Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance

[Display omitted] •Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and mesoporous structure.•The modification of GQDs boosts the lithium storage behavior for Co3O4@CuO. In this report, we present the synthesis of yol...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 373; pp. 985 - 994
Main Authors Wu, Minghong, Chen, Hengqiao, Lv, Li-Ping, Wang, Yong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and mesoporous structure.•The modification of GQDs boosts the lithium storage behavior for Co3O4@CuO. In this report, we present the synthesis of yolk-shell Co3O4@CuO microspheres followed with the surface modification of carboxyl-functionalized graphene quantum dots (donated as Co3O4@CuO@GQDs) and investigate their lithium storage properties. Derived from metal-organic frameworks (MOFs), the obtained yolk-shell Co3O4@CuO microspheres exhibit well-defined microstructure and high porosities. The yolk-shell Co3O4@CuO structure is designed to adapt the stepwise lithium insertion mechanism (first in CuO shell and then in Co3O4 core). In addition, the GQDs decorated on the surface of Co3O4@CuO microspheres not only provides larger specific surface area, more active sites and enhanced electronic conductivity, but also works as a buffer to alleviate the volume expansion and a reservoir for electrolyte molecules to improve the ionic conductivity. Furthermore, the –COOH groups from GQDs exhibits good hydrophilicity which is supposed to be useful for the combination of GQDs with Co3O4@CuO and also shows strong affinity to Li+. Based on the above merits from the structural and compositional design, the Co3O4@CuO@GQDs anode displays enhanced cyclability and superior lithium storage performance. Specifically, compared to the bald Co3O4@CuO microspheres without GQDs which suffer from a severe capacity decline with an inferior capacity of 414 mAh g−1 after 200 cycles, the Co3O4@CuO@GQDs anode displays an initial specific capacity of 816 mAh g−1 and a high reversible charge capacity of 1054 mAh g−1 after 200 cycles at 0.1 A g−1.
AbstractList [Display omitted] •Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and mesoporous structure.•The modification of GQDs boosts the lithium storage behavior for Co3O4@CuO. In this report, we present the synthesis of yolk-shell Co3O4@CuO microspheres followed with the surface modification of carboxyl-functionalized graphene quantum dots (donated as Co3O4@CuO@GQDs) and investigate their lithium storage properties. Derived from metal-organic frameworks (MOFs), the obtained yolk-shell Co3O4@CuO microspheres exhibit well-defined microstructure and high porosities. The yolk-shell Co3O4@CuO structure is designed to adapt the stepwise lithium insertion mechanism (first in CuO shell and then in Co3O4 core). In addition, the GQDs decorated on the surface of Co3O4@CuO microspheres not only provides larger specific surface area, more active sites and enhanced electronic conductivity, but also works as a buffer to alleviate the volume expansion and a reservoir for electrolyte molecules to improve the ionic conductivity. Furthermore, the –COOH groups from GQDs exhibits good hydrophilicity which is supposed to be useful for the combination of GQDs with Co3O4@CuO and also shows strong affinity to Li+. Based on the above merits from the structural and compositional design, the Co3O4@CuO@GQDs anode displays enhanced cyclability and superior lithium storage performance. Specifically, compared to the bald Co3O4@CuO microspheres without GQDs which suffer from a severe capacity decline with an inferior capacity of 414 mAh g−1 after 200 cycles, the Co3O4@CuO@GQDs anode displays an initial specific capacity of 816 mAh g−1 and a high reversible charge capacity of 1054 mAh g−1 after 200 cycles at 0.1 A g−1.
Author Chen, Hengqiao
Lv, Li-Ping
Wu, Minghong
Wang, Yong
Author_xml – sequence: 1
  givenname: Minghong
  surname: Wu
  fullname: Wu, Minghong
– sequence: 2
  givenname: Hengqiao
  surname: Chen
  fullname: Chen, Hengqiao
– sequence: 3
  givenname: Li-Ping
  surname: Lv
  fullname: Lv, Li-Ping
– sequence: 4
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
BookMark eNp9kM1OwzAQhC1UJNrCA3DzC6Ss8-dYXEAVFKRKvcDZcpwNdUjiYrtIfXtcyolDT7ua1TfamRmZjHZEQm4ZLBiw8q5baOwWKTCxgCJKcEGmrOJZkqUsncQ9q4qkEjm_IjPvOwAoBRNTYldO7bY4Iv3aqzHsB9rY4OlgG9MarYKxI7UtPdj-M_Fb7Hu6tNkmf1juN3Qw2lkfaYeettbR2lofsKG9CVsTrXywTn0g3aGL50GNGq_JZat6jzd_c07en5_eli_JerN6XT6uE50DhKTmOQhWa16nwPM8TTlnoiqytqmKNlOAFbS1SAuutVZYFqwUPGVQa1Uy1gjM5oSdfI8veoet3DkzKHeQDOSxMdnJ2Jg8NiahiBJEhv9jtAm_FQSnTH-WvD-RGCN9G3TSa4MxbmMc6iAba87QPw56iXk
CitedBy_id crossref_primary_10_1016_j_apsusc_2024_159702
crossref_primary_10_1016_j_cej_2020_125012
crossref_primary_10_1002_aenm_202303515
crossref_primary_10_1007_s10895_023_03471_1
crossref_primary_10_1039_D0TA07674K
crossref_primary_10_1016_j_apsusc_2023_157124
crossref_primary_10_1016_j_est_2024_111900
crossref_primary_10_1016_j_jmst_2021_04_033
crossref_primary_10_1016_j_apsusc_2024_161987
crossref_primary_10_1007_s11051_020_04826_6
crossref_primary_10_1002_cnma_202000355
crossref_primary_10_1002_ppsc_201900348
crossref_primary_10_1016_j_est_2023_108178
crossref_primary_10_1039_C9QM00553F
crossref_primary_10_1007_s10853_021_06814_0
crossref_primary_10_1016_j_chemosphere_2023_139786
crossref_primary_10_1016_j_jallcom_2019_153293
crossref_primary_10_1016_j_mattod_2021_07_028
crossref_primary_10_1016_j_apcatb_2021_120123
crossref_primary_10_1016_j_jpowsour_2025_236177
crossref_primary_10_1149_1945_7111_ac4b25
crossref_primary_10_1016_j_energy_2024_132341
crossref_primary_10_3390_ma15227888
crossref_primary_10_1016_j_ccr_2020_213434
crossref_primary_10_1016_j_compositesb_2021_109083
crossref_primary_10_1007_s11664_021_09196_w
crossref_primary_10_1016_j_jallcom_2020_157648
crossref_primary_10_1155_2023_6353894
crossref_primary_10_1002_cnma_202300242
crossref_primary_10_1002_smll_202304497
crossref_primary_10_1016_j_jallcom_2021_161911
crossref_primary_10_1016_j_est_2024_113052
crossref_primary_10_1016_j_jallcom_2023_172085
crossref_primary_10_1002_celc_202300752
crossref_primary_10_1016_j_colsurfa_2022_130325
crossref_primary_10_1039_D1TA06747H
crossref_primary_10_1007_s12274_020_2741_9
crossref_primary_10_1002_eem2_12167
crossref_primary_10_1016_j_ceramint_2020_08_059
crossref_primary_10_1016_j_ssi_2020_115310
crossref_primary_10_1002_smll_202102683
crossref_primary_10_1007_s00339_024_08222_y
crossref_primary_10_1021_acsami_1c11892
crossref_primary_10_1007_s10008_021_05106_6
crossref_primary_10_1016_j_flatc_2023_100516
crossref_primary_10_1016_j_jece_2022_108259
crossref_primary_10_1007_s13738_020_02036_4
crossref_primary_10_1002_cey2_134
crossref_primary_10_1016_j_seppur_2024_128368
crossref_primary_10_1039_D3NJ05671F
crossref_primary_10_1016_j_jiec_2023_10_004
crossref_primary_10_1016_j_jclepro_2022_135302
crossref_primary_10_1016_j_cej_2021_128861
crossref_primary_10_1002_tcr_201900092
crossref_primary_10_1016_j_mseb_2020_114923
crossref_primary_10_1007_s10854_022_08228_3
crossref_primary_10_1016_j_jallcom_2024_176651
crossref_primary_10_1016_j_colsurfa_2021_127265
crossref_primary_10_1016_j_jenvman_2022_116650
crossref_primary_10_1002_celc_202101168
crossref_primary_10_1016_j_cclet_2023_108450
crossref_primary_10_1016_j_cej_2020_125705
crossref_primary_10_1088_1361_6528_ab4848
crossref_primary_10_1016_j_fuel_2023_129337
crossref_primary_10_1016_j_ensm_2021_01_020
crossref_primary_10_1007_s11706_021_0552_x
crossref_primary_10_1002_est2_390
crossref_primary_10_1016_j_cjche_2021_06_026
crossref_primary_10_1016_j_electacta_2022_141355
crossref_primary_10_1016_j_jpowsour_2020_228707
crossref_primary_10_1039_D1CC06177A
crossref_primary_10_1016_j_jcis_2020_10_050
crossref_primary_10_1016_S1872_5805_21_60036_7
crossref_primary_10_1016_j_jcis_2023_04_038
crossref_primary_10_1016_j_jmst_2021_05_079
crossref_primary_10_1016_j_inoche_2023_110562
crossref_primary_10_1016_j_jelechem_2023_117149
crossref_primary_10_1039_D1CC03769B
crossref_primary_10_1039_C9QM00554D
crossref_primary_10_1016_j_colsurfa_2022_130459
Cites_doi 10.1039/C7TA00772H
10.1016/j.jpowsour.2017.01.043
10.1039/C6RA09926B
10.1039/C6RA10215H
10.1016/j.nanoen.2014.02.012
10.1039/C8NR07207H
10.1016/j.cej.2018.04.119
10.1007/s10008-016-3414-1
10.1021/acsami.6b15110
10.1016/j.mtcomm.2017.02.009
10.1038/s41598-018-24963-2
10.1039/C7NR00136C
10.1038/srep31120
10.1016/j.electacta.2017.06.002
10.1186/s11671-017-2101-1
10.1039/C6RA15257K
10.1021/acssuschemeng.7b00329
10.1039/C6TA05096D
10.1016/j.electacta.2017.08.029
10.1016/j.electacta.2017.07.063
10.1016/j.electacta.2016.08.051
10.1039/C7TA02953E
10.1021/acsnano.7b01152
10.1038/nmat3601
10.1039/C6NJ03443H
10.1039/C6TA11058D
10.1016/j.electacta.2016.03.001
10.1016/j.electacta.2016.05.006
10.1039/c3ta12621h
10.1021/acsami.6b15000
10.1039/C4TA06914E
10.1016/j.cej.2016.11.063
10.1016/j.cej.2017.10.183
10.1021/acsami.7b04584
10.1002/smll.201604270
10.1021/acsnano.8b07319
10.1016/j.nanoen.2017.08.008
10.1016/j.snb.2017.07.144
10.1016/j.electacta.2016.03.034
10.1039/C5TA00890E
10.1021/acsami.6b14801
10.1021/acsnano.5b05041
10.1039/C6RA19334J
10.1039/C6TA00592F
10.1016/j.cej.2016.09.071
10.1002/smll.201800589
10.1016/j.apsusc.2016.11.169
10.1002/admi.201400499
10.1016/j.nanoen.2017.02.013
10.1021/acssuschemeng.5b00556
10.1016/j.cej.2016.10.067
10.1016/j.nanoso.2015.12.002
10.1039/C6TA00723F
10.1002/smll.201701351
10.1016/j.nanoen.2017.01.043
10.1002/adfm.201604941
10.1039/C8EE00239H
10.1021/acsami.6b04274
10.1002/adfm.201605332
10.1021/nl504038s
10.1002/adma.201705430
10.1016/j.cej.2017.09.070
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2019.05.100
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
EndPage 994
ExternalDocumentID 10_1016_j_cej_2019_05_100
S1385894719311246
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
SSH
ZY4
ID FETCH-LOGICAL-c400t-b74091bc7b20744227719853fd85f3a0e80fb9257cccae651697210bca611d9e3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 03:52:19 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Fri Feb 23 02:48:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cobalt oxide
Lithium ion batteries
Copper oxide
Yolk-shell
Graphene quantum dots
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-b74091bc7b20744227719853fd85f3a0e80fb9257cccae651697210bca611d9e3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_cej_2019_05_100
crossref_citationtrail_10_1016_j_cej_2019_05_100
elsevier_sciencedirect_doi_10_1016_j_cej_2019_05_100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Wang, Zhang, Nie, Ma, Zhong, Sun (b0185) 2017; 5
Kumar, Ojha, Ahmed, Kumar, Das, Materny (b0195) 2017; 11
Yin, Chen, Zhi, Sun, Lv, Wang (b0270) 2018; 14
Zheng, Zao, Zhang, Cheng, Chen, Zhang, Wang, Peng (b0075) 2018; 347
Zheng, Xu, Yin, Zhang, Lu (b0060) 2016; 6
Zhou, Chen, Yang, Bai, Ren, Tian (b0095) 2017; 9
Zhu, Chao, Sun, Bacho, Fan, Ng, Xia, Huang, Zhang, Shen, Ding, Fan (b0250) 2015; 2
Zou, Chen, Liu, Yu, Liang, Bhaway, Gao, Zhu (b0085) 2016; 10
Cai, Wang, Jiang, Wang (b0145) 2016; 21
Liu, Yang, Zhao, Liu, Wang, Chen (b0295) 2016; 207
Wang, Wang, Cao, Gu, Li, Lu, Han, Rogach, Niu (b0090) 2017; 5
Son, Sim, Ma, Choi, Son, Park, Cho, Park (b0020) 2018; 30
Hu, Li, Lou, Yang, Hu (b0040) 2017; 5
Kang, Zhang, Fan, Zhang, Dai, Wang, Sun (b0015) 2017; 9
Wang, Zhang, Li, Peng, Li, Wang, Hwang, Zhao (b0310) 2018; 332
Guo, Sun, Lv, Kong, Wang (b0165) 2017; 11
Fan, Yu, Zhang, Guo, Wang, Wang, Hao, Zhao, Geng, Dai, Yan, Xu (b0170) 2017; 33
Ganganboina, Dutta Chowdhury, Doong (b0200) 2017; 5
Xie, Hou, Wang, Zhang, Li (b0210) 2017; 12
Xu, Cao, Wang, Jiao (b0120) 2016; 4
Wu, Qian, Yu, Liu, Zhou, Wei, Huang (b0290) 2013; 1
Wang, Zhang, Li, Xu, Wang, Guo, Zhang (b0155) 2014; 6
Huang, Li, Yin, Wang (b0180) 2017; 27
Kong, Dai, Li, Sun, Wang (b0010) 2015; 3
Yang, Xue, Yang, Yuan, Kang, Lee (b0115) 2017; 308
Shi, Fan, Fu, Yu, Qian, Wang (b0135) 2016; 197
Augustyn, Come, Lowe, Kim, Taberna, Tolbert, Abruna, Simon, Dunn (b0300) 2013; 12
Dai, Sun, Wang (b0005) 2016; 217
Wang, Wang, Yu (b0130) 2017; 250
Guo, Zhu, Sun, Tang, Zhang (b0245) 2016; 4
Ma, Wang, Yang, Chai, Yuan (b0285) 2015; 3
Niu, Wang, Zhou, Yu, Yu, Qiu (b0160) 2017; 27
Moon, Jang, Yi, Lee, Kim, Oh, Lee, Park, Lee, Bae (b0220) 2017; 34
Ganganboina, Chowdhury, Doong (b0205) 2017; 245
Zhang, Tang, Zhang, Wang, Shi, Zhang, Duan (b0125) 2017; 247
Zhang, Ding, Tong, Liu (b0235) 2017; 9
Lijuan, Yongqiang, Ruiyi, Zaijun (b0265) 2016; 198
Min, Hou, Lei, Ma, Lu (b0215) 2017; 396
Qi, Xin, Zuo, Yang, Wu, Wu, Zhou (b0070) 2016; 8
Ma, Wang, Liu, Lu, Nie, Yang, Chai, Yuan (b0055) 2017; 309
Chao, Zhu, Xia, Liu, Zhang, Wang, Liang, Lin, Zhang, Shen, Fan (b0240) 2015; 15
Zhao, Wen, Liang, Jiang, Zhou, Shen, Xu (b0110) 2017; 9
Wu, Wang, Long, Li, Liu, Wang, Wang, Song, Liu, Zhang (b0175) 2017; 13
Li, Li, Li, Zhong, Li, Yang, Zhang, Zhang (b0065) 2017; 13
Ji, Zhou, Tong, Wang, Zhu, Chen, Yuan (b0035) 2017; 313
Subramanian, Pan, Rong, Li, Zhou, Li, Qiu, Xu, Hou, Zheng, Zhang (b0225) 2017; 343
Han, Chen, Han, Tan, Sun (b0280) 2016; 4
Li, Chen, Xu, Lou, Pan, Chen, Hu (b0045) 2015; 3
Zhang, Jiang, Zhang (b0080) 2016; 5
Wang, Zhang, Xiong, Qin, Zhao, Liu (b0275) 2018; 8
Lei, Nie, Liu, Zhuo, Yuan (b0140) 2016; 6
Sun, Tang, Ye, Yan, Zhou, Wang (b0050) 2017; 9
Zheng, Wu, Chen, Cheng, Zhang, Xie, Wang, Zhang, Wang, Peng, Zeng (b0030) 2018; 10
Zhang, Chen, Luo, Zhao, Luo, Han, Wang, Wang, Yang, Zhu, Liu (b0025) 2018; 11
Kumar, Tang, Lee, Pol, Gedanken (b0255) 2016; 6
Li, Yan, Hou, Lu, Yao, Chua, Pan (b0305) 2018; 335
Lijuan, Ruiyi, Yongqiang, Zaijun (b0260) 2016; 6
Wang, Yang, Zhou, Li, Li (b0190) 2017; 41
Yang, Xie, Arivazhagan, Xiao, Qiang, Huang, Hu, Cui, Yu, Yang (b0230) 2017; 40
Zhao, Wu, Yang, Zhang, Zhong, Zheng, Chen, Wang, He, Wang, Zhu, Zeng, Liu, Wang (b0105) 2018; 12
Jadhav, Pawar, Jadhav, Thorat, Seo (b0150) 2016; 6
Zang, Zeng, Wang, Hu, Liu, Tang (b0100) 2017; 252
Han (10.1016/j.cej.2019.05.100_b0280) 2016; 4
Chao (10.1016/j.cej.2019.05.100_b0240) 2015; 15
Wang (10.1016/j.cej.2019.05.100_b0090) 2017; 5
Gao (10.1016/j.cej.2019.05.100_b0185) 2017; 5
Li (10.1016/j.cej.2019.05.100_b0045) 2015; 3
Dai (10.1016/j.cej.2019.05.100_b0005) 2016; 217
Xu (10.1016/j.cej.2019.05.100_b0120) 2016; 4
Niu (10.1016/j.cej.2019.05.100_b0160) 2017; 27
Fan (10.1016/j.cej.2019.05.100_b0170) 2017; 33
Moon (10.1016/j.cej.2019.05.100_b0220) 2017; 34
Guo (10.1016/j.cej.2019.05.100_b0165) 2017; 11
Wang (10.1016/j.cej.2019.05.100_b0130) 2017; 250
Jadhav (10.1016/j.cej.2019.05.100_b0150) 2016; 6
Huang (10.1016/j.cej.2019.05.100_b0180) 2017; 27
Lijuan (10.1016/j.cej.2019.05.100_b0265) 2016; 198
Zhang (10.1016/j.cej.2019.05.100_b0125) 2017; 247
Kumar (10.1016/j.cej.2019.05.100_b0195) 2017; 11
Zheng (10.1016/j.cej.2019.05.100_b0060) 2016; 6
Li (10.1016/j.cej.2019.05.100_b0065) 2017; 13
Lijuan (10.1016/j.cej.2019.05.100_b0260) 2016; 6
Zhang (10.1016/j.cej.2019.05.100_b0235) 2017; 9
Zhu (10.1016/j.cej.2019.05.100_b0250) 2015; 2
Wu (10.1016/j.cej.2019.05.100_b0290) 2013; 1
Shi (10.1016/j.cej.2019.05.100_b0135) 2016; 197
Yin (10.1016/j.cej.2019.05.100_b0270) 2018; 14
Cai (10.1016/j.cej.2019.05.100_b0145) 2016; 21
Zheng (10.1016/j.cej.2019.05.100_b0030) 2018; 10
Wu (10.1016/j.cej.2019.05.100_b0175) 2017; 13
Ma (10.1016/j.cej.2019.05.100_b0285) 2015; 3
Sun (10.1016/j.cej.2019.05.100_b0050) 2017; 9
Kumar (10.1016/j.cej.2019.05.100_b0255) 2016; 6
Son (10.1016/j.cej.2019.05.100_b0020) 2018; 30
Ganganboina (10.1016/j.cej.2019.05.100_b0200) 2017; 5
Min (10.1016/j.cej.2019.05.100_b0215) 2017; 396
Kong (10.1016/j.cej.2019.05.100_b0010) 2015; 3
Zou (10.1016/j.cej.2019.05.100_b0085) 2016; 10
Liu (10.1016/j.cej.2019.05.100_b0295) 2016; 207
Ji (10.1016/j.cej.2019.05.100_b0035) 2017; 313
Guo (10.1016/j.cej.2019.05.100_b0245) 2016; 4
Lei (10.1016/j.cej.2019.05.100_b0140) 2016; 6
Wang (10.1016/j.cej.2019.05.100_b0155) 2014; 6
Zhao (10.1016/j.cej.2019.05.100_b0105) 2018; 12
Zhou (10.1016/j.cej.2019.05.100_b0095) 2017; 9
Zang (10.1016/j.cej.2019.05.100_b0100) 2017; 252
Augustyn (10.1016/j.cej.2019.05.100_b0300) 2013; 12
Yang (10.1016/j.cej.2019.05.100_b0230) 2017; 40
Subramanian (10.1016/j.cej.2019.05.100_b0225) 2017; 343
Ma (10.1016/j.cej.2019.05.100_b0055) 2017; 309
Wang (10.1016/j.cej.2019.05.100_b0190) 2017; 41
Xie (10.1016/j.cej.2019.05.100_b0210) 2017; 12
Zhao (10.1016/j.cej.2019.05.100_b0110) 2017; 9
Wang (10.1016/j.cej.2019.05.100_b0310) 2018; 332
Qi (10.1016/j.cej.2019.05.100_b0070) 2016; 8
Zhang (10.1016/j.cej.2019.05.100_b0025) 2018; 11
Zhang (10.1016/j.cej.2019.05.100_b0080) 2016; 5
Yang (10.1016/j.cej.2019.05.100_b0115) 2017; 308
Hu (10.1016/j.cej.2019.05.100_b0040) 2017; 5
Li (10.1016/j.cej.2019.05.100_b0305) 2018; 335
Zheng (10.1016/j.cej.2019.05.100_b0075) 2018; 347
Kang (10.1016/j.cej.2019.05.100_b0015) 2017; 9
Wang (10.1016/j.cej.2019.05.100_b0275) 2018; 8
Ganganboina (10.1016/j.cej.2019.05.100_b0205) 2017; 245
References_xml – volume: 6
  start-page: 19
  year: 2014
  end-page: 26
  ident: b0155
  article-title: Three-dimensional hierarchical Co
  publication-title: Nano Energy
– volume: 332
  start-page: 49
  year: 2018
  end-page: 56
  ident: b0310
  article-title: Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 93532
  year: 2016
  end-page: 93538
  ident: b0060
  article-title: Facile synthesis of MOF-derived Mn
  publication-title: RSC Adv.
– volume: 12
  start-page: 400
  year: 2017
  ident: b0210
  article-title: S, N Co-doped graphene quantum dot/TiO
  publication-title: Nanoscale Res. Lett.
– volume: 6
  start-page: 62640
  year: 2016
  end-page: 62646
  ident: b0140
  article-title: Influence of annealing temperature on microstructure and lithium storage performance of self-templated Cu
  publication-title: RSC Adv.
– volume: 217
  start-page: 123
  year: 2016
  end-page: 131
  ident: b0005
  article-title: Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries
  publication-title: Electrochim. Acta
– volume: 347
  start-page: 563
  year: 2018
  end-page: 573
  ident: b0075
  article-title: Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries
  publication-title: Chem. Eng. J.
– volume: 27
  year: 2017
  ident: b0160
  article-title: A polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 669
  year: 2018
  end-page: 681
  ident: b0025
  article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 309
  start-page: 545
  year: 2017
  end-page: 551
  ident: b0055
  article-title: Synthesis of tube shape MnO/Cp composite from 3,4,9,10-perylenetetracarboxylic dianhydride for lithium ion batteries
  publication-title: Chem. Eng. J.
– volume: 252
  start-page: 1179
  year: 2017
  end-page: 1186
  ident: b0100
  article-title: Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging
  publication-title: Sens. Actuat. B
– volume: 4
  start-page: 6042
  year: 2016
  end-page: 6047
  ident: b0120
  article-title: 3D hierarchical porous ZnO/ZnCo
  publication-title: J. Mater. Chem. A
– volume: 335
  start-page: 579
  year: 2018
  end-page: 589
  ident: b0305
  article-title: Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 11126
  year: 2013
  end-page: 11129
  ident: b0290
  article-title: MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 4930
  year: 2017
  end-page: 4940
  ident: b0200
  article-title: New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors
  publication-title: ACS Sustain. Chem. Eng.
– volume: 4
  start-page: 4783
  year: 2016
  end-page: 4789
  ident: b0245
  article-title: Boosting the lithium storage performance of MoS
  publication-title: J. Mater. Chem. A
– volume: 245
  start-page: 912
  year: 2017
  end-page: 923
  ident: b0205
  article-title: Nano assembly of N-doped graphene quantum dots anchored Fe
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 5585
  year: 2015
  end-page: 5591
  ident: b0045
  article-title: Mesoporous nanostructured Co
  publication-title: J. Mater. Chem. A
– volume: 343
  start-page: 39
  year: 2017
  end-page: 46
  ident: b0225
  article-title: Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells
  publication-title: J. Power Sources
– volume: 21
  start-page: 1129
  year: 2016
  end-page: 1136
  ident: b0145
  article-title: Template-free fabrication of porous CuCo
  publication-title: J. Solid State Electrochem.
– volume: 15
  start-page: 565
  year: 2015
  end-page: 573
  ident: b0240
  article-title: Graphene quantum dots coated VO
  publication-title: Nano Lett.
– volume: 34
  start-page: 36
  year: 2017
  end-page: 46
  ident: b0220
  article-title: Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells
  publication-title: Nano Energy
– volume: 30
  year: 2018
  ident: b0020
  article-title: Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1
  year: 2016
  end-page: 6
  ident: b0080
  article-title: Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode
  publication-title: Nano Struct. Nano-Objects
– volume: 13
  year: 2017
  ident: b0065
  article-title: Fabrication of Fe
  publication-title: Small
– volume: 33
  start-page: 168
  year: 2017
  end-page: 176
  ident: b0170
  article-title: From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries
  publication-title: Nano Energy
– volume: 12
  start-page: 12597
  year: 2018
  end-page: 12611
  ident: b0105
  article-title: Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes
  publication-title: ACS Nano
– volume: 6
  start-page: 66256
  year: 2016
  end-page: 66265
  ident: b0255
  article-title: In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries
  publication-title: RSC Adv.
– volume: 313
  start-page: 1623
  year: 2017
  end-page: 1632
  ident: b0035
  article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 5254
  year: 2017
  end-page: 5262
  ident: b0050
  article-title: Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 518
  year: 2013
  end-page: 522
  ident: b0300
  article-title: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
  publication-title: Nat. Mater.
– volume: 6
  start-page: 76344
  year: 2016
  end-page: 76354
  ident: b0260
  article-title: Multi-faceted design of a silicon anode for high performance lithium ion batteries using silicon nanoparticles encapsulated by a multiple graphene aerogel electrode material and a tryptophan-functionalized graphene quantum dot–sodium alginate binder
  publication-title: RSC Adv.
– volume: 3
  start-page: 1830
  year: 2015
  end-page: 1838
  ident: b0010
  article-title: Microwave hydrothermal synthesis of ni-based metal-organic frameworks and their derived yolk-shell NiO for Li-ion storage and supported ammonia borane for hydrogen desorption
  publication-title: ACS Sustain. Chem. Eng.
– volume: 13
  year: 2017
  ident: b0175
  article-title: Multishelled Ni
  publication-title: Small
– volume: 9
  start-page: 14309
  year: 2017
  end-page: 14318
  ident: b0095
  article-title: Metal-organic frameworks derived okra-like sno
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1400499
  year: 2015
  ident: b0250
  article-title: Enhanced lithium storage performance of cuo nanowires by coating of graphene quantum dots
  publication-title: Adv. Mater. Interfaces
– volume: 5
  start-page: 6817
  year: 2017
  end-page: 6824
  ident: b0090
  article-title: Honeycomb-like carbon nanoflakes as a host for SnO
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 76
  year: 2017
  end-page: 86
  ident: b0195
  article-title: Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials
  publication-title: Mater. Today Commun.
– volume: 207
  start-page: 293
  year: 2016
  end-page: 300
  ident: b0295
  article-title: Mesoporous flower-like Co
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 12828
  year: 2017
  end-page: 12837
  ident: b0040
  article-title: Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 3757
  year: 2017
  end-page: 3765
  ident: b0110
  article-title: Carbon-coated Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 198
  start-page: 144
  year: 2016
  end-page: 155
  ident: b0265
  article-title: Phenylalanine-functionalized graphene quantum dot-silicon nanoparticle composite as an anode material for lithium ion batteries with largely enhanced electrochemical performance
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 22203
  year: 2018
  end-page: 22214
  ident: b0030
  article-title: Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries
  publication-title: Nanoscale
– volume: 250
  start-page: 35
  year: 2017
  end-page: 41
  ident: b0130
  article-title: Metal-organic frameworks derived (Cu
  publication-title: Electrochim. Acta
– volume: 247
  start-page: 692
  year: 2017
  end-page: 700
  ident: b0125
  article-title: Pseudo-solid-solution CuCo
  publication-title: Electrochim. Acta
– volume: 41
  start-page: 1110
  year: 2017
  end-page: 1118
  ident: b0190
  article-title: NiCo
  publication-title: New J. Chem.
– volume: 9
  start-page: 3524
  year: 2017
  end-page: 3529
  ident: b0235
  article-title: Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications
  publication-title: Nanoscale
– volume: 40
  start-page: 345
  year: 2017
  end-page: 351
  ident: b0230
  article-title: Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer
  publication-title: Nano Energy
– volume: 6
  start-page: 31120
  year: 2016
  ident: b0150
  article-title: Hierarchical mesoporous 3D flower-like CuCo
  publication-title: Sci. Rep.
– volume: 4
  start-page: 13040
  year: 2016
  end-page: 13045
  ident: b0280
  article-title: Nitrogen-rich MOF derived porous Co
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 377
  year: 2016
  end-page: 386
  ident: b0085
  article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage
  publication-title: ACS Nano
– volume: 396
  start-page: 1375
  year: 2017
  end-page: 1382
  ident: b0215
  article-title: Facile one-step hydrothermal synthesis toward strongly coupled TiO
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 6530
  year: 2018
  ident: b0275
  article-title: Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes
  publication-title: Sci. Rep.
– volume: 197
  start-page: 23
  year: 2016
  end-page: 31
  ident: b0135
  article-title: Carbonate-assisted hydrothermal synthesis of porous hierarchical Co
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 1604941
  year: 2017
  ident: b0180
  article-title: Hierarchical porous Te@ZnCo
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 4198
  year: 2017
  end-page: 4205
  ident: b0165
  article-title: Microwave-assisted morphology evolution of fe-based metal-organic frameworks and their derived Fe
  publication-title: ACS Nano
– volume: 5
  start-page: 5007
  year: 2017
  end-page: 5012
  ident: b0185
  article-title: Hollow NiFe
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 10602
  year: 2017
  end-page: 10609
  ident: b0015
  article-title: Metal-organic framework derived porous hollow Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 308
  start-page: 340
  year: 2017
  end-page: 346
  ident: b0115
  article-title: Preparation of porous ZnO/ZnFe
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 10
  year: 2018
  ident: b0270
  article-title: Functionalized graphene quantum dot modification of yolk-shell NiO microspheres for superior lithium storage
  publication-title: Small
– volume: 8
  start-page: 17245
  year: 2016
  end-page: 17252
  ident: b0070
  article-title: Grape-Like Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 12038
  year: 2015
  end-page: 12043
  ident: b0285
  article-title: Porous carbon-coated CuCo
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 6817
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0090
  article-title: Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00772H
– volume: 343
  start-page: 39
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0225
  article-title: Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.043
– volume: 6
  start-page: 66256
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0255
  article-title: In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA09926B
– volume: 6
  start-page: 62640
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0140
  article-title: Influence of annealing temperature on microstructure and lithium storage performance of self-templated CuxCo3−xO4 hollow microspheres
  publication-title: RSC Adv.
  doi: 10.1039/C6RA10215H
– volume: 6
  start-page: 19
  year: 2014
  ident: 10.1016/j.cej.2019.05.100_b0155
  article-title: Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.02.012
– volume: 10
  start-page: 22203
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0030
  article-title: Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C8NR07207H
– volume: 347
  start-page: 563
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0075
  article-title: Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.119
– volume: 21
  start-page: 1129
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0145
  article-title: Template-free fabrication of porous CuCo2O4 hollow spheres and their application in lithium ion batteries
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-016-3414-1
– volume: 9
  start-page: 3757
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0110
  article-title: Carbon-coated Fe3O4/VOx hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15110
– volume: 11
  start-page: 76
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0195
  article-title: Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2017.02.009
– volume: 8
  start-page: 6530
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0275
  article-title: Yucca fern shaped CuO nanowires on Cu foam for remitting capacity fading of Li-ion battery anodes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24963-2
– volume: 9
  start-page: 3524
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0235
  article-title: Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications
  publication-title: Nanoscale
  doi: 10.1039/C7NR00136C
– volume: 6
  start-page: 31120
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0150
  article-title: Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage
  publication-title: Sci. Rep.
  doi: 10.1038/srep31120
– volume: 245
  start-page: 912
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0205
  article-title: Nano assembly of N-doped graphene quantum dots anchored Fe3O4/halloysite nanotubes for high performance supercapacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.002
– volume: 12
  start-page: 400
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0210
  article-title: S, N Co-doped graphene quantum dot/TiO2 composites for efficient photocatalytic hydrogen generation
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-2101-1
– volume: 6
  start-page: 76344
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0260
  article-title: Multi-faceted design of a silicon anode for high performance lithium ion batteries using silicon nanoparticles encapsulated by a multiple graphene aerogel electrode material and a tryptophan-functionalized graphene quantum dot–sodium alginate binder
  publication-title: RSC Adv.
  doi: 10.1039/C6RA15257K
– volume: 5
  start-page: 4930
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0200
  article-title: New avenue for appendage of graphene quantum dots on halloysite nanotubes as anode materials for high performance supercapacitors
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00329
– volume: 4
  start-page: 13040
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0280
  article-title: Nitrogen-rich MOF derived porous Co3O4/N–C composites with superior performance in lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05096D
– volume: 250
  start-page: 35
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0130
  article-title: Metal-organic frameworks derived (Cu0.30Co0.7)Co2O4/CuO composite rectangular pyramid grass as high performance anode materials for lithium ion battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.08.029
– volume: 247
  start-page: 692
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0125
  article-title: Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.07.063
– volume: 217
  start-page: 123
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0005
  article-title: Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.051
– volume: 5
  start-page: 12828
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0040
  article-title: Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02953E
– volume: 11
  start-page: 4198
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0165
  article-title: Microwave-assisted morphology evolution of fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for Li-Ion storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01152
– volume: 12
  start-page: 518
  year: 2013
  ident: 10.1016/j.cej.2019.05.100_b0300
  article-title: High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3601
– volume: 41
  start-page: 1110
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0190
  article-title: NiCo2S4/tryptophan-functionalized graphene quantum dot nanohybrids for high-performance supercapacitors
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ03443H
– volume: 5
  start-page: 5007
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0185
  article-title: Hollow NiFe2O4 nanospheres on carbon nanorods as a highly efficient anode material for lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA11058D
– volume: 197
  start-page: 23
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0135
  article-title: Carbonate-assisted hydrothermal synthesis of porous hierarchical Co3O4/CuO composites as high capacity anodes for lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.001
– volume: 207
  start-page: 293
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0295
  article-title: Mesoporous flower-like Co3O4/C nanosheet composites and their performance evaluation as anodes for lithium ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.006
– volume: 1
  start-page: 11126
  year: 2013
  ident: 10.1016/j.cej.2019.05.100_b0290
  article-title: MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12621h
– volume: 9
  start-page: 10602
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0015
  article-title: Metal-organic framework derived porous hollow Co3O4/N-C polyhedron composite with excellent energy storage capability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15000
– volume: 3
  start-page: 5585
  year: 2015
  ident: 10.1016/j.cej.2019.05.100_b0045
  article-title: Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06914E
– volume: 313
  start-page: 1623
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0035
  article-title: Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.063
– volume: 335
  start-page: 579
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0305
  article-title: Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.183
– volume: 9
  start-page: 14309
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0095
  article-title: Metal-organic frameworks derived okra-like sno2 encapsulated in nitrogen-doped graphene for lithium ion battery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04584
– volume: 13
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0175
  article-title: Multishelled Nix Co3-x O4 hollow microspheres derived from bimetal-organic frameworks as anode materials for high-performance lithium-ion batteries
  publication-title: Small
  doi: 10.1002/smll.201604270
– volume: 12
  start-page: 12597
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0105
  article-title: Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07319
– volume: 40
  start-page: 345
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0230
  article-title: Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.008
– volume: 252
  start-page: 1179
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0100
  article-title: Tunable photoluminescence of water-soluble AgInZnS–graphene oxide (GO) nanocomposites and their application in-vivo bioimaging
  publication-title: Sens. Actuat. B
  doi: 10.1016/j.snb.2017.07.144
– volume: 198
  start-page: 144
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0265
  article-title: Phenylalanine-functionalized graphene quantum dot-silicon nanoparticle composite as an anode material for lithium ion batteries with largely enhanced electrochemical performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.034
– volume: 3
  start-page: 12038
  year: 2015
  ident: 10.1016/j.cej.2019.05.100_b0285
  article-title: Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal-organic frameworks as anodes for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00890E
– volume: 9
  start-page: 5254
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0050
  article-title: Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14801
– volume: 10
  start-page: 377
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0085
  article-title: Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05041
– volume: 6
  start-page: 93532
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0060
  article-title: Facile synthesis of MOF-derived Mn2O3 hollow microspheres as anode materials for lithium-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19334J
– volume: 4
  start-page: 4783
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0245
  article-title: Boosting the lithium storage performance of MoS2 with graphene quantum dots
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00592F
– volume: 308
  start-page: 340
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0115
  article-title: Preparation of porous ZnO/ZnFe2O4 composite from metal organic frameworks and its applications for lithium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.071
– volume: 14
  start-page: 10
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0270
  article-title: Functionalized graphene quantum dot modification of yolk-shell NiO microspheres for superior lithium storage
  publication-title: Small
  doi: 10.1002/smll.201800589
– volume: 396
  start-page: 1375
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0215
  article-title: Facile one-step hydrothermal synthesis toward strongly coupled TiO2/graphene quantum dots photocatalysts for efficient hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.11.169
– volume: 2
  start-page: 1400499
  year: 2015
  ident: 10.1016/j.cej.2019.05.100_b0250
  article-title: Enhanced lithium storage performance of cuo nanowires by coating of graphene quantum dots
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400499
– volume: 34
  start-page: 36
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0220
  article-title: Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.013
– volume: 3
  start-page: 1830
  year: 2015
  ident: 10.1016/j.cej.2019.05.100_b0010
  article-title: Microwave hydrothermal synthesis of ni-based metal-organic frameworks and their derived yolk-shell NiO for Li-ion storage and supported ammonia borane for hydrogen desorption
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b00556
– volume: 309
  start-page: 545
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0055
  article-title: Synthesis of tube shape MnO/Cp composite from 3,4,9,10-perylenetetracarboxylic dianhydride for lithium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.067
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0080
  article-title: Porous NiO materials prepared by solid-state thermolysis of a Ni-MOF crystal for lithium-ion battery anode
  publication-title: Nano Struct. Nano-Objects
  doi: 10.1016/j.nanoso.2015.12.002
– volume: 4
  start-page: 6042
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0120
  article-title: 3D hierarchical porous ZnO/ZnCo2O4nanosheets as high-rate anode material for lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00723F
– volume: 13
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0065
  article-title: Fabrication of Fe3O4 dots embedded in 3D honeycomb-like carbon based on metallo-organic molecule with superior lithium storage performance
  publication-title: Small
  doi: 10.1002/smll.201701351
– volume: 33
  start-page: 168
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0170
  article-title: From zinc-cyanide hybrid coordination polymers to hierarchical yolk-shell structures for high-performance and ultra-stable lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.043
– volume: 27
  start-page: 1604941
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0180
  article-title: Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@Metal-organic frameworks for superior lithium storage capability
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604941
– volume: 11
  start-page: 669
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0025
  article-title: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00239H
– volume: 8
  start-page: 17245
  year: 2016
  ident: 10.1016/j.cej.2019.05.100_b0070
  article-title: Grape-Like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04274
– volume: 27
  year: 2017
  ident: 10.1016/j.cej.2019.05.100_b0160
  article-title: A polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605332
– volume: 15
  start-page: 565
  year: 2015
  ident: 10.1016/j.cej.2019.05.100_b0240
  article-title: Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl504038s
– volume: 30
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0020
  article-title: Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705430
– volume: 332
  start-page: 49
  year: 2018
  ident: 10.1016/j.cej.2019.05.100_b0310
  article-title: Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.070
SSID ssj0006919
Score 2.5520816
Snippet [Display omitted] •Co3O4@CuO microspheres are prepared and modified with graphene quantum dots (GQDs).•The Co3O4@CuO@GQDs exhibits a unique yolk-shell and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 985
SubjectTerms Cobalt oxide
Copper oxide
Graphene quantum dots
Lithium ion batteries
Yolk-shell
Title Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance
URI https://dx.doi.org/10.1016/j.cej.2019.05.100
Volume 373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkEzzcJNmo4oohYpWAiq6RY5ji5a2KaQZWPjt3OVBiwQMTFGicxSd7bvv4s-fCTmzpRk6QnvM0ZZg3LU5g6SnmDA15G8dcZ4Jad_1nM6A3w4bwwrxy70wSKssYn8e07NoXTypF96sz0ej-oOJa1oeBFfPBtDAUXabcxdH-cXHkubheNnhHmjM0Lpc2cw4XlKNkd3loXiniZvcfspNK_mmvU22CqBIW_m37JCKmu2SzRX5wD0SX6PaNAQr-pqCg9IphRIzodM4Qv5P5nIaa_oeT15YgoRP6sd2n1_6aZ9OkYiXoKaASigAVwpoG_98UoDlzyN4FbImIdbQ-XJnwT4ZtK8e_Q4rDlBgEqbmgoUuVG9mKN3QAqTALcsFZ0F-1lGzoW1hqKahQw8mrYR-VA4umUFBaIRSOKYZeco-IGuzeKYOCYVULw3pKi4aFtcOFIXCMiIb5z8UQKGoEqN0XSALdXE85GISlDSycQDeDtDbgdFAqeQqOf9qMs-lNf4y5mV_BN_GRwCh__dmR_9rdkw28C4n7Z2QtcVbqk4BfCzCWja6amS9ddPt9PDavX_qfgLFPNof
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLYGHIAD4ine5AAXpLA-spYekECDMdiAAyDtVto0EQO2DroJceFP8Qexu5YNCTgg7do2UWJbn-3miw2wbUszdALtcUdbAReuLTg6PcUDU6P_1pEQaSHti0uneivOG6VGAT7yuzBEq8ywv4_pKVpnT4qZNIudZrN4bdKZlofg6tkYNAgnY1bW1Nsr5m3JwdkxKnnHsionN-Uqz1oLcIlG2-Whi3mNGUo3tNCHCstycRr0XDraL2k7MNS-oUMPzVniDpVDh0mYKhmhDBzTjDxl47xjMCEQLqhtwt77gFfieGk3EVodp-XlR6kpqUyqB6KTeVQt1KRbdT85wyEHV5mFmSwyZUf9zc9BQbXnYXqoXuECxKdU3hrRkT33UCO9FsOcNmGtOCLCUapjFmv2Fj898oQYpqwc21fisNy7Yi1i_iVUxEAlDCNlhuE9_WplmAfcN3EqomkiuLHO4CrDItyORKxLMN6O22oZGMYW0pCuEkHJEtrBLDSwjMgmwMGMKwxWwMhF58usnDl11Xjyc97ag4_S9knavlGi2swrsPs1pNOv5fHXxyLXh__NIH30Nb8PW_3fsC2YrN5c1P362WVtDaboTZ8xuA7j3Zee2sDIpxtuppbG4G7Upv0J0e4SvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+quantum+dots+modification+of+yolk-shell+Co3O4%40CuO+microspheres+for+boosted+lithium+storage+performance&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Wu%2C+Minghong&rft.au=Chen%2C+Hengqiao&rft.au=Lv%2C+Li-Ping&rft.au=Wang%2C+Yong&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=373&rft.spage=985&rft.epage=994&rft_id=info:doi/10.1016%2Fj.cej.2019.05.100&rft.externalDocID=S1385894719311246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon