Assessment of Active LiDAR Data and Passive Optical Imagery for Double-Layered Mangrove Leaf Area Index Estimation: A Case Study in Mai Po, Hong Kong
Remote sensing technology is a timely and cost-efficient method for leaf area index (LAI) estimation, especially for less accessible areas such as mangrove forests. Confounded by the poor penetrability of optical images, most previous studies focused on estimating the LAI of the main canopy, ignorin...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 10; p. 2551 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote sensing technology is a timely and cost-efficient method for leaf area index (LAI) estimation, especially for less accessible areas such as mangrove forests. Confounded by the poor penetrability of optical images, most previous studies focused on estimating the LAI of the main canopy, ignoring the understory. This study investigated the capability of multispectral Sentinel-2 (S2) imagery, airborne hyperspectral imagery (HSI), and airborne LiDAR data for overstory (OLe) and understory (ULe) LAI estimation of a multi-layered mangrove stand in Mai Po, Hong Kong, China. LiDAR data were employed to stratify the overstory and understory. Vegetation indices (VIs) and LiDAR metrics were generated as predictors to build regression models against the OLe and ULe with multiple parametric and non-parametric methods. The OLe model fitting results were typically better than ULe because of the dominant contribution of the overstory to the remotely sensed signal. A single red-edge VI derived from HSI data delivered the lowest RMSE of 0.12 and the highest R2adj of 0.79 for OLe model fitting. The synergetic use of LiDAR metrics and S2 VIs performed best for ULe model fitting with RMSE = 0.33, R2adj = 0.84. OLe estimation benefited from the high spatial and spectral resolution HSI that was found less confounded by the understory. In addition to their penetration attributes, LiDAR data could separately describe the upper and lower canopy, which reduced the noise from other components, thereby improving the ULe estimation. |
---|---|
AbstractList | Remote sensing technology is a timely and cost-efficient method for leaf area index (LAI) estimation, especially for less accessible areas such as mangrove forests. Confounded by the poor penetrability of optical images, most previous studies focused on estimating the LAI of the main canopy, ignoring the understory. This study investigated the capability of multispectral Sentinel-2 (S2) imagery, airborne hyperspectral imagery (HSI), and airborne LiDAR data for overstory (OLe) and understory (ULe) LAI estimation of a multi-layered mangrove stand in Mai Po, Hong Kong, China. LiDAR data were employed to stratify the overstory and understory. Vegetation indices (VIs) and LiDAR metrics were generated as predictors to build regression models against the OLe and ULe with multiple parametric and non-parametric methods. The OLe model fitting results were typically better than ULe because of the dominant contribution of the overstory to the remotely sensed signal. A single red-edge VI derived from HSI data delivered the lowest RMSE of 0.12 and the highest R[sup.2]adj of 0.79 for OLe model fitting. The synergetic use of LiDAR metrics and S2 VIs performed best for ULe model fitting with RMSE = 0.33, R[sup.2]adj = 0.84. OLe estimation benefited from the high spatial and spectral resolution HSI that was found less confounded by the understory. In addition to their penetration attributes, LiDAR data could separately describe the upper and lower canopy, which reduced the noise from other components, thereby improving the ULe estimation. Remote sensing technology is a timely and cost-efficient method for leaf area index (LAI) estimation, especially for less accessible areas such as mangrove forests. Confounded by the poor penetrability of optical images, most previous studies focused on estimating the LAI of the main canopy, ignoring the understory. This study investigated the capability of multispectral Sentinel-2 (S2) imagery, airborne hyperspectral imagery (HSI), and airborne LiDAR data for overstory (OLe) and understory (ULe) LAI estimation of a multi-layered mangrove stand in Mai Po, Hong Kong, China. LiDAR data were employed to stratify the overstory and understory. Vegetation indices (VIs) and LiDAR metrics were generated as predictors to build regression models against the OLe and ULe with multiple parametric and non-parametric methods. The OLe model fitting results were typically better than ULe because of the dominant contribution of the overstory to the remotely sensed signal. A single red-edge VI derived from HSI data delivered the lowest RMSE of 0.12 and the highest R2adj of 0.79 for OLe model fitting. The synergetic use of LiDAR metrics and S2 VIs performed best for ULe model fitting with RMSE = 0.33, R2adj = 0.84. OLe estimation benefited from the high spatial and spectral resolution HSI that was found less confounded by the understory. In addition to their penetration attributes, LiDAR data could separately describe the upper and lower canopy, which reduced the noise from other components, thereby improving the ULe estimation. |
Audience | Academic |
Author | Dash, Jadunandan Fung, Tung Wong, Frankie Kwan Kit Li, Qiaosi Brown, Luke A. |
Author_xml | – sequence: 1 givenname: Qiaosi orcidid: 0000-0002-2244-3393 surname: Li fullname: Li, Qiaosi – sequence: 2 givenname: Frankie Kwan Kit orcidid: 0000-0002-2931-237X surname: Wong fullname: Wong, Frankie Kwan Kit – sequence: 3 givenname: Tung orcidid: 0000-0001-6452-8216 surname: Fung fullname: Fung, Tung – sequence: 4 givenname: Luke A. orcidid: 0000-0003-4807-9056 surname: Brown fullname: Brown, Luke A. – sequence: 5 givenname: Jadunandan surname: Dash fullname: Dash, Jadunandan |
BookMark | eNpNUdtuEzEUXKEiUUpf-IIj8YbY4stevLytkkIjglpxeV6dXR-vHCV2sJ2KfAj_i0MQYEs-1mhmPNY8Ly6cd1QULzm7kbJjb0PkNWeirvmT4lKwVpSV6MTFf_dnxXWMG5aXlLxj1WXxs4-RYtyRS-AN9FOyjwRru-w_wxITAjoNDxjjCb7fJzvhFlY7nCkcwfgAS38Yt1Su8UiBNHxCNwd_siDMdoEQVk7TD7iNye4wWe_eQQ8LjARf0kEfwbossvDg38CddzN8zMeL4qnBbaTrP_Oq-Pb-9uvirlzff1gt-nU5VYylcmQGWdOQ7IySjWxGNjLSgngj2obaGqUybaflOJoORSs1jqi6TK11pxus5FWxOvtqj5thH3LCcBw82uE34MM8YMh_3tIwGTKT4g0fBasUSVRGqLbOL1U1U2rMXq_OXvvgvx8opmHjD8Hl-INQvKuUkK3KrJsza8Zsap3xKeCUt6adnXKfxma8b2vR1Iqxk-D1WTAFH2Mg8zcmZ8Op9uFf7fIXLrCeqw |
CitedBy_id | crossref_primary_10_3390_f14091838 crossref_primary_10_3390_rs15123043 crossref_primary_10_1016_j_ecss_2023_108444 |
Cites_doi | 10.3390/rs9101060 10.1029/2007GL031021 10.1016/j.isprsjprs.2013.04.007 10.2307/2388997 10.1111/j.1365-3040.1992.tb00992.x 10.1016/j.rse.2012.06.024 10.1016/j.foreco.2009.11.018 10.1016/j.rse.2012.08.015 10.1016/j.rse.2017.08.002 10.1016/S0034-4257(99)00035-8 10.1016/S0034-4257(00)00113-9 10.1078/0176-1617-01176 10.1016/j.rse.2006.02.004 10.1016/j.rse.2009.07.002 10.1016/j.rse.2016.10.038 10.1109/IGARSS.2008.4779387 10.1080/01431161.2015.1117683 10.3390/rs5105040 10.3390/rs8040324 10.14358/PERS.79.5.479 10.1016/j.rse.2010.12.011 10.1016/0168-1923(91)90081-Z 10.1016/j.rse.2020.112168 10.3390/rs13091748 10.1016/j.rse.2017.03.021 10.1016/j.agrformet.2020.108170 10.1016/j.rse.2008.09.012 10.1016/j.isprsjprs.2015.05.005 10.2134/agronj2005.0200 10.1117/1.3594171 10.1016/j.rse.2008.07.001 10.1016/j.agrformet.2007.11.015 10.3390/rs8030226 10.1016/j.rse.2013.07.044 10.1080/014311699211994 10.1016/j.agrformet.2003.08.027 10.1016/S0034-4257(02)00010-X 10.1016/0168-1923(91)90084-4 10.1016/j.isprsjprs.2021.02.020 10.1080/07038992.1996.10855178 10.1016/S0034-4257(02)00096-2 10.1016/j.agrformet.2007.01.006 10.1016/j.isprsjprs.2017.02.002 10.1109/36.134076 10.1016/j.rse.2007.06.018 10.1016/S0034-4257(00)00197-8 10.5589/m11-043 10.1016/j.rse.2016.02.013 10.3390/s8042136 10.1016/j.rse.2003.12.013 10.1016/0034-4257(94)00114-3 10.1016/j.rse.2020.111935 10.1023/A:1010933404324 10.1007/s11104-013-1937-0 10.3390/rs9040309 10.1109/TGRS.2003.812910 10.1016/j.agrformet.2014.08.001 10.1016/j.rse.2021.112403 10.1016/j.rse.2013.02.021 10.1016/j.isprsjprs.2017.10.004 10.1016/S0034-4257(96)00072-7 10.1016/0034-4257(79)90013-0 10.1016/0168-1923(94)90107-4 10.1016/j.rse.2009.03.006 10.1016/j.rse.2016.12.015 10.1093/aob/mci052 10.1016/j.isprsjprs.2011.08.001 10.1166/sl.2011.1380 10.1016/j.isprsjprs.2017.07.001 10.1016/j.rse.2012.07.006 10.3390/rs13153036 10.3390/rs11060671 10.3390/rs10122000 10.1016/j.foreco.2015.02.018 10.1016/j.asr.2019.09.023 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2 10.1007/s11427-011-4135-4 10.1016/j.agrformet.2011.05.005 10.1016/j.agrformet.2008.03.005 10.1016/j.rse.2020.112250 10.3390/rs12132126 10.1034/j.1399-3054.1999.106119.x 10.1080/0143116042000274015 10.1016/j.agrformet.2014.11.010 10.1016/j.isprsjprs.2015.04.013 10.1016/S0034-4257(02)00018-4 10.1016/j.isprsjprs.2017.05.003 10.1016/j.isprsjprs.2020.08.003 10.1016/j.foreco.2020.118100 10.1109/IGARSS.2019.8897965 10.1016/j.rse.2009.06.010 10.1078/0176-1617-00887 10.1016/j.rse.2006.04.005 10.5558/tfc84827-6 10.3390/f11101037 10.1016/0034-4257(95)00132-K 10.1080/02757259409532252 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs15102551 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_cfefc8161b2048e3a8f287562745088b A752658008 10_3390_rs15102551 |
GeographicLocations | Hong Kong United Kingdom China Hong Kong China |
GeographicLocations_xml | – name: United Kingdom – name: China – name: Hong Kong – name: Hong Kong China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS TR2 TUS RIG 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c400t-b0fa066e39f83636b0b0ed2e16276e75a38f79d3bbf9a273daba898365d9d6a43 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:00:19 EDT 2024 Mon Nov 04 14:28:19 EST 2024 Tue Nov 12 23:19:33 EST 2024 Fri Dec 06 04:17:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-b0fa066e39f83636b0b0ed2e16276e75a38f79d3bbf9a273daba898365d9d6a43 |
ORCID | 0000-0003-4807-9056 0000-0002-2244-3393 0000-0001-6452-8216 0000-0002-2931-237X |
OpenAccessLink | https://doaj.org/article/cfefc8161b2048e3a8f287562745088b |
PQID | 2819482378 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cfefc8161b2048e3a8f287562745088b proquest_journals_2819482378 gale_infotracacademiconefile_A752658008 crossref_primary_10_3390_rs15102551 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Axelsson (ref_72) 2000; 33 Soudani (ref_25) 2006; 102 Pike (ref_109) 1971; 82 Brown (ref_10) 2020; 247 Misson (ref_42) 2007; 144 Korhonen (ref_82) 2011; 115 Brown (ref_81) 2000; 71 ref_19 ref_18 Elvidge (ref_26) 1995; 54 Breiman (ref_86) 2001; 45 Korhonen (ref_30) 2017; 195 Jensen (ref_50) 2008; 112 Sumnall (ref_111) 2016; 37 Huang (ref_47) 2011; 9 ref_22 Daughtry (ref_102) 2000; 74 ref_21 Li (ref_7) 2017; 126 ref_20 Hardwick (ref_74) 2015; 201 ref_27 Wong (ref_38) 2013; 79 Dash (ref_101) 2004; 25 Chianucci (ref_48) 2014; 61 Pearse (ref_17) 2017; 200 Glenn (ref_23) 2008; 8 ref_70 Merzlyak (ref_100) 1999; 106 Atzberger (ref_11) 2015; 43 ref_79 Gleason (ref_16) 2012; 125 Qi (ref_24) 2014; 198–199 Frampton (ref_29) 2013; 82 Arroyo (ref_55) 2010; 259 Brown (ref_34) 2021; 175 Rouse (ref_88) 1974; 351 Gitelson (ref_90) 2003; 160 Verrelst (ref_76) 2015; 108 Moreno (ref_15) 2008; 112 Haboudane (ref_75) 2004; 90 Anderson (ref_78) 1995; 27 Kamal (ref_13) 2016; 176 Li (ref_61) 2021; 258 Wang (ref_107) 2007; 34 ref_87 Pope (ref_58) 2013; 5 Martinuzzi (ref_43) 2009; 113 Gong (ref_14) 2003; 41 Cho (ref_85) 2007; 9 Main (ref_95) 2011; 66 Fassnacht (ref_1) 1994; 71 Singh (ref_59) 2015; 38 Hardisky (ref_105) 1983; 49 Zhou (ref_84) 2017; 130 Peng (ref_99) 2011; 151 ref_57 Fu (ref_56) 2011; 5 Yang (ref_83) 2011; 54 ref_54 Zhang (ref_6) 2012; 127 Chason (ref_5) 1991; 57 Haboudane (ref_103) 2002; 81 Catalina (ref_36) 2013; 171–172 Houborg (ref_80) 2018; 135 Ogutu (ref_8) 2012; 37 Huete (ref_97) 2002; 83 Sims (ref_28) 2002; 81 ref_69 Woods (ref_108) 2008; 84 ref_68 Eriksson (ref_45) 2006; 103 ref_65 Hamraz (ref_63) 2017; 130 Iida (ref_67) 2020; 295 Monsi (ref_53) 2005; 95 Padalia (ref_32) 2020; 65 Gitelson (ref_98) 2017; 191 Roujean (ref_94) 1995; 51 Dong (ref_9) 2020; 168 Armston (ref_112) 2013; 134 Amin (ref_31) 2021; 255 Kaufman (ref_96) 1992; 30 Lang (ref_2) 1991; 57 Gitelson (ref_41) 1996; 58 Nelson (ref_52) 2017; 188 Wing (ref_60) 2012; 124 Sumnall (ref_64) 2021; 254 ref_33 Gitelson (ref_91) 2004; 161 Goel (ref_93) 1994; 10 Quintano (ref_39) 2016; 50 Demarez (ref_73) 2008; 148 Samuelson (ref_44) 2015; 344 Jonckheere (ref_4) 2004; 121 Wu (ref_37) 2008; 148 Solberg (ref_49) 2009; 113 Duncanson (ref_62) 2014; 154 Sripada (ref_92) 2006; 98 ref_106 Majasalmi (ref_66) 2020; 466 Chen (ref_35) 1996; 22 Hopkinson (ref_110) 2009; 113 Broge (ref_77) 2001; 76 ref_46 Smith (ref_71) 1999; 20 Zhao (ref_51) 2009; 113 Tian (ref_104) 2013; 376 Tucker (ref_89) 1979; 8 Chen (ref_3) 1992; 15 Verrelst (ref_12) 2015; 108 Fei (ref_40) 2012; 18 |
References_xml | – ident: ref_20 doi: 10.3390/rs9101060 – volume: 34 start-page: L20405 year: 2007 ident: ref_107 article-title: NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL031021 contributor: fullname: Wang – volume: 82 start-page: 83 year: 2013 ident: ref_29 article-title: Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.04.007 contributor: fullname: Frampton – volume: 27 start-page: 218 year: 1995 ident: ref_78 article-title: Defoliation of the Mangrove Avicennia Marina in Hong Kong: Cause and Consequences publication-title: Biotropica doi: 10.2307/2388997 contributor: fullname: Anderson – volume: 15 start-page: 421 year: 1992 ident: ref_3 article-title: Defining Leaf Area Index for Non-Flat Leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00992.x contributor: fullname: Chen – volume: 124 start-page: 730 year: 2012 ident: ref_60 article-title: Prediction of Understory Vegetation Cover with Airborne Lidar in an Interior Ponderosa Pine Forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.024 contributor: fullname: Wing – volume: 259 start-page: 598 year: 2010 ident: ref_55 article-title: Integration of LiDAR and QuickBird Imagery for Mapping Riparian Biophysical Parameters and Land Cover Types in Australian Tropical Savannas publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2009.11.018 contributor: fullname: Arroyo – volume: 127 start-page: 30 year: 2012 ident: ref_6 article-title: Estimating Leaf Area Index from MODIS and Surface Meteorological Data Using a Dynamic Bayesian Network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.08.015 contributor: fullname: Zhang – volume: 200 start-page: 220 year: 2017 ident: ref_17 article-title: Optimising Prediction of Forest Leaf Area Index from Discrete Airborne Lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.002 contributor: fullname: Pearse – volume: 71 start-page: 16 year: 2000 ident: ref_81 article-title: A Shortwave Infrared Modification to the Simple Ratio for LAI Retrieval in Boreal Forests: An Image and Model Analysis publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00035-8 contributor: fullname: Brown – volume: 74 start-page: 229 year: 2000 ident: ref_102 article-title: Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00113-9 contributor: fullname: Daughtry – volume: 161 start-page: 165 year: 2004 ident: ref_91 article-title: Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01176 contributor: fullname: Gitelson – volume: 102 start-page: 161 year: 2006 ident: ref_25 article-title: Comparative Analysis of IKONOS, SPOT, and ETM+ Data for Leaf Area Index Estimation in Temperate Coniferous and Deciduous Forest Stands publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.02.004 contributor: fullname: Soudani – volume: 43 start-page: 19 year: 2015 ident: ref_11 article-title: Comparative Analysis of Different Retrieval Methods for Mapping Grassland Leaf Area Index Using Airborne Imaging Spectroscopy publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Atzberger – volume: 113 start-page: 2533 year: 2009 ident: ref_43 article-title: Mapping Snags and Understory Shrubs for a LiDAR-Based Assessment of Wildlife Habitat Suitability publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.07.002 contributor: fullname: Martinuzzi – volume: 188 start-page: 127 year: 2017 ident: ref_52 article-title: Lidar-Based Estimates of Aboveground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.038 contributor: fullname: Nelson – ident: ref_54 doi: 10.1109/IGARSS.2008.4779387 – volume: 37 start-page: 78 year: 2016 ident: ref_111 article-title: Estimating Leaf Area Index at Multiple Heights within the Understorey Component of Loblolly Pine Forests from Airborne Discrete-Return Lidar publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1117683 contributor: fullname: Sumnall – volume: 5 start-page: 5040 year: 2013 ident: ref_58 article-title: Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery publication-title: Remote Sens. doi: 10.3390/rs5105040 contributor: fullname: Pope – ident: ref_19 doi: 10.3390/rs8040324 – volume: 79 start-page: 479 year: 2013 ident: ref_38 article-title: Combining Hyperspectral and Radar Imagery for Mangrove Leaf Area Index Modeling publication-title: Photogramm. Eng. Remote Sensing doi: 10.14358/PERS.79.5.479 contributor: fullname: Wong – volume: 115 start-page: 1065 year: 2011 ident: ref_82 article-title: Airborne Discrete-Return LIDAR Data in the Estimation of Vertical Canopy Cover, Angular Canopy Closure and Leaf Area Index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.011 contributor: fullname: Korhonen – volume: 57 start-page: 107 year: 1991 ident: ref_5 article-title: A Comparison of Direct and Indirect Methods for Estimating Forest Canopy Leaf Area publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(91)90081-Z contributor: fullname: Chason – volume: 255 start-page: 112168 year: 2021 ident: ref_31 article-title: Prototyping Sentinel-2 Green LAI and Brown LAI Products for Cropland Monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112168 contributor: fullname: Amin – ident: ref_106 – ident: ref_22 doi: 10.3390/rs13091748 – volume: 195 start-page: 259 year: 2017 ident: ref_30 article-title: Comparison of Sentinel-2 and Landsat 8 in the Estimation of Boreal Forest Canopy Cover and Leaf Area Index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.021 contributor: fullname: Korhonen – volume: 171–172 start-page: 281 year: 2013 ident: ref_36 article-title: Estimating Leaf Carotenoid Content in Vineyards Using High Resolution Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle (UAV) publication-title: Agric. For. Meteorol. contributor: fullname: Catalina – volume: 295 start-page: 108170 year: 2020 ident: ref_67 article-title: Evapotranspiration from the Understory of a Tropical Dry Deciduous Forest in Cambodia publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.108170 contributor: fullname: Iida – volume: 113 start-page: 275 year: 2009 ident: ref_110 article-title: Testing LiDAR Models of Fractional Cover across Multiple Forest Ecozones publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.012 contributor: fullname: Hopkinson – volume: 108 start-page: 273 year: 2015 ident: ref_12 article-title: Optical Remote Sensing and the Retrieval of Terrestrial Vegetation Bio-Geophysical Properties—A Review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.005 contributor: fullname: Verrelst – volume: 98 start-page: 968 year: 2006 ident: ref_92 article-title: Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn publication-title: Agron. J. doi: 10.2134/agronj2005.0200 contributor: fullname: Sripada – volume: 5 start-page: 053530 year: 2011 ident: ref_56 article-title: Estimation of Forest Canopy Leaf Area Index Using MODIS, MISR, and LiDAR Observations publication-title: J. Appl. Remote Sens. doi: 10.1117/1.3594171 contributor: fullname: Fu – volume: 112 start-page: 3947 year: 2008 ident: ref_50 article-title: Discrete Return Lidar-Based Prediction of Leaf Area Index in Two Conifer Forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.07.001 contributor: fullname: Jensen – volume: 148 start-page: 644 year: 2008 ident: ref_73 article-title: Estimation of Leaf Area and Clumping Indexes of Crops with Hemispherical Photographs publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.11.015 contributor: fullname: Demarez – ident: ref_27 doi: 10.3390/rs8030226 – volume: 154 start-page: 378 year: 2014 ident: ref_62 article-title: An Efficient, Multi-Layered Crown Delineation Algorithm for Mapping Individual Tree Structure across Multiple Ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.044 contributor: fullname: Duncanson – volume: 20 start-page: 2653 year: 1999 ident: ref_71 article-title: The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/014311699211994 contributor: fullname: Smith – volume: 33 start-page: 110 year: 2000 ident: ref_72 article-title: DEM Generation from Laser Scanner Data Using Adaptive TIN Models publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. contributor: fullname: Axelsson – volume: 121 start-page: 19 year: 2004 ident: ref_4 article-title: Review of Methods for in Situ Leaf Area Index Determination: Part I. Theories, Sensors and Hemispherical Photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2003.08.027 contributor: fullname: Jonckheere – volume: 81 start-page: 337 year: 2002 ident: ref_28 article-title: Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X contributor: fullname: Sims – volume: 57 start-page: 157 year: 1991 ident: ref_2 article-title: Validity of Surface Area Indices of Pinus Radiata Estimated from Transmittance of the Sun’s Beam publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(91)90084-4 contributor: fullname: Lang – volume: 9 start-page: 414 year: 2007 ident: ref_85 article-title: Estimation of Green Grass/Herb Biomass from Airborne Hyperspectral Imagery Using Spectral Indices and Partial Least Squares Regression publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Cho – volume: 175 start-page: 71 year: 2021 ident: ref_34 article-title: Validation of Baseline and Modified Sentinel-2 Level 2 Prototype Processor Leaf Area Index Retrievals over the United States publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.020 contributor: fullname: Brown – volume: 22 start-page: 229 year: 1996 ident: ref_35 article-title: Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1996.10855178 contributor: fullname: Chen – volume: 83 start-page: 195 year: 2002 ident: ref_97 article-title: Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 contributor: fullname: Huete – volume: 144 start-page: 14 year: 2007 ident: ref_42 article-title: Partitioning Forest Carbon Fluxes with Overstory and Understory Eddy-Covariance Measurements: A Synthesis Based on FLUXNET Data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2007.01.006 contributor: fullname: Misson – volume: 126 start-page: 68 year: 2017 ident: ref_7 article-title: Assimilating Leaf Area Index of Three Typical Types of Subtropical Forest in China from MODIS Time Series Data Based on the Integrated Ensemble Kalman Filter and PROSAIL Model publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.02.002 contributor: fullname: Li – ident: ref_70 – volume: 30 start-page: 261 year: 1992 ident: ref_96 article-title: Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134076 contributor: fullname: Kaufman – volume: 112 start-page: 810 year: 2008 ident: ref_15 article-title: Seasonal Variations of Leaf Area Index of Agricultural Fields Retrieved from Landsat Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.06.018 contributor: fullname: Moreno – volume: 76 start-page: 156 year: 2001 ident: ref_77 article-title: Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00197-8 contributor: fullname: Broge – volume: 50 start-page: 170 year: 2016 ident: ref_39 article-title: SENTINEL-2A Red-Edge Spectral Indices Suitability for Discriminating Burn Severity publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Quintano – volume: 37 start-page: 333 year: 2012 ident: ref_8 article-title: Evaluation of Leaf Area Index Estimated from Medium Spatial Resolution Remote Sensing Data in a Broadleaf Deciduous Forest in Southern England, UK publication-title: Can. J. Remote Sens. doi: 10.5589/m11-043 contributor: fullname: Ogutu – volume: 176 start-page: 242 year: 2016 ident: ref_13 article-title: Assessment of Multi-Resolution Image Data for Mangrove Leaf Area Index Mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.013 contributor: fullname: Kamal – volume: 8 start-page: 2136 year: 2008 ident: ref_23 article-title: Relationship Between Remotely-Sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape publication-title: Sensors doi: 10.3390/s8042136 contributor: fullname: Glenn – volume: 90 start-page: 337 year: 2004 ident: ref_75 article-title: Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.013 contributor: fullname: Haboudane – volume: 51 start-page: 375 year: 1995 ident: ref_94 article-title: Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00114-3 contributor: fullname: Roujean – volume: 247 start-page: 111935 year: 2020 ident: ref_10 article-title: Evaluation of Global Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation Products over North America Using Copernicus Ground Based Observations for Validation Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111935 contributor: fullname: Brown – volume: 45 start-page: 5 year: 2001 ident: ref_86 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 376 start-page: 193 year: 2013 ident: ref_104 article-title: Comparison of Different Hyperspectral Vegetation Indices for Canopy Leaf Nitrogen Concentration Estimation in Rice publication-title: Plant Soil doi: 10.1007/s11104-013-1937-0 contributor: fullname: Tian – ident: ref_18 doi: 10.3390/rs9040309 – volume: 41 start-page: 1355 year: 2003 ident: ref_14 article-title: Estimation of Forest Leaf Area Index Using Vegetation Indices Derived from Hyperion Hyperspectral Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.812910 contributor: fullname: Gong – volume: 198–199 start-page: 72 year: 2014 ident: ref_24 article-title: Impact of Understorey on Overstorey Leaf Area Index Estimation from Optical Remote Sensing in Five Forest Types in Northeastern China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.08.001 contributor: fullname: Qi – volume: 38 start-page: 267 year: 2015 ident: ref_59 article-title: Detecting Understory Plant Invasion in Urban Forests Using LiDAR publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Singh – volume: 258 start-page: 112403 year: 2021 ident: ref_61 article-title: Mapping Multi-Layered Mangroves from Multispectral, Hyperspectral, and LiDAR Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112403 contributor: fullname: Li – volume: 134 start-page: 24 year: 2013 ident: ref_112 article-title: Direct Retrieval of Canopy Gap Probability Using Airborne Waveform Lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.021 contributor: fullname: Armston – volume: 135 start-page: 173 year: 2018 ident: ref_80 article-title: A Hybrid Training Approach for Leaf Area Index Estimation via Cubist and Random Forests Machine-Learning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.10.004 contributor: fullname: Houborg – volume: 58 start-page: 289 year: 1996 ident: ref_41 article-title: Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 contributor: fullname: Gitelson – volume: 8 start-page: 127 year: 1979 ident: ref_89 article-title: Red and Photographic Infrared Linear Combinations for Monitoring Vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 contributor: fullname: Tucker – volume: 71 start-page: 183 year: 1994 ident: ref_1 article-title: A Comparison of Optical and Direct Methods for Estimating Foliage Surface Area Index in Forests publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(94)90107-4 contributor: fullname: Fassnacht – volume: 113 start-page: 1628 year: 2009 ident: ref_51 article-title: Lidar-Based Mapping of Leaf Area Index and Its Use for Validating GLOBCARBON Satellite LAI Product in a Temperate Forest of the Southern USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.03.006 contributor: fullname: Zhao – volume: 191 start-page: 198 year: 2017 ident: ref_98 article-title: Multiple Drivers of Seasonal Change in PRI: Implications for Photosynthesis 2. Stand Level publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.015 contributor: fullname: Gitelson – volume: 95 start-page: 549 year: 2005 ident: ref_53 article-title: On the Factor Light in Plant Communities and Its Importance for Matter Production publication-title: Ann. Bot. doi: 10.1093/aob/mci052 contributor: fullname: Monsi – ident: ref_87 – volume: 66 start-page: 751 year: 2011 ident: ref_95 article-title: An Investigation into Robust Spectral Indices for Leaf Chlorophyll Estimation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.08.001 contributor: fullname: Main – volume: 9 start-page: 964 year: 2011 ident: ref_47 article-title: Estimation of Overstory and Understory Leaf Area Index by Combining Hyperion and Panchromatic QuickBird Data Using Neural Network Method publication-title: Sens. Lett. doi: 10.1166/sl.2011.1380 contributor: fullname: Huang – volume: 130 start-page: 385 year: 2017 ident: ref_63 article-title: Vertical Stratification of Forest Canopy for Segmentation of Understory Trees within Small-Footprint Airborne LiDAR Point Clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.001 contributor: fullname: Hamraz – volume: 125 start-page: 80 year: 2012 ident: ref_16 article-title: Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.07.006 contributor: fullname: Gleason – ident: ref_65 doi: 10.3390/rs13153036 – ident: ref_33 doi: 10.3390/rs11060671 – ident: ref_21 doi: 10.3390/rs10122000 – volume: 344 start-page: 84 year: 2015 ident: ref_44 article-title: Understory Plant Biomass Dynamics of Prescribed Burned Pinus Palustris Stands publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.02.018 contributor: fullname: Samuelson – volume: 65 start-page: 458 year: 2020 ident: ref_32 article-title: Estimating Canopy LAI and Chlorophyll of Tropical Forest Plantation (North India) Using Sentinel-2 Data publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.09.023 contributor: fullname: Padalia – volume: 82 start-page: 1079 year: 1971 ident: ref_109 article-title: Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis publication-title: GSA Bull. doi: 10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2 contributor: fullname: Pike – volume: 351 start-page: 309 year: 1974 ident: ref_88 article-title: Monitoring Vegetation Systems in the Great Plains with Erts publication-title: NASSP contributor: fullname: Rouse – volume: 61 start-page: 27 year: 2014 ident: ref_48 article-title: Photographic Assessment of Overstory and Understory Leaf Area Index in Beech Forests under Different Management Regimes in Central Italy: Short Communication publication-title: For. Stud. contributor: fullname: Chianucci – volume: 54 start-page: 272 year: 2011 ident: ref_83 article-title: Estimating Biophysical Parameters of Rice with Remote Sensing Data Using Support Vector Machines publication-title: Sci. China Life Sci. doi: 10.1007/s11427-011-4135-4 contributor: fullname: Yang – volume: 151 start-page: 1267 year: 2011 ident: ref_99 article-title: Application of Chlorophyll-Related Vegetation Indices for Remote Estimation of Maize Productivity publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.05.005 contributor: fullname: Peng – volume: 148 start-page: 1230 year: 2008 ident: ref_37 article-title: Estimating Chlorophyll Content from Hyperspectral Vegetation Indices: Modeling and Validation publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2008.03.005 contributor: fullname: Wu – volume: 254 start-page: 112250 year: 2021 ident: ref_64 article-title: Estimating the Overstory and Understory Vertical Extents and Their Leaf Area Index in Intensively Managed Loblolly Pine (Pinus Taeda L.) Plantations Using Airborne Laser Scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112250 contributor: fullname: Sumnall – ident: ref_46 doi: 10.3390/rs12132126 – volume: 106 start-page: 135 year: 1999 ident: ref_100 article-title: Non-Destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.1999.106119.x contributor: fullname: Merzlyak – volume: 25 start-page: 5403 year: 2004 ident: ref_101 article-title: The MERIS Terrestrial Chlorophyll Index publication-title: Int. J. Remote Sens. doi: 10.1080/0143116042000274015 contributor: fullname: Dash – volume: 18 start-page: 462 year: 2012 ident: ref_40 article-title: Comparison of Different Methods for Corn LAI Estimation over Northeastern China publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Fei – ident: ref_79 – volume: 201 start-page: 187 year: 2015 ident: ref_74 article-title: The Relationship between Leaf Area Index and Microclimate in Tropical Forest and Oil Palm Plantation: Forest Disturbance Drives Changes in Microclimate publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.11.010 contributor: fullname: Hardwick – volume: 108 start-page: 260 year: 2015 ident: ref_76 article-title: Experimental Sentinel-2 LAI Estimation Using Parametric, Non-Parametric and Physical Retrieval Methods—A Comparison publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.013 contributor: fullname: Verrelst – volume: 81 start-page: 416 year: 2002 ident: ref_103 article-title: Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00018-4 contributor: fullname: Haboudane – volume: 130 start-page: 246 year: 2017 ident: ref_84 article-title: Predicting Grain Yield in Rice Using Multi-Temporal Vegetation Indices from UAV-Based Multispectral and Digital Imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.05.003 contributor: fullname: Zhou – volume: 168 start-page: 236 year: 2020 ident: ref_9 article-title: Estimating Crop Biomass Using Leaf Area Index Derived from Landsat 8 and Sentinel-2 Data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.08.003 contributor: fullname: Dong – volume: 466 start-page: 118100 year: 2020 ident: ref_66 article-title: The Impact of Tree Canopy Structure on Understory Variation in a Boreal Forest publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2020.118100 contributor: fullname: Majasalmi – ident: ref_69 doi: 10.1109/IGARSS.2019.8897965 – volume: 113 start-page: 2317 year: 2009 ident: ref_49 article-title: Mapping LAI in a Norway Spruce Forest Using Airborne Laser Scanning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.06.010 contributor: fullname: Solberg – volume: 160 start-page: 271 year: 2003 ident: ref_90 article-title: Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 contributor: fullname: Gitelson – volume: 49 start-page: 77 year: 1983 ident: ref_105 article-title: The Influence of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Radiance of Spartina alterniflora Canopies publication-title: Photogramm. Eng. Remote Sens. contributor: fullname: Hardisky – volume: 103 start-page: 408 year: 2006 ident: ref_45 article-title: Impact of Understory Vegetation on Forest Canopy Reflectance and Remotely Sensed LAI Estimates publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.005 contributor: fullname: Eriksson – volume: 84 start-page: 827 year: 2008 ident: ref_108 article-title: Predicting Forest Stand Variables from LiDAR Data in the Great Lakes-St. Lawrence Forest of Ontario publication-title: For. Chron. doi: 10.5558/tfc84827-6 contributor: fullname: Woods – ident: ref_57 – ident: ref_68 doi: 10.3390/f11101037 – volume: 54 start-page: 38 year: 1995 ident: ref_26 article-title: Comparison of Broad-Band and Narrow-Band Red and near-Infrared Vegetation Indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00132-K contributor: fullname: Elvidge – volume: 10 start-page: 309 year: 1994 ident: ref_93 article-title: Influences of Canopy Architecture on Relationships between Various Vegetation Indices and LAI and FPAR: A Computer Simulation publication-title: Remote Sens. Rev. doi: 10.1080/02757259409532252 contributor: fullname: Goel |
SSID | ssj0000331904 |
Score | 2.4064178 |
Snippet | Remote sensing technology is a timely and cost-efficient method for leaf area index (LAI) estimation, especially for less accessible areas such as mangrove... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2551 |
SubjectTerms | Accuracy Analysis Biomass Canopies Case studies Chlorophyll Estimation hemispherical photography Hyperspectral imaging LAI Leaf area Leaf area index Leaves LiDAR Mangrove swamps Mangroves Measurement techniques Methods Multilayers Noise reduction Optical radar overstory Photosynthesis Regression analysis Regression models Remote sensing Spectral resolution Understory Variables Vegetation Vegetation index vegetation indices |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCeIqFgkYCiQtRk7WTOFxQaLtsoYUKUam3aPzargTJkg2H_SH8X2aS7FYc4JKD41iRxzPz-fV9QrzKFBNLJS4qgsVIWSwi1F5GPrEsManjPPCO7tnnbH6hPl6ml-OC23o8VrmNiX2gdo3lNfID3vBRzKyi361-Rqwaxburo4TGTXErmeYZH-nTsw-7NZZY0gCL1cBKKml2f9CuKcMxjE7-ykM9Xf-_gnKfaWb3xN0RIkI52PS-uOHrB-L2qFZ-tXkofpc7Ok1oApR9yILT5VH5FY6wQ8DawTmhYi7-supXq-HkB7NVbIBAKhBqNt99dIobVuqEM6wXbcNNeKTmCEbCCZMowjH5_3C18S2UcEgJD_jc4QaWNX20hPPmDcybegGf6PFIXMyOvx3Oo1FeIbLkuF1k4oAEOLwsgpaZzExsYu-mPsmoK32eotQhL5w0JhRIKMehQV1Q1dQVLkMlH4u9uqn9EwGK97FDpnw-RVXkMbrcWWVMoVMdG20n4uW2s6vVwKJR0eyDTVJdm2Qi3rMddjWY-bovaNpFNTpSZYMPVhNONUw57CXqQJO-lCWEGGuaiXjNVqzYP7sWLY7XDOhHmemqKnMWBCCYrCdif2voanTcdXU9zJ7-__UzcYeV54ezj_tir2t_-eeETzrzoh-EfwDsc-NV priority: 102 providerName: ProQuest |
Title | Assessment of Active LiDAR Data and Passive Optical Imagery for Double-Layered Mangrove Leaf Area Index Estimation: A Case Study in Mai Po, Hong Kong |
URI | https://www.proquest.com/docview/2819482378 https://doaj.org/article/cfefc8161b2048e3a8f287562745088b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHOCC-BQLZTUSSFyIml07ic0tbXfZQltWFZV6s8ax3a4ESbUNh_0h_F9mkrSUA-LCJQcrsSzP13NsvyfE21wxsdTEJyZWmKgKTYI6yCRMKpaY1GkReUf36DhfnKpPZ9nZLakvPhPW0wP3E7dTxRArTbjEMcVskKgjgfyMJWMYW7gu-6bTW4upLgdLcq1U9Xykktb1O-srqm0MoCd_VKCOqP9v6birMfNH4uEADqHsB_VY3An1E3F_0Cm_2DwVP8sbIk1oIpRdsoLD1X55AvvYImDtYUl4mJu_XHb_qeHgO_NUbIDgKRBedt9Ccogb1uiEI6zP1w13EZC6IwAJB0yfCDOK_P5S4wcoYY9KHfCJww2savpoBcvmPSya-hw-0-OZOJ3Pvu4tkkFYIakoZNvEpREJagRpopa5zF3q0uCnYUKzmociQ6ljYbx0LhokfOPRoTb0auaNz1HJ52KrburwQoDiHeyYq1BMUZkiRV_4SjlndKZTp6uReHM92fay58-wtO5gk9jfJhmJXbbDzRvMed01kCfYwRPsvzxhJN6xFS1HZrvGCocLBjRQ5riyZcFSAASQ9UhsXxvaDiF7ZXlHUTF1j375P0bzSjxgZfr-bOS22GrXP8Jrwi-tG4u7ev5xLO7tzo6XJ-POcX8BM47trA |
link.rule.ids | 314,780,784,864,2102,12765,21388,27924,27925,33373,33744,43600,43805,74035,74302 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BOZQL4lOEFhgJJC5YdbJre80FmbYhoUmpUCv1ttrPEInawTGH_BD-LzO2k4oDXHxYry3Ls7Pzdmb3PcbepoKIpYYuyoPVkbA6j7T0PPJDSxKTMs4CVXTn5-nkSny5Tq77hNu631a5nRPbidpVlnLkR1TwEcSsIj-ufkakGkXV1V5C4y67JziGbjopPv68y7HEHAdYLDpWUo6r-6N6jRGOYPTwrzjU0vX_a1JuI834IXvQQ0QoOps-Ynd8-Zjt92rl3zdP2O9iR6cJVYCinbJgtjwpvsGJbjTo0sEFomJq_rpqs9UwvSG2ig0gSAVEzeaHj2Z6Q0qdMNfloq7oFV7j6xBGwpRIFOEU_b872vgBCjjGgAe073ADyxIfWsJF9R4mVbmAM7w8ZVfj08vjSdTLK0QWHbeJTBw0Ag7P8yB5ylMTm9i7kR-moyz1WaK5DFnuuDEh14hynDZa5tg1cblLteDP2F5Zlf45A0F17JAKn420yLNYu8xZYUwuExkbaQfszfZnq1XHoqFw9UEmUbcmGbBPZIddD2K-bhuqeqF6R1I2-GAl4lRDlMOeaxlw0ZeQhBBhTTNg78iKivyzqbXV_TED_FBiulJFRoIACJPlgB1uDa16x12r22H24v-3X7P9yeV8pmbT87MDdp9U6Lt9kIdsr6l_-ZeIVRrzqh2QfwCiZeY3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELWgKwEXxKe2ywIjgcSFqGntJA4XlN22atluqVastDfLTuxSCZJuGg79IfxfZlK3Kw5wycFxoigznnm2x-8x9j4WRCzVL4LU5ToQuU4DLS0PbD8niUkZJo52dC_n8eRafLmJbnz908aXVe5jYhuoiyqnNfIebfgIYlaRPefLIhbD8ef1bUAKUrTT6uU07rMjzIrhoMOOzkbzxdVhxSXk6G6h2HGUcpzr9-oN5jsC1f2_slJL3v-vEN3mnfET9tgDRsh2Fn7K7tnyGXvotcu_b5-z39mBXBMqB1kbwGC2GmZXMNSNBl0WsECMTM1f1-3aNUx_EnfFFhCyAmJo88MGM70l3U641OWyrugVVuPrEFTClCgVYYTRYHfQ8RNkcI7pD6gKcQurEh9awaL6CJOqXMIFXl6w6_Ho2_kk8GILQY7DuAlM6DTCD8tTJ3nMYxOa0BYD248HSWyTSHPpkrTgxrhUI-YptNEyxa5RkRaxFvwl65RVaY8ZCNrVdrGwyUCLNAl1kRS5MCaVkQyNzLvs3f5nq_WOU0PhXIRMou5M0mVnZIdDD-LBbhuqeqn8sFK5sy6XiFoNERBbrqXDKWBEgkKEPE2XfSArKhqtTa1z7Q8d4IcS75XKEpIHQNAsu-x0b2jlh_FG3Tndyf9vv2UP0BvVbDq_eMUekST9rijylHWa-pd9jcClMW-8R_4BXqfr0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Active+LiDAR+Data+and+Passive+Optical+Imagery+for+Double-Layered+Mangrove+Leaf+Area+Index+Estimation%3A+A+Case+Study+in+Mai+Po%2C+Hong+Kong&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Qiaosi&rft.au=Wong%2C+Frankie+Kwan+Kit&rft.au=Fung%2C+Tung&rft.au=Brown%2C+Luke+A.&rft.date=2023-05-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=10&rft.spage=2551&rft_id=info:doi/10.3390%2Frs15102551&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15102551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |