Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG sign...
Saved in:
Published in | Frontiers in neuroscience Vol. 15; p. 611653 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
09.06.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2021.611653 |
Cover
Loading…
Abstract | As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition. |
---|---|
AbstractList | As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition. As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition.As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects based on brain signals has attracted much attention. Due to individual differences across subjects and the low signal-to-noise ratio of EEG signals, the performance of conventional emotion recognition methods is relatively poor. In this paper, we propose a self-organized graph neural network (SOGNN) for cross-subject EEG emotion recognition. Unlike the previous studies based on pre-constructed and fixed graph structure, the graph structure of SOGNN are dynamically constructed by self-organized module for each signal. To evaluate the cross-subject EEG emotion recognition performance of our model, leave-one-subject-out experiments are conducted on two public emotion recognition datasets, SEED and SEED-IV. The SOGNN is able to achieve state-of-the-art emotion recognition performance. Moreover, we investigated the performance variances of the models with different graph construction techniques or features in different frequency bands. Furthermore, we visualized the graph structure learned by the proposed model and found that part of the structure coincided with previous neuroscience research. The experiments demonstrated the effectiveness of the proposed model for cross-subject EEG emotion recognition. |
Author | Pan, Jiahui Li, Jingcong Wang, Fei Li, Shuqi |
AuthorAffiliation | 3 School of Computer Science, South China Normal University , Guangzhou , China 2 Pazhou Lab , Guangzhou , China 1 School of Software, South China Normal University , Guangzhou , China |
AuthorAffiliation_xml | – name: 3 School of Computer Science, South China Normal University , Guangzhou , China – name: 1 School of Software, South China Normal University , Guangzhou , China – name: 2 Pazhou Lab , Guangzhou , China |
Author_xml | – sequence: 1 givenname: Jingcong surname: Li fullname: Li, Jingcong – sequence: 2 givenname: Shuqi surname: Li fullname: Li, Shuqi – sequence: 3 givenname: Jiahui surname: Pan fullname: Pan, Jiahui – sequence: 4 givenname: Fei surname: Wang fullname: Wang, Fei |
BookMark | eNp1kVtvEzEQhS1URC_wA3hbiRdeNvh-eUFCUUgrVa1EQfBmeb2zicPGDt5dEP31OEmRaCWeZuQ5c47G3zk6iSkCQq8JnjGmzbsuhjjMKKZkJgmRgj1DZ0RKWnPBvp3805-i82HYYCyp5vQFOmWcKMU5OUM385yGob6bmg34sVosltVim8aQYvUJfFrFcOi_hnFd3UHf1bd55WK4h7ZaZrdbVzcwZdeXMv5K-ftL9Lxz_QCvHuoF-vJx8Xl-WV_fLq_mH65rzzEeay87jI1sJG4EbRtJFYAHroQWmHPGTWsEEOg4aygRTrXlCGiMA-zbTqiWXaCro2-b3Mbucti6_NsmF-zhIeWVdXkMvgdLdKdw12pQWnAw3jRCY62hBHmFqSpe749eu6nZQushjuWiR6aPJzGs7Sr9tJpSQjQrBm8fDHL6McEw2m0YPPS9i5CmwVLBhTFEyX3WmyfSTZpyLF9VVMxwXLiYolJHld_DydBZH0a3B1HyQ28Jtnv-9sDf7vnbI_-ySZ5s_j3j_zt_ACLNtHY |
CitedBy_id | crossref_primary_10_3390_s22145252 crossref_primary_10_1109_JIOT_2023_3263384 crossref_primary_10_1080_0144929X_2023_2241559 crossref_primary_10_1134_S1019331622040189 crossref_primary_10_1038_s41598_023_32825_9 crossref_primary_10_1049_cit2_12174 crossref_primary_10_1016_j_compbiomed_2021_105048 crossref_primary_10_1007_s11760_022_02248_6 crossref_primary_10_1063_5_0231511 crossref_primary_10_3389_fnhum_2023_1280241 crossref_primary_10_1109_OJEMB_2023_3240280 crossref_primary_10_1109_TNSRE_2023_3336897 crossref_primary_10_1109_TIM_2025_3544334 crossref_primary_10_3389_fnins_2022_911767 crossref_primary_10_1109_ACCESS_2024_3458833 crossref_primary_10_12720_jait_15_10_1089_1105 crossref_primary_10_3390_s23041917 crossref_primary_10_3390_brainsci13091293 crossref_primary_10_1109_TIM_2022_3204314 crossref_primary_10_3390_app122010273 crossref_primary_10_1109_JBHI_2022_3198688 crossref_primary_10_1145_3654664 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1109_TAFFC_2024_3371540 crossref_primary_10_1109_JBHI_2024_3395622 crossref_primary_10_1155_jece_7528087 crossref_primary_10_1186_s40708_024_00245_8 crossref_primary_10_1109_ACCESS_2025_3536549 crossref_primary_10_1145_3666002 crossref_primary_10_3389_fphys_2024_1425582 crossref_primary_10_3390_brainsci14030271 crossref_primary_10_3390_brainsci13091326 crossref_primary_10_3390_s24113464 |
Cites_doi | 10.1016/j.biopsycho.2004.03.002 10.1109/TCYB.2019.2904052 10.1109/ICCV.2013.368 10.1109/TBME.2010.2048568 10.1017/CBO9781139015165 10.1109/ICME.2014.6890166 10.1109/ACCESS.2019.2891579 10.1109/TAFFC.2017.2714671 10.1109/TAFFC.2018.2817622 10.1016/j.neulet.2006.04.006 10.3389/fpsyg.2017.01454 10.1016/j.neuroimage.2017.12.052 10.1109/TCYB.2018.2797176 10.1109/TAMD.2015.2431497 10.1109/TAFFC.2020.2994159 10.1016/S0925-2312(99)00126-5 10.1109/TAFFC.2019.2937768 10.1109/79.911197 10.14569/IJACSA.2017.081046 10.1109/TCDS.2020.2999337 10.3390/s18072074 10.1371/journal.pone.0194444 10.1109/MSP.2012.2235192 10.1109/JBHI.2020.2967128 10.1007/BF01200757 10.3389/fnhum.2018.00070 10.1109/NER.2013.6695876 10.1109/TAFFC.2018.2885474 10.1186/1471-2202-10-101 10.1016/j.biopsycho.2009.10.007 10.1109/TNN.2010.2091281 10.1016/S0959-4388(99)80032-4 10.1109/BIBM.2018.8621147 10.1145/1027933.1027968 10.1109/TCDS.2016.2587290 10.1145/2647868.2654916 10.1109/TAFFC.2017.2712143 10.3389/fnins.2018.00162 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Li, Li, Pan and Wang. Copyright © 2021 Li, Li, Pan and Wang. 2021 Li, Li, Pan and Wang |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Li, Li, Pan and Wang. – notice: Copyright © 2021 Li, Li, Pan and Wang. 2021 Li, Li, Pan and Wang |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2021.611653 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_18f70fd8e7854e9c9b58088e044c7027 PMC8221183 10_3389_fnins_2021_611653 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62006082 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c400t-c6f0096b60b52db627eece47585044349d95e1ef43b215a7d453eb9ae0cdf57d3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:15:53 EDT 2025 Thu Aug 21 14:09:59 EDT 2025 Fri Jul 11 11:34:54 EDT 2025 Fri Jul 25 11:42:42 EDT 2025 Tue Jul 01 01:39:23 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-c6f0096b60b52db627eece47585044349d95e1ef43b215a7d453eb9ae0cdf57d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Haider Raza, University of Essex, United Kingdom This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Reviewed by: Archana Venkataraman, Johns Hopkins University, United States; Di Wang, Nanyang Technological University, Singapore |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2021.611653 |
PMID | 34177441 |
PQID | 2539401779 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_18f70fd8e7854e9c9b58088e044c7027 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8221183 proquest_miscellaneous_2545991767 proquest_journals_2539401779 crossref_citationtrail_10_3389_fnins_2021_611653 crossref_primary_10_3389_fnins_2021_611653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-09 |
PublicationDateYYYYMMDD | 2021-06-09 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Shu (B30) 2018; 18 Wang (B36) 2018 Tyng (B34) 2017; 8 Sangineto (B28) 2014 Song (B32); 7 Collobert (B7) 2006; 7 Linial (B23) 1995; 15 Pan (B25) 2018; 12 Fey (B14) 2019 Zhang (B37) 2020; 24 Zhong (B44) 2020 Li (B17) Pan (B26) 2011; 22 Shuman (B31) 2013; 30 Li (B21) Alhagry (B2) 2017; 8 Alarcao (B1) 2017; 10 Zheng (B40) 2018; 49 Zheng (B39) 2016; 9 Zheng (B41) 2015; 7 Bruna (B4) 2013 de Haan (B10) 2009; 10 Li (B19); 12 Li (B20) 2020 Cowie (B8) 2001; 18 Coan (B6) 2004; 67 Micheloyannis (B24) 2006; 402 Shi (B29) 2010 Duan (B11) 2013 Alia-Klein (B3) 2018; 13 Ktena (B15) 2018; 169 Song (B33); 11 Zhang (B38) 2019 Even (B12) 2011 Zheng (B42) 2017; 10 Varatharajah (B35) 2017 Lin (B22) 2010; 57 Zheng (B43) 2014 Li (B18) 2019; 50 Busso (B5) 2004 Fernando (B13) 2013 Davidson (B9) 1999; 9 Petrosian (B27) 2000; 30 Lang (B16) 2010; 84 |
References_xml | – volume: 67 start-page: 7 year: 2004 ident: B6 article-title: Frontal EEG asymmetry as a moderator and mediator of emotion publication-title: Biol. Psychol doi: 10.1016/j.biopsycho.2004.03.002 – volume: 50 start-page: 3281 year: 2019 ident: B18 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybernet doi: 10.1109/TCYB.2019.2904052 – start-page: 2960 volume-title: 2013 IEEE International Conference on Computer Vision year: 2013 ident: B13 article-title: Unsupervised visual domain adaptation using subspace alignment, doi: 10.1109/ICCV.2013.368 – volume: 57 start-page: 1798 year: 2010 ident: B22 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2010.2048568 – volume-title: Graph Algorithms year: 2011 ident: B12 doi: 10.1017/CBO9781139015165 – start-page: 1 volume-title: 2014 IEEE International Conference on Multimedia and Expo (ICME) year: 2014 ident: B43 article-title: EEG-based emotion classification using deep belief networks, doi: 10.1109/ICME.2014.6890166 – volume: 7 start-page: 12177 ident: B32 article-title: MPED: a multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – volume: 10 start-page: 374 year: 2017 ident: B1 article-title: Emotions recognition using EEG signals: a survey publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2017.2714671 – volume: 11 start-page: 532 ident: B33 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2018.2817622 – volume: 402 start-page: 273 year: 2006 ident: B24 article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis publication-title: Neurosci. Lett doi: 10.1016/j.neulet.2006.04.006 – volume: 8 start-page: 1454 year: 2017 ident: B34 article-title: The influences of emotion on learning and memory publication-title: Front. Psychol doi: 10.3389/fpsyg.2017.01454 – volume: 169 start-page: 431 year: 2018 ident: B15 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.052 – volume: 49 start-page: 1110 year: 2018 ident: B40 article-title: Emotionmeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybernet doi: 10.1109/TCYB.2018.2797176 – volume: 7 start-page: 162 year: 2015 ident: B41 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev doi: 10.1109/TAMD.2015.2431497 – year: 2020 ident: B44 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2020.2994159 – volume: 30 start-page: 201 year: 2000 ident: B27 article-title: Recurrent neural network based prediction of epileptic seizures in intra-and extracranial EEG publication-title: Neurocomputing doi: 10.1016/S0925-2312(99)00126-5 – year: 2019 ident: B38 article-title: GCB-net: graph convolutional broad network and its application in emotion recognition publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2019.2937768 – volume: 18 start-page: 32 year: 2001 ident: B8 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Process. Mag doi: 10.1109/79.911197 – volume: 8 start-page: 355 year: 2017 ident: B2 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Emotion doi: 10.14569/IJACSA.2017.081046 – year: 2020 ident: B20 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst doi: 10.1109/TCDS.2020.2999337 – volume: 18 start-page: 2074 year: 2018 ident: B30 article-title: A review of emotion recognition using physiological signals publication-title: Sensors doi: 10.3390/s18072074 – year: 2013 ident: B4 article-title: Spectral networks and locally connected networks on graphs publication-title: arXiv [Preprint]. arXiv:1312.6203 – volume: 13 start-page: e0194444 year: 2018 ident: B3 article-title: Trait anger modulates neural activity in the fronto-parietal attention network publication-title: PLOS ONE doi: 10.1371/journal.pone.0194444 – volume: 30 start-page: 83 year: 2013 ident: B31 article-title: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains publication-title: IEEE Signal Process. Mag doi: 10.1109/MSP.2012.2235192 – volume-title: ICLR Workshop on Representation Learning on Graphs and Manifolds year: 2019 ident: B14 article-title: Fast graph representation learning with PyTorch Geometric, – volume: 24 start-page: 2570 year: 2020 ident: B37 article-title: Motor imagery classification via temporal attention cues of graph embedded EEG signals publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2020.2967128 – start-page: 403 volume-title: International Conference on Neural Information Processing ident: B17 article-title: Cross-subject emotion recognition using deep adaptation networks, – volume: 15 start-page: 215 year: 1995 ident: B23 article-title: The geometry of graphs and some of its algorithmic applications publication-title: Combinatorica doi: 10.1007/BF01200757 – volume: 12 start-page: 70 year: 2018 ident: B25 article-title: Emotion regulation and complex brain networks: association between expressive suppression and efficiency in the fronto-parietal network and default-mode network publication-title: Front. Hum. Neurosci doi: 10.3389/fnhum.2018.00070 – start-page: 81 volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) year: 2013 ident: B11 article-title: Differential entropy feature for EEG-based emotion classification, doi: 10.1109/NER.2013.6695876 – ident: B21 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2018.2885474 – volume: 10 start-page: 101 year: 2009 ident: B10 article-title: Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory publication-title: BMC Neurosci doi: 10.1186/1471-2202-10-101 – start-page: 6587 volume-title: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology year: 2010 ident: B29 article-title: Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning, – volume: 84 start-page: 437 year: 2010 ident: B16 article-title: Emotion and the motivational brain publication-title: Biol. Psychol doi: 10.1016/j.biopsycho.2009.10.007 – start-page: 5371 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: B35 article-title: EEG-GRAPH: a factor-graph-based model for capturing spatial, temporal, and observational relationships in electroencephalograms, – volume: 7 start-page: 1687 year: 2006 ident: B7 article-title: Large scale transductive SVMs publication-title: J. Mach. Learn. Res – volume: 22 start-page: 199 year: 2011 ident: B26 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw doi: 10.1109/TNN.2010.2091281 – volume: 9 start-page: 228 year: 1999 ident: B9 article-title: Regional brain function, emotion and disorders of emotion publication-title: Curr. Opin. Neurobiol doi: 10.1016/S0959-4388(99)80032-4 – start-page: 1240 volume-title: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2018 ident: B36 article-title: EEG emotion recognition using dynamical graph convolutional neural networks and broad learning system, doi: 10.1109/BIBM.2018.8621147 – start-page: 205 year: 2004 ident: B5 article-title: Analysis of emotion recognition using facial expressions, speech and multimodal information, publication-title: Proceedings of the 6th International Conference on Multimodal Interfaces doi: 10.1145/1027933.1027968 – volume: 9 start-page: 281 year: 2016 ident: B39 article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis publication-title: IEEE Trans. Cogn. Dev. Syst doi: 10.1109/TCDS.2016.2587290 – start-page: 357 volume-title: Proceedings of the 22nd ACM International Conference on Multimedia year: 2014 ident: B28 article-title: We are not all equal: personalizing models for facial expression analysis with transductive parameter transfer, doi: 10.1145/2647868.2654916 – volume: 10 start-page: 417 year: 2017 ident: B42 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2017.2712143 – volume: 12 start-page: 162 ident: B19 article-title: Exploring EEG features in cross-subject emotion recognition publication-title: Front. Neurosci doi: 10.3389/fnins.2018.00162 |
SSID | ssj0062842 |
Score | 2.502367 |
Snippet | As a physiological process and high-level cognitive behavior, emotion is an important subarea in neuroscience research. Emotion recognition across subjects... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 611653 |
SubjectTerms | Asymmetry Cognitive ability cross-subject Datasets EEG Electroencephalography emotion recognition Emotions Experiments graph construction graph neural network Graph representations Machine learning Nervous system Neural networks Neuroscience Neurosciences SEED dataset |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPVFBPEgRLtpHs1RZVUE9-ADvZVtMsEF7YqsB_-9M013sRe9eCtt2qSTeSaTbxg7RBeh8lEqYXMwQoXghLNgBcqky4mNfEGnkW-H5vpR3Tzr5x-lvignLMEDJ8Kd9otosxgKsIVW4LyrdIGSAZlS3mJMRdoXbd4smEo62KDSlWkPE0MwdxrrcU3Y3LJ_YghvJu9YoQasv-NhdvMjfxicyxW23HqK_CyNcJUtQL3G1s9qjJLfvvgRb3I3m0XxdTa8oG4EagFaVuGDwRUfpPo8_G6WIYTXT-PpC7-H1yjaI5gQ-BUhVnPC6MDOhikpfIM9Xg4eLq5FWylBeJTBqfAmUixSmazSMlRGWgAPimIBpFOuXHAa-hBVXqGJH9mgdA6VG0HmQ9Q25JtssZ7UsMV4JiP5XVECoHOVxZGTEI0MhNoSUBv1WDajXOlbGHGqZvFaYjhBxC4bYpdE7DIRu8eO56-8JwyN3xqf03TMGxL8dXMDmaJsmaL8iyl6bHc2mWUrk9iJpirwfWtdjx3MH6M00RbJqIbJJ7VRGj1ma_ATtsMEnQF1n9TjlwaXG30tDNfy7f_4gx22RERpktLcLlucfnzCHro_02q_4fRvARYCoA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELVauPRSFWjVbSlypaqHSi5Zxx_xqQIUQJW6qmhRuUUbewwr0Syly4F_z4zjrMiFW5Q4cTz2jN_Y4zeMfUKI0PoolbAlGKFCcMJZsAJ10pU0jHxFp5F_zMzpufp-oS_ygtv_HFY52MRkqMPS0xr5vtSUw3tqrft2809Q1ijaXc0pNJ6zTTTBFTpfm4f17OfZYIsNGt-032nobBCC835fE90ytx-7RUd83XL61RAHTTmamRKB_wh1jmMmH01Cx6_Yy4we-UHf3VvsGXTbbOegQ8_57z3_zFM8Z1oo32GzI6pGoGWgpRZe1ye87nP28LMhagiv_yxWV_wXXEeRj2VC4CfEYs2JtwMrm_WB4q_Z-XH9--hU5OwJwqNeroQ3kfyT1hStlqE10gJ4UOQfFEqVygWnYQpRlS1O-3MblC6hdXMofIjahvIN2-iWHbxlvJCRsFiUAAi4ijh3EqKRgZhcAlqoCSsGyTU-U4tThovrBl0MEnaThN2QsJte2BP2Zf3KTc-r8VThQ-qOdUGixE43lreXTdawZlpFW8RQga20Auddqys0oYCN9Rad7wnbHTqzyXqKlaxH1YR9XD9GDaNtk3kHyzsqozSiaGvwE3Y0CEY_NH7SLa4SVzfiL3ThyndPV_6evaDmphA0t8s2Vrd38AHBzqrdyyP6Ad9e_jA priority: 102 providerName: ProQuest |
Title | Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network |
URI | https://www.proquest.com/docview/2539401779 https://www.proquest.com/docview/2545991767 https://pubmed.ncbi.nlm.nih.gov/PMC8221183 https://doaj.org/article/18f70fd8e7854e9c9b58088e044c7027 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED66FkZfRrduLFsXNBh7GLhzZFmyHspoi9syaBjdwvpmYuu0BjKnzVJo_33vZDvMUPawN2PJln3Snb6TTt8BfCCIUFZeqsgkqCPlnI2sQRORTtqEh1GV8Wnk87E-m6ivl-nlBnTprVoB_nnUteN8UpPlfP_u5v4LKfwBe5w033729axm5m052tfMJpM8gS2amAzr6blabypossRh81PzQSFC6s0m5-Ov2IanZN8JG6lRb8YKxP49NNqPpfxrcjrZgWctqhSHzTB4DhtYv4Ddw5o86t_34qMIcZ5hAX0XxsfcTEQWg5dgRJ6firzJ5SMuumgiuv45W12J7zj3UXtcE504ZXZrwXwe1Ni4CSB_CZOT_MfxWdRmVYgq0tdVVGnPfkup4zKVrtTSIFao2G-IlUqUdTbFEXqVlAQHpsapNMHSTjGunE-NS17BZr2o8TWIWHrGaF4iEhCL_dRK9Fo6ZnhxZLkGEHeSK6qWcpwzX8wLcj1Y7kWQe8FyLxq5D-DT-pHrhm_jX5WPuDvWFZkqO9xYLH8VreYVo8yb2LsMTZYqtJUt04xMK9LPVoac8gHsdZ1ZdMOvkClnjKf-twN4vy4mzePtlGmNi1uuo1JC10bTK0xvEPQ-qF9Sz64ChzfhMnLtkjf__eRb2GZJhKg1uwebq-UtviN8tCqHsHWUj79dDMP6wjDowAOK2BCH |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9gAXBBTE0gJGAg5IplnHseMDQm1Ju6VthEoreks39rhdqWRL2Qr1T_EbmcnHilx66y1KnDgej8dv7PEbxt4iRChdkEqYGLRQ3lthDRiBY9LGpEYupdPIB7keH6uvJ8nJEvvbnYWhsMrOJtaG2s8crZGvy4RyeI-MsZ8vfwnKGkW7q10KjUYt9uDmD7psvz_tfsH-fSfldna0NRZtVgHhUF_nwulAuL3UUZlIX2ppABwows2RUrGy3iYwgqDiEqfDifEqiaG0E4icD4nxMX73HltWMboyA7a8meXfDjvbr9HY1_urms4ioTPQ7KOiG2jXQzWtiB9cjj5q4ryJezNhnTCgh3L7MZr_TXrbj9jDFq3yjUa9HrMlqJ6wlY0KPfWfN_w9r-NH64X5FZZvUTUCLREt7fAs2-FZkyOIH3ZRSnj9Yzo_59_hIoj2GCh4vkOs2Zx4QrCyvAlMf8qO70Suz9igmlXwnPFIBsJ-QQIgwIvCxEoIWnpijvFoEYcs6iRXuJbKnDJqXBTo0pCwi1rYBQm7aIQ9ZB8Wr1w2PB63Fd6k7lgUJAru-sbs6qxoR3QxSoOJgk_BpIkC62yZpGiyARvrDDr7Q7bWdWbR2gWsZKHFQ_Zm8RhHNG3TTCqYXVMZlSBqNxo_YXpK0Puh_pNqel5zgyPeQ5cxfnF75a_Z_fHRwX6xv5vvrbIH1PQ6_M2uscH86hpeItCal69a7ebs9K4H1D9ygDs8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJcEFAQgQJGAg5Iphuv114fEOojaUthVRUqeluy6zGNVDalpEL9a_w6ZvYRsZfeeouyzjoez4y_scffALwiiFCUQWlpYzRSe--ks2gl2aSLWY3KlG8jf87M3rH-eJKcrMDf7i4Mp1V2PrF21H5e8h75hkq4hvfIWrcR2rSIw53Jh_NfkitI8UlrV06jUZEDvPpD4dvv9_s7NNevlZqMv27vybbCgCxJdxeyNIExfGGiIlG-MMoilqgZQ0dax9p5l-AIg44LWhqn1uskxsJNMSp9SKyP6b23YNVSVBQNYHVrnB0edeuAIcdfn7UavpdEgUFzpkohIY2gmlXMFa5G7wzz38S9VbEuHtBDvP18zf8WwMk9uNsiV7HZqNp9WMHqAaxtVhS1_7wSb0SdS1pv0q9Bts3dSPJKvM0jxuNdMW7qBYmjLmOJPn-bLU7FFzwLsr0Sil7sMoO2YM4Q6ixrktQfwvGNyPURDKp5hY9BRCowDgwKkcBeFKZOYTDKM4uMJ-84hKiTXF62tOZcXeMsp_CGhZ3Xws5Z2Hkj7CG8Xf7kvOH0uK7xFk_HsiHTcddfzC9-5K1156M02Cj4FG2aaHSlK5KU3DfSYEtLgf8Q1rvJzFsfQZ0sNXoIL5ePybr5yGZa4fyS2-iEELw19ArbU4LeH-o_qWanNU84YT8KH-Mn13f-Am6TIeWf9rODp3CHR15nwrl1GCwuLvEZYa5F8bxVbgHfb9qe_gEIYD9x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Subject+EEG+Emotion+Recognition+With+Self-Organized+Graph+Neural+Network&rft.jtitle=Frontiers+in+neuroscience&rft.au=Li%2C+Jingcong&rft.au=Li%2C+Shuqi&rft.au=Pan%2C+Jiahui&rft.au=Wang%2C+Fei&rft.date=2021-06-09&rft.pub=Frontiers+Media+S.A&rft.issn=1662-4548&rft.eissn=1662-453X&rft.volume=15&rft_id=info:doi/10.3389%2Ffnins.2021.611653&rft_id=info%3Apmid%2F34177441&rft.externalDocID=PMC8221183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |