Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance
[Display omitted] •Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and mesoporous structure.•The modification of GQDs boosts the lithium storage behavior for Co3O4@CuO. In this report, we present the synthesis of yol...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 373; pp. 985 - 994 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and mesoporous structure.•The modification of GQDs boosts the lithium storage behavior for Co3O4@CuO.
In this report, we present the synthesis of yolk-shell Co3O4@CuO microspheres followed with the surface modification of carboxyl-functionalized graphene quantum dots (donated as Co3O4@CuO@GQDs) and investigate their lithium storage properties. Derived from metal-organic frameworks (MOFs), the obtained yolk-shell Co3O4@CuO microspheres exhibit well-defined microstructure and high porosities. The yolk-shell Co3O4@CuO structure is designed to adapt the stepwise lithium insertion mechanism (first in CuO shell and then in Co3O4 core). In addition, the GQDs decorated on the surface of Co3O4@CuO microspheres not only provides larger specific surface area, more active sites and enhanced electronic conductivity, but also works as a buffer to alleviate the volume expansion and a reservoir for electrolyte molecules to improve the ionic conductivity. Furthermore, the –COOH groups from GQDs exhibits good hydrophilicity which is supposed to be useful for the combination of GQDs with Co3O4@CuO and also shows strong affinity to Li+. Based on the above merits from the structural and compositional design, the Co3O4@CuO@GQDs anode displays enhanced cyclability and superior lithium storage performance. Specifically, compared to the bald Co3O4@CuO microspheres without GQDs which suffer from a severe capacity decline with an inferior capacity of 414 mAh g−1 after 200 cycles, the Co3O4@CuO@GQDs anode displays an initial specific capacity of 816 mAh g−1 and a high reversible charge capacity of 1054 mAh g−1 after 200 cycles at 0.1 A g−1. |
---|---|
AbstractList | [Display omitted]
•Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and mesoporous structure.•The modification of GQDs boosts the lithium storage behavior for Co3O4@CuO.
In this report, we present the synthesis of yolk-shell Co3O4@CuO microspheres followed with the surface modification of carboxyl-functionalized graphene quantum dots (donated as Co3O4@CuO@GQDs) and investigate their lithium storage properties. Derived from metal-organic frameworks (MOFs), the obtained yolk-shell Co3O4@CuO microspheres exhibit well-defined microstructure and high porosities. The yolk-shell Co3O4@CuO structure is designed to adapt the stepwise lithium insertion mechanism (first in CuO shell and then in Co3O4 core). In addition, the GQDs decorated on the surface of Co3O4@CuO microspheres not only provides larger specific surface area, more active sites and enhanced electronic conductivity, but also works as a buffer to alleviate the volume expansion and a reservoir for electrolyte molecules to improve the ionic conductivity. Furthermore, the –COOH groups from GQDs exhibits good hydrophilicity which is supposed to be useful for the combination of GQDs with Co3O4@CuO and also shows strong affinity to Li+. Based on the above merits from the structural and compositional design, the Co3O4@CuO@GQDs anode displays enhanced cyclability and superior lithium storage performance. Specifically, compared to the bald Co3O4@CuO microspheres without GQDs which suffer from a severe capacity decline with an inferior capacity of 414 mAh g−1 after 200 cycles, the Co3O4@CuO@GQDs anode displays an initial specific capacity of 816 mAh g−1 and a high reversible charge capacity of 1054 mAh g−1 after 200 cycles at 0.1 A g−1. |
Author | Chen, Hengqiao Lv, Li-Ping Wu, Minghong Wang, Yong |
Author_xml | – sequence: 1 givenname: Minghong surname: Wu fullname: Wu, Minghong – sequence: 2 givenname: Hengqiao surname: Chen fullname: Chen, Hengqiao – sequence: 3 givenname: Li-Ping surname: Lv fullname: Lv, Li-Ping – sequence: 4 givenname: Yong surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn |
BookMark | eNp9kM1OwzAQhC1UJNrCA3DzC6Ss8-dYXEAVFKRKvcDZcpwNdUjiYrtIfXtcyolDT7ua1TfamRmZjHZEQm4ZLBiw8q5baOwWKTCxgCJKcEGmrOJZkqUsncQ9q4qkEjm_IjPvOwAoBRNTYldO7bY4Iv3aqzHsB9rY4OlgG9MarYKxI7UtPdj-M_Fb7Hu6tNkmf1juN3Qw2lkfaYeettbR2lofsKG9CVsTrXywTn0g3aGL50GNGq_JZat6jzd_c07en5_eli_JerN6XT6uE50DhKTmOQhWa16nwPM8TTlnoiqytqmKNlOAFbS1SAuutVZYFqwUPGVQa1Uy1gjM5oSdfI8veoet3DkzKHeQDOSxMdnJ2Jg8NiahiBJEhv9jtAm_FQSnTH-WvD-RGCN9G3TSa4MxbmMc6iAba87QPw56iXk |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_159702 crossref_primary_10_1016_j_cej_2020_125012 crossref_primary_10_1002_aenm_202303515 crossref_primary_10_1007_s10895_023_03471_1 crossref_primary_10_1039_D0TA07674K crossref_primary_10_1016_j_apsusc_2023_157124 crossref_primary_10_1016_j_est_2024_111900 crossref_primary_10_1016_j_jmst_2021_04_033 crossref_primary_10_1016_j_apsusc_2024_161987 crossref_primary_10_1007_s11051_020_04826_6 crossref_primary_10_1002_cnma_202000355 crossref_primary_10_1002_ppsc_201900348 crossref_primary_10_1016_j_est_2023_108178 crossref_primary_10_1039_C9QM00553F crossref_primary_10_1007_s10853_021_06814_0 crossref_primary_10_1016_j_chemosphere_2023_139786 crossref_primary_10_1016_j_jallcom_2019_153293 crossref_primary_10_1016_j_mattod_2021_07_028 crossref_primary_10_1016_j_apcatb_2021_120123 crossref_primary_10_1016_j_jpowsour_2025_236177 crossref_primary_10_1149_1945_7111_ac4b25 crossref_primary_10_1016_j_energy_2024_132341 crossref_primary_10_3390_ma15227888 crossref_primary_10_1016_j_ccr_2020_213434 crossref_primary_10_1016_j_compositesb_2021_109083 crossref_primary_10_1007_s11664_021_09196_w crossref_primary_10_1016_j_jallcom_2020_157648 crossref_primary_10_1155_2023_6353894 crossref_primary_10_1002_cnma_202300242 crossref_primary_10_1002_smll_202304497 crossref_primary_10_1016_j_jallcom_2021_161911 crossref_primary_10_1016_j_est_2024_113052 crossref_primary_10_1016_j_jallcom_2023_172085 crossref_primary_10_1002_celc_202300752 crossref_primary_10_1016_j_colsurfa_2022_130325 crossref_primary_10_1039_D1TA06747H crossref_primary_10_1007_s12274_020_2741_9 crossref_primary_10_1002_eem2_12167 crossref_primary_10_1016_j_ceramint_2020_08_059 crossref_primary_10_1016_j_ssi_2020_115310 crossref_primary_10_1002_smll_202102683 crossref_primary_10_1007_s00339_024_08222_y crossref_primary_10_1021_acsami_1c11892 crossref_primary_10_1007_s10008_021_05106_6 crossref_primary_10_1016_j_flatc_2023_100516 crossref_primary_10_1016_j_jece_2022_108259 crossref_primary_10_1007_s13738_020_02036_4 crossref_primary_10_1002_cey2_134 crossref_primary_10_1016_j_seppur_2024_128368 crossref_primary_10_1039_D3NJ05671F crossref_primary_10_1016_j_jiec_2023_10_004 crossref_primary_10_1016_j_jclepro_2022_135302 crossref_primary_10_1016_j_cej_2021_128861 crossref_primary_10_1002_tcr_201900092 crossref_primary_10_1016_j_mseb_2020_114923 crossref_primary_10_1007_s10854_022_08228_3 crossref_primary_10_1016_j_jallcom_2024_176651 crossref_primary_10_1016_j_colsurfa_2021_127265 crossref_primary_10_1016_j_jenvman_2022_116650 crossref_primary_10_1002_celc_202101168 crossref_primary_10_1016_j_cclet_2023_108450 crossref_primary_10_1016_j_cej_2020_125705 crossref_primary_10_1088_1361_6528_ab4848 crossref_primary_10_1016_j_fuel_2023_129337 crossref_primary_10_1016_j_ensm_2021_01_020 crossref_primary_10_1007_s11706_021_0552_x crossref_primary_10_1002_est2_390 crossref_primary_10_1016_j_cjche_2021_06_026 crossref_primary_10_1016_j_electacta_2022_141355 crossref_primary_10_1016_j_jpowsour_2020_228707 crossref_primary_10_1039_D1CC06177A crossref_primary_10_1016_j_jcis_2020_10_050 crossref_primary_10_1016_S1872_5805_21_60036_7 crossref_primary_10_1016_j_jcis_2023_04_038 crossref_primary_10_1016_j_jmst_2021_05_079 crossref_primary_10_1016_j_inoche_2023_110562 crossref_primary_10_1016_j_jelechem_2023_117149 crossref_primary_10_1039_D1CC03769B crossref_primary_10_1039_C9QM00554D crossref_primary_10_1016_j_colsurfa_2022_130459 |
Cites_doi | 10.1039/C7TA00772H 10.1016/j.jpowsour.2017.01.043 10.1039/C6RA09926B 10.1039/C6RA10215H 10.1016/j.nanoen.2014.02.012 10.1039/C8NR07207H 10.1016/j.cej.2018.04.119 10.1007/s10008-016-3414-1 10.1021/acsami.6b15110 10.1016/j.mtcomm.2017.02.009 10.1038/s41598-018-24963-2 10.1039/C7NR00136C 10.1038/srep31120 10.1016/j.electacta.2017.06.002 10.1186/s11671-017-2101-1 10.1039/C6RA15257K 10.1021/acssuschemeng.7b00329 10.1039/C6TA05096D 10.1016/j.electacta.2017.08.029 10.1016/j.electacta.2017.07.063 10.1016/j.electacta.2016.08.051 10.1039/C7TA02953E 10.1021/acsnano.7b01152 10.1038/nmat3601 10.1039/C6NJ03443H 10.1039/C6TA11058D 10.1016/j.electacta.2016.03.001 10.1016/j.electacta.2016.05.006 10.1039/c3ta12621h 10.1021/acsami.6b15000 10.1039/C4TA06914E 10.1016/j.cej.2016.11.063 10.1016/j.cej.2017.10.183 10.1021/acsami.7b04584 10.1002/smll.201604270 10.1021/acsnano.8b07319 10.1016/j.nanoen.2017.08.008 10.1016/j.snb.2017.07.144 10.1016/j.electacta.2016.03.034 10.1039/C5TA00890E 10.1021/acsami.6b14801 10.1021/acsnano.5b05041 10.1039/C6RA19334J 10.1039/C6TA00592F 10.1016/j.cej.2016.09.071 10.1002/smll.201800589 10.1016/j.apsusc.2016.11.169 10.1002/admi.201400499 10.1016/j.nanoen.2017.02.013 10.1021/acssuschemeng.5b00556 10.1016/j.cej.2016.10.067 10.1016/j.nanoso.2015.12.002 10.1039/C6TA00723F 10.1002/smll.201701351 10.1016/j.nanoen.2017.01.043 10.1002/adfm.201604941 10.1039/C8EE00239H 10.1021/acsami.6b04274 10.1002/adfm.201605332 10.1021/nl504038s 10.1002/adma.201705430 10.1016/j.cej.2017.09.070 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2019.05.100 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 994 |
ExternalDocumentID | 10_1016_j_cej_2019_05_100 S1385894719311246 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c400t-b74091bc7b20744227719853fd85f3a0e80fb9257cccae651697210bca611d9e3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 03:52:19 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Fri Feb 23 02:48:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cobalt oxide Lithium ion batteries Copper oxide Yolk-shell Graphene quantum dots |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-b74091bc7b20744227719853fd85f3a0e80fb9257cccae651697210bca611d9e3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2019_05_100 crossref_citationtrail_10_1016_j_cej_2019_05_100 elsevier_sciencedirect_doi_10_1016_j_cej_2019_05_100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gao, Wang, Zhang, Nie, Ma, Zhong, Sun (b0185) 2017; 5 Kumar, Ojha, Ahmed, Kumar, Das, Materny (b0195) 2017; 11 Yin, Chen, Zhi, Sun, Lv, Wang (b0270) 2018; 14 Zheng, Zao, Zhang, Cheng, Chen, Zhang, Wang, Peng (b0075) 2018; 347 Zheng, Xu, Yin, Zhang, Lu (b0060) 2016; 6 Zhou, Chen, Yang, Bai, Ren, Tian (b0095) 2017; 9 Zhu, Chao, Sun, Bacho, Fan, Ng, Xia, Huang, Zhang, Shen, Ding, Fan (b0250) 2015; 2 Zou, Chen, Liu, Yu, Liang, Bhaway, Gao, Zhu (b0085) 2016; 10 Cai, Wang, Jiang, Wang (b0145) 2016; 21 Liu, Yang, Zhao, Liu, Wang, Chen (b0295) 2016; 207 Wang, Wang, Cao, Gu, Li, Lu, Han, Rogach, Niu (b0090) 2017; 5 Son, Sim, Ma, Choi, Son, Park, Cho, Park (b0020) 2018; 30 Hu, Li, Lou, Yang, Hu (b0040) 2017; 5 Kang, Zhang, Fan, Zhang, Dai, Wang, Sun (b0015) 2017; 9 Wang, Zhang, Li, Peng, Li, Wang, Hwang, Zhao (b0310) 2018; 332 Guo, Sun, Lv, Kong, Wang (b0165) 2017; 11 Fan, Yu, Zhang, Guo, Wang, Wang, Hao, Zhao, Geng, Dai, Yan, Xu (b0170) 2017; 33 Ganganboina, Dutta Chowdhury, Doong (b0200) 2017; 5 Xie, Hou, Wang, Zhang, Li (b0210) 2017; 12 Xu, Cao, Wang, Jiao (b0120) 2016; 4 Wu, Qian, Yu, Liu, Zhou, Wei, Huang (b0290) 2013; 1 Wang, Zhang, Li, Xu, Wang, Guo, Zhang (b0155) 2014; 6 Huang, Li, Yin, Wang (b0180) 2017; 27 Kong, Dai, Li, Sun, Wang (b0010) 2015; 3 Yang, Xue, Yang, Yuan, Kang, Lee (b0115) 2017; 308 Shi, Fan, Fu, Yu, Qian, Wang (b0135) 2016; 197 Augustyn, Come, Lowe, Kim, Taberna, Tolbert, Abruna, Simon, Dunn (b0300) 2013; 12 Dai, Sun, Wang (b0005) 2016; 217 Wang, Wang, Yu (b0130) 2017; 250 Guo, Zhu, Sun, Tang, Zhang (b0245) 2016; 4 Ma, Wang, Yang, Chai, Yuan (b0285) 2015; 3 Niu, Wang, Zhou, Yu, Yu, Qiu (b0160) 2017; 27 Moon, Jang, Yi, Lee, Kim, Oh, Lee, Park, Lee, Bae (b0220) 2017; 34 Ganganboina, Chowdhury, Doong (b0205) 2017; 245 Zhang, Tang, Zhang, Wang, Shi, Zhang, Duan (b0125) 2017; 247 Zhang, Ding, Tong, Liu (b0235) 2017; 9 Lijuan, Yongqiang, Ruiyi, Zaijun (b0265) 2016; 198 Min, Hou, Lei, Ma, Lu (b0215) 2017; 396 Qi, Xin, Zuo, Yang, Wu, Wu, Zhou (b0070) 2016; 8 Ma, Wang, Liu, Lu, Nie, Yang, Chai, Yuan (b0055) 2017; 309 Chao, Zhu, Xia, Liu, Zhang, Wang, Liang, Lin, Zhang, Shen, Fan (b0240) 2015; 15 Zhao, Wen, Liang, Jiang, Zhou, Shen, Xu (b0110) 2017; 9 Wu, Wang, Long, Li, Liu, Wang, Wang, Song, Liu, Zhang (b0175) 2017; 13 Li, Li, Li, Zhong, Li, Yang, Zhang, Zhang (b0065) 2017; 13 Ji, Zhou, Tong, Wang, Zhu, Chen, Yuan (b0035) 2017; 313 Subramanian, Pan, Rong, Li, Zhou, Li, Qiu, Xu, Hou, Zheng, Zhang (b0225) 2017; 343 Han, Chen, Han, Tan, Sun (b0280) 2016; 4 Li, Chen, Xu, Lou, Pan, Chen, Hu (b0045) 2015; 3 Zhang, Jiang, Zhang (b0080) 2016; 5 Wang, Zhang, Xiong, Qin, Zhao, Liu (b0275) 2018; 8 Lei, Nie, Liu, Zhuo, Yuan (b0140) 2016; 6 Sun, Tang, Ye, Yan, Zhou, Wang (b0050) 2017; 9 Zheng, Wu, Chen, Cheng, Zhang, Xie, Wang, Zhang, Wang, Peng, Zeng (b0030) 2018; 10 Zhang, Chen, Luo, Zhao, Luo, Han, Wang, Wang, Yang, Zhu, Liu (b0025) 2018; 11 Kumar, Tang, Lee, Pol, Gedanken (b0255) 2016; 6 Li, Yan, Hou, Lu, Yao, Chua, Pan (b0305) 2018; 335 Lijuan, Ruiyi, Yongqiang, Zaijun (b0260) 2016; 6 Wang, Yang, Zhou, Li, Li (b0190) 2017; 41 Yang, Xie, Arivazhagan, Xiao, Qiang, Huang, Hu, Cui, Yu, Yang (b0230) 2017; 40 Zhao, Wu, Yang, Zhang, Zhong, Zheng, Chen, Wang, He, Wang, Zhu, Zeng, Liu, Wang (b0105) 2018; 12 Jadhav, Pawar, Jadhav, Thorat, Seo (b0150) 2016; 6 Zang, Zeng, Wang, Hu, Liu, Tang (b0100) 2017; 252 Han (10.1016/j.cej.2019.05.100_b0280) 2016; 4 Chao (10.1016/j.cej.2019.05.100_b0240) 2015; 15 Wang (10.1016/j.cej.2019.05.100_b0090) 2017; 5 Gao (10.1016/j.cej.2019.05.100_b0185) 2017; 5 Li (10.1016/j.cej.2019.05.100_b0045) 2015; 3 Dai (10.1016/j.cej.2019.05.100_b0005) 2016; 217 Xu (10.1016/j.cej.2019.05.100_b0120) 2016; 4 Niu (10.1016/j.cej.2019.05.100_b0160) 2017; 27 Fan (10.1016/j.cej.2019.05.100_b0170) 2017; 33 Moon (10.1016/j.cej.2019.05.100_b0220) 2017; 34 Guo (10.1016/j.cej.2019.05.100_b0165) 2017; 11 Wang (10.1016/j.cej.2019.05.100_b0130) 2017; 250 Jadhav (10.1016/j.cej.2019.05.100_b0150) 2016; 6 Huang (10.1016/j.cej.2019.05.100_b0180) 2017; 27 Lijuan (10.1016/j.cej.2019.05.100_b0265) 2016; 198 Zhang (10.1016/j.cej.2019.05.100_b0125) 2017; 247 Kumar (10.1016/j.cej.2019.05.100_b0195) 2017; 11 Zheng (10.1016/j.cej.2019.05.100_b0060) 2016; 6 Li (10.1016/j.cej.2019.05.100_b0065) 2017; 13 Lijuan (10.1016/j.cej.2019.05.100_b0260) 2016; 6 Zhang (10.1016/j.cej.2019.05.100_b0235) 2017; 9 Zhu (10.1016/j.cej.2019.05.100_b0250) 2015; 2 Wu (10.1016/j.cej.2019.05.100_b0290) 2013; 1 Shi (10.1016/j.cej.2019.05.100_b0135) 2016; 197 Yin (10.1016/j.cej.2019.05.100_b0270) 2018; 14 Cai (10.1016/j.cej.2019.05.100_b0145) 2016; 21 Zheng (10.1016/j.cej.2019.05.100_b0030) 2018; 10 Wu (10.1016/j.cej.2019.05.100_b0175) 2017; 13 Ma (10.1016/j.cej.2019.05.100_b0285) 2015; 3 Sun (10.1016/j.cej.2019.05.100_b0050) 2017; 9 Kumar (10.1016/j.cej.2019.05.100_b0255) 2016; 6 Son (10.1016/j.cej.2019.05.100_b0020) 2018; 30 Ganganboina (10.1016/j.cej.2019.05.100_b0200) 2017; 5 Min (10.1016/j.cej.2019.05.100_b0215) 2017; 396 Kong (10.1016/j.cej.2019.05.100_b0010) 2015; 3 Zou (10.1016/j.cej.2019.05.100_b0085) 2016; 10 Liu (10.1016/j.cej.2019.05.100_b0295) 2016; 207 Ji (10.1016/j.cej.2019.05.100_b0035) 2017; 313 Guo (10.1016/j.cej.2019.05.100_b0245) 2016; 4 Lei (10.1016/j.cej.2019.05.100_b0140) 2016; 6 Wang (10.1016/j.cej.2019.05.100_b0155) 2014; 6 Zhao (10.1016/j.cej.2019.05.100_b0105) 2018; 12 Zhou (10.1016/j.cej.2019.05.100_b0095) 2017; 9 Zang (10.1016/j.cej.2019.05.100_b0100) 2017; 252 Augustyn (10.1016/j.cej.2019.05.100_b0300) 2013; 12 Yang (10.1016/j.cej.2019.05.100_b0230) 2017; 40 Subramanian (10.1016/j.cej.2019.05.100_b0225) 2017; 343 Ma (10.1016/j.cej.2019.05.100_b0055) 2017; 309 Wang (10.1016/j.cej.2019.05.100_b0190) 2017; 41 Xie (10.1016/j.cej.2019.05.100_b0210) 2017; 12 Zhao (10.1016/j.cej.2019.05.100_b0110) 2017; 9 Wang (10.1016/j.cej.2019.05.100_b0310) 2018; 332 Qi (10.1016/j.cej.2019.05.100_b0070) 2016; 8 Zhang (10.1016/j.cej.2019.05.100_b0025) 2018; 11 Zhang (10.1016/j.cej.2019.05.100_b0080) 2016; 5 Yang (10.1016/j.cej.2019.05.100_b0115) 2017; 308 Hu (10.1016/j.cej.2019.05.100_b0040) 2017; 5 Li (10.1016/j.cej.2019.05.100_b0305) 2018; 335 Zheng (10.1016/j.cej.2019.05.100_b0075) 2018; 347 Kang (10.1016/j.cej.2019.05.100_b0015) 2017; 9 Wang (10.1016/j.cej.2019.05.100_b0275) 2018; 8 Ganganboina (10.1016/j.cej.2019.05.100_b0205) 2017; 245 |
