Reduced Immune Response to Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Cohort of Immunocompromised Patients in Chile
Abstract Background Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to Coro...
Saved in:
Published in | Clinical infectious diseases Vol. 75; no. 1; pp. e594 - e602 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
24.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Background
Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients.
Methods
This prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8–12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti–SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined.
Results
NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups.
Conclusions
Diverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients.
Clinical Trials Registration
NCT04888793.
We assessed the immune response to a severe acute respiratory syndrome coronavirus-2 vaccine in immunocompromised patients. Humoral response in these patients was markedly reduced versus controls. We propose alternative vaccination schemes and/or the application of vaccine boosters in these patients.. |
---|---|
AbstractList | Abstract
Background
Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients.
Methods
This prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8–12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti–SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined.
Results
NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups.
Conclusions
Diverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients.
Clinical Trials Registration
NCT04888793.
We assessed the immune response to a severe acute respiratory syndrome coronavirus-2 vaccine in immunocompromised patients. Humoral response in these patients was markedly reduced versus controls. We propose alternative vaccination schemes and/or the application of vaccine boosters in these patients.. Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients.BACKGROUNDInactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients.This prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8-12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti-SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined.METHODSThis prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8-12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti-SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined.NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups.RESULTSNAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups.Diverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients.CONCLUSIONSDiverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients.NCT04888793.CLINICAL TRIALS REGISTRATIONNCT04888793. |
Author | Ruiz-Tagle, Cinthya Ferrés, Marcela Le Corre, Nicole Berrios-Rojas, Roslye Martinez-Valdebenito, Constanza Ríos, Mariana Burgos, Paula I Mondaca, Sebastián Solari, Sandra Ross, Patricio Durán, Josefina Dib, Martín Ortiz, Catalina Melo-González, Felipe Vizcaya, Cecilia Ceballos, María Elena Bueno, Susan M Nervi, Bruno Lembach, Hanns Budnik, Sigall Rabagliati, Ricardo Sarmiento, Mauricio Vizcaya, María de los Ángeles Espinoza, Manuel Balcells, M Elvira Kalergis, Alexis M |
Author_xml | – sequence: 1 givenname: M Elvira surname: Balcells fullname: Balcells, M Elvira – sequence: 2 givenname: Nicole surname: Le Corre fullname: Le Corre, Nicole – sequence: 3 givenname: Josefina surname: Durán fullname: Durán, Josefina – sequence: 4 givenname: María Elena surname: Ceballos fullname: Ceballos, María Elena – sequence: 5 givenname: Cecilia surname: Vizcaya fullname: Vizcaya, Cecilia – sequence: 6 givenname: Sebastián surname: Mondaca fullname: Mondaca, Sebastián – sequence: 7 givenname: Martín surname: Dib fullname: Dib, Martín – sequence: 8 givenname: Ricardo surname: Rabagliati fullname: Rabagliati, Ricardo – sequence: 9 givenname: Mauricio surname: Sarmiento fullname: Sarmiento, Mauricio – sequence: 10 givenname: Paula I surname: Burgos fullname: Burgos, Paula I – sequence: 11 givenname: Manuel surname: Espinoza fullname: Espinoza, Manuel – sequence: 12 givenname: Marcela surname: Ferrés fullname: Ferrés, Marcela – sequence: 13 givenname: Constanza surname: Martinez-Valdebenito fullname: Martinez-Valdebenito, Constanza – sequence: 14 givenname: Cinthya surname: Ruiz-Tagle fullname: Ruiz-Tagle, Cinthya – sequence: 15 givenname: Catalina surname: Ortiz fullname: Ortiz, Catalina – sequence: 16 givenname: Patricio surname: Ross fullname: Ross, Patricio – sequence: 17 givenname: Sigall surname: Budnik fullname: Budnik, Sigall – sequence: 18 givenname: Sandra surname: Solari fullname: Solari, Sandra – sequence: 19 givenname: María de los Ángeles surname: Vizcaya fullname: Vizcaya, María de los Ángeles – sequence: 20 givenname: Hanns surname: Lembach fullname: Lembach, Hanns – sequence: 21 givenname: Roslye surname: Berrios-Rojas fullname: Berrios-Rojas, Roslye – sequence: 22 givenname: Felipe surname: Melo-González fullname: Melo-González, Felipe – sequence: 23 givenname: Mariana surname: Ríos fullname: Ríos, Mariana – sequence: 24 givenname: Alexis M surname: Kalergis fullname: Kalergis, Alexis M – sequence: 25 givenname: Susan M surname: Bueno fullname: Bueno, Susan M – sequence: 26 givenname: Bruno surname: Nervi fullname: Nervi, Bruno email: bnervi@uc.cl |
BookMark | eNp9kMFq3DAQhkVJoUnaU19ApxAIbiXLsuVjWJJ2IZCStL2a8XhMFGxpI8kL-xh94yo4p0ByGDRovv-fnzlhR847YuyrFN-kaNV3tEMuQFk3H9ix1Kopat3Ko9wLbYrKKPOJncT4KISURuhj9u-OhgVp4Nt5XhzxO4o77yLx5PnWASa7h5TH97SnQPwSl7RCNkDy4cDvD24Ifia-8cE72NuwRF7yv4Bos591HPLowYfE_bhu8ejnXdbYmI1_QbLkUnwmNw92os_s4whTpC8v7yn7c331e_OzuLn9sd1c3hRYCZEKFNCiGQ1WJTSaSMJoahJ9T6T7qlJ9UxvoVYtY90Ir3asBRmgHrVGaUaM6Zeerb47ytFBMXQ6ENE3gyC-xK2vVqFJUusyoXFEMPsZAY4c25dzepQB26qTons-ff4fu5fxZc_FKswt2hnB4gz5bab_s3gX_AwrtmxY |
CitedBy_id | crossref_primary_10_2147_IDR_S353127 crossref_primary_10_1080_21645515_2022_2119763 crossref_primary_10_1038_s41598_023_37051_x crossref_primary_10_1038_s41423_023_01087_w crossref_primary_10_3390_vaccines11071193 crossref_primary_10_1097_ID9_0000000000000073 crossref_primary_10_1590_S1678_9946202466024 crossref_primary_10_1016_j_transproceed_2023_02_034 crossref_primary_10_1097_QAD_0000000000003579 crossref_primary_10_3390_vaccines11051012 crossref_primary_10_3390_biomedicines12092115 crossref_primary_10_3389_fimmu_2024_1341600 crossref_primary_10_1016_j_beha_2022_101399 crossref_primary_10_3390_vaccines11091456 crossref_primary_10_1080_21645515_2024_2357424 crossref_primary_10_1038_s41598_023_29669_8 crossref_primary_10_3389_fimmu_2024_1427501 crossref_primary_10_1016_j_lana_2022_100371 crossref_primary_10_1093_infdis_jiac229 crossref_primary_10_3390_vaccines10091569 crossref_primary_10_1016_j_isci_2023_107915 crossref_primary_10_3390_vaccines11040789 crossref_primary_10_1007_s42770_024_01507_7 crossref_primary_10_1002_jmv_28730 crossref_primary_10_1177_20503121231187754 crossref_primary_10_1007_s00296_022_05164_7 crossref_primary_10_3389_fimmu_2022_982155 crossref_primary_10_1111_hiv_13537 |
Cites_doi | 10.1007/s00296-021-04910-7 10.1001/jama.2021.7489 10.1056/NEJMoa2034577 10.1038/s41591-021-01377-8 10.1056/NEJMoa2102214 10.1056/NEJMc2108861 10.1038/s41587-020-0631-z 10.1016/j.ejca.2020.08.011 10.1093/cid/ciab648 10.1093/rheumatology/kes305 10.1016/S2666-5247(21)00177-4 10.1136/annrheumdis-2021-220503 10.1016/j.kint.2021.05.011 10.1093/cid/ciab823 10.1001/jamaoncol.2021.2155 10.1016/S2666-5247(21)00267-6 10.1126/sciimmunol.abj6513 10.1093/trstmh/trab045 10.3389/fimmu.2021.747830 10.3389/fimmu.2021.742914 10.1016/j.amjmed.2018.12.011 10.1016/S0140-6736(21)01429-X 10.1016/S2352-3018(21)00103-X 10.1016/j.cell.2020.05.015 10.1038/s41586-020-2814-7 10.7326/M21-1341 10.1001/jama.2021.12339 10.1056/NEJMoa2035389 10.1016/j.autrev.2021.102927 10.1038/s41591-021-01469-5 10.1056/NEJMoa2107715 10.1016/S2665-9913(21)00212-5 10.1016/j.cmi.2021.06.036 10.1016/S1473-3099(20)30843-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022 The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022 – notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1093/cid/ciac167 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1537-6591 |
EndPage | e602 |
ExternalDocumentID | 10_1093_cid_ciac167 10.1093/cid/ciac167 |
GroupedDBID | --- ..I .2P .GJ .I3 .ZR 08P 0R~ 1KJ 1TH 29B 2AX 2WC 36B 3O- 4.4 48X 53G 5GY 5RE 5VS 5WD 6J9 70D AABZA AACGO AACZT AAJKP AAJQQ AAMVS AANCE AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAWDT AAYOK ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNGD ABNHQ ABNKS ABOCM ABPLY ABPQP ABPTD ABQLI ABQNK ABSMQ ABTLG ABVGC ABWST ABXSQ ABXVV ABZBJ ACFRR ACGFO ACGFS ACHIC ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADQXQ ADRTK ADULT ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKPW AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFNX AFFQV AFFZL AFIYH AFOFC AFRAH AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AI. AIAGR AIJHB AJDVS AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APJGH APWMN AQDSO AQKUS AQVQM ASPBG ATGXG AVNTJ AVWKF AXUDD AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM BZKNY C1A C45 CDBKE CS3 CZ4 DAKXR DCCCD DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD EMOBN ENERS F5P F9B FECEO FEDTE FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HQ3 HTVGU HVGLF HW0 HZ~ IOX IPSME J21 J5H JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST JXSIZ KAQDR KBUDW KOP KSI KSN L7B M49 MBLQV MHKGH MJL ML0 N4W N9A NGC NOMLY NOYVH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OCZFY ODMLO ODZKP OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TMA TR2 VH1 W8F X7H Y6R YAYTL YKOAZ YXANX ZGI ~91 ~S- AAYXX AGORE AHGBF AJBYB CITATION 7X8 |
ID | FETCH-LOGICAL-c400t-c0a9c8f8c42a75ee1af86e0bbee5b443b768ab39cc6b0535b3dafa9d55c18f5c3 |
ISSN | 1058-4838 1537-6591 |
IngestDate | Fri Jul 11 03:37:40 EDT 2025 Tue Jul 01 01:18:45 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Wed Apr 02 07:06:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | COVID-19 SARS-CoV-2 inactivated vaccine CoronaVac immunocompromised patient |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-c0a9c8f8c42a75ee1af86e0bbee5b443b768ab39cc6b0535b3dafa9d55c18f5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8903589 |
PQID | 2637320452 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2637320452 crossref_citationtrail_10_1093_cid_ciac167 crossref_primary_10_1093_cid_ciac167 oup_primary_10_1093_cid_ciac167 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-24 |
PublicationDateYYYYMMDD | 2022-08-24 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | US |
PublicationPlace_xml | – name: US |
PublicationTitle | Clinical infectious diseases |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Mahil (2022082502585907400_CIT0031) 2021; 3 Tan (2022082502585907400_CIT0012) 2020; 38 Schramm (2022082502585907400_CIT0021) 2021; 1 Braun-Moscovici (2022082502585907400_CIT0032) 2021; 10 Heeger (2022082502585907400_CIT0037) 2021; 6 Kamar (2022082502585907400_CIT0038) 2021; 385 Lim (2022082502585907400_CIT0006) 2021; 8 Sahin (2022082502585907400_CIT0036) 2020; 586 Woldemeskel (2022082502585907400_CIT0029) 2021; 74 Frater (2022082502585907400_CIT0027) 2021; 8 Sun (2022082502585907400_CIT0017) 2021; 2 Madhi (2022082502585907400_CIT0028) 2021; 384r World Health Organization. (2022082502585907400_CIT0001) Choi (2022082502585907400_CIT0005) 2021; 115 Jara (2022082502585907400_CIT0011) 2021; 10 Ministerio de Salud (Chile). (2022082502585907400_CIT0009) El Chaer (2022082502585907400_CIT0026) 2019; 132 Caillard (2022082502585907400_CIT0023) 2021; 100 Grifoni (2022082502585907400_CIT0014) 2020; 181 Saini (2022082502585907400_CIT0024) 2020; 139 Massarweh (2022082502585907400_CIT0025) 2021; 8 He (2022082502585907400_CIT0002) 2021; 12 Tanriover (2022082502585907400_CIT0010) 2021; 398 Zhang (2022082502585907400_CIT0015) 2021; 21 Seyahi (2022082502585907400_CIT0034) 2021; 41 Bueno (2022082502585907400_CIT0013) 2021 Baden (2022082502585907400_CIT0004) 2020; 384 Brosh-Nissimov (2022082502585907400_CIT0016) 2021; 11 Marion (2022082502585907400_CIT0018) 2021; 9 Jena (2022082502585907400_CIT0033) 2022; 21 Duarte (2022082502585907400_CIT0041) 2021; 12 Khoury (2022082502585907400_CIT0007) 2021; 27 Narasimhan (2022082502585907400_CIT0019) 2021; 9 Benotmane (2022082502585907400_CIT0039) 2021; 11 Boyarsky (2022082502585907400_CIT0020) 2021; 325 Medeiros-Ribeiro (2022082502585907400_CIT0035) 2021; 10 Polack (2022082502585907400_CIT0003) 2020; 383 Cromer (2022082502585907400_CIT0008) 2022; 3 Reischig (2022082502585907400_CIT0022) 2021; 3 Melo-González (2022082502585907400_CIT0040) 2021; 12 Listing (2022082502585907400_CIT0030) 2013; 52 |
References_xml | – volume: 41 start-page: 1429 year: 2021 ident: 2022082502585907400_CIT0034 article-title: Antibody response to inactivated COVID-19 vaccine (CoronaVac) in immune-mediated diseases: a controlled study among hospital workers and elderly publication-title: Rheumatol Int doi: 10.1007/s00296-021-04910-7 – volume: 325 start-page: 2204 year: 2021 ident: 2022082502585907400_CIT0020 article-title: Antibody response to 2-dose SARS-CoV-2 mRNA vaccine series in solid organ transplant recipients publication-title: JAMA doi: 10.1001/jama.2021.7489 – volume: 383 start-page: 2603 year: 2020 ident: 2022082502585907400_CIT0003 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2034577 – volume: 27 start-page: 1205 year: 2021 ident: 2022082502585907400_CIT0007 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat Med doi: 10.1038/s41591-021-01377-8 – volume: 384r start-page: 1885 year: 2021 ident: 2022082502585907400_CIT0028 article-title: Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant publication-title: N Engl J Med doi: 10.1056/NEJMoa2102214 – volume: 385 start-page: 661 year: 2021 ident: 2022082502585907400_CIT0038 article-title: Three doses of an mRNA Covid-19 vaccine in solid-organ transplant recipients publication-title: N Engl J Med doi: 10.1056/NEJMc2108861 – volume: 38 start-page: 1073 year: 2020 ident: 2022082502585907400_CIT0012 article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0631-z – volume: 139 start-page: 43 year: 2020 ident: 2022082502585907400_CIT0024 article-title: Mortality in patients with cancer and coronavirus disease 2019: a systematic review and pooled analysis of 52 studies publication-title: Eur J Cancer doi: 10.1016/j.ejca.2020.08.011 – volume: 74 start-page: 1268 year: 2021 ident: 2022082502585907400_CIT0029 article-title: The BNT162b2 mRNA vaccine elicits robust humoral and cellular immune responses in people living with HIV publication-title: Clin Infect Dis doi: 10.1093/cid/ciab648 – volume: 52 start-page: 53 year: 2013 ident: 2022082502585907400_CIT0030 article-title: The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment publication-title: Rheumatology (Oxford) doi: 10.1093/rheumatology/kes305 – ident: 2022082502585907400_CIT0009 – volume: 8 start-page: e423 year: 2021 ident: 2022082502585907400_CIT0006 article-title: Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00177-4 – volume: 12 year: 2021 ident: 2022082502585907400_CIT0002 article-title: COVID-19 vaccines: current understanding on immunogenicity, safety, and further considerations publication-title: Front Immunol – volume: 9 year: 2021 ident: 2022082502585907400_CIT0019 article-title: Serological response in lung transplant recipients after two doses of SARS-CoV-2 mRNA vaccines publication-title: Vaccines (Basel) – volume: 10 start-page: 1317 year: 2021 ident: 2022082502585907400_CIT0032 article-title: Disease activity and humoral response in patients with inflammatory rheumatic diseases after two doses of the Pfizer mRNA vaccine against SARS-CoV-2 publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2021-220503 – volume: 100 start-page: 477 year: 2021 ident: 2022082502585907400_CIT0023 article-title: Occurrence of severe COVID-19 in vaccinated transplant patients publication-title: Kidney Int doi: 10.1016/j.kint.2021.05.011 – year: 2021 ident: 2022082502585907400_CIT0013 article-title: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine in a subgroup of healthy adults in Chile publication-title: Clin Infect Dis doi: 10.1093/cid/ciab823 – volume: 8 start-page: 1133 year: 2021 ident: 2022082502585907400_CIT0025 article-title: Evaluation of seropositivity following BNT162b2 messenger RNA Vaccination for SARS-CoV-2 in patients undergoing treatment for cancer publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2021.2155 – ident: 2022082502585907400_CIT0001 – volume: 3 start-page: e52 year: 2022 ident: 2022082502585907400_CIT0008 article-title: Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00267-6 – volume: 2 start-page: 153 year: 2021 ident: 2022082502585907400_CIT0017 article-title: Association between immune dysfunction and COVID-19 breakthrough infection after SARS-CoV-2 vaccination in the US publication-title: JAMA Intern Med – volume: 6 start-page: eabj6513 year: 2021 ident: 2022082502585907400_CIT0037 article-title: Implications of defective immune responses in SARS-CoV-2 vaccinated organ transplant recipients publication-title: Sci Immunol doi: 10.1126/sciimmunol.abj6513 – volume: 115 start-page: 447 year: 2021 ident: 2022082502585907400_CIT0005 article-title: COVID-19 vaccines for low- and middle-income countries publication-title: Trans R Soc Trop Med Hyg doi: 10.1093/trstmh/trab045 – volume: 12 year: 2021 ident: 2022082502585907400_CIT0040 article-title: Recognition of variants of concern by antibodies and T cells induced by a SARS-CoV-2 inactivated vaccine publication-title: Front Immunol doi: 10.3389/fimmu.2021.747830 – volume: 12 start-page: 742914 year: 2021 ident: 2022082502585907400_CIT0041 article-title: Immune profile and clinical outcome of breakthrough cases after vaccination with an inactivated SARS-CoV-2 vaccine publication-title: Front Immunol doi: 10.3389/fimmu.2021.742914 – volume: 132 start-page: 437 year: 2019 ident: 2022082502585907400_CIT0026 article-title: Vaccination in the adult patient infected with HIV: a review of vaccine efficacy and immunogenicity publication-title: Am J Med doi: 10.1016/j.amjmed.2018.12.011 – volume: 398 start-page: 213 year: 2021 ident: 2022082502585907400_CIT0010 article-title: Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey publication-title: Lancet doi: 10.1016/S0140-6736(21)01429-X – volume: 8 start-page: 474 year: 2021 ident: 2022082502585907400_CIT0027 article-title: Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial publication-title: Lancet HIV doi: 10.1016/S2352-3018(21)00103-X – volume: 181 start-page: 1489 year: 2020 ident: 2022082502585907400_CIT0014 article-title: Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals publication-title: Cell doi: 10.1016/j.cell.2020.05.015 – volume: 3 start-page: 801 year: 2021 ident: 2022082502585907400_CIT0022 article-title: Insufficient response to mRNA SARS-CoV-2 vaccine and high incidence of severe COVID-19 in kidney transplant recipients during pandemic publication-title: Am J Transplant – volume: 586 start-page: 594 year: 2020 ident: 2022082502585907400_CIT0036 article-title: COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses publication-title: Nature doi: 10.1038/s41586-020-2814-7 – volume: 9 start-page: 1336 year: 2021 ident: 2022082502585907400_CIT0018 article-title: Safety and immunogenicity of anti-SARS-CoV-2 messenger RNA vaccines in recipients of solid organ transplants publication-title: Ann Intern Med doi: 10.7326/M21-1341 – volume: 11 start-page: 1063 year: 2021 ident: 2022082502585907400_CIT0039 article-title: Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses publication-title: JAMA doi: 10.1001/jama.2021.12339 – volume: 1 start-page: 8 year: 2021 ident: 2022082502585907400_CIT0021 article-title: Poor humoral and T-cell response to two-dose SARS-CoV-2 messenger RNA vaccine BNT162b2 in cardiothoracic transplant recipients publication-title: Clin Res Cardiol – volume: 384 start-page: 403 year: 2020 ident: 2022082502585907400_CIT0004 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N Engl J Med doi: 10.1056/NEJMoa2035389 – volume: 21 start-page: 102927 year: 2022 ident: 2022082502585907400_CIT0033 article-title: Response to SARS-CoV-2 vaccination in immune mediated inflammatory diseases: systematic review and meta-analysis publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2021.102927 – volume: 10 start-page: 1744 year: 2021 ident: 2022082502585907400_CIT0035 article-title: Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: a phase 4 trial publication-title: Nat Med doi: 10.1038/s41591-021-01469-5 – volume: 10 start-page: 875 year: 2021 ident: 2022082502585907400_CIT0011 article-title: Effectiveness of an inactivated SARS-CoV-2 Vaccine in Chile publication-title: N Engl J Med doi: 10.1056/NEJMoa2107715 – volume: 3 start-page: 627 year: 2021 ident: 2022082502585907400_CIT0031 article-title: The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study publication-title: Lancet Rheumatol doi: 10.1016/S2665-9913(21)00212-5 – volume: 11 start-page: L1652 year: 2021 ident: 2022082502585907400_CIT0016 article-title: BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully-vaccinated hospitalized COVID-19 patients in Israel publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2021.06.036 – volume: 21 start-page: 181 year: 2021 ident: 2022082502585907400_CIT0015 article-title: Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30843-4 |
SSID | ssj0011805 |
Score | 2.5402448 |
Snippet | Abstract
Background
Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income... Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However,... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e594 |
Title | Reduced Immune Response to Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Cohort of Immunocompromised Patients in Chile |
URI | https://www.proquest.com/docview/2637320452 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCkRCXiqco5WGknoiW7nofcY4VKWpARai0qLfIdsZqpGiD8uiBf8G_4-cw48dmQyNUuKyixPZmdz7b45lvZhg76I17prQSEqtNlRTGykSnYzysgKn6Y5n2pQuPPv1cnVwUHy_Ly07nV4u1tFrqd-bH1riS_5EqfodypSjZf5BsMyh-gZ9RvnhFCeP1VjI-o7yrqDEOKciDCjA4vqsrhjGsKWLhWjmFEvDJoHtkiBNw1vKtfw3pCnBVmKNGfj2ZrxZd0f2mDLnbyRSi8Kcr1NBdxAndZUYcdOwzWeDAX3xSVkeppRzJm3kPYsxl5Hvh2MEdtDbNqyl5DrzFu3s8JcbxmiJEf8ubyB1eGwgOVt6_n9XRh2FDEXDnTQFNZIJFiERyLQcKB4fQJtg48HicoqCL1rKcls7s6VdqiEt1L6lKX-srruW-CssGZv3CDKWvpRw2eahcnPfNDcQn1zIOMDg5TOaLhWwm6v5jA21ojd6hn4-oGnLofIfdFXiAodoag-Gnxr-VSUeubZ4rRI5i50PsfBg6b-hKG_GXUWFwWtD5A7Ybji_8yGPxIetA_YjdOw0EjcfsZ4Ak95DkEZJ8OeMtSHIPSe4gyVuQ5BGSvAVJLniAJJ_UXHEPST6z_AYkeYQktXSQfMIuPhyfvz9JQtWPxOB-skxMqvpGWmkKoXolQKasrCDVGqDURZFrPCArnfeNqTQlJ9L5WFnVH5elyaQtTf6U7dSzGp4xnucF9rNaC50WIEBKLYW2QuJZTUBV7bG38f2ivDz1hSqzTEdbJLnHDprG330mmO3NXqOg_t7iTRTiCF8NTTNVA07CkajyXk71IcTz291sn91fT5cXbGc5X8FLVJKX-pXD22-TGccL |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Immune+Response+to+Inactivated+Severe+Acute+Respiratory+Syndrome+Coronavirus+2+Vaccine+in+a+Cohort+of+Immunocompromised+Patients+in+Chile&rft.jtitle=Clinical+infectious+diseases&rft.au=Balcells%2C+M+Elvira&rft.au=Le+Corre%2C+Nicole&rft.au=Dur%C3%A1n%2C+Josefina&rft.au=Ceballos%2C+Mar%C3%ADa+Elena&rft.date=2022-08-24&rft.issn=1058-4838&rft.eissn=1537-6591&rft.volume=75&rft.issue=1&rft.spage=e594&rft.epage=e602&rft_id=info:doi/10.1093%2Fcid%2Fciac167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_cid_ciac167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4838&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4838&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4838&client=summon |