Reduced Immune Response to Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Cohort of Immunocompromised Patients in Chile

Abstract Background Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to Coro...

Full description

Saved in:
Bibliographic Details
Published inClinical infectious diseases Vol. 75; no. 1; pp. e594 - e602
Main Authors Balcells, M Elvira, Le Corre, Nicole, Durán, Josefina, Ceballos, María Elena, Vizcaya, Cecilia, Mondaca, Sebastián, Dib, Martín, Rabagliati, Ricardo, Sarmiento, Mauricio, Burgos, Paula I, Espinoza, Manuel, Ferrés, Marcela, Martinez-Valdebenito, Constanza, Ruiz-Tagle, Cinthya, Ortiz, Catalina, Ross, Patricio, Budnik, Sigall, Solari, Sandra, Vizcaya, María de los Ángeles, Lembach, Hanns, Berrios-Rojas, Roslye, Melo-González, Felipe, Ríos, Mariana, Kalergis, Alexis M, Bueno, Susan M, Nervi, Bruno
Format Journal Article
LanguageEnglish
Published US Oxford University Press 24.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Background Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients. Methods This prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8–12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti–SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined. Results NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups. Conclusions Diverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients. Clinical Trials Registration NCT04888793. We assessed the immune response to a severe acute respiratory syndrome coronavirus-2 vaccine in immunocompromised patients. Humoral response in these patients was markedly reduced versus controls. We propose alternative vaccination schemes and/or the application of vaccine boosters in these patients..
AbstractList Abstract Background Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients. Methods This prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8–12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti–SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined. Results NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups. Conclusions Diverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients. Clinical Trials Registration NCT04888793. We assessed the immune response to a severe acute respiratory syndrome coronavirus-2 vaccine in immunocompromised patients. Humoral response in these patients was markedly reduced versus controls. We propose alternative vaccination schemes and/or the application of vaccine boosters in these patients..
Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients.BACKGROUNDInactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However, immunogenicity in immunocompromised patients has not been established. Herein, we aimed to evaluate immune response to CoronaVac vaccine in these patients.This prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8-12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti-SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined.METHODSThis prospective cohort study included 193 participants with 5 different immunocompromising conditions and 67 controls, receiving 2 doses of CoronaVac 8-12 weeks before enrollment. The study was conducted between May and August 2021, at Red de Salud UC-CHRISTUS, Santiago, Chile. Neutralizing antibody (NAb) positivity, total anti-SARS-CoV-2 immunoglobulin G antibody (TAb) concentrations, and T-cell responses were determined.NAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups.RESULTSNAb positivity and median neutralizing activity were 83.1% and 51.2% for the control group versus 20.6% and 5.7% (both P < .001) in the solid organ transplant group, 41.5% and 19.2% (both P < .0001) in the autoimmune rheumatic diseases group, 43.3% (P < .001) and 21.4% (P<.01 or P = .001) in the cancer with solid tumors group, 45.5% and 28.7% (both P < .001) in the human immunodeficiency virus (HIV) infection group, 64.3% and 56.6% (both differences not significant) in the hematopoietic stem cell transplant group, respectively. TAb seropositivity was also lower for the solid organ transplant (20.6%; P < .0001), rheumatic diseases (61%; P < .001), and HIV groups (70.9%; P = .003), compared with the control group (92.3%). On the other hand, the number of interferon γ spot-forming T cells specific for SARS-CoV-2 tended to be lower in all immunocompromising conditions but did not differ significantly between groups.Diverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients.CONCLUSIONSDiverse immunocompromising conditions markedly reduce the humoral response to CoronaVac vaccine. These findings suggest that a boosting vaccination strategy should be considered in these vulnerable patients.NCT04888793.CLINICAL TRIALS REGISTRATIONNCT04888793.
Author Ruiz-Tagle, Cinthya
Ferrés, Marcela
Le Corre, Nicole
Berrios-Rojas, Roslye
Martinez-Valdebenito, Constanza
Ríos, Mariana
Burgos, Paula I
Mondaca, Sebastián
Solari, Sandra
Ross, Patricio
Durán, Josefina
Dib, Martín
Ortiz, Catalina
Melo-González, Felipe
Vizcaya, Cecilia
Ceballos, María Elena
Bueno, Susan M
Nervi, Bruno
Lembach, Hanns
Budnik, Sigall
Rabagliati, Ricardo
Sarmiento, Mauricio
Vizcaya, María de los Ángeles
Espinoza, Manuel
Balcells, M Elvira
Kalergis, Alexis M
Author_xml – sequence: 1
  givenname: M Elvira
  surname: Balcells
  fullname: Balcells, M Elvira
– sequence: 2
  givenname: Nicole
  surname: Le Corre
  fullname: Le Corre, Nicole
– sequence: 3
  givenname: Josefina
  surname: Durán
  fullname: Durán, Josefina
– sequence: 4
  givenname: María Elena
  surname: Ceballos
  fullname: Ceballos, María Elena
– sequence: 5
  givenname: Cecilia
  surname: Vizcaya
  fullname: Vizcaya, Cecilia
– sequence: 6
  givenname: Sebastián
  surname: Mondaca
  fullname: Mondaca, Sebastián
– sequence: 7
  givenname: Martín
  surname: Dib
  fullname: Dib, Martín
– sequence: 8
  givenname: Ricardo
  surname: Rabagliati
  fullname: Rabagliati, Ricardo
– sequence: 9
  givenname: Mauricio
  surname: Sarmiento
  fullname: Sarmiento, Mauricio
– sequence: 10
  givenname: Paula I
  surname: Burgos
  fullname: Burgos, Paula I
– sequence: 11
  givenname: Manuel
  surname: Espinoza
  fullname: Espinoza, Manuel
– sequence: 12
  givenname: Marcela
  surname: Ferrés
  fullname: Ferrés, Marcela
– sequence: 13
  givenname: Constanza
  surname: Martinez-Valdebenito
  fullname: Martinez-Valdebenito, Constanza
– sequence: 14
  givenname: Cinthya
  surname: Ruiz-Tagle
  fullname: Ruiz-Tagle, Cinthya
– sequence: 15
  givenname: Catalina
  surname: Ortiz
  fullname: Ortiz, Catalina
– sequence: 16
  givenname: Patricio
  surname: Ross
  fullname: Ross, Patricio
– sequence: 17
  givenname: Sigall
  surname: Budnik
  fullname: Budnik, Sigall
– sequence: 18
  givenname: Sandra
  surname: Solari
  fullname: Solari, Sandra
– sequence: 19
  givenname: María de los Ángeles
  surname: Vizcaya
  fullname: Vizcaya, María de los Ángeles
– sequence: 20
  givenname: Hanns
  surname: Lembach
  fullname: Lembach, Hanns
– sequence: 21
  givenname: Roslye
  surname: Berrios-Rojas
  fullname: Berrios-Rojas, Roslye
– sequence: 22
  givenname: Felipe
  surname: Melo-González
  fullname: Melo-González, Felipe
– sequence: 23
  givenname: Mariana
  surname: Ríos
  fullname: Ríos, Mariana
– sequence: 24
  givenname: Alexis M
  surname: Kalergis
  fullname: Kalergis, Alexis M
– sequence: 25
  givenname: Susan M
  surname: Bueno
  fullname: Bueno, Susan M
– sequence: 26
  givenname: Bruno
  surname: Nervi
  fullname: Nervi, Bruno
  email: bnervi@uc.cl
BookMark eNp9kMFq3DAQhkVJoUnaU19ApxAIbiXLsuVjWJJ2IZCStL2a8XhMFGxpI8kL-xh94yo4p0ByGDRovv-fnzlhR847YuyrFN-kaNV3tEMuQFk3H9ix1Kopat3Ko9wLbYrKKPOJncT4KISURuhj9u-OhgVp4Nt5XhzxO4o77yLx5PnWASa7h5TH97SnQPwSl7RCNkDy4cDvD24Ifia-8cE72NuwRF7yv4Bos591HPLowYfE_bhu8ejnXdbYmI1_QbLkUnwmNw92os_s4whTpC8v7yn7c331e_OzuLn9sd1c3hRYCZEKFNCiGQ1WJTSaSMJoahJ9T6T7qlJ9UxvoVYtY90Ir3asBRmgHrVGaUaM6Zeerb47ytFBMXQ6ENE3gyC-xK2vVqFJUusyoXFEMPsZAY4c25dzepQB26qTons-ff4fu5fxZc_FKswt2hnB4gz5bab_s3gX_AwrtmxY
CitedBy_id crossref_primary_10_2147_IDR_S353127
crossref_primary_10_1080_21645515_2022_2119763
crossref_primary_10_1038_s41598_023_37051_x
crossref_primary_10_1038_s41423_023_01087_w
crossref_primary_10_3390_vaccines11071193
crossref_primary_10_1097_ID9_0000000000000073
crossref_primary_10_1590_S1678_9946202466024
crossref_primary_10_1016_j_transproceed_2023_02_034
crossref_primary_10_1097_QAD_0000000000003579
crossref_primary_10_3390_vaccines11051012
crossref_primary_10_3390_biomedicines12092115
crossref_primary_10_3389_fimmu_2024_1341600
crossref_primary_10_1016_j_beha_2022_101399
crossref_primary_10_3390_vaccines11091456
crossref_primary_10_1080_21645515_2024_2357424
crossref_primary_10_1038_s41598_023_29669_8
crossref_primary_10_3389_fimmu_2024_1427501
crossref_primary_10_1016_j_lana_2022_100371
crossref_primary_10_1093_infdis_jiac229
crossref_primary_10_3390_vaccines10091569
crossref_primary_10_1016_j_isci_2023_107915
crossref_primary_10_3390_vaccines11040789
crossref_primary_10_1007_s42770_024_01507_7
crossref_primary_10_1002_jmv_28730
crossref_primary_10_1177_20503121231187754
crossref_primary_10_1007_s00296_022_05164_7
crossref_primary_10_3389_fimmu_2022_982155
crossref_primary_10_1111_hiv_13537
Cites_doi 10.1007/s00296-021-04910-7
10.1001/jama.2021.7489
10.1056/NEJMoa2034577
10.1038/s41591-021-01377-8
10.1056/NEJMoa2102214
10.1056/NEJMc2108861
10.1038/s41587-020-0631-z
10.1016/j.ejca.2020.08.011
10.1093/cid/ciab648
10.1093/rheumatology/kes305
10.1016/S2666-5247(21)00177-4
10.1136/annrheumdis-2021-220503
10.1016/j.kint.2021.05.011
10.1093/cid/ciab823
10.1001/jamaoncol.2021.2155
10.1016/S2666-5247(21)00267-6
10.1126/sciimmunol.abj6513
10.1093/trstmh/trab045
10.3389/fimmu.2021.747830
10.3389/fimmu.2021.742914
10.1016/j.amjmed.2018.12.011
10.1016/S0140-6736(21)01429-X
10.1016/S2352-3018(21)00103-X
10.1016/j.cell.2020.05.015
10.1038/s41586-020-2814-7
10.7326/M21-1341
10.1001/jama.2021.12339
10.1056/NEJMoa2035389
10.1016/j.autrev.2021.102927
10.1038/s41591-021-01469-5
10.1056/NEJMoa2107715
10.1016/S2665-9913(21)00212-5
10.1016/j.cmi.2021.06.036
10.1016/S1473-3099(20)30843-4
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022
The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2022
– notice: The Author(s) 2022. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
7X8
DOI 10.1093/cid/ciac167
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-6591
EndPage e602
ExternalDocumentID 10_1093_cid_ciac167
10.1093/cid/ciac167
GroupedDBID ---
..I
.2P
.GJ
.I3
.ZR
08P
0R~
1KJ
1TH
29B
2AX
2WC
36B
3O-
4.4
48X
53G
5GY
5RE
5VS
5WD
6J9
70D
AABZA
AACGO
AACZT
AAJKP
AAJQQ
AAMVS
AANCE
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAYOK
ABBHK
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNGD
ABNHQ
ABNKS
ABOCM
ABPLY
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABTLG
ABVGC
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACHIC
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADQXQ
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFNX
AFFQV
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AI.
AIAGR
AIJHB
AJDVS
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
APWMN
AQDSO
AQKUS
AQVQM
ASPBG
ATGXG
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C1A
C45
CDBKE
CS3
CZ4
DAKXR
DCCCD
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HQ3
HTVGU
HVGLF
HW0
HZ~
IOX
IPSME
J21
J5H
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
L7B
M49
MBLQV
MHKGH
MJL
ML0
N4W
N9A
NGC
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OCZFY
ODMLO
ODZKP
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TMA
TR2
VH1
W8F
X7H
Y6R
YAYTL
YKOAZ
YXANX
ZGI
~91
~S-
AAYXX
AGORE
AHGBF
AJBYB
CITATION
7X8
ID FETCH-LOGICAL-c400t-c0a9c8f8c42a75ee1af86e0bbee5b443b768ab39cc6b0535b3dafa9d55c18f5c3
ISSN 1058-4838
1537-6591
IngestDate Fri Jul 11 03:37:40 EDT 2025
Tue Jul 01 01:18:45 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Wed Apr 02 07:06:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
SARS-CoV-2
inactivated vaccine
CoronaVac
immunocompromised patient
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-c0a9c8f8c42a75ee1af86e0bbee5b443b768ab39cc6b0535b3dafa9d55c18f5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8903589
PQID 2637320452
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2637320452
crossref_citationtrail_10_1093_cid_ciac167
crossref_primary_10_1093_cid_ciac167
oup_primary_10_1093_cid_ciac167
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-24
PublicationDateYYYYMMDD 2022-08-24
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-24
  day: 24
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
PublicationTitle Clinical infectious diseases
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Mahil (2022082502585907400_CIT0031) 2021; 3
Tan (2022082502585907400_CIT0012) 2020; 38
Schramm (2022082502585907400_CIT0021) 2021; 1
Braun-Moscovici (2022082502585907400_CIT0032) 2021; 10
Heeger (2022082502585907400_CIT0037) 2021; 6
Kamar (2022082502585907400_CIT0038) 2021; 385
Lim (2022082502585907400_CIT0006) 2021; 8
Sahin (2022082502585907400_CIT0036) 2020; 586
Woldemeskel (2022082502585907400_CIT0029) 2021; 74
Frater (2022082502585907400_CIT0027) 2021; 8
Sun (2022082502585907400_CIT0017) 2021; 2
Madhi (2022082502585907400_CIT0028) 2021; 384r
World Health Organization. (2022082502585907400_CIT0001)
Choi (2022082502585907400_CIT0005) 2021; 115
Jara (2022082502585907400_CIT0011) 2021; 10
Ministerio de Salud (Chile). (2022082502585907400_CIT0009)
El Chaer (2022082502585907400_CIT0026) 2019; 132
Caillard (2022082502585907400_CIT0023) 2021; 100
Grifoni (2022082502585907400_CIT0014) 2020; 181
Saini (2022082502585907400_CIT0024) 2020; 139
Massarweh (2022082502585907400_CIT0025) 2021; 8
He (2022082502585907400_CIT0002) 2021; 12
Tanriover (2022082502585907400_CIT0010) 2021; 398
Zhang (2022082502585907400_CIT0015) 2021; 21
Seyahi (2022082502585907400_CIT0034) 2021; 41
Bueno (2022082502585907400_CIT0013) 2021
Baden (2022082502585907400_CIT0004) 2020; 384
Brosh-Nissimov (2022082502585907400_CIT0016) 2021; 11
Marion (2022082502585907400_CIT0018) 2021; 9
Jena (2022082502585907400_CIT0033) 2022; 21
Duarte (2022082502585907400_CIT0041) 2021; 12
Khoury (2022082502585907400_CIT0007) 2021; 27
Narasimhan (2022082502585907400_CIT0019) 2021; 9
Benotmane (2022082502585907400_CIT0039) 2021; 11
Boyarsky (2022082502585907400_CIT0020) 2021; 325
Medeiros-Ribeiro (2022082502585907400_CIT0035) 2021; 10
Polack (2022082502585907400_CIT0003) 2020; 383
Cromer (2022082502585907400_CIT0008) 2022; 3
Reischig (2022082502585907400_CIT0022) 2021; 3
Melo-González (2022082502585907400_CIT0040) 2021; 12
Listing (2022082502585907400_CIT0030) 2013; 52
References_xml – volume: 41
  start-page: 1429
  year: 2021
  ident: 2022082502585907400_CIT0034
  article-title: Antibody response to inactivated COVID-19 vaccine (CoronaVac) in immune-mediated diseases: a controlled study among hospital workers and elderly
  publication-title: Rheumatol Int
  doi: 10.1007/s00296-021-04910-7
– volume: 325
  start-page: 2204
  year: 2021
  ident: 2022082502585907400_CIT0020
  article-title: Antibody response to 2-dose SARS-CoV-2 mRNA vaccine series in solid organ transplant recipients
  publication-title: JAMA
  doi: 10.1001/jama.2021.7489
– volume: 383
  start-page: 2603
  year: 2020
  ident: 2022082502585907400_CIT0003
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2034577
– volume: 27
  start-page: 1205
  year: 2021
  ident: 2022082502585907400_CIT0007
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01377-8
– volume: 384r
  start-page: 1885
  year: 2021
  ident: 2022082502585907400_CIT0028
  article-title: Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2102214
– volume: 385
  start-page: 661
  year: 2021
  ident: 2022082502585907400_CIT0038
  article-title: Three doses of an mRNA Covid-19 vaccine in solid-organ transplant recipients
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2108861
– volume: 38
  start-page: 1073
  year: 2020
  ident: 2022082502585907400_CIT0012
  article-title: A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0631-z
– volume: 139
  start-page: 43
  year: 2020
  ident: 2022082502585907400_CIT0024
  article-title: Mortality in patients with cancer and coronavirus disease 2019: a systematic review and pooled analysis of 52 studies
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2020.08.011
– volume: 74
  start-page: 1268
  year: 2021
  ident: 2022082502585907400_CIT0029
  article-title: The BNT162b2 mRNA vaccine elicits robust humoral and cellular immune responses in people living with HIV
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciab648
– volume: 52
  start-page: 53
  year: 2013
  ident: 2022082502585907400_CIT0030
  article-title: The risk of infections associated with rheumatoid arthritis, with its comorbidity and treatment
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/kes305
– ident: 2022082502585907400_CIT0009
– volume: 8
  start-page: e423
  year: 2021
  ident: 2022082502585907400_CIT0006
  article-title: Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00177-4
– volume: 12
  year: 2021
  ident: 2022082502585907400_CIT0002
  article-title: COVID-19 vaccines: current understanding on immunogenicity, safety, and further considerations
  publication-title: Front Immunol
– volume: 9
  year: 2021
  ident: 2022082502585907400_CIT0019
  article-title: Serological response in lung transplant recipients after two doses of SARS-CoV-2 mRNA vaccines
  publication-title: Vaccines (Basel)
– volume: 10
  start-page: 1317
  year: 2021
  ident: 2022082502585907400_CIT0032
  article-title: Disease activity and humoral response in patients with inflammatory rheumatic diseases after two doses of the Pfizer mRNA vaccine against SARS-CoV-2
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2021-220503
– volume: 100
  start-page: 477
  year: 2021
  ident: 2022082502585907400_CIT0023
  article-title: Occurrence of severe COVID-19 in vaccinated transplant patients
  publication-title: Kidney Int
  doi: 10.1016/j.kint.2021.05.011
– year: 2021
  ident: 2022082502585907400_CIT0013
  article-title: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine in a subgroup of healthy adults in Chile
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciab823
– volume: 8
  start-page: 1133
  year: 2021
  ident: 2022082502585907400_CIT0025
  article-title: Evaluation of seropositivity following BNT162b2 messenger RNA Vaccination for SARS-CoV-2 in patients undergoing treatment for cancer
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2021.2155
– ident: 2022082502585907400_CIT0001
– volume: 3
  start-page: e52
  year: 2022
  ident: 2022082502585907400_CIT0008
  article-title: Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00267-6
– volume: 2
  start-page: 153
  year: 2021
  ident: 2022082502585907400_CIT0017
  article-title: Association between immune dysfunction and COVID-19 breakthrough infection after SARS-CoV-2 vaccination in the US
  publication-title: JAMA Intern Med
– volume: 6
  start-page: eabj6513
  year: 2021
  ident: 2022082502585907400_CIT0037
  article-title: Implications of defective immune responses in SARS-CoV-2 vaccinated organ transplant recipients
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abj6513
– volume: 115
  start-page: 447
  year: 2021
  ident: 2022082502585907400_CIT0005
  article-title: COVID-19 vaccines for low- and middle-income countries
  publication-title: Trans R Soc Trop Med Hyg
  doi: 10.1093/trstmh/trab045
– volume: 12
  year: 2021
  ident: 2022082502585907400_CIT0040
  article-title: Recognition of variants of concern by antibodies and T cells induced by a SARS-CoV-2 inactivated vaccine
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.747830
– volume: 12
  start-page: 742914
  year: 2021
  ident: 2022082502585907400_CIT0041
  article-title: Immune profile and clinical outcome of breakthrough cases after vaccination with an inactivated SARS-CoV-2 vaccine
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2021.742914
– volume: 132
  start-page: 437
  year: 2019
  ident: 2022082502585907400_CIT0026
  article-title: Vaccination in the adult patient infected with HIV: a review of vaccine efficacy and immunogenicity
  publication-title: Am J Med
  doi: 10.1016/j.amjmed.2018.12.011
– volume: 398
  start-page: 213
  year: 2021
  ident: 2022082502585907400_CIT0010
  article-title: Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01429-X
– volume: 8
  start-page: 474
  year: 2021
  ident: 2022082502585907400_CIT0027
  article-title: Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial
  publication-title: Lancet HIV
  doi: 10.1016/S2352-3018(21)00103-X
– volume: 181
  start-page: 1489
  year: 2020
  ident: 2022082502585907400_CIT0014
  article-title: Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.015
– volume: 3
  start-page: 801
  year: 2021
  ident: 2022082502585907400_CIT0022
  article-title: Insufficient response to mRNA SARS-CoV-2 vaccine and high incidence of severe COVID-19 in kidney transplant recipients during pandemic
  publication-title: Am J Transplant
– volume: 586
  start-page: 594
  year: 2020
  ident: 2022082502585907400_CIT0036
  article-title: COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses
  publication-title: Nature
  doi: 10.1038/s41586-020-2814-7
– volume: 9
  start-page: 1336
  year: 2021
  ident: 2022082502585907400_CIT0018
  article-title: Safety and immunogenicity of anti-SARS-CoV-2 messenger RNA vaccines in recipients of solid organ transplants
  publication-title: Ann Intern Med
  doi: 10.7326/M21-1341
– volume: 11
  start-page: 1063
  year: 2021
  ident: 2022082502585907400_CIT0039
  article-title: Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses
  publication-title: JAMA
  doi: 10.1001/jama.2021.12339
– volume: 1
  start-page: 8
  year: 2021
  ident: 2022082502585907400_CIT0021
  article-title: Poor humoral and T-cell response to two-dose SARS-CoV-2 messenger RNA vaccine BNT162b2 in cardiothoracic transplant recipients
  publication-title: Clin Res Cardiol
– volume: 384
  start-page: 403
  year: 2020
  ident: 2022082502585907400_CIT0004
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2035389
– volume: 21
  start-page: 102927
  year: 2022
  ident: 2022082502585907400_CIT0033
  article-title: Response to SARS-CoV-2 vaccination in immune mediated inflammatory diseases: systematic review and meta-analysis
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2021.102927
– volume: 10
  start-page: 1744
  year: 2021
  ident: 2022082502585907400_CIT0035
  article-title: Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: a phase 4 trial
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01469-5
– volume: 10
  start-page: 875
  year: 2021
  ident: 2022082502585907400_CIT0011
  article-title: Effectiveness of an inactivated SARS-CoV-2 Vaccine in Chile
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2107715
– volume: 3
  start-page: 627
  year: 2021
  ident: 2022082502585907400_CIT0031
  article-title: The effect of methotrexate and targeted immunosuppression on humoral and cellular immune responses to the COVID-19 vaccine BNT162b2: a cohort study
  publication-title: Lancet Rheumatol
  doi: 10.1016/S2665-9913(21)00212-5
– volume: 11
  start-page: L1652
  year: 2021
  ident: 2022082502585907400_CIT0016
  article-title: BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully-vaccinated hospitalized COVID-19 patients in Israel
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2021.06.036
– volume: 21
  start-page: 181
  year: 2021
  ident: 2022082502585907400_CIT0015
  article-title: Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30843-4
SSID ssj0011805
Score 2.5402448
Snippet Abstract Background Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income...
Inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been widely implemented in low- and middle-income countries. However,...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e594
Title Reduced Immune Response to Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Cohort of Immunocompromised Patients in Chile
URI https://www.proquest.com/docview/2637320452
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCkRCXiqco5WGknoiW7nofcY4VKWpARai0qLfIdsZqpGiD8uiBf8G_4-cw48dmQyNUuKyixPZmdz7b45lvZhg76I17prQSEqtNlRTGykSnYzysgKn6Y5n2pQuPPv1cnVwUHy_Ly07nV4u1tFrqd-bH1riS_5EqfodypSjZf5BsMyh-gZ9RvnhFCeP1VjI-o7yrqDEOKciDCjA4vqsrhjGsKWLhWjmFEvDJoHtkiBNw1vKtfw3pCnBVmKNGfj2ZrxZd0f2mDLnbyRSi8Kcr1NBdxAndZUYcdOwzWeDAX3xSVkeppRzJm3kPYsxl5Hvh2MEdtDbNqyl5DrzFu3s8JcbxmiJEf8ubyB1eGwgOVt6_n9XRh2FDEXDnTQFNZIJFiERyLQcKB4fQJtg48HicoqCL1rKcls7s6VdqiEt1L6lKX-srruW-CssGZv3CDKWvpRw2eahcnPfNDcQn1zIOMDg5TOaLhWwm6v5jA21ojd6hn4-oGnLofIfdFXiAodoag-Gnxr-VSUeubZ4rRI5i50PsfBg6b-hKG_GXUWFwWtD5A7Ybji_8yGPxIetA_YjdOw0EjcfsZ4Ak95DkEZJ8OeMtSHIPSe4gyVuQ5BGSvAVJLniAJJ_UXHEPST6z_AYkeYQktXSQfMIuPhyfvz9JQtWPxOB-skxMqvpGWmkKoXolQKasrCDVGqDURZFrPCArnfeNqTQlJ9L5WFnVH5elyaQtTf6U7dSzGp4xnucF9rNaC50WIEBKLYW2QuJZTUBV7bG38f2ivDz1hSqzTEdbJLnHDprG330mmO3NXqOg_t7iTRTiCF8NTTNVA07CkajyXk71IcTz291sn91fT5cXbGc5X8FLVJKX-pXD22-TGccL
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduced+Immune+Response+to+Inactivated+Severe+Acute+Respiratory+Syndrome+Coronavirus+2+Vaccine+in+a+Cohort+of+Immunocompromised+Patients+in+Chile&rft.jtitle=Clinical+infectious+diseases&rft.au=Balcells%2C+M+Elvira&rft.au=Le+Corre%2C+Nicole&rft.au=Dur%C3%A1n%2C+Josefina&rft.au=Ceballos%2C+Mar%C3%ADa+Elena&rft.date=2022-08-24&rft.issn=1058-4838&rft.eissn=1537-6591&rft.volume=75&rft.issue=1&rft.spage=e594&rft.epage=e602&rft_id=info:doi/10.1093%2Fcid%2Fciac167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_cid_ciac167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4838&client=summon