Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network

As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG sign...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 15; p. 611653
Main Authors Li, Jingcong, Li, Shuqi, Pan, Jiahui, Wang, Fei
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 09.06.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2021.611653

Cover

Loading…
Abstract As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition.
AbstractList As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition.
As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition.As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition.
Author Pan, Jiahui
Li, Jingcong
Wang, Fei
Li, Shuqi
AuthorAffiliation 3 School of Computer Science, South China Normal University , Guangzhou , China
2 Pazhou Lab , Guangzhou , China
1 School of Software, South China Normal University , Guangzhou , China
AuthorAffiliation_xml – name: 3 School of Computer Science, South China Normal University , Guangzhou , China
– name: 1 School of Software, South China Normal University , Guangzhou , China
– name: 2 Pazhou Lab , Guangzhou , China
Author_xml – sequence: 1
  givenname: Jingcong
  surname: Li
  fullname: Li, Jingcong
– sequence: 2
  givenname: Shuqi
  surname: Li
  fullname: Li, Shuqi
– sequence: 3
  givenname: Jiahui
  surname: Pan
  fullname: Pan, Jiahui
– sequence: 4
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
BookMark eNp1kVtvEzEQhS1URC_wA3hbiRdeNvh-eUFCUUgrVa1EQfBmeb2zicPGDt5dEP31OEmRaCWeZuQ5c47G3zk6iSkCQq8JnjGmzbsuhjjMKKZkJgmRgj1DZ0RKWnPBvp3805-i82HYYCyp5vQFOmWcKMU5OUM385yGob6bmg34sVosltVim8aQYvUJfFrFcOi_hnFd3UHf1bd55WK4h7ZaZrdbVzcwZdeXMv5K-ftL9Lxz_QCvHuoF-vJx8Xl-WV_fLq_mH65rzzEeay87jI1sJG4EbRtJFYAHroQWmHPGTWsEEOg4aygRTrXlCGiMA-zbTqiWXaCro2-b3Mbucti6_NsmF-zhIeWVdXkMvgdLdKdw12pQWnAw3jRCY62hBHmFqSpe749eu6nZQushjuWiR6aPJzGs7Sr9tJpSQjQrBm8fDHL6McEw2m0YPPS9i5CmwVLBhTFEyX3WmyfSTZpyLF9VVMxwXLiYolJHld_DydBZH0a3B1HyQ28Jtnv-9sDf7vnbI_-ySZ5s_j3j_zt_ACLNtHY
CitedBy_id crossref_primary_10_3390_s22145252
crossref_primary_10_1109_JIOT_2023_3263384
crossref_primary_10_1080_0144929X_2023_2241559
crossref_primary_10_1134_S1019331622040189
crossref_primary_10_1038_s41598_023_32825_9
crossref_primary_10_1049_cit2_12174
crossref_primary_10_1016_j_compbiomed_2021_105048
crossref_primary_10_1007_s11760_022_02248_6
crossref_primary_10_1063_5_0231511
crossref_primary_10_3389_fnhum_2023_1280241
crossref_primary_10_1109_OJEMB_2023_3240280
crossref_primary_10_1109_TNSRE_2023_3336897
crossref_primary_10_1109_TIM_2025_3544334
crossref_primary_10_3389_fnins_2022_911767
crossref_primary_10_1109_ACCESS_2024_3458833
crossref_primary_10_12720_jait_15_10_1089_1105
crossref_primary_10_3390_s23041917
crossref_primary_10_3390_brainsci13091293
crossref_primary_10_1109_TIM_2022_3204314
crossref_primary_10_3390_app122010273
crossref_primary_10_1109_JBHI_2022_3198688
crossref_primary_10_1145_3654664
crossref_primary_10_1007_s11571_024_10193_y
crossref_primary_10_1109_TAFFC_2024_3371540
crossref_primary_10_1109_JBHI_2024_3395622
crossref_primary_10_1155_jece_7528087
crossref_primary_10_1186_s40708_024_00245_8
crossref_primary_10_1109_ACCESS_2025_3536549
crossref_primary_10_1145_3666002
crossref_primary_10_3389_fphys_2024_1425582
crossref_primary_10_3390_brainsci14030271
crossref_primary_10_3390_brainsci13091326
crossref_primary_10_3390_s24113464
Cites_doi 10.1016/j.biopsycho.2004.03.002
10.1109/TCYB.2019.2904052
10.1109/ICCV.2013.368
10.1109/TBME.2010.2048568
10.1017/CBO9781139015165
10.1109/ICME.2014.6890166
10.1109/ACCESS.2019.2891579
10.1109/TAFFC.2017.2714671
10.1109/TAFFC.2018.2817622
10.1016/j.neulet.2006.04.006
10.3389/fpsyg.2017.01454
10.1016/j.neuroimage.2017.12.052
10.1109/TCYB.2018.2797176
10.1109/TAMD.2015.2431497
10.1109/TAFFC.2020.2994159
10.1016/S0925-2312(99)00126-5
10.1109/TAFFC.2019.2937768
10.1109/79.911197
10.14569/IJACSA.2017.081046
10.1109/TCDS.2020.2999337
10.3390/s18072074
10.1371/journal.pone.0194444
10.1109/MSP.2012.2235192
10.1109/JBHI.2020.2967128
10.1007/BF01200757
10.3389/fnhum.2018.00070
10.1109/NER.2013.6695876
10.1109/TAFFC.2018.2885474
10.1186/1471-2202-10-101
10.1016/j.biopsycho.2009.10.007
10.1109/TNN.2010.2091281
10.1016/S0959-4388(99)80032-4
10.1109/BIBM.2018.8621147
10.1145/1027933.1027968
10.1109/TCDS.2016.2587290
10.1145/2647868.2654916
10.1109/TAFFC.2017.2712143
10.3389/fnins.2018.00162
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Li, Li, Pan and Wang.
Copyright © 2021 Li, Li, Pan and Wang. 2021 Li, Li, Pan and Wang
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Li, Li, Pan and Wang.
– notice: Copyright © 2021 Li, Li, Pan and Wang. 2021 Li, Li, Pan and Wang
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2021.611653
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_18f70fd8e7854e9c9b58088e044c7027
PMC8221183
10_3389_fnins_2021_611653
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62006082
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c400t-c6f0096b60b52db627eece47585044349d95e1ef43b215a7d453eb9ae0cdf57d3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:15:53 EDT 2025
Thu Aug 21 14:09:59 EDT 2025
Fri Jul 11 11:34:54 EDT 2025
Fri Jul 25 11:42:42 EDT 2025
Tue Jul 01 01:39:23 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-c6f0096b60b52db627eece47585044349d95e1ef43b215a7d453eb9ae0cdf57d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Haider Raza, University of Essex, United Kingdom
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Archana Venkataraman, Johns Hopkins University, United States; Di Wang, Nanyang Technological University, Singapore
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2021.611653
PMID 34177441
PQID 2539401779
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_18f70fd8e7854e9c9b58088e044c7027
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221183
proquest_miscellaneous_2545991767
proquest_journals_2539401779
crossref_citationtrail_10_3389_fnins_2021_611653
crossref_primary_10_3389_fnins_2021_611653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-09
PublicationDateYYYYMMDD 2021-06-09
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-09
  day: 09
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Shu (B30) 2018; 18
Wang (B36) 2018
Tyng (B34) 2017; 8
Sangineto (B28) 2014
Song (B32); 7
Collobert (B7) 2006; 7
Linial (B23) 1995; 15
Pan (B25) 2018; 12
Fey (B14) 2019
Zhang (B37) 2020; 24
Zhong (B44) 2020
Li (B17)
Pan (B26) 2011; 22
Shuman (B31) 2013; 30
Li (B21)
Alhagry (B2) 2017; 8
Alarcao (B1) 2017; 10
Zheng (B40) 2018; 49
Zheng (B39) 2016; 9
Zheng (B41) 2015; 7
Bruna (B4) 2013
de Haan (B10) 2009; 10
Li (B19); 12
Li (B20) 2020
Cowie (B8) 2001; 18
Coan (B6) 2004; 67
Micheloyannis (B24) 2006; 402
Shi (B29) 2010
Duan (B11) 2013
Alia-Klein (B3) 2018; 13
Ktena (B15) 2018; 169
Song (B33); 11
Zhang (B38) 2019
Even (B12) 2011
Zheng (B42) 2017; 10
Varatharajah (B35) 2017
Lin (B22) 2010; 57
Zheng (B43) 2014
Li (B18) 2019; 50
Busso (B5) 2004
Fernando (B13) 2013
Davidson (B9) 1999; 9
Petrosian (B27) 2000; 30
Lang (B16) 2010; 84
References_xml – volume: 67
  start-page: 7
  year: 2004
  ident: B6
  article-title: Frontal EEG asymmetry as a moderator and mediator of emotion
  publication-title: Biol. Psychol
  doi: 10.1016/j.biopsycho.2004.03.002
– volume: 50
  start-page: 3281
  year: 2019
  ident: B18
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybernet
  doi: 10.1109/TCYB.2019.2904052
– start-page: 2960
  volume-title: 2013 IEEE International Conference on Computer Vision
  year: 2013
  ident: B13
  article-title: Unsupervised visual domain adaptation using subspace alignment,
  doi: 10.1109/ICCV.2013.368
– volume: 57
  start-page: 1798
  year: 2010
  ident: B22
  article-title: EEG-based emotion recognition in music listening
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2010.2048568
– volume-title: Graph Algorithms
  year: 2011
  ident: B12
  doi: 10.1017/CBO9781139015165
– start-page: 1
  volume-title: 2014 IEEE International Conference on Multimedia and Expo (ICME)
  year: 2014
  ident: B43
  article-title: EEG-based emotion classification using deep belief networks,
  doi: 10.1109/ICME.2014.6890166
– volume: 7
  start-page: 12177
  ident: B32
  article-title: MPED: a multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– volume: 10
  start-page: 374
  year: 2017
  ident: B1
  article-title: Emotions recognition using EEG signals: a survey
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2017.2714671
– volume: 11
  start-page: 532
  ident: B33
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2018.2817622
– volume: 402
  start-page: 273
  year: 2006
  ident: B24
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
  publication-title: Neurosci. Lett
  doi: 10.1016/j.neulet.2006.04.006
– volume: 8
  start-page: 1454
  year: 2017
  ident: B34
  article-title: The influences of emotion on learning and memory
  publication-title: Front. Psychol
  doi: 10.3389/fpsyg.2017.01454
– volume: 169
  start-page: 431
  year: 2018
  ident: B15
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.052
– volume: 49
  start-page: 1110
  year: 2018
  ident: B40
  article-title: Emotionmeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybernet
  doi: 10.1109/TCYB.2018.2797176
– volume: 7
  start-page: 162
  year: 2015
  ident: B41
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Mental Dev
  doi: 10.1109/TAMD.2015.2431497
– year: 2020
  ident: B44
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2020.2994159
– volume: 30
  start-page: 201
  year: 2000
  ident: B27
  article-title: Recurrent neural network based prediction of epileptic seizures in intra-and extracranial EEG
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00126-5
– year: 2019
  ident: B38
  article-title: GCB-net: graph convolutional broad network and its application in emotion recognition
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2019.2937768
– volume: 18
  start-page: 32
  year: 2001
  ident: B8
  article-title: Emotion recognition in human-computer interaction
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/79.911197
– volume: 8
  start-page: 355
  year: 2017
  ident: B2
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Emotion
  doi: 10.14569/IJACSA.2017.081046
– year: 2020
  ident: B20
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst
  doi: 10.1109/TCDS.2020.2999337
– volume: 18
  start-page: 2074
  year: 2018
  ident: B30
  article-title: A review of emotion recognition using physiological signals
  publication-title: Sensors
  doi: 10.3390/s18072074
– year: 2013
  ident: B4
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: arXiv [Preprint]. arXiv:1312.6203
– volume: 13
  start-page: e0194444
  year: 2018
  ident: B3
  article-title: Trait anger modulates neural activity in the fronto-parietal attention network
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0194444
– volume: 30
  start-page: 83
  year: 2013
  ident: B31
  article-title: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2012.2235192
– volume-title: ICLR Workshop on Representation Learning on Graphs and Manifolds
  year: 2019
  ident: B14
  article-title: Fast graph representation learning with PyTorch Geometric,
– volume: 24
  start-page: 2570
  year: 2020
  ident: B37
  article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/JBHI.2020.2967128
– start-page: 403
  volume-title: International Conference on Neural Information Processing
  ident: B17
  article-title: Cross-subject emotion recognition using deep adaptation networks,
– volume: 15
  start-page: 215
  year: 1995
  ident: B23
  article-title: The geometry of graphs and some of its algorithmic applications
  publication-title: Combinatorica
  doi: 10.1007/BF01200757
– volume: 12
  start-page: 70
  year: 2018
  ident: B25
  article-title: Emotion regulation and complex brain networks: association between expressive suppression and efficiency in the fronto-parietal network and default-mode network
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2018.00070
– start-page: 81
  volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
  year: 2013
  ident: B11
  article-title: Differential entropy feature for EEG-based emotion classification,
  doi: 10.1109/NER.2013.6695876
– ident: B21
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2018.2885474
– volume: 10
  start-page: 101
  year: 2009
  ident: B10
  article-title: Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-10-101
– start-page: 6587
  volume-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
  year: 2010
  ident: B29
  article-title: Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning,
– volume: 84
  start-page: 437
  year: 2010
  ident: B16
  article-title: Emotion and the motivational brain
  publication-title: Biol. Psychol
  doi: 10.1016/j.biopsycho.2009.10.007
– start-page: 5371
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: B35
  article-title: EEG-GRAPH: a factor-graph-based model for capturing spatial, temporal, and observational relationships in electroencephalograms,
– volume: 7
  start-page: 1687
  year: 2006
  ident: B7
  article-title: Large scale transductive SVMs
  publication-title: J. Mach. Learn. Res
– volume: 22
  start-page: 199
  year: 2011
  ident: B26
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw
  doi: 10.1109/TNN.2010.2091281
– volume: 9
  start-page: 228
  year: 1999
  ident: B9
  article-title: Regional brain function, emotion and disorders of emotion
  publication-title: Curr. Opin. Neurobiol
  doi: 10.1016/S0959-4388(99)80032-4
– start-page: 1240
  volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2018
  ident: B36
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system,
  doi: 10.1109/BIBM.2018.8621147
– start-page: 205
  year: 2004
  ident: B5
  article-title: Analysis of emotion recognition using facial expressions, speech and multimodal information,
  publication-title: Proceedings of the 6th International Conference on Multimodal Interfaces
  doi: 10.1145/1027933.1027968
– volume: 9
  start-page: 281
  year: 2016
  ident: B39
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Trans. Cogn. Dev. Syst
  doi: 10.1109/TCDS.2016.2587290
– start-page: 357
  volume-title: Proceedings of the 22nd ACM International Conference on Multimedia
  year: 2014
  ident: B28
  article-title: We are not all equal: personalizing models for facial expression analysis with transductive parameter transfer,
  doi: 10.1145/2647868.2654916
– volume: 10
  start-page: 417
  year: 2017
  ident: B42
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput
  doi: 10.1109/TAFFC.2017.2712143
– volume: 12
  start-page: 162
  ident: B19
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2018.00162
SSID ssj0062842
Score 2.502367
Snippet As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 611653
SubjectTerms Asymmetry
Cognitive ability
cross-subject
Datasets
EEG
Electroencephalography
emotion recognition
Emotions
Experiments
graph construction
graph neural network
Graph representations
Machine learning
Nervous system
Neural networks
Neuroscience
Neurosciences
SEED dataset
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPVFBPEgRLtpHs1RZVUE9-ADvZVtMsEF7YqsB_-9M013sRe9eCtt2qSTeSaTbxg7RBeh8lEqYXMwQoXghLNgBcqky4mNfEGnkW-H5vpR3Tzr5x-lvignLMEDJ8Kd9otosxgKsIVW4LyrdIGSAZlS3mJMRdoXbd4smEo62KDSlWkPE0MwdxrrcU3Y3LJ_YghvJu9YoQasv-NhdvMjfxicyxW23HqK_CyNcJUtQL3G1s9qjJLfvvgRb3I3m0XxdTa8oG4EagFaVuGDwRUfpPo8_G6WIYTXT-PpC7-H1yjaI5gQ-BUhVnPC6MDOhikpfIM9Xg4eLq5FWylBeJTBqfAmUixSmazSMlRGWgAPimIBpFOuXHAa-hBVXqGJH9mgdA6VG0HmQ9Q25JtssZ7UsMV4JiP5XVECoHOVxZGTEI0MhNoSUBv1WDajXOlbGHGqZvFaYjhBxC4bYpdE7DIRu8eO56-8JwyN3xqf03TMGxL8dXMDmaJsmaL8iyl6bHc2mWUrk9iJpirwfWtdjx3MH6M00RbJqIbJJ7VRGj1ma_ATtsMEnQF1n9TjlwaXG30tDNfy7f_4gx22RERpktLcLlucfnzCHro_02q_4fRvARYCoA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVauPRSFWjVbSlypaqHSi5Zxx_xqQIUQJW6qmhRuUUbewwr0Syly4F_z4zjrMiFW5Q4cTz2jN_Y4zeMfUKI0PoolbAlGKFCcMJZsAJ10pU0jHxFp5F_zMzpufp-oS_ygtv_HFY52MRkqMPS0xr5vtSUw3tqrft2809Q1ijaXc0pNJ6zTTTBFTpfm4f17OfZYIsNGt-032nobBCC835fE90ytx-7RUd83XL61RAHTTmamRKB_wh1jmMmH01Cx6_Yy4we-UHf3VvsGXTbbOegQ8_57z3_zFM8Z1oo32GzI6pGoGWgpRZe1ye87nP28LMhagiv_yxWV_wXXEeRj2VC4CfEYs2JtwMrm_WB4q_Z-XH9--hU5OwJwqNeroQ3kfyT1hStlqE10gJ4UOQfFEqVygWnYQpRlS1O-3MblC6hdXMofIjahvIN2-iWHbxlvJCRsFiUAAi4ijh3EqKRgZhcAlqoCSsGyTU-U4tThovrBl0MEnaThN2QsJte2BP2Zf3KTc-r8VThQ-qOdUGixE43lreXTdawZlpFW8RQga20Auddqys0oYCN9Rad7wnbHTqzyXqKlaxH1YR9XD9GDaNtk3kHyzsqozSiaGvwE3Y0CEY_NH7SLa4SVzfiL3ThyndPV_6evaDmphA0t8s2Vrd38AHBzqrdyyP6Ad9e_jA
  priority: 102
  providerName: ProQuest
Title Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
URI https://www.proquest.com/docview/2539401779
https://www.proquest.com/docview/2545991767
https://pubmed.ncbi.nlm.nih.gov/PMC8221183
https://doaj.org/article/18f70fd8e7854e9c9b58088e044c7027
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED66FkZfRrduLFsXNBh7GLhzZFmyHspoi9syaBjdwvpmYuu0BjKnzVJo_33vZDvMUPawN2PJln3Snb6TTt8BfCCIUFZeqsgkqCPlnI2sQRORTtqEh1GV8Wnk87E-m6ivl-nlBnTprVoB_nnUteN8UpPlfP_u5v4LKfwBe5w033729axm5m052tfMJpM8gS2amAzr6blabypossRh81PzQSFC6s0m5-Ov2IanZN8JG6lRb8YKxP49NNqPpfxrcjrZgWctqhSHzTB4DhtYv4Ddw5o86t_34qMIcZ5hAX0XxsfcTEQWg5dgRJ6firzJ5SMuumgiuv45W12J7zj3UXtcE504ZXZrwXwe1Ni4CSB_CZOT_MfxWdRmVYgq0tdVVGnPfkup4zKVrtTSIFao2G-IlUqUdTbFEXqVlAQHpsapNMHSTjGunE-NS17BZr2o8TWIWHrGaF4iEhCL_dRK9Fo6ZnhxZLkGEHeSK6qWcpwzX8wLcj1Y7kWQe8FyLxq5D-DT-pHrhm_jX5WPuDvWFZkqO9xYLH8VreYVo8yb2LsMTZYqtJUt04xMK9LPVoac8gHsdZ1ZdMOvkClnjKf-twN4vy4mzePtlGmNi1uuo1JC10bTK0xvEPQ-qF9Sz64ChzfhMnLtkjf__eRb2GZJhKg1uwebq-UtviN8tCqHsHWUj79dDMP6wjDowAOK2BCH
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXBBTE0gJGAg5IplnHseMDQm1Ju6VthEoreks39rhdqWRL2Qr1T_EbmcnHilx66y1KnDgej8dv7PEbxt4iRChdkEqYGLRQ3lthDRiBY9LGpEYupdPIB7keH6uvJ8nJEvvbnYWhsMrOJtaG2s8crZGvy4RyeI-MsZ8vfwnKGkW7q10KjUYt9uDmD7psvz_tfsH-fSfldna0NRZtVgHhUF_nwulAuL3UUZlIX2ppABwows2RUrGy3iYwgqDiEqfDifEqiaG0E4icD4nxMX73HltWMboyA7a8meXfDjvbr9HY1_urms4ioTPQ7KOiG2jXQzWtiB9cjj5q4ryJezNhnTCgh3L7MZr_TXrbj9jDFq3yjUa9HrMlqJ6wlY0KPfWfN_w9r-NH64X5FZZvUTUCLREt7fAs2-FZkyOIH3ZRSnj9Yzo_59_hIoj2GCh4vkOs2Zx4QrCyvAlMf8qO70Suz9igmlXwnPFIBsJ-QQIgwIvCxEoIWnpijvFoEYcs6iRXuJbKnDJqXBTo0pCwi1rYBQm7aIQ9ZB8Wr1w2PB63Fd6k7lgUJAru-sbs6qxoR3QxSoOJgk_BpIkC62yZpGiyARvrDDr7Q7bWdWbR2gWsZKHFQ_Zm8RhHNG3TTCqYXVMZlSBqNxo_YXpK0Puh_pNqel5zgyPeQ5cxfnF75a_Z_fHRwX6xv5vvrbIH1PQ6_M2uscH86hpeItCal69a7ebs9K4H1D9ygDs8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJcEFAQgQJGAg5Iphuv114fEOojaUthVRUqeluy6zGNVDalpEL9a_w6ZvYRsZfeeouyzjoez4y_scffALwiiFCUQWlpYzRSe--ks2gl2aSLWY3KlG8jf87M3rH-eJKcrMDf7i4Mp1V2PrF21H5e8h75hkq4hvfIWrcR2rSIw53Jh_NfkitI8UlrV06jUZEDvPpD4dvv9_s7NNevlZqMv27vybbCgCxJdxeyNIExfGGiIlG-MMoilqgZQ0dax9p5l-AIg44LWhqn1uskxsJNMSp9SKyP6b23YNVSVBQNYHVrnB0edeuAIcdfn7UavpdEgUFzpkohIY2gmlXMFa5G7wzz38S9VbEuHtBDvP18zf8WwMk9uNsiV7HZqNp9WMHqAaxtVhS1_7wSb0SdS1pv0q9Bts3dSPJKvM0jxuNdMW7qBYmjLmOJPn-bLU7FFzwLsr0Sil7sMoO2YM4Q6ixrktQfwvGNyPURDKp5hY9BRCowDgwKkcBeFKZOYTDKM4uMJ-84hKiTXF62tOZcXeMsp_CGhZ3Xws5Z2Hkj7CG8Xf7kvOH0uK7xFk_HsiHTcddfzC9-5K1156M02Cj4FG2aaHSlK5KU3DfSYEtLgf8Q1rvJzFsfQZ0sNXoIL5ePybr5yGZa4fyS2-iEELw19ArbU4LeH-o_qWanNU84YT8KH-Mn13f-Am6TIeWf9rODp3CHR15nwrl1GCwuLvEZYa5F8bxVbgHfb9qe_gEIYD9x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Subject+EEG+Emotion+Recognition+With+Self-Organized+Graph+Neural+Network&rft.jtitle=Frontiers+in+neuroscience&rft.au=Li%2C+Jingcong&rft.au=Li%2C+Shuqi&rft.au=Pan%2C+Jiahui&rft.au=Wang%2C+Fei&rft.date=2021-06-09&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=15&rft_id=info:doi/10.3389%2Ffnins.2021.611653&rft_id=info%3Apmid%2F34177441&rft.externalDocID=PMC8221183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon