Influence of dynamic-strain aging due to excess Mg on fatigue crack growth rate scatter in Al6061-T6 alloy
•Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number of test specimens.•Excess Mg promoted small scatter in Mode I fatigue crack growth.•Local plastic deformation affected the FCGR scatter of mic...
Saved in:
Published in | Theoretical and applied fracture mechanics Vol. 108; p. 102617 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.08.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number of test specimens.•Excess Mg promoted small scatter in Mode I fatigue crack growth.•Local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks.•Dynamic strain aging of Mg induced stable Mode I crack growth.
Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to the need for a large number of test specimens. The purposes of this study are to investigate the influence of dynamic strain aging on fatigue crack growth rate (FCGR) scatter in Al 6061-T6 alloys and to present a new approach to evaluate the scatter of FCGR using a limited number of the test specimen. Rotating bending fatigue tests of 6061-T6-based Al alloys with added Zr and excess Mg were performed under constant amplitude loading using smooth specimens. The scatter behavior of FCGR is investigated by examining the fatigue crack growth on the specimen surface and fractographic observation on the fracture surface. The accounting for the interaction effects of multiple surface cracks and fractographic examination on striation formation from previous findings revealed that excess Mg promoted small scatter in Mode I fatigue crack growth. This study showed that local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks. These findings suggest that dynamic strain aging of Mg induces stable Mode I crack growth due to pinning of dislocation movement on slip planes during the crack growth process. |
---|---|
AbstractList | •Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number of test specimens.•Excess Mg promoted small scatter in Mode I fatigue crack growth.•Local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks.•Dynamic strain aging of Mg induced stable Mode I crack growth.
Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to the need for a large number of test specimens. The purposes of this study are to investigate the influence of dynamic strain aging on fatigue crack growth rate (FCGR) scatter in Al 6061-T6 alloys and to present a new approach to evaluate the scatter of FCGR using a limited number of the test specimen. Rotating bending fatigue tests of 6061-T6-based Al alloys with added Zr and excess Mg were performed under constant amplitude loading using smooth specimens. The scatter behavior of FCGR is investigated by examining the fatigue crack growth on the specimen surface and fractographic observation on the fracture surface. The accounting for the interaction effects of multiple surface cracks and fractographic examination on striation formation from previous findings revealed that excess Mg promoted small scatter in Mode I fatigue crack growth. This study showed that local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks. These findings suggest that dynamic strain aging of Mg induces stable Mode I crack growth due to pinning of dislocation movement on slip planes during the crack growth process. Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to the need for a large number of test specimens. The purposes of this study are to investigate the influence of dynamic strain aging on fatigue crack growth rate (FCGR) scatter in Al 6061-T6 alloys and to present a new approach to evaluate the scatter of FCGR using a limited number of the test specimen. Rotating bending fatigue tests of 6061-T6-based Al alloys with added Zr and excess Mg were performed under constant amplitude loading using smooth specimens. The scatter behavior of FCGR is investigated by examining the fatigue crack growth on the specimen surface and fractographic observation on the fracture surface. The accounting for the interaction effects of multiple surface cracks and fractographic examination on striation formation from previous findings revealed that excess Mg promoted small scatter in Mode I fatigue crack growth. This study showed that local plastic deformation affected the FCGR scatter of microstructurally-large fatigue cracks. These findings suggest that dynamic strain aging of Mg induces stable Mode I crack growth due to pinning of dislocation movement on slip planes during the crack growth process. |
ArticleNumber | 102617 |
Author | Anis, Samsol Faizal Koyama, Motomichi Noguchi, Hiroshi Hamada, Shigeru |
Author_xml | – sequence: 1 givenname: Samsol Faizal surname: Anis fullname: Anis, Samsol Faizal organization: Department of Mechanical Engineering, PPD SPACE, University of Technology Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia – sequence: 2 givenname: Motomichi surname: Koyama fullname: Koyama, Motomichi organization: Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan – sequence: 3 givenname: Shigeru surname: Hamada fullname: Hamada, Shigeru organization: Department of Mechanical Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan – sequence: 4 givenname: Hiroshi surname: Noguchi fullname: Noguchi, Hiroshi email: nogu@mech.kyushu-u.ac.jp organization: Department of Mechanical Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan |
BookMark | eNp9kE9r2zAYxsVoYWnWb9CDYGdnkixL9mUQwtYVUnrJzkK8eu3Kc6RMUrbl28_BPff0wsPzh_d3R25CDEjIA2cbzrj6Mm6K7Y8IG8HEVRKK6w9kxVstKq3q9oasZpuuWinFR3KX88gY17yrV2R8Cv10xgBIY0_dJdijhyqXZH2gdvBhoO6MtESK_wBzps8DjYH2tvhh1iFZ-EWHFP-WV5psQZrBloKJzvHtpJji1UFRO03x8onc9nbKeP921-Tn92-H3Y9q__L4tNvuK5CMlQo0Vw2rnZQKoBPIGtR122nbcXCgAbV0XAqOyIVtalF3dauVswx63VjH6jX5vPSeUvx9xlzMGM8pzJNGzKWiaxolZ5dcXJBizgl7c0r-aNPFcGauVM1oFqrmStUsVOfY1yWG8wd_PCaTwV_xOZ8QinHRv1_wH2mcgkc |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2023_131986 crossref_primary_10_2320_materia_62_24 |
Cites_doi | 10.1016/j.scriptamat.2012.03.018 10.1016/0025-5416(68)90047-5 10.1016/j.ijfatigue.2016.10.010 10.1016/0001-6160(85)90148-8 10.1016/j.engfracmech.2007.07.015 10.1016/j.ijfatigue.2017.07.019 10.1016/j.ijfatigue.2017.02.009 10.1016/j.ijfatigue.2016.01.003 10.1016/j.matdes.2011.04.034 10.1016/j.ijfatigue.2007.05.012 10.1016/j.ijfatigue.2018.01.003 10.1007/s11661-003-0153-6 10.1016/j.tafmec.2019.102340 10.1299/kikaia.62.671 10.1016/j.msea.2015.06.051 10.1111/j.1460-2695.1992.tb00024.x 10.2472/jsms.35.564 10.1016/j.actamat.2013.05.044 10.1016/0001-6160(76)90104-8 10.1016/S0921-5093(97)00129-9 10.1016/j.tafmec.2020.102561 10.1016/j.engfailanal.2012.01.005 10.1016/j.matchar.2014.02.013 10.1016/j.ijfatigue.2015.01.016 10.4028/www.scientific.net/MSF.889.143 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Aug 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2020 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.tafmec.2020.102617 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7638 |
ExternalDocumentID | 10_1016_j_tafmec_2020_102617 S0167844220301932 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UHS WUQ XPP ZMT ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c400t-c716503d446cc92e05e73897a91cdc7ce74d1421ee12a532393876da0cf75ad03 |
IEDL.DBID | AIKHN |
ISSN | 0167-8442 |
IngestDate | Thu Oct 10 20:10:37 EDT 2024 Thu Sep 26 17:25:34 EDT 2024 Fri Feb 23 02:40:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aluminum alloys Scatter Fatigue crack growth rate Rotating bending fatigue test Smooth specimen |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-c716503d446cc92e05e73897a91cdc7ce74d1421ee12a532393876da0cf75ad03 |
PQID | 2446295564 |
PQPubID | 2045390 |
ParticipantIDs | proquest_journals_2446295564 crossref_primary_10_1016_j_tafmec_2020_102617 elsevier_sciencedirect_doi_10_1016_j_tafmec_2020_102617 |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Theoretical and applied fracture mechanics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Nishikura, Koyama, Yamamura, Ogawa, Tsuzaki, Noguchi (b0070) 2018; 113 Yuan, Liang (b0095) 2011; 32 Meng, Cui, Zhao, He (b0100) 2014; 92 Goto, Kawagoishi, Nisitani, Miura (b0040) 1996; 62–595 Gleiter, Hornbogen (b0140) 1967; 2 Takahashi, Shikama, Nakamichi, Kawata, Kasaki, Nishioka, Kita, Takuma, Noguchi (b0065) 2015; 641 H.F. Hardrath, E.C. Utley, D.E. Guthrie. Rotating-beam fatigue tests of notched and unnotched 7075-T6 aluminum alloy specimens under stresses of constant and varying amplitudes. NACA Technical Note D-210. 1959. Rittner, Weertman, Eastman, Yoder, Stone (b0105) 1997; 237 ASTM E647-11. Annual Book of ASTM Standards, Section Three. ASTM International, West Conshohocken, PA. 2012. Hornbogen, Gahr (b0145) 1976; 24 Schwarz, Funk (b0060) 1985; 33 Mohd, Mutoh, Otsuka, Miyashita, Koike, Suzuki (b0025) 2012; 22 Anis, Koyama, Noguchi (b0045) 2017; 889 Anis, Koyama, Hamada, Noguchi (b0055) 2019 Omura, Koyama, Hamano, Tsuzaki, Noguchi (b0130) 2017; 95 Underhill, DuQuesnay (b0035) 2008; 30 Kayama (b0050) 2008; 75 Shimokawa, Hamaguchi (b0005) 1986; 35 Li, Koyama, Sakurada, Yoshimura, Ushioda, Noguchi (b0085) 2016; 87 Shikama, Takahashi, Zeng, Yoshihara, Aiura, Higashida, Noguchi (b0135) 2012; 67 Yi, Gao, Lee, Flower, Lindley (b0020) 2003; 34A Habib, Koyama, Tsuchiyama, Noguchi (b0080) 2017; 104 Anderson (b0115) 2013 S.F. Anis, M. Koyama, S. Hamada and H. Noguchi. Mechanical Approximation of a Stress Field for an Inclined Crack and Interaction between Two Cracks under Tension. Theoretical and Applied Fracture Mechanics. Under review TAFMEC_2019_602. Rocha, Bruhwiller, Nussbaumer (b0015) 2015; 75 Li, Koyama, Sakurada, Yoshimura, Ushioda, Noguchi (b0090) 2018; 110 Wang, Qiu, Liu, Taylor, Easton, Zhang (b0110) 2013; 61 Habib, Koyama, Noguchi (b0075) 2017; 99 Goto (b0010) 1992; 15 Li (10.1016/j.tafmec.2020.102617_b0085) 2016; 87 Yuan (10.1016/j.tafmec.2020.102617_b0095) 2011; 32 Anis (10.1016/j.tafmec.2020.102617_b0055) 2019 Shikama (10.1016/j.tafmec.2020.102617_b0135) 2012; 67 Gleiter (10.1016/j.tafmec.2020.102617_b0140) 1967; 2 Li (10.1016/j.tafmec.2020.102617_b0090) 2018; 110 Rocha (10.1016/j.tafmec.2020.102617_b0015) 2015; 75 Schwarz (10.1016/j.tafmec.2020.102617_b0060) 1985; 33 Anis (10.1016/j.tafmec.2020.102617_b0045) 2017; 889 Habib (10.1016/j.tafmec.2020.102617_b0080) 2017; 104 Hornbogen (10.1016/j.tafmec.2020.102617_b0145) 1976; 24 Meng (10.1016/j.tafmec.2020.102617_b0100) 2014; 92 Rittner (10.1016/j.tafmec.2020.102617_b0105) 1997; 237 Goto (10.1016/j.tafmec.2020.102617_b0010) 1992; 15 10.1016/j.tafmec.2020.102617_b0120 Wang (10.1016/j.tafmec.2020.102617_b0110) 2013; 61 Anderson (10.1016/j.tafmec.2020.102617_b0115) 2013 10.1016/j.tafmec.2020.102617_b0125 Shimokawa (10.1016/j.tafmec.2020.102617_b0005) 1986; 35 Mohd (10.1016/j.tafmec.2020.102617_b0025) 2012; 22 Underhill (10.1016/j.tafmec.2020.102617_b0035) 2008; 30 Takahashi (10.1016/j.tafmec.2020.102617_b0065) 2015; 641 Omura (10.1016/j.tafmec.2020.102617_b0130) 2017; 95 Yi (10.1016/j.tafmec.2020.102617_b0020) 2003; 34A Habib (10.1016/j.tafmec.2020.102617_b0075) 2017; 99 Nishikura (10.1016/j.tafmec.2020.102617_b0070) 2018; 113 10.1016/j.tafmec.2020.102617_b0030 Goto (10.1016/j.tafmec.2020.102617_b0040) 1996; 62–595 Kayama (10.1016/j.tafmec.2020.102617_b0050) 2008; 75 |
References_xml | – volume: 889 start-page: 143 year: 2017 end-page: 147 ident: b0045 article-title: Investigation on Mode I propagation behavior of fatigue crack in precipitation-hardened aluminum alloy with different Mg content publication-title: Mater. Sci. Forum contributor: fullname: Noguchi – volume: 92 start-page: 138 year: 2014 end-page: 148 ident: b0100 article-title: Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting publication-title: Mater. Charact. contributor: fullname: He – volume: 24 start-page: 581 year: 1976 end-page: 592 ident: b0145 article-title: Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy publication-title: Acta Metall. contributor: fullname: Gahr – volume: 113 start-page: 359 year: 2018 end-page: 366 ident: b0070 article-title: Non-propagating fatigue crack in austenitic steels with a micro-notch: effects of dynamic strain aging publication-title: Martensit. Transform. Microstruct. Hardness Heterogen. Int. J. Fatigue contributor: fullname: Noguchi – volume: 62–595 start-page: 671 year: 1996 end-page: 677 ident: b0040 article-title: Statistical investigation of small crack growth rate in age-hardened Al alloy 6061–T6 publication-title: Trans JSME. contributor: fullname: Miura – volume: 15 start-page: 953 year: 1992 end-page: 963 ident: b0010 article-title: Scatter characteristics of fatigue life and the behavior of small cracks publication-title: Fatigue Fract. Eng. Mater. Struct. contributor: fullname: Goto – volume: 2 start-page: 285 year: 1967 end-page: 302 ident: b0140 article-title: Precipitation hardening by coherent particles publication-title: Mater. Sci. Eng. contributor: fullname: Hornbogen – volume: 33 start-page: 295 year: 1985 end-page: 307 ident: b0060 article-title: Kinetics of the Portevin-Le Chatelier effect in Al 6061 alloy publication-title: Acta Metall. contributor: fullname: Funk – volume: 75 start-page: 205 year: 2015 end-page: 212 ident: b0015 article-title: Microstructural influence on the scatter in the fatigue life of steel reinforcement bars publication-title: Int. J. Fatigue contributor: fullname: Nussbaumer – volume: 104 start-page: 158 year: 2017 end-page: 170 ident: b0080 article-title: Fatigue crack non-propagation assisted by nitrogen-enhanced dislocation planarity in austenitic stainless steels publication-title: Int. J. Fatigue contributor: fullname: Noguchi – volume: 237 start-page: 185 year: 1997 end-page: 190 ident: b0105 article-title: Mechanical behavior of nanocrystalline aluminum-zirconium publication-title: Mater. Sci. Eng., A contributor: fullname: Stone – volume: 32 start-page: 4195 year: 2011 end-page: 4200 ident: b0095 article-title: Effect of Zr on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor publication-title: Mater. Des. contributor: fullname: Liang – volume: 61 start-page: 5636 year: 2013 end-page: 5645 ident: b0110 article-title: The grain refinement mechanism of cast aluminum by zirconium publication-title: Acta Mater. contributor: fullname: Zhang – volume: 99 start-page: 1 year: 2017 end-page: 12 ident: b0075 article-title: Impact of Mn-C couples on fatigue crack growth in austenitic steels: the attractive atomic interaction is negative or positive? publication-title: Int. J. Fatigue contributor: fullname: Noguchi – year: 2019 ident: b0055 article-title: Mode I fatigue crack growth induced by strain-aging in precipitation-hardened aluminum alloy publication-title: Theor. Appl. Fract. Mech. contributor: fullname: Noguchi – volume: 95 start-page: 38 year: 2017 end-page: 44 ident: b0130 article-title: Generalized evaluation method for determining transition crack length for microstructurally small to microstructurally large fatigue crack growth: Experimental definition, facilitation, and validation publication-title: Int. J. Fatigue contributor: fullname: Noguchi – volume: 22 start-page: 64 year: 2012 end-page: 72 ident: b0025 article-title: Analysis of fatigue life and pore size data die-cast AM60B magnesium alloy publication-title: Eng. Fail. Anal. contributor: fullname: Suzuki – year: 2013 ident: b0115 article-title: Fracture mechanics: Fundamental and applications contributor: fullname: Anderson – volume: 67 start-page: 49 year: 2012 end-page: 52 ident: b0135 article-title: Distinct fatigue crack propagation limit of new precipitation-hardened aluminum alloy publication-title: Scr. Mater. contributor: fullname: Noguchi – volume: 35 start-page: 564 year: 1986 end-page: 570 ident: b0005 article-title: Scatter of fatigue crack growth rate versus scatter of fatiguelife in 2024–T4 aluminum alloy specimens under bending publication-title: J. Soc. Mater. Sci. Jpn. contributor: fullname: Hamaguchi – volume: 87 start-page: 1 year: 2016 end-page: 5 ident: b0085 article-title: Potential resistance to transgranular fatigue crack growth of Fe-C alloy with a supersaturated carbon clarified through FIB micro-notching technique publication-title: Int. J. Fatigue contributor: fullname: Noguchi – volume: 641 start-page: 263 year: 2015 end-page: 273 ident: b0065 article-title: Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061–T6 alloy publication-title: Mater. Sci. Eng., A contributor: fullname: Noguchi – volume: 75 start-page: 1336 year: 2008 end-page: 1349 ident: b0050 article-title: Growth evaluation of multiple interacting surface cracks. PartI: Experimentals and simulation of coalesced crack publication-title: Eng. Fract. Mech. contributor: fullname: Kayama – volume: 110 start-page: 1 year: 2018 end-page: 9 ident: b0090 article-title: Temperature dependence of transgranular fatigue crack resistance in an interstitial free steel and Fe-C steel with a supersaturated carbon: effect of dynamic strain aging and dynamic precitation publication-title: Int. J. Fatigue contributor: fullname: Noguchi – volume: 30 start-page: 614 year: 2008 end-page: 622 ident: b0035 article-title: The effect of dynamic loading on the fatigue scatter factor for Al 7050 publication-title: Int. J. Fatigue contributor: fullname: DuQuesnay – volume: 34A start-page: 1879 year: 2003 end-page: 1890 ident: b0020 article-title: Scatter in fatigue life due to effects of porosity in cast A356–T6 Aluminum-Silicon Alloys publication-title: Metall. Mater. Trans. A. contributor: fullname: Lindley – volume: 67 start-page: 49 year: 2012 ident: 10.1016/j.tafmec.2020.102617_b0135 article-title: Distinct fatigue crack propagation limit of new precipitation-hardened aluminum alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.03.018 contributor: fullname: Shikama – year: 2013 ident: 10.1016/j.tafmec.2020.102617_b0115 contributor: fullname: Anderson – volume: 2 start-page: 285 year: 1967 ident: 10.1016/j.tafmec.2020.102617_b0140 article-title: Precipitation hardening by coherent particles publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(68)90047-5 contributor: fullname: Gleiter – volume: 95 start-page: 38 year: 2017 ident: 10.1016/j.tafmec.2020.102617_b0130 article-title: Generalized evaluation method for determining transition crack length for microstructurally small to microstructurally large fatigue crack growth: Experimental definition, facilitation, and validation publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.10.010 contributor: fullname: Omura – volume: 33 start-page: 295 year: 1985 ident: 10.1016/j.tafmec.2020.102617_b0060 article-title: Kinetics of the Portevin-Le Chatelier effect in Al 6061 alloy publication-title: Acta Metall. doi: 10.1016/0001-6160(85)90148-8 contributor: fullname: Schwarz – volume: 75 start-page: 1336 year: 2008 ident: 10.1016/j.tafmec.2020.102617_b0050 article-title: Growth evaluation of multiple interacting surface cracks. PartI: Experimentals and simulation of coalesced crack publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2007.07.015 contributor: fullname: Kayama – volume: 104 start-page: 158 year: 2017 ident: 10.1016/j.tafmec.2020.102617_b0080 article-title: Fatigue crack non-propagation assisted by nitrogen-enhanced dislocation planarity in austenitic stainless steels publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.07.019 contributor: fullname: Habib – volume: 113 start-page: 359 year: 2018 ident: 10.1016/j.tafmec.2020.102617_b0070 article-title: Non-propagating fatigue crack in austenitic steels with a micro-notch: effects of dynamic strain aging publication-title: Martensit. Transform. Microstruct. Hardness Heterogen. Int. J. Fatigue contributor: fullname: Nishikura – volume: 99 start-page: 1 year: 2017 ident: 10.1016/j.tafmec.2020.102617_b0075 article-title: Impact of Mn-C couples on fatigue crack growth in austenitic steels: the attractive atomic interaction is negative or positive? publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.02.009 contributor: fullname: Habib – volume: 87 start-page: 1 year: 2016 ident: 10.1016/j.tafmec.2020.102617_b0085 article-title: Potential resistance to transgranular fatigue crack growth of Fe-C alloy with a supersaturated carbon clarified through FIB micro-notching technique publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.01.003 contributor: fullname: Li – volume: 32 start-page: 4195 year: 2011 ident: 10.1016/j.tafmec.2020.102617_b0095 article-title: Effect of Zr on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.04.034 contributor: fullname: Yuan – volume: 30 start-page: 614 year: 2008 ident: 10.1016/j.tafmec.2020.102617_b0035 article-title: The effect of dynamic loading on the fatigue scatter factor for Al 7050 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2007.05.012 contributor: fullname: Underhill – volume: 110 start-page: 1 year: 2018 ident: 10.1016/j.tafmec.2020.102617_b0090 article-title: Temperature dependence of transgranular fatigue crack resistance in an interstitial free steel and Fe-C steel with a supersaturated carbon: effect of dynamic strain aging and dynamic precitation publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.01.003 contributor: fullname: Li – volume: 34A start-page: 1879 year: 2003 ident: 10.1016/j.tafmec.2020.102617_b0020 article-title: Scatter in fatigue life due to effects of porosity in cast A356–T6 Aluminum-Silicon Alloys publication-title: Metall. Mater. Trans. A. doi: 10.1007/s11661-003-0153-6 contributor: fullname: Yi – ident: 10.1016/j.tafmec.2020.102617_b0030 – year: 2019 ident: 10.1016/j.tafmec.2020.102617_b0055 article-title: Mode I fatigue crack growth induced by strain-aging in precipitation-hardened aluminum alloy publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102340 contributor: fullname: Anis – volume: 62–595 start-page: 671 year: 1996 ident: 10.1016/j.tafmec.2020.102617_b0040 article-title: Statistical investigation of small crack growth rate in age-hardened Al alloy 6061–T6 publication-title: Trans JSME. doi: 10.1299/kikaia.62.671 contributor: fullname: Goto – volume: 641 start-page: 263 year: 2015 ident: 10.1016/j.tafmec.2020.102617_b0065 article-title: Effect of additional magnesium on mechanical and high-cycle fatigue properties of 6061–T6 alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2015.06.051 contributor: fullname: Takahashi – volume: 15 start-page: 953 year: 1992 ident: 10.1016/j.tafmec.2020.102617_b0010 article-title: Scatter characteristics of fatigue life and the behavior of small cracks publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.1992.tb00024.x contributor: fullname: Goto – volume: 35 start-page: 564 year: 1986 ident: 10.1016/j.tafmec.2020.102617_b0005 article-title: Scatter of fatigue crack growth rate versus scatter of fatiguelife in 2024–T4 aluminum alloy specimens under bending publication-title: J. Soc. Mater. Sci. Jpn. doi: 10.2472/jsms.35.564 contributor: fullname: Shimokawa – volume: 61 start-page: 5636 year: 2013 ident: 10.1016/j.tafmec.2020.102617_b0110 article-title: The grain refinement mechanism of cast aluminum by zirconium publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.05.044 contributor: fullname: Wang – volume: 24 start-page: 581 year: 1976 ident: 10.1016/j.tafmec.2020.102617_b0145 article-title: Microstructure and fatigue crack growth in a γ-Fe-Ni-Al alloy publication-title: Acta Metall. doi: 10.1016/0001-6160(76)90104-8 contributor: fullname: Hornbogen – volume: 237 start-page: 185 year: 1997 ident: 10.1016/j.tafmec.2020.102617_b0105 article-title: Mechanical behavior of nanocrystalline aluminum-zirconium publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(97)00129-9 contributor: fullname: Rittner – ident: 10.1016/j.tafmec.2020.102617_b0120 doi: 10.1016/j.tafmec.2020.102561 – volume: 22 start-page: 64 year: 2012 ident: 10.1016/j.tafmec.2020.102617_b0025 article-title: Analysis of fatigue life and pore size data die-cast AM60B magnesium alloy publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2012.01.005 contributor: fullname: Mohd – volume: 92 start-page: 138 year: 2014 ident: 10.1016/j.tafmec.2020.102617_b0100 article-title: Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2014.02.013 contributor: fullname: Meng – volume: 75 start-page: 205 year: 2015 ident: 10.1016/j.tafmec.2020.102617_b0015 article-title: Microstructural influence on the scatter in the fatigue life of steel reinforcement bars publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2015.01.016 contributor: fullname: Rocha – volume: 889 start-page: 143 year: 2017 ident: 10.1016/j.tafmec.2020.102617_b0045 article-title: Investigation on Mode I propagation behavior of fatigue crack in precipitation-hardened aluminum alloy with different Mg content publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.889.143 contributor: fullname: Anis – ident: 10.1016/j.tafmec.2020.102617_b0125 |
SSID | ssj0017193 |
Score | 2.272552 |
Snippet | •Influence of excess Mg on FCGR scatter using 6061-T6-based with added Zr or excess Mg.•A new approach to evaluate the scatter of FCGR using a limited number... Fatigue failure results in high industrial costs, and its mechanism requires close examination; however, current methods are costly and time-consuming due to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 102617 |
SubjectTerms | Aging Aging (artificial) Aluminum alloys Aluminum base alloys Bending fatigue Crack propagation Dislocation pinning Dynamic strain aging Fatigue crack growth rate Fatigue cracks Fatigue failure Fatigue tests Fracture mechanics Fracture surfaces Metal fatigue Plastic deformation Precipitation hardening Rotating bending fatigue test Scatter Scattering Slip planes Smooth specimen Striations Surface cracks Zirconium |
Title | Influence of dynamic-strain aging due to excess Mg on fatigue crack growth rate scatter in Al6061-T6 alloy |
URI | https://dx.doi.org/10.1016/j.tafmec.2020.102617 https://www.proquest.com/docview/2446295564 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbHLzGbdM06R4XUVYXPfhAb6E7SdbnrrgV9OJvd9KHqAiCp9LAlDLTzHzTzHwDsOtQaitSzx3BAy5V4vlAoOBOWukjrb314dfAyanqXcrj6_R6CvabXphQVln7_sqnl966XmnX2mw_3d62z0MBfSalEAHVEwyZhhkKRyJrwUz3qN87_TxM0HHFvRsovoNA00FXlnkVuX90gctQlDQGqpxc9muE-uGrywB0uADzNXJk3erlFmHKjZZg7guf4DLcHTUjR9jYM1sNm-eTcgwEK8cRMfviWDFm7jW0B7CTIRuPmCfrDGkdn3O8Z0NKzIsbFigk2ARL-k1G4t0HSkJifqFYOKp_W4HLw4OL_R6vhylwpG1acKTEKI0SS-kfYke4KHWawIrOOzFa1Oi0tLEUsXOxyNMkMKORo7R5hF6nuY2SVWiNxiO3BiyWqHIVDRL0HamyJFNZpK3CnLKNTKBeB94o0DxVnBmmKSa7M5XCTVC4qRS-DrrRsvlme0Nu_Q_JrcYopt57E0OARYlOmiq58e8Hb8JsuKsq_bagVTy_uG1CH8VgB6b33uOd-hsL1_7ZVf8DCgbY4A |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HIAD4inGMweu0do0TdrjhEAbsF3YpN2izknGc5u2IsG_x-kDAUJC4prKVWXHzufG_kzIuQWhDI8dswgPmJCRYyMOnFlhhAuUcsb5XwPdnmwPxPUwHi6Ri7oXxpdVVrG_jOlFtK5WmpU2m7OHh-adL6BPhODco3qEIctkFdFAit652urctHuflwkqLLl3PcW3F6g76IoyrzxzL9ZzGfKCxkAWk8t-PaF-xOriALraIpsVcqSt8uO2yZKd7JCNL3yCu-SxU48coVNHTTlsni2KMRC0GEdEzaul-ZTaN98eQLtjOp1Qh9YZ4zrMM3iiY0zM83vqKSToAgr6TYrirWdMQkLWl9Rf1b_vkcHVZf-izaphCgzQTXMGmBjFQWQw_QNIuQ1iqxCsqCwNwYACq4QJBQ-tDXkWR54ZDQOlyQJwKs5MEO2Tlcl0Yg8IDQXITAajCFwqZBIlMgmUkZBhtpFwUA3CagXqWcmZoetiskddKlx7hetS4Q2iai3rb7bXGNb_kDyujaIr31toBCySp3EsxeG_X3xG1tr97q2-7fRujsi6f1JW_R2TlXz-ak8QieSj02qnfQCCq9kx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+dynamic-strain+aging+due+to+excess+Mg+on+fatigue+crack+growth+rate+scatter+in+Al6061-T6+alloy&rft.jtitle=Theoretical+and+applied+fracture+mechanics&rft.au=Anis%2C+Samsol+Faizal&rft.au=Koyama%2C+Motomichi&rft.au=Hamada%2C+Shigeru&rft.au=Noguchi%2C+Hiroshi&rft.date=2020-08-01&rft.pub=Elsevier+BV&rft.issn=0167-8442&rft.eissn=1872-7638&rft.volume=108&rft.spage=1&rft_id=info:doi/10.1016%2Fj.tafmec.2020.102617&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8442&client=summon |