References_xml | – volume: 6 start-page: 19 year: 2014 end-page: 26 ident: b0155 article-title: Three-dimensional hierarchical Co publication-title: Nano Energy – volume: 332 start-page: 49 year: 2018 end-page: 56 ident: b0310 article-title: Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries publication-title: Chem. Eng. J. – volume: 6 start-page: 93532 year: 2016 end-page: 93538 ident: b0060 article-title: Facile synthesis of MOF-derived Mn publication-title: RSC Adv. – volume: 12 start-page: 400 year: 2017 ident: b0210 article-title: S, N Co-doped graphene quantum dot/TiO publication-title: Nanoscale Res. Lett. – volume: 6 start-page: 62640 year: 2016 end-page: 62646 ident: b0140 article-title: Influence of annealing temperature on microstructure and lithium storage performance of self-templated Cu publication-title: RSC Adv. – volume: 217 start-page: 123 year: 2016 end-page: 131 ident: b0005 article-title: Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries publication-title: Electrochim. Acta – volume: 347 start-page: 563 year: 2018 end-page: 573 ident: b0075 article-title: Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries publication-title: Chem. Eng. J. – volume: 27 year: 2017 ident: b0160 article-title: A polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity publication-title: Adv. Funct. Mater. – volume: 11 start-page: 669 year: 2018 end-page: 681 ident: b0025 article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries publication-title: Energy Environ. Sci. – volume: 309 start-page: 545 year: 2017 end-page: 551 ident: b0055 article-title: Synthesis of tube shape MnO/Cp composite from 3,4,9,10-perylenetetracarboxylic dianhydride for lithium ion batteries publication-title: Chem. Eng. J. – volume: 252 start-page: 1179 year: 2017 end-page: 1186 ident: b0100 article-title: Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging publication-title: Sens. Actuat. B – volume: 4 start-page: 6042 year: 2016 end-page: 6047 ident: b0120 article-title: 3D hierarchical porous ZnO/ZnCo publication-title: J. Mater. Chem. A – volume: 335 start-page: 579 year: 2018 end-page: 589 ident: b0305 article-title: Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries publication-title: Chem. Eng. J. – volume: 1 start-page: 11126 year: 2013 end-page: 11129 ident: b0290 article-title: MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials publication-title: J. Mater. Chem. A – volume: 5 start-page: 4930 year: 2017 end-page: 4940 ident: b0200 article-title: New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors publication-title: ACS Sustain. Chem. Eng. – volume: 4 start-page: 4783 year: 2016 end-page: 4789 ident: b0245 article-title: Boosting the lithium storage performance of MoS publication-title: J. Mater. Chem. A – volume: 245 start-page: 912 year: 2017 end-page: 923 ident: b0205 article-title: Nano assembly of N-doped graphene quantum dots anchored Fe publication-title: Electrochim. Acta – volume: 3 start-page: 5585 year: 2015 end-page: 5591 ident: b0045 article-title: Mesoporous nanostructured Co publication-title: J. Mater. Chem. A – volume: 343 start-page: 39 year: 2017 end-page: 46 ident: b0225 article-title: Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells publication-title: J. Power Sources – volume: 21 start-page: 1129 year: 2016 end-page: 1136 ident: b0145 article-title: Template-free fabrication of porous CuCo publication-title: J. Solid State Electrochem. – volume: 15 start-page: 565 year: 2015 end-page: 573 ident: b0240 article-title: Graphene quantum dots coated VO publication-title: Nano Lett. – volume: 34 start-page: 36 year: 2017 end-page: 46 ident: b0220 article-title: Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells publication-title: Nano Energy – volume: 30 year: 2018 ident: b0020 article-title: Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes publication-title: Adv. Mater. – volume: 5 start-page: 1 year: 2016 end-page: 6 ident: b0080 article-title: Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode publication-title: Nano Struct. Nano-Objects – volume: 13 year: 2017 ident: b0065 article-title: Fabrication of Fe publication-title: Small – volume: 33 start-page: 168 year: 2017 end-page: 176 ident: b0170 article-title: From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries publication-title: Nano Energy – volume: 12 start-page: 12597 year: 2018 end-page: 12611 ident: b0105 article-title: Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes publication-title: ACS Nano – volume: 6 start-page: 66256 year: 2016 end-page: 66265 ident: b0255 article-title: In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries publication-title: RSC Adv. – volume: 313 start-page: 1623 year: 2017 end-page: 1632 ident: b0035 article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries publication-title: Chem. Eng. J. – volume: 9 start-page: 5254 year: 2017 end-page: 5262 ident: b0050 article-title: Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 518 year: 2013 end-page: 522 ident: b0300 article-title: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance publication-title: Nat. Mater. – volume: 6 start-page: 76344 year: 2016 end-page: 76354 ident: b0260 article-title: Multi-faceted design of a silicon anode for high performance lithium ion batteries using silicon nanoparticles encapsulated by a multiple graphene aerogel electrode material and a tryptophan-functionalized graphene quantum dot–sodium alginate binder publication-title: RSC Adv. – volume: 3 start-page: 1830 year: 2015 end-page: 1838 ident: b0010 article-title: Microwave hydrothermal synthesis of ni-based metal-organic frameworks and their derived yolk-shell NiO for Li-ion storage and supported ammonia borane for hydrogen desorption publication-title: ACS Sustain. Chem. Eng. – volume: 13 year: 2017 ident: b0175 article-title: Multishelled Ni publication-title: Small – volume: 9 start-page: 14309 year: 2017 end-page: 14318 ident: b0095 article-title: Metal-organic frameworks derived okra-like sno publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1400499 year: 2015 ident: b0250 article-title: Enhanced lithium storage performance of cuo nanowires by coating of graphene quantum dots publication-title: Adv. Mater. Interfaces – volume: 5 start-page: 6817 year: 2017 end-page: 6824 ident: b0090 article-title: Honeycomb-like carbon nanoflakes as a host for SnO publication-title: J. Mater. Chem. A – volume: 11 start-page: 76 year: 2017 end-page: 86 ident: b0195 article-title: Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials publication-title: Mater. Today Commun. – volume: 207 start-page: 293 year: 2016 end-page: 300 ident: b0295 article-title: Mesoporous flower-like Co publication-title: Electrochim. Acta – volume: 5 start-page: 12828 year: 2017 end-page: 12837 ident: b0040 article-title: Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance publication-title: J. Mater. Chem. A – volume: 9 start-page: 3757 year: 2017 end-page: 3765 ident: b0110 article-title: Carbon-coated Fe publication-title: ACS Appl. Mater. Interfaces – volume: 198 start-page: 144 year: 2016 end-page: 155 ident: b0265 article-title: Phenylalanine-functionalized graphene quantum dot-silicon nanoparticle composite as an anode material for lithium ion batteries with largely enhanced electrochemical performance publication-title: Electrochim. Acta – volume: 10 start-page: 22203 year: 2018 end-page: 22214 ident: b0030 article-title: Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries publication-title: Nanoscale – volume: 250 start-page: 35 year: 2017 end-page: 41 ident: b0130 article-title: Metal-organic frameworks derived (Cu publication-title: Electrochim. Acta – volume: 247 start-page: 692 year: 2017 end-page: 700 ident: b0125 article-title: Pseudo-solid-solution CuCo publication-title: Electrochim. Acta – volume: 41 start-page: 1110 year: 2017 end-page: 1118 ident: b0190 article-title: NiCo publication-title: New J. Chem. – volume: 9 start-page: 3524 year: 2017 end-page: 3529 ident: b0235 article-title: Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications publication-title: Nanoscale – volume: 40 start-page: 345 year: 2017 end-page: 351 ident: b0230 article-title: Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer publication-title: Nano Energy – volume: 6 start-page: 31120 year: 2016 ident: b0150 article-title: Hierarchical mesoporous 3D flower-like CuCo publication-title: Sci. Rep. – volume: 4 start-page: 13040 year: 2016 end-page: 13045 ident: b0280 article-title: Nitrogen-rich MOF derived porous Co publication-title: J. Mater. Chem. A – volume: 10 start-page: 377 year: 2016 end-page: 386 ident: b0085 article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage publication-title: ACS Nano – volume: 396 start-page: 1375 year: 2017 end-page: 1382 ident: b0215 article-title: Facile one-step hydrothermal synthesis toward strongly coupled TiO publication-title: Appl. Surf. Sci. – volume: 8 start-page: 6530 year: 2018 ident: b0275 article-title: Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes publication-title: Sci. Rep. – volume: 197 start-page: 23 year: 2016 end-page: 31 ident: b0135 article-title: Carbonate-assisted hydrothermal synthesis of porous hierarchical Co publication-title: Electrochim. Acta – volume: 27 start-page: 1604941 year: 2017 ident: b0180 article-title: Hierarchical porous Te@ZnCo publication-title: Adv. Funct. Mater. – volume: 11 start-page: 4198 year: 2017 end-page: 4205 ident: b0165 article-title: Microwave-assisted morphology evolution of fe-based metal-organic frameworks and their derived Fe publication-title: ACS Nano – volume: 5 start-page: 5007 year: 2017 end-page: 5012 ident: b0185 article-title: Hollow NiFe publication-title: J. Mater. Chem. A – volume: 9 start-page: 10602 year: 2017 end-page: 10609 ident: b0015 article-title: Metal-organic framework derived porous hollow Co publication-title: ACS Appl. Mater. Interfaces – volume: 308 start-page: 340 year: 2017 end-page: 346 ident: b0115 article-title: Preparation of porous ZnO/ZnFe publication-title: Chem. Eng. J. – volume: 14 start-page: 10 year: 2018 ident: b0270 article-title: Functionalized graphene quantum dot modification of yolk-shell NiO microspheres for superior lithium storage publication-title: Small – volume: 8 start-page: 17245 year: 2016 end-page: 17252 ident: b0070 article-title: Grape-Like Fe publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 12038 year: 2015 end-page: 12043 ident: b0285 article-title: Porous carbon-coated CuCo publication-title: J. Mater. Chem. A – volume: 5 start-page: 6817 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0090 article-title: Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00772H – volume: 343 start-page: 39 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0225 article-title: Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.043 – volume: 6 start-page: 66256 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0255 article-title: In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA09926B – volume: 6 start-page: 62640 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0140 article-title: Influence of annealing temperature on microstructure and lithium storage performance of self-templated CuxCo3−xO4 hollow microspheres publication-title: RSC Adv. doi: 10.1039/C6RA10215H – volume: 6 start-page: 19 year: 2014 ident: 10.1016/j.cej.2019.05.100_b0155 article-title: Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.02.012 – volume: 10 start-page: 22203 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0030 article-title: Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries publication-title: Nanoscale doi: 10.1039/C8NR07207H – volume: 347 start-page: 563 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0075 article-title: Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.119 – volume: 21 start-page: 1129 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0145 article-title: Template-free fabrication of porous CuCo2O4 hollow spheres and their application in lithium ion batteries publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-016-3414-1 – volume: 9 start-page: 3757 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0110 article-title: Carbon-coated Fe3O4/VOx hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15110 – volume: 11 start-page: 76 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0195 article-title: Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2017.02.009 – volume: 8 start-page: 6530 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0275 article-title: Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes publication-title: Sci. Rep. doi: 10.1038/s41598-018-24963-2 – volume: 9 start-page: 3524 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0235 article-title: Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications publication-title: Nanoscale doi: 10.1039/C7NR00136C – volume: 6 start-page: 31120 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0150 article-title: Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage publication-title: Sci. Rep. doi: 10.1038/srep31120 – volume: 245 start-page: 912 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0205 article-title: Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.002 – volume: 12 start-page: 400 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0210 article-title: S, N Co-doped graphene quantum dot/TiO2 composites for efficient photocatalytic hydrogen generation publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2101-1 – volume: 6 start-page: 76344 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0260 article-title: Multi-faceted design of a silicon anode for high performance lithium ion batteries using silicon nanoparticles encapsulated by a multiple graphene aerogel electrode material and a tryptophan-functionalized graphene quantum dot–sodium alginate binder publication-title: RSC Adv. doi: 10.1039/C6RA15257K – volume: 5 start-page: 4930 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0200 article-title: New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00329 – volume: 4 start-page: 13040 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0280 article-title: Nitrogen-rich MOF derived porous Co3O4/N–C composites with superior performance in lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05096D – volume: 250 start-page: 35 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0130 article-title: Metal-organic frameworks derived (Cu0.30Co0.7)Co2O4/CuO composite rectangular pyramid grass as high performance anode materials for lithium ion battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.08.029 – volume: 247 start-page: 692 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0125 article-title: Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.07.063 – volume: 217 start-page: 123 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0005 article-title: Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.051 – volume: 5 start-page: 12828 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0040 article-title: Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02953E – volume: 11 start-page: 4198 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0165 article-title: Microwave-assisted morphology evolution of fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-Ion storage publication-title: ACS Nano doi: 10.1021/acsnano.7b01152 – volume: 12 start-page: 518 year: 2013 ident: 10.1016/j.cej.2019.05.100_b0300 article-title: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance publication-title: Nat. Mater. doi: 10.1038/nmat3601 – volume: 41 start-page: 1110 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0190 article-title: NiCo2S4/tryptophan-functionalized graphene quantum dot nanohybrids for high-performance supercapacitors publication-title: New J. Chem. doi: 10.1039/C6NJ03443H – volume: 5 start-page: 5007 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0185 article-title: Hollow NiFe2O4 nanospheres on carbon nanorods as a highly efficient anode material for lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA11058D – volume: 197 start-page: 23 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0135 article-title: Carbonate-assisted hydrothermal synthesis of porous hierarchical Co3O4/CuO composites as high capacity anodes for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.001 – volume: 207 start-page: 293 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0295 article-title: Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.006 – volume: 1 start-page: 11126 year: 2013 ident: 10.1016/j.cej.2019.05.100_b0290 article-title: MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12621h – volume: 9 start-page: 10602 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0015 article-title: Metal-organic framework derived porous hollow Co3O4/N-C polyhedron composite with excellent energy storage capability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15000 – volume: 3 start-page: 5585 year: 2015 ident: 10.1016/j.cej.2019.05.100_b0045 article-title: Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06914E – volume: 313 start-page: 1623 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0035 article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.063 – volume: 335 start-page: 579 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0305 article-title: Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.183 – volume: 9 start-page: 14309 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0095 article-title: Metal-organic frameworks derived okra-like sno2 encapsulated in nitrogen-doped graphene for lithium ion battery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04584 – volume: 13 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0175 article-title: Multishelled Nix Co3-x O4 hollow microspheres derived from bimetal-organic frameworks as anode materials for high-performance lithium-ion batteries publication-title: Small doi: 10.1002/smll.201604270 – volume: 12 start-page: 12597 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0105 article-title: Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes publication-title: ACS Nano doi: 10.1021/acsnano.8b07319 – volume: 40 start-page: 345 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0230 article-title: Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.008 – volume: 252 start-page: 1179 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0100 article-title: Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging publication-title: Sens. Actuat. B doi: 10.1016/j.snb.2017.07.144 – volume: 198 start-page: 144 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0265 article-title: Phenylalanine-functionalized graphene quantum dot-silicon nanoparticle composite as an anode material for lithium ion batteries with largely enhanced electrochemical performance publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.034 – volume: 3 start-page: 12038 year: 2015 ident: 10.1016/j.cej.2019.05.100_b0285 article-title: Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00890E – volume: 9 start-page: 5254 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0050 article-title: Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14801 – volume: 10 start-page: 377 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0085 article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage publication-title: ACS Nano doi: 10.1021/acsnano.5b05041 – volume: 6 start-page: 93532 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0060 article-title: Facile synthesis of MOF-derived Mn2O3 hollow microspheres as anode materials for lithium-ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA19334J – volume: 4 start-page: 4783 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0245 article-title: Boosting the lithium storage performance of MoS2 with graphene quantum dots publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00592F – volume: 308 start-page: 340 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0115 article-title: Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.071 – volume: 14 start-page: 10 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0270 article-title: Functionalized graphene quantum dot modification of yolk-shell NiO microspheres for superior lithium storage publication-title: Small doi: 10.1002/smll.201800589 – volume: 396 start-page: 1375 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0215 article-title: Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.11.169 – volume: 2 start-page: 1400499 year: 2015 ident: 10.1016/j.cej.2019.05.100_b0250 article-title: Enhanced lithium storage performance of cuo nanowires by coating of graphene quantum dots publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400499 – volume: 34 start-page: 36 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0220 article-title: Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.013 – volume: 3 start-page: 1830 year: 2015 ident: 10.1016/j.cej.2019.05.100_b0010 article-title: Microwave hydrothermal synthesis of ni-based metal-organic frameworks and their derived yolk-shell NiO for Li-ion storage and supported ammonia borane for hydrogen desorption publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b00556 – volume: 309 start-page: 545 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0055 article-title: Synthesis of tube shape MnO/Cp composite from 3,4,9,10-perylenetetracarboxylic dianhydride for lithium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.067 – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0080 article-title: Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode publication-title: Nano Struct. Nano-Objects doi: 10.1016/j.nanoso.2015.12.002 – volume: 4 start-page: 6042 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0120 article-title: 3D hierarchical porous ZnO/ZnCo2O4nanosheets as high-rate anode material for lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00723F – volume: 13 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0065 article-title: Fabrication of Fe3O4 dots embedded in 3D honeycomb-like carbon based on metallo-organic molecule with superior lithium storage performance publication-title: Small doi: 10.1002/smll.201701351 – volume: 33 start-page: 168 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0170 article-title: From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.043 – volume: 27 start-page: 1604941 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0180 article-title: Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@Metal-organic frameworks for superior lithium storage capability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604941 – volume: 11 start-page: 669 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0025 article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00239H – volume: 8 start-page: 17245 year: 2016 ident: 10.1016/j.cej.2019.05.100_b0070 article-title: Grape-Like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04274 – volume: 27 year: 2017 ident: 10.1016/j.cej.2019.05.100_b0160 article-title: A polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605332 – volume: 15 start-page: 565 year: 2015 ident: 10.1016/j.cej.2019.05.100_b0240 article-title: Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries publication-title: Nano Lett. doi: 10.1021/nl504038s – volume: 30 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0020 article-title: Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes publication-title: Adv. Mater. doi: 10.1002/adma.201705430 – volume: 332 start-page: 49 year: 2018 ident: 10.1016/j.cej.2019.05.100_b0310 article-title: Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.070 |
SSID | ssj0006919 |
Score | 2.5520816 |
Snippet | [Display omitted]
•Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 985 |
SubjectTerms | Cobalt oxide Copper oxide Graphene quantum dots Lithium ion batteries Yolk-shell |
Title | Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance |
URI | https://dx.doi.org/10.1016/j.cej.2019.05.100 |
Volume | 373 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkEzzcJNmo4oohYpWAiq6RY5ji5a2KaQZWPjt3OVBiwQMTFGicxSd7bvv4s-fCTmzpRk6QnvM0ZZg3LU5g6SnmDA15G8dcZ4Jad_1nM6A3w4bwwrxy70wSKssYn8e07NoXTypF96sz0ej-oOJa1oeBFfPBtDAUXabcxdH-cXHkubheNnhHmjM0Lpc2cw4XlKNkd3loXiniZvcfspNK_mmvU22CqBIW_m37JCKmu2SzRX5wD0SX6PaNAQr-pqCg9IphRIzodM4Qv5P5nIaa_oeT15YgoRP6sd2n1_6aZ9OkYiXoKaASigAVwpoG_98UoDlzyN4FbImIdbQ-XJnwT4ZtK8e_Q4rDlBgEqbmgoUuVG9mKN3QAqTALcsFZ0F-1lGzoW1hqKahQw8mrYR-VA4umUFBaIRSOKYZeco-IGuzeKYOCYVULw3pKi4aFtcOFIXCMiIb5z8UQKGoEqN0XSALdXE85GISlDSycQDeDtDbgdFAqeQqOf9qMs-lNf4y5mV_BN_GRwCh__dmR_9rdkw28C4n7Z2QtcVbqk4BfCzCWja6amS9ddPt9PDavX_qfgLFPNof |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGHIAD4ine5AAXpLA-spYekECDMdiAAyDtVto0EQO2DroJceFP8Qexu5YNCTgg7do2UWJbn-3miw2wbUszdALtcUdbAReuLTg6PcUDU6P_1pEQaSHti0uneivOG6VGAT7yuzBEq8ywv4_pKVpnT4qZNIudZrN4bdKZlofg6tkYNAgnY1bW1Nsr5m3JwdkxKnnHsionN-Uqz1oLcIlG2-Whi3mNGUo3tNCHCstycRr0XDraL2k7MNS-oUMPzVniDpVDh0mYKhmhDBzTjDxl47xjMCEQLqhtwt77gFfieGk3EVodp-XlR6kpqUyqB6KTeVQt1KRbdT85wyEHV5mFmSwyZUf9zc9BQbXnYXqoXuECxKdU3hrRkT33UCO9FsOcNmGtOCLCUapjFmv2Fj898oQYpqwc21fisNy7Yi1i_iVUxEAlDCNlhuE9_WplmAfcN3EqomkiuLHO4CrDItyORKxLMN6O22oZGMYW0pCuEkHJEtrBLDSwjMgmwMGMKwxWwMhF58usnDl11Xjyc97ag4_S9knavlGi2swrsPs1pNOv5fHXxyLXh__NIH30Nb8PW_3fsC2YrN5c1P362WVtDaboTZ8xuA7j3Zee2sDIpxtuppbG4G7Upv0J0e4SvQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+quantum+dots+modification+of+yolk-shell+Co3O4%40CuO+microspheres+for+boosted+lithium+storage+performance&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Wu%2C+Minghong&rft.au=Chen%2C+Hengqiao&rft.au=Lv%2C+Li-Ping&rft.au=Wang%2C+Yong&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=373&rft.spage=985&rft.epage=994&rft_id=info:doi/10.1016%2Fj.cej.2019.05.100&rft.externalDocID=S1385894719311246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |