_sciencedirect_doi_10_1016_j_tafmec_2020_102617
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical and applied fracture mechanics
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Nishikura, Koyama, Yamamura, Ogawa, Tsuzaki, Noguchi (b0070) 2018; 113
Yuan, Liang (b0095) 2011; 32
Meng, Cui, Zhao, He (b0100) 2014; 92
Goto, Kawagoishi, Nisitani, Miura (b0040) 1996; 62–595
Gleiter, Hornbogen (b0140) 1967; 2
Takahashi, Shikama, Nakamichi, Kawata, Kasaki, Nishioka, Kita, Takuma, Noguchi (b0065) 2015; 641
H.F. Hardrath, E.C. Utley, D.E. Guthrie. Rotating-beam fatigue tests of notched and unnotched 7075-T6 aluminum alloy specimens under stresses of constant and varying amplitudes. NACA Technical Note D-210. 1959.
Rittner, Weertman, Eastman, Yoder, Stone (b0105) 1997; 237
ASTM E647-11. Annual Book of ASTM Standards, Section Three. ASTM International, West Conshohocken, PA. 2012.
Hornbogen, Gahr (b0145) 1976; 24
Schwarz, Funk (b0060) 1985; 33
Mohd, Mutoh, Otsuka, Miyashita, Koike, Suzuki (b0025) 2012; 22
Anis, Koyama, Noguchi (b0045) 2017; 889
Anis, Koyama, Hamada, Noguchi (b0055) 2019
Omura, Koyama, Hamano, Tsuzaki, Noguchi (b0130) 2017; 95
Underhill, DuQuesnay (b0035) 2008; 30
Kayama (b0050) 2008; 75
Shimokawa, Hamaguchi (b0005) 1986; 35
Li, Koyama, Sakurada, Yoshimura, Ushioda, Noguchi (b0085) 2016; 87
Shikama, Takahashi, Zeng, Yoshihara, Aiura, Higashida, Noguchi (b0135) 2012; 67
Yi, Gao, Lee, Flower, Lindley (b0020) 2003; 34A
Habib, Koyama, Tsuchiyama, Noguchi (b0080) 2017; 104
Anderson (b0115) 2013
S.F. Anis, M. Koyama, S. Hamada and H. Noguchi. Mechanical Approximation of a Stress Field for an Inclined Crack and Interaction between Two Cracks under Tension. Theoretical and Applied Fracture Mechanics. Under review TAFMEC_2019_602.
Rocha, Bruhwiller, Nussbaumer (b0015) 2015; 75
Li, Koyama, Sakurada, Yoshimura, Ushioda, Noguchi (b0090) 2018; 110
Wang, Qiu, Liu, Taylor, Easton, Zhang (b0110) 2013; 61
Habib, Koyama, Noguchi (b0075) 2017; 99
Goto (b0010) 1992; 15
Li (10.1016/j.tafmec.2020.102617_b0085) 2016; 87
Yuan (10.1016/j.tafmec.2020.102617_b0095) 2011; 32
Anis (10.1016/j.tafmec.2020.102617_b0055) 2019
Shikama (10.1016/j.tafmec.2020.102617_b0135) 2012; 67
Gleiter (10.1016/j.tafmec.2020.102617_b0140) 1967; 2
Li (10.1016/j.tafmec.2020.102617_b0090) 2018; 110
Rocha (10.1016/j.tafmec.2020.102617_b0015) 2015; 75
Schwarz (10.1016/j.tafmec.2020.102617_b0060) 1985; 33
Anis (10.1016/j.tafmec.2020.102617_b0045) 2017; 889
Habib (10.1016/j.tafmec.2020.102617_b0080) 2017; 104
Hornbogen (10.1016/j.tafmec.2020.102617_b0145) 1976; 24
Meng (10.1016/j.tafmec.2020.102617_b0100) 2014; 92
Rittner (10.1016/j.tafmec.2020.102617_b0105) 1997; 237
Goto (10.1016/j.tafmec.2020.102617_b0010) 1992; 15
10.1016/j.tafmec.2020.102617_b0120
Wang (10.1016/j.tafmec.2020.102617_b0110) 2013; 61
Anderson (10.1016/j.tafmec.2020.102617_b0115) 2013
10.1016/j.tafmec.2020.102617_b0125
Shimokawa (10.1016/j.tafmec.2020.102617_b0005) 1986; 35
Mohd (10.1016/j.tafmec.2020.102617_b0025) 2012; 22
Underhill (10.1016/j.tafmec.2020.102617_b0035) 2008; 30
Takahashi (10.1016/j.tafmec.2020.102617_b0065) 2015; 641
Omura (10.1016/j.tafmec.2020.102617_b0130) 2017; 95
Yi (10.1016/j.tafmec.2020.102617_b0020) 2003; 34A
Habib (10.1016/j.tafmec.2020.102617_b0075) 2017; 99
Nishikura (10.1016/j.tafmec.2020.102617_b0070) 2018; 113
10.1016/j.tafmec.2020.102617_b0030
Goto (10.1016/j.tafmec.2020.102617_b0040) 1996; 62–595
Kayama (10.1016/j.tafmec.2020.102617_b0050) 2008; 75
References_xml – volume: 889
  start-page: 143
  year: 2017
  end-page: 147
  ident: b0045
  article-title: Investigation on Mode I propagation behavior of fatigue crack in precipitation-hardened aluminum alloy with different Mg content
  publication-title: Mater. Sci. Forum
  contributor:
    fullname: Noguchi
– volume: 92
  start-page: 138
  year: 2014
  end-page: 148
  ident: b0100
  article-title: Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting
  publication-title: Mater. Charact.
  contributor:
    fullname: He
– volume: 24
  start-page: 581
  year: 1976
  end-page: 592
  ident: b0145
  article-title: Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy
  publication-title: Acta Metall.
  contributor:
    fullname: Gahr
– volume: 113
  start-page: 359
  year: 2018
  end-page: 366
  ident: b0070
  article-title: Non-propagating fatigue crack in austenitic steels with a micro-notch: effects of dynamic strain aging
  publication-title: Martensit. Transform. Microstruct. Hardness Heterogen. Int. J. Fatigue
  contributor:
    fullname: Noguchi
– volume: 62–595
  start-page: 671
  year: 1996
  end-page: 677
  ident: b0040
  article-title: Statistical investigation of small crack growth rate in age-hardened Al alloy 6061–T6
  publication-title: Trans JSME.
  contributor:
    fullname: Miura
– volume: 15
  start-page: 953
  year: 1992
  end-page: 963
  ident: b0010
  article-title: Scatter characteristics of fatigue life and the behavior of small cracks
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  contributor:
    fullname: Goto
– volume: 2
  start-page: 285
  year: 1967
  end-page: 302
  ident: b0140
  article-title: Precipitation hardening by coherent particles
  publication-title: Mater. Sci. Eng.
  contributor:
    fullname: Hornbogen
– volume: 33
  start-page: 295
  year: 1985
  end-page: 307
  ident: b0060
  article-title: Kinetics of the Portevin-Le Chatelier effect in Al 6061 alloy
  publication-title: Acta Metall.
  contributor:
    fullname: Funk
– volume: 75
  start-page: 205
  year: 2015
  end-page: 212
  ident: b0015
  article-title: Microstructural influence on the scatter in the fatigue life of steel reinforcement bars
  publication-title: Int. J. Fatigue
  contributor:
    fullname: Nussbaumer
– volume: 104
  start-page: 158
  year: 2017
  end-page: 170
  ident: b0080
  article-title: Fatigue crack non-propagation assisted by nitrogen-enhanced dislocation planarity in austenitic stainless steels
  publication-title: Int. J. Fatigue
  contributor:
    fullname: Noguchi
– volume: 237
  start-page: 185
  year: 1997
  end-page: 190
  ident: b0105
  article-title: Mechanical behavior of nanocrystalline aluminum-zirconium
  publication-title: Mater. Sci. Eng., A
  contributor:
    fullname: Stone
– volume: 32
  start-page: 4195
  year: 2011
  end-page: 4200
  ident: b0095
  article-title: Effect of Zr on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor
  publication-title: Mater. Des.
  contributor:
    fullname: Liang
– volume: 61
  start-page: 5636
  year: 2013
  end-page: 5645
  ident: b0110
  article-title: The grain refinement mechanism of cast aluminum by zirconium
  publication-title: Acta Mater.
  contributor:
    fullname: Zhang
– volume: 99
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0075
  article-title: Impact of Mn-C couples on fatigue crack growth in austenitic steels: the attractive atomic interaction is negative or positive?
  publication-title: Int. J. Fatigue
  contributor:
    fullname: Noguchi
– year: 2019
  ident: b0055
  article-title: Mode I fatigue crack growth induced by strain-aging in precipitation-hardened aluminum alloy
  publication-title: Theor. Appl. Fract. Mech.
  contributor:
    fullname: Noguchi
– volume: 95
  start-page: 38
  year: 2017
  end-page: 44
  ident: b0130
  article-title: Generalized evaluation method for determining transition crack length for microstructurally small to microstructurally large fatigue crack growth: Experimental definition, facilitation, and validation
  publication-title: Int. J. Fatigue
  contributor:
    fullname: Noguchi
– volume: 22
  start-page: 64
  year: 2012
  end-page: 72
  ident: b0025
  article-title: Analysis of fatigue life and pore size data die-cast AM60B magnesium alloy
  publication-title: Eng. Fail. Anal.
  contributor:
    fullname: Suzuki
– year: 2013
  ident: b0115
  article-title: Fracture mechanics: Fundamental and applications
  contributor:
    fullname: Anderson
– volume: 67
  start-page: 49
  year: 2012
  end-page: 52
  ident: b0135
  article-title: Distinct fatigue crack propagation limit of new precipitation-hardened aluminum alloy
  publication-title: Scr. Mater.
  contributor:
    fullname: Noguchi
– volume: 35
  start-page: 564
  year: 1986
  end-page: 570
  ident: b0005
  article-title: Scatter of fatigue crack growth rate versus scatter of fatiguelife in 2024–T4 aluminum alloy specimens under bending
  publication-title: J. Soc. Mater. Sci. Jpn.
  contributor:
    fullname: Hamaguchi
– volume: 87
  start-page: 1
  year: 2016
  end-page: 5
  ident: b0085
  article-title: Potential resistance to transgranular fatigue crack growth of Fe-C alloy with a supersaturated carbon clarified through FIB micro-notching technique
  publication-title: Int. J. Fatigue
  contributor:
    fullname: Noguchi
– volume: 641
  start-page: 263
  year: 2015
  end-page: 273
  ident: b0065
  article-title: Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061–T6 alloy
  publication-title: Mater. Sci. Eng., A
  contributor:
    fullname: Noguchi
– volume: 75
  start-page: 1336
  year: 2008
  end-page: 1349
  ident: b0050
  article-title: Growth evaluation of multiple interacting surface cracks. PartI: Experimentals and simulation of coalesced crack
  publication-title: Eng. Fract. Mech.
  contributor:
    fullname: Kayama
– volume: 110
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0090
  article-title: Temperature dependence of transgranular fatigue crack resistance in an interstitial free steel and Fe-C steel with a supersaturated carbon: effect of dynamic strain aging and dynamic precitation
  publication-title: Int. J. Fatigue
  contributor:
    fullname: Noguchi
– volume: 30
  start-page: 614
  year: 2008
  end-page: 622
  ident: b0035
  article-title: The effect of dynamic loading on the fatigue scatter factor for Al 7050
  publication-title: Int. J. Fatigue
  contributor:
    fullname: DuQuesnay
– volume: 34A
  start-page: 1879
  year: 2003
  end-page: 1890
  ident: b0020
  article-title: Scatter in fatigue life due to effects of porosity in cast A356–T6 Aluminum-Silicon Alloys
  publication-title: Metall. Mater. Trans. A.
  contributor:
    fullname: Lindley
– volume: 67
  start-page: 49
  year: 2012
  ident: 10.1016/j.tafmec.2020.102617_b0135
  article-title: Distinct fatigue crack propagation limit of new precipitation-hardened aluminum alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2012.03.018
  contributor:
    fullname: Shikama
– year: 2013
  ident: 10.1016/j.tafmec.2020.102617_b0115
  contributor:
    fullname: Anderson
– volume: 2
  start-page: 285
  year: 1967
  ident: 10.1016/j.tafmec.2020.102617_b0140
  article-title: Precipitation hardening by coherent particles
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(68)90047-5
  contributor:
    fullname: Gleiter
– volume: 95
  start-page: 38
  year: 2017
  ident: 10.1016/j.tafmec.2020.102617_b0130
  article-title: Generalized evaluation method for determining transition crack length for microstructurally small to microstructurally large fatigue crack growth: Experimental definition, facilitation, and validation
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2016.10.010
  contributor:
    fullname: Omura
– volume: 33
  start-page: 295
  year: 1985
  ident: 10.1016/j.tafmec.2020.102617_b0060
  article-title: Kinetics of the Portevin-Le Chatelier effect in Al 6061 alloy
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(85)90148-8
  contributor:
    fullname: Schwarz
– volume: 75
  start-page: 1336
  year: 2008
  ident: 10.1016/j.tafmec.2020.102617_b0050
  article-title: Growth evaluation of multiple interacting surface cracks. PartI: Experimentals and simulation of coalesced crack
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2007.07.015
  contributor:
    fullname: Kayama
– volume: 104
  start-page: 158
  year: 2017
  ident: 10.1016/j.tafmec.2020.102617_b0080
  article-title: Fatigue crack non-propagation assisted by nitrogen-enhanced dislocation planarity in austenitic stainless steels
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.07.019
  contributor:
    fullname: Habib
– volume: 113
  start-page: 359
  year: 2018
  ident: 10.1016/j.tafmec.2020.102617_b0070
  article-title: Non-propagating fatigue crack in austenitic steels with a micro-notch: effects of dynamic strain aging
  publication-title: Martensit. Transform. Microstruct. Hardness Heterogen. Int. J. Fatigue
  contributor:
    fullname: Nishikura
– volume: 99
  start-page: 1
  year: 2017
  ident: 10.1016/j.tafmec.2020.102617_b0075
  article-title: Impact of Mn-C couples on fatigue crack growth in austenitic steels: the attractive atomic interaction is negative or positive?
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.02.009
  contributor:
    fullname: Habib
– volume: 87
  start-page: 1
  year: 2016
  ident: 10.1016/j.tafmec.2020.102617_b0085
  article-title: Potential resistance to transgranular fatigue crack growth of Fe-C alloy with a supersaturated carbon clarified through FIB micro-notching technique
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2016.01.003
  contributor:
    fullname: Li
– volume: 32
  start-page: 4195
  year: 2011
  ident: 10.1016/j.tafmec.2020.102617_b0095
  article-title: Effect of Zr on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.04.034
  contributor:
    fullname: Yuan
– volume: 30
  start-page: 614
  year: 2008
  ident: 10.1016/j.tafmec.2020.102617_b0035
  article-title: The effect of dynamic loading on the fatigue scatter factor for Al 7050
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2007.05.012
  contributor:
    fullname: Underhill
– volume: 110
  start-page: 1
  year: 2018
  ident: 10.1016/j.tafmec.2020.102617_b0090
  article-title: Temperature dependence of transgranular fatigue crack resistance in an interstitial free steel and Fe-C steel with a supersaturated carbon: effect of dynamic strain aging and dynamic precitation
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.01.003
  contributor:
    fullname: Li
– volume: 34A
  start-page: 1879
  year: 2003
  ident: 10.1016/j.tafmec.2020.102617_b0020
  article-title: Scatter in fatigue life due to effects of porosity in cast A356–T6 Aluminum-Silicon Alloys
  publication-title: Metall. Mater. Trans. A.
  doi: 10.1007/s11661-003-0153-6
  contributor:
    fullname: Yi
– ident: 10.1016/j.tafmec.2020.102617_b0030
– year: 2019
  ident: 10.1016/j.tafmec.2020.102617_b0055
  article-title: Mode I fatigue crack growth induced by strain-aging in precipitation-hardened aluminum alloy
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102340
  contributor:
    fullname: Anis
– volume: 62–595
  start-page: 671
  year: 1996
  ident: 10.1016/j.tafmec.2020.102617_b0040
  article-title: Statistical investigation of small crack growth rate in age-hardened Al alloy 6061–T6
  publication-title: Trans JSME.
  doi: 10.1299/kikaia.62.671
  contributor:
    fullname: Goto
– volume: 641
  start-page: 263
  year: 2015
  ident: 10.1016/j.tafmec.2020.102617_b0065
  article-title: Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061–T6 alloy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2015.06.051
  contributor:
    fullname: Takahashi
– volume: 15
  start-page: 953
  year: 1992
  ident: 10.1016/j.tafmec.2020.102617_b0010
  article-title: Scatter characteristics of fatigue life and the behavior of small cracks
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/j.1460-2695.1992.tb00024.x
  contributor:
    fullname: Goto
– volume: 35
  start-page: 564
  year: 1986
  ident: 10.1016/j.tafmec.2020.102617_b0005
  article-title: Scatter of fatigue crack growth rate versus scatter of fatiguelife in 2024–T4 aluminum alloy specimens under bending
  publication-title: J. Soc. Mater. Sci. Jpn.
  doi: 10.2472/jsms.35.564
  contributor:
    fullname: Shimokawa
– volume: 61
  start-page: 5636
  year: 2013
  ident: 10.1016/j.tafmec.2020.102617_b0110
  article-title: The grain refinement mechanism of cast aluminum by zirconium
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.05.044
  contributor:
    fullname: Wang
– volume: 24
  start-page: 581
  year: 1976
  ident: 10.1016/j.tafmec.2020.102617_b0145
  article-title: Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(76)90104-8
  contributor:
    fullname: Hornbogen
– volume: 237
  start-page: 185
  year: 1997
  ident: 10.1016/j.tafmec.2020.102617_b0105
  article-title: Mechanical behavior of nanocrystalline aluminum-zirconium
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(97)00129-9
  contributor:
    fullname: Rittner
– ident: 10.1016/j.tafmec.2020.102617_b0120
  doi: 10.1016/j.tafmec.2020.102561
– volume: 22
  start-page: 64
  year: 2012
  ident: 10.1016/j.tafmec.2020.102617_b0025
  article-title: Analysis of fatigue life and pore size data die-cast AM60B magnesium alloy
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2012.01.005
  contributor:
    fullname: Mohd
– volume: 92
  start-page: 138
  year: 2014
  ident: 10.1016/j.tafmec.2020.102617_b0100
  article-title: Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2014.02.013
  contributor:
    fullname: Meng
– volume: 75
  start-page: 205
  year: 2015
  ident: 10.1016/j.tafmec.2020.102617_b0015
  article-title: Microstructural influence on the scatter in the fatigue life of steel reinforcement bars
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2015.01.016
  contributor:
    fullname: Rocha
– volume: 889
  start-page: 143
  year: 2017
  ident: 10.1016/j.tafmec.2020.102617_b0045
  article-title: Investigation on Mode I propagation behavior of fatigue crack in precipitation-hardened aluminum alloy with different Mg content
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.889.143
  contributor:
    fullname: Anis
– ident: 10.1016/j.tafmec.2020.102617_b0125
SSID ssj0017193
Score 2.272552
Snippet •Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number...
Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 102617
SubjectTerms Aging
Aging (artificial)
Aluminum alloys
Aluminum base alloys
Bending fatigue
Crack propagation
Dislocation pinning
Dynamic strain aging
Fatigue crack growth rate
Fatigue cracks
Fatigue failure
Fatigue tests
Fracture mechanics
Fracture surfaces
Metal fatigue
Plastic deformation
Precipitation hardening
Rotating bending fatigue test
Scatter
Scattering
Slip planes
Smooth specimen
Striations
Surface cracks
Zirconium
Title Influence of dynamic-strain aging due to excess Mg on fatigue crack growth rate scatter in Al6061-T6 alloy
URI https://dx.doi.org/10.1016/j.tafmec.2020.102617
https://www.proquest.com/docview/2446295564
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbHLzGbdM06R4XUVYXPfhAb6E7SdbnrrgV9OJvd9KHqAiCp9LAlDLTzHzTzHwDsOtQaitSzx3BAy5V4vlAoOBOWukjrb314dfAyanqXcrj6_R6CvabXphQVln7_sqnl966XmnX2mw_3d62z0MBfSalEAHVEwyZhhkKRyJrwUz3qN87_TxM0HHFvRsovoNA00FXlnkVuX90gctQlDQGqpxc9muE-uGrywB0uADzNXJk3erlFmHKjZZg7guf4DLcHTUjR9jYM1sNm-eTcgwEK8cRMfviWDFm7jW0B7CTIRuPmCfrDGkdn3O8Z0NKzIsbFigk2ARL-k1G4t0HSkJifqFYOKp_W4HLw4OL_R6vhylwpG1acKTEKI0SS-kfYke4KHWawIrOOzFa1Oi0tLEUsXOxyNMkMKORo7R5hF6nuY2SVWiNxiO3BiyWqHIVDRL0HamyJFNZpK3CnLKNTKBeB94o0DxVnBmmKSa7M5XCTVC4qRS-DrrRsvlme0Nu_Q_JrcYopt57E0OARYlOmiq58e8Hb8JsuKsq_bagVTy_uG1CH8VgB6b33uOd-hsL1_7ZVf8DCgbY4A
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4inGMweu0do0TdrjhEAbsF3YpN2izknGc5u2IsG_x-kDAUJC4prKVWXHzufG_kzIuQWhDI8dswgPmJCRYyMOnFlhhAuUcsb5XwPdnmwPxPUwHi6Ri7oXxpdVVrG_jOlFtK5WmpU2m7OHh-adL6BPhODco3qEIctkFdFAit652urctHuflwkqLLl3PcW3F6g76IoyrzxzL9ZzGfKCxkAWk8t-PaF-xOriALraIpsVcqSt8uO2yZKd7JCNL3yCu-SxU48coVNHTTlsni2KMRC0GEdEzaul-ZTaN98eQLtjOp1Qh9YZ4zrMM3iiY0zM83vqKSToAgr6TYrirWdMQkLWl9Rf1b_vkcHVZf-izaphCgzQTXMGmBjFQWQw_QNIuQ1iqxCsqCwNwYACq4QJBQ-tDXkWR54ZDQOlyQJwKs5MEO2Tlcl0Yg8IDQXITAajCFwqZBIlMgmUkZBhtpFwUA3CagXqWcmZoetiskddKlx7hetS4Q2iai3rb7bXGNb_kDyujaIr31toBCySp3EsxeG_X3xG1tr97q2-7fRujsi6f1JW_R2TlXz-ak8QieSj02qnfQCCq9kx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+dynamic-strain+aging+due+to+excess+Mg+on+fatigue+crack+growth+rate+scatter+in+Al6061-T6+alloy&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Anis%2C+Samsol+Faizal&rft.au=Koyama%2C+Motomichi&rft.au=Hamada%2C+Shigeru&rft.au=Noguchi%2C+Hiroshi&rft.date=2020-08-01&rft.pub=Elsevier+BV&rft.issn=0167-8442&rft.eissn=1872-7638&rft.volume=108&rft.spage=1&rft_id=info:doi/10.1016%2Fj.tafmec.2020.102617&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon