Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance

[Display omitted] •Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction with g-C3N4.•Ni5P4 cocatalyst with lower adsorption behavior is favor for H2 production.•Ni5P4 cocatalyst can accelerate the separation of t...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 275; p. 119144
Main Authors Liu, Xin, Zhao, Yunxuan, Yang, Xiaofei, Liu, Qinqin, Yu, Xiaohui, Li, Youyong, Tang, Hua, Zhang, Tierui
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.10.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0926-3373
1873-3883
DOI10.1016/j.apcatb.2020.119144

Cover

Loading…
Abstract [Display omitted] •Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction with g-C3N4.•Ni5P4 cocatalyst with lower adsorption behavior is favor for H2 production.•Ni5P4 cocatalyst can accelerate the separation of the light-induced carriers. Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel phosphide compound, namely Ni5P4, with porous carnation-like superstructure has been target-synthesized and then employed as HER cocatalyst to in-situ build a hybrid with protonated g-C3N4 nanosheets via an electrostatic self-assembly method. Owing to the synergistic advantages of the excellent metallic conductivity and porous carnation-like superstructure of Ni5P4, the as-obtained HCN/Ni5P4 Schottky-junction with abundant active sites, low H* atom adsorption energy and efficient charge carrier transport channel, affords the photocatalytic H2 production rate of 1157.5 μmol g−1 h−1 when exposed to visible light (λ > 420 nm). This photocatalytic H2 production rate was much higher than those of the corresponding reference cocatalysts, namely Ni2P and NiS2 (169.1 and 593.1 μmol g−1 h−1, respectively), both of which were derived from the same Ni(OH)2 precursor. This study provides a new idea for the design of highly active noble-metal-free materials for the photocatalytic HER.
AbstractList [Display omitted] •Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction with g-C3N4.•Ni5P4 cocatalyst with lower adsorption behavior is favor for H2 production.•Ni5P4 cocatalyst can accelerate the separation of the light-induced carriers. Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel phosphide compound, namely Ni5P4, with porous carnation-like superstructure has been target-synthesized and then employed as HER cocatalyst to in-situ build a hybrid with protonated g-C3N4 nanosheets via an electrostatic self-assembly method. Owing to the synergistic advantages of the excellent metallic conductivity and porous carnation-like superstructure of Ni5P4, the as-obtained HCN/Ni5P4 Schottky-junction with abundant active sites, low H* atom adsorption energy and efficient charge carrier transport channel, affords the photocatalytic H2 production rate of 1157.5 μmol g−1 h−1 when exposed to visible light (λ > 420 nm). This photocatalytic H2 production rate was much higher than those of the corresponding reference cocatalysts, namely Ni2P and NiS2 (169.1 and 593.1 μmol g−1 h−1, respectively), both of which were derived from the same Ni(OH)2 precursor. This study provides a new idea for the design of highly active noble-metal-free materials for the photocatalytic HER.
Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel phosphide compound, namely Ni5P4, with porous carnation-like superstructure has been target-synthesized and then employed as HER cocatalyst to in-situ build a hybrid with protonated g-C3N4 nanosheets via an electrostatic self-assembly method. Owing to the synergistic advantages of the excellent metallic conductivity and porous carnation-like superstructure of Ni5P4, the as-obtained HCN/Ni5P4 Schottky-junction with abundant active sites, low H* atom adsorption energy and efficient charge carrier transport channel, affords the photocatalytic H2 production rate of 1157.5 μmol g−1 h−1 when exposed to visible light (λ > 420 nm). This photocatalytic H2 production rate was much higher than those of the corresponding reference cocatalysts, namely Ni2P and NiS2 (169.1 and 593.1 μmol g−1 h−1, respectively), both of which were derived from the same Ni(OH)2 precursor. This study provides a new idea for the design of highly active noble-metal-free materials for the photocatalytic HER.
ArticleNumber 119144
Author Yang, Xiaofei
Zhang, Tierui
Liu, Qinqin
Li, Youyong
Zhao, Yunxuan
Tang, Hua
Yu, Xiaohui
Liu, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 2
  givenname: Yunxuan
  surname: Zhao
  fullname: Zhao, Yunxuan
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Xiaofei
  surname: Yang
  fullname: Yang, Xiaofei
  organization: College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China
– sequence: 4
  givenname: Qinqin
  surname: Liu
  fullname: Liu, Qinqin
  email: qqliu@ujs.edu.cn
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 5
  givenname: Xiaohui
  surname: Yu
  fullname: Yu, Xiaohui
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 6
  givenname: Youyong
  surname: Li
  fullname: Li, Youyong
  organization: Institute of Nanoscience and Technology, Soochow University, Soochow 215000, China
– sequence: 7
  givenname: Hua
  surname: Tang
  fullname: Tang, Hua
  email: huatang79@163.com
  organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 8
  givenname: Tierui
  orcidid: 0000-0002-7948-9413
  surname: Zhang
  fullname: Zhang, Tierui
  organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNqFkE1LAzEQhoNUsK3-Aw8Bz1vzsZvNehCk-AVFC3oP2XS2TWk3a5IW-u9N3Z486ClhMs87mWeEBq1rAaFrSiaUUHG7nujO6FhPGGGpRCua52doSGXJMy4lH6AhqZjIOC_5BRqFsCaEMM7kELVz590u4DdbzHOsA9a4825rg22X2LiUqjeHEHHjPK6dC_FYjyvA3crF03O0Bq8OC--W0GLYu80uWtdiD9r8XDrwCd_q1sAlOm_0JsDV6Ryjj6fHz-lLNnt_fp0-zDKTExIz3RS0qkUjamEYFCBkQXVNS9AFMaaSRVFRJitopICSNbQilBeCA5GacMPH6KZPTat87SBEtXY736aBiuU5E7QkZZW67vou410IHhplbNTHH0ev7UZRoo521Vr1dtXRrurtJjj_BXfebrU__Ifd9xik5fcWvArGQhKzsB5MVAtn_w74BkE0mWY
CitedBy_id crossref_primary_10_1016_j_jece_2023_111084
crossref_primary_10_1021_acssuschemeng_1c00165
crossref_primary_10_1007_s11164_022_04749_y
crossref_primary_10_1021_acscatal_3c02024
crossref_primary_10_1016_j_optmat_2021_111237
crossref_primary_10_1016_j_ijhydene_2021_11_027
crossref_primary_10_1016_j_ijhydene_2021_10_221
crossref_primary_10_1021_acsanm_1c00044
crossref_primary_10_1016_j_jallcom_2023_169693
crossref_primary_10_1016_j_apcatb_2021_121053
crossref_primary_10_1002_adfm_202201518
crossref_primary_10_1016_j_apcatb_2023_122701
crossref_primary_10_1039_D2CC01557A
crossref_primary_10_1002_smll_202309439
crossref_primary_10_1016_j_ceramint_2021_05_054
crossref_primary_10_1016_j_ijhydene_2025_01_427
crossref_primary_10_1016_S1872_2067_21_63969_4
crossref_primary_10_1016_j_apcatb_2024_124165
crossref_primary_10_1016_j_ijhydene_2022_05_148
crossref_primary_10_1016_j_surfin_2024_104100
crossref_primary_10_1021_acsaem_2c03274
crossref_primary_10_1016_j_jssc_2020_121641
crossref_primary_10_1021_acssuschemeng_0c08903
crossref_primary_10_1016_j_jcis_2022_10_079
crossref_primary_10_1016_S1872_2067_23_64492_4
crossref_primary_10_1002_solr_202200966
crossref_primary_10_1039_D2QI00064D
crossref_primary_10_1039_D2TC00594H
crossref_primary_10_1016_j_ijhydene_2021_10_218
crossref_primary_10_1016_j_apsusc_2022_153300
crossref_primary_10_1016_j_jhazmat_2021_125400
crossref_primary_10_1016_j_colsurfa_2021_127671
crossref_primary_10_1039_D0TC03641B
crossref_primary_10_1016_j_jallcom_2021_161951
crossref_primary_10_1016_j_jece_2025_115343
crossref_primary_10_1021_acs_inorgchem_2c00045
crossref_primary_10_1016_j_jcis_2022_12_016
crossref_primary_10_1002_smtd_202301560
crossref_primary_10_1039_D3RE00309D
crossref_primary_10_1021_acsanm_1c02688
crossref_primary_10_1039_D0TC06095J
crossref_primary_10_1016_j_cej_2022_140791
crossref_primary_10_1016_j_jclepro_2023_136672
crossref_primary_10_1016_j_ceramint_2021_09_308
crossref_primary_10_1021_acs_inorgchem_3c00703
crossref_primary_10_1039_D2SE00984F
crossref_primary_10_1039_D2NJ00512C
crossref_primary_10_1088_1361_6463_ac58d0
crossref_primary_10_1016_j_surfin_2021_101312
crossref_primary_10_1002_app_55699
crossref_primary_10_1002_adsu_202200030
crossref_primary_10_1016_j_ijhydene_2022_10_174
crossref_primary_10_1016_j_cej_2020_127682
crossref_primary_10_1016_j_jcis_2021_11_027
crossref_primary_10_1039_D1SE00670C
crossref_primary_10_1016_j_jelechem_2021_115842
crossref_primary_10_1016_j_watres_2022_118320
crossref_primary_10_1002_adfm_202407834
crossref_primary_10_1016_j_apcatb_2021_120438
crossref_primary_10_1016_j_cej_2021_131338
crossref_primary_10_5004_dwt_2022_28670
crossref_primary_10_1016_j_cej_2021_130368
crossref_primary_10_1016_j_chemosphere_2021_132987
crossref_primary_10_1016_j_ijhydene_2021_08_209
crossref_primary_10_1021_acssuschemeng_2c06430
crossref_primary_10_1016_j_jcis_2020_10_028
crossref_primary_10_3389_fctls_2021_816538
crossref_primary_10_1007_s40145_022_0598_y
crossref_primary_10_1039_D1CC00214G
crossref_primary_10_1016_j_jcis_2024_03_194
crossref_primary_10_1021_acs_energyfuels_3c03032
crossref_primary_10_1039_D2CY00792D
crossref_primary_10_1016_j_diamond_2024_111189
crossref_primary_10_1039_D1QI01632F
crossref_primary_10_1016_j_ijhydene_2021_03_235
crossref_primary_10_1016_j_jallcom_2023_169006
crossref_primary_10_1007_s12274_023_5629_7
crossref_primary_10_1016_j_apcatb_2024_123702
crossref_primary_10_1016_j_jece_2022_109119
crossref_primary_10_1021_acs_inorgchem_1c01716
crossref_primary_10_1016_j_apsusc_2020_147234
crossref_primary_10_1016_j_ijhydene_2021_03_227
crossref_primary_10_1021_acs_inorgchem_1c00186
crossref_primary_10_1016_j_ijhydene_2022_08_189
crossref_primary_10_1039_D2QM00970F
crossref_primary_10_1016_j_jallcom_2020_157609
crossref_primary_10_1016_j_molliq_2022_120147
crossref_primary_10_1016_j_jpcs_2020_109911
crossref_primary_10_1021_acsami_2c04734
crossref_primary_10_1039_D2DT02543D
crossref_primary_10_1016_j_jcis_2022_07_112
crossref_primary_10_1007_s11051_020_05133_w
crossref_primary_10_1016_j_jallcom_2021_159319
crossref_primary_10_3389_fchem_2021_804204
crossref_primary_10_1016_j_chemosphere_2021_132611
crossref_primary_10_1016_j_jallcom_2021_159797
crossref_primary_10_1016_j_chemosphere_2021_132298
crossref_primary_10_1016_j_jallcom_2024_176770
crossref_primary_10_1039_D0NA01074J
crossref_primary_10_1016_j_colsurfa_2021_126252
crossref_primary_10_1016_j_apmate_2025_100284
crossref_primary_10_1021_acsami_0c16287
crossref_primary_10_1039_D2DT01195F
crossref_primary_10_1002_asia_202000912
crossref_primary_10_1016_j_carbon_2022_07_032
crossref_primary_10_1016_j_jmst_2021_10_033
crossref_primary_10_1039_D2QI02662G
crossref_primary_10_1016_S1872_2067_21_63830_5
crossref_primary_10_1007_s12598_020_01616_w
crossref_primary_10_1016_j_jallcom_2024_174465
crossref_primary_10_1021_acsami_1c01101
crossref_primary_10_1016_j_ijhydene_2021_06_074
crossref_primary_10_1016_S1872_2067_23_64542_5
crossref_primary_10_1002_pssr_202000513
crossref_primary_10_1016_j_apcatb_2021_119923
crossref_primary_10_1016_j_apsusc_2022_154371
crossref_primary_10_1039_D2QI01003H
crossref_primary_10_1002_solr_202100832
crossref_primary_10_1016_j_ceramint_2020_12_010
crossref_primary_10_1002_smll_202309032
crossref_primary_10_1039_D2TA06468E
crossref_primary_10_1016_j_ceramint_2021_10_245
crossref_primary_10_1016_j_jcis_2022_10_108
crossref_primary_10_1016_j_ceramint_2024_08_152
crossref_primary_10_1007_s11244_021_01440_1
crossref_primary_10_1007_s10562_020_03408_4
crossref_primary_10_1016_j_cej_2021_131491
crossref_primary_10_1016_j_jpcs_2021_110137
crossref_primary_10_3390_nano13152261
crossref_primary_10_1016_j_jmst_2022_02_034
crossref_primary_10_1016_j_jclepro_2023_137700
crossref_primary_10_1021_acs_inorgchem_3c03818
crossref_primary_10_1039_D3CY00815K
crossref_primary_10_1016_j_apcatb_2021_120002
crossref_primary_10_1039_D3SE01324C
crossref_primary_10_1002_aenm_202302436
crossref_primary_10_1002_aic_18153
crossref_primary_10_1016_j_ijhydene_2024_07_155
crossref_primary_10_1016_j_jallcom_2022_166636
crossref_primary_10_1002_cssc_202002764
crossref_primary_10_1016_j_ceja_2021_100105
crossref_primary_10_1002_sstr_202200247
crossref_primary_10_1016_j_fuel_2022_123279
crossref_primary_10_1021_acs_inorgchem_0c02572
crossref_primary_10_1021_acsnano_3c12049
crossref_primary_10_1016_j_apcatb_2021_120139
crossref_primary_10_1016_j_ijhydene_2021_05_019
crossref_primary_10_1021_acssuschemeng_1c02767
crossref_primary_10_1016_j_cej_2023_145407
crossref_primary_10_1016_j_matlet_2021_130068
crossref_primary_10_1016_j_jcis_2023_09_166
crossref_primary_10_1016_j_jpcs_2020_109796
crossref_primary_10_1016_j_jmst_2021_12_051
crossref_primary_10_1002_celc_202001614
crossref_primary_10_1016_j_ceramint_2022_01_194
crossref_primary_10_1016_j_apcatb_2022_122008
crossref_primary_10_1016_j_apcatb_2024_124461
crossref_primary_10_1016_j_jiec_2024_03_054
crossref_primary_10_1002_adsu_202100507
crossref_primary_10_1016_j_apcatb_2022_122004
crossref_primary_10_1002_solr_202100387
crossref_primary_10_1021_acs_inorgchem_3c03936
crossref_primary_10_1088_2752_5724_ac8170
crossref_primary_10_1016_j_carbon_2021_11_050
crossref_primary_10_1016_j_jtice_2021_104195
crossref_primary_10_1039_D1NR07398B
crossref_primary_10_1021_acscatal_2c04042
crossref_primary_10_1002_cnma_202000536
crossref_primary_10_1016_j_jes_2023_01_027
crossref_primary_10_1016_j_optmat_2021_111407
crossref_primary_10_1016_j_ica_2023_121517
crossref_primary_10_1016_j_ijhydene_2023_10_077
crossref_primary_10_1002_adsu_202200134
crossref_primary_10_1002_solr_202000504
crossref_primary_10_1016_j_apsusc_2020_148608
crossref_primary_10_1007_s12598_022_01966_7
crossref_primary_10_1016_j_jcis_2021_09_020
crossref_primary_10_1039_D4TC03098B
crossref_primary_10_1002_cctc_202001631
crossref_primary_10_1016_S1872_2067_20_63753_6
crossref_primary_10_1002_adfm_202111875
crossref_primary_10_1016_j_cej_2021_131507
crossref_primary_10_1002_adfm_202212746
crossref_primary_10_1016_j_apcatb_2020_119455
crossref_primary_10_1039_D1SC06015E
crossref_primary_10_1016_j_solidstatesciences_2021_106605
crossref_primary_10_1039_D2TB00397J
crossref_primary_10_1039_D4QI01447B
crossref_primary_10_1016_j_jallcom_2025_179916
crossref_primary_10_1016_j_seppur_2023_125486
crossref_primary_10_1039_D2TA07117G
crossref_primary_10_1016_j_ccr_2022_214516
crossref_primary_10_1021_acssuschemeng_3c00398
crossref_primary_10_1016_j_surfin_2021_101013
crossref_primary_10_1016_j_cej_2022_141032
crossref_primary_10_1016_j_apcatb_2021_120619
crossref_primary_10_1021_acs_iecr_2c02304
crossref_primary_10_1016_j_ceramint_2021_10_147
crossref_primary_10_1016_j_solmat_2023_112385
crossref_primary_10_1016_j_ceramint_2020_11_220
crossref_primary_10_1016_j_jmst_2022_10_040
crossref_primary_10_1016_j_apcatb_2022_121910
crossref_primary_10_1007_s10562_022_03997_2
crossref_primary_10_1016_j_optmat_2023_114355
crossref_primary_10_1016_j_ccr_2024_215752
crossref_primary_10_1016_j_jece_2024_113359
crossref_primary_10_1021_acsaenm_3c00190
crossref_primary_10_1016_j_surfin_2022_102619
crossref_primary_10_1016_j_jcis_2021_07_106
crossref_primary_10_1016_j_jphotochem_2021_113316
crossref_primary_10_1016_j_colsurfa_2023_131806
crossref_primary_10_1016_j_ijhydene_2023_01_014
crossref_primary_10_1016_j_nanoso_2023_101008
Cites_doi 10.1016/j.apcatb.2018.09.055
10.1039/C8TA03048K
10.1021/acscatal.5b02193
10.1021/acs.inorgchem.5b01125
10.1016/S1872-2067(19)63294-8
10.1039/C8NR03846E
10.1016/j.apsusc.2018.06.014
10.1002/adma.201800128
10.1016/j.jechem.2018.09.011
10.1016/j.apcatb.2018.11.056
10.1021/acscatal.8b01105
10.1016/j.electacta.2018.01.194
10.1016/j.apsusc.2014.05.015
10.1038/s41467-018-04837-x
10.1016/j.mtchem.2018.09.005
10.1016/j.apcatb.2018.12.011
10.1002/aenm.201700005
10.1016/S0022-3093(97)00023-9
10.1039/C7NR07336D
10.1016/j.apcatb.2019.02.020
10.1016/j.apsusc.2017.08.042
10.1002/adma.201806482
10.1016/j.diamond.2020.107800
10.1002/adfm.201800136
10.1016/j.apcatb.2019.03.037
10.1016/j.ijhydene.2018.07.055
10.1016/j.apcatb.2018.09.035
10.1016/j.ceramint.2017.12.179
10.1021/acsami.5b01212
10.1002/adfm.201102660
10.1016/j.apcatb.2018.03.100
10.1016/j.ijhydene.2019.03.176
10.1016/j.apsusc.2016.07.021
10.1016/j.nanoen.2019.03.010
10.1016/j.apcatb.2019.01.088
10.1016/j.cej.2019.06.029
10.1007/s12274-016-1391-4
10.1002/adma.201700803
10.1039/C7TA10073F
10.1021/acssuschemeng.9b00252
10.1021/acssuschemeng.8b01300
10.1039/c1gc15465f
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Oct 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 15, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.119144
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_119144
S0926337320305592
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-af519b6f6b6c2e5e6851ab17ea50cc985591289ef86e72f19013563e08a03c3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 09:30:34 EDT 2025
Tue Jul 01 04:35:06 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Sat Mar 02 16:00:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous carnation-like Ni5P4
Photocatalytic H2 evolution
HCN
Cocatalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-af519b6f6b6c2e5e6851ab17ea50cc985591289ef86e72f19013563e08a03c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7948-9413
PQID 2442617079
PQPubID 2045281
ParticipantIDs proquest_journals_2442617079
crossref_citationtrail_10_1016_j_apcatb_2020_119144
crossref_primary_10_1016_j_apcatb_2020_119144
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ran, Yu, Jaroniec (bib0060) 2011; 13
Xie, Yang, Duan, Tang, Wang, Wang, Courtois (bib0090) 2018; 44
Si, Xiao, Wang, Zhu, Xia, Huang, Gao (bib0190) 2018; 10
He, Xie, Liu, Li, Chen, Hu, Li (bib0030) 2018; 6
Zhang, Yang, Wang, Li, Zhang, Chang, Li, Li, Jia, Wang, Fu (bib0105) 2018; 8
Li, Senevirathne, Aquilina, Brock (bib0165) 2015; 54
Tang, Wang, Zhao, Chen, Yang, Bukhvalov, Lin, Liu (bib0115) 2019; 15
Feng, Zhao, Liu, Mo, Liu, Chen, Yan, Jin, Chen, Duan, Chen, Yang (bib0085) 2018; 43
Li, Wang, Tang, Yang, Liu (bib0195) 2019; 7
Huang, Hu, Liu, Hu, Xiong, Qiu, Sadeeq, Balogun, Pan, Tong (bib0110) 2019; 251
Khattak, Salim, A1-Harthi, Thompson, Wenger (bib0150) 1997; 212
Liu, Shen, Yang, Zhang, Tang (bib0180) 2018; 232
Xue, Ma, Zhou, Zhang, He (bib0040) 2015; 7
Li, Ding, Shi, Xu, Ying, Huang, Liu (bib0140) 2018; 265
Wu, Wei, Ren, Ji, Liu, Guo, Liu, Asiri, Wei, Sun (bib0175) 2018; 30
Lu, Tu, Xiong, Xiang, Mai, Zhang, Qiao, Wang, Gu, Mao (bib0135) 2012; 22
Shi, Cao, Bao, Zhao, Waterhouse, Fang, Wu, Tung, Yin, Zhang (bib0045) 2017; 29
Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib0120) 2017; 10
Zhou, Shi, Yang, Meng, Wu, Tung, Zhang (bib0010) 2018; 10
You, Jiang, Sheng, Bhushan, Sun (bib0080) 2015; 6
Wang, Jin (bib0100) 2019; 4
Wu, Wang, Wang, Yu (bib0200) 2019; 247
Meng, Wu, Cheng, Yu, Xu (bib0160) 2018; 6
Wang, Tian, Sun, Zhu, Li, Mu, Zhao (bib0220) 2018; 10
Tang, Chang, Tang, Liang (bib0130) 2017; 391
Jia, Zhang, Zhao, Zhao, Zhao, Waterhouse, Shi, Wu, Tung, Zhang (bib0005) 2019; 34
Reddy, Kim, Gopannagari, Kim, Kumar, Kim (bib0065) 2019; 241
Bjelajac, Djokic, Petrovic, Socol, Mihailescu, Florea, Ersen, Jankovic (bib0205) 2014; 309
Liu, Shen, Yu, Yang, Liu, Yang, Tang, Xu, Li, Li, Xu (bib0225) 2019; 248
Kim, Anjum, Lee, Lee, Lee (bib0075) 2019; 29
Xia, Liu, Cheng, Yu, Zhang (bib0015) 2018; 6
Shen, Xie, Xiang, Chen, Jiang, Li (bib0185) 2019; 40
Zhao, Zhao, Shi, Wang, Waterhouse, Wu, Tung, Zhang (bib0020) 2019; 31
Cao, Shen, Tong, Fu, Yu (bib0170) 2018; 28
Chen, Shi, Chen, Zhang, Jiang, Zhu, Zhang (bib0035) 2019; 59
Ran, Guo, Wang, Zhu, Yu, Qiao (bib0155) 2018; 30
Xu, Qi, Wang, Wang (bib0095) 2019; 241
Tian, Yang, Liu, Qu, Tang (bib0215) 2018; 455
Johnsirani, Pandurangan (bib0145) 2020; 105
Cao, Guo, Shi, Waterhouse, Pan, Du, Yao, Wu, Tung, Xie, Zhang (bib0050) 2018; 9
Zhao, Chang, Teng, Zhao, Chen, Shi, Waterhouse, Huang, Zhang (bib0025) 2017; 7
Rahman, Wei, Feng, Wang (bib0055) 2019; 44
Guo, Liang, Gao, Gan, Li, Li, Lin, Tung, Wu (bib0070) 2018; 8
She, Xu, Li, Mo, Zhu, Yu, Song, Wu, Qian, Yuan, Li (bib0230) 2019; 245
Fu, Liang, Guo, Tang, Liu (bib0210) 2018; 430
Yang, Tian, Zhao, Tang, Liu, Li (bib0125) 2019; 244
Ong (10.1016/j.apcatb.2020.119144_bib0120) 2017; 10
Liu (10.1016/j.apcatb.2020.119144_bib0180) 2018; 232
Zhou (10.1016/j.apcatb.2020.119144_bib0010) 2018; 10
Chen (10.1016/j.apcatb.2020.119144_bib0035) 2019; 59
Guo (10.1016/j.apcatb.2020.119144_bib0070) 2018; 8
He (10.1016/j.apcatb.2020.119144_bib0030) 2018; 6
Ran (10.1016/j.apcatb.2020.119144_bib0060) 2011; 13
Jia (10.1016/j.apcatb.2020.119144_bib0005) 2019; 34
Xie (10.1016/j.apcatb.2020.119144_bib0090) 2018; 44
Wu (10.1016/j.apcatb.2020.119144_bib0175) 2018; 30
Huang (10.1016/j.apcatb.2020.119144_bib0110) 2019; 251
Bjelajac (10.1016/j.apcatb.2020.119144_bib0205) 2014; 309
Tang (10.1016/j.apcatb.2020.119144_bib0115) 2019; 15
Xue (10.1016/j.apcatb.2020.119144_bib0040) 2015; 7
Li (10.1016/j.apcatb.2020.119144_bib0165) 2015; 54
She (10.1016/j.apcatb.2020.119144_bib0230) 2019; 245
Shi (10.1016/j.apcatb.2020.119144_bib0045) 2017; 29
Lu (10.1016/j.apcatb.2020.119144_bib0135) 2012; 22
Rahman (10.1016/j.apcatb.2020.119144_bib0055) 2019; 44
Zhang (10.1016/j.apcatb.2020.119144_bib0105) 2018; 8
You (10.1016/j.apcatb.2020.119144_bib0080) 2015; 6
Cao (10.1016/j.apcatb.2020.119144_bib0170) 2018; 28
Si (10.1016/j.apcatb.2020.119144_bib0190) 2018; 10
Cao (10.1016/j.apcatb.2020.119144_bib0050) 2018; 9
Wang (10.1016/j.apcatb.2020.119144_bib0220) 2018; 10
Tian (10.1016/j.apcatb.2020.119144_bib0215) 2018; 455
Reddy (10.1016/j.apcatb.2020.119144_bib0065) 2019; 241
Shen (10.1016/j.apcatb.2020.119144_bib0185) 2019; 40
Johnsirani (10.1016/j.apcatb.2020.119144_bib0145) 2020; 105
Li (10.1016/j.apcatb.2020.119144_bib0140) 2018; 265
Wang (10.1016/j.apcatb.2020.119144_bib0100) 2019; 4
Feng (10.1016/j.apcatb.2020.119144_bib0085) 2018; 43
Yang (10.1016/j.apcatb.2020.119144_bib0125) 2019; 244
Zhao (10.1016/j.apcatb.2020.119144_bib0020) 2019; 31
Wu (10.1016/j.apcatb.2020.119144_bib0200) 2019; 247
Xia (10.1016/j.apcatb.2020.119144_bib0015) 2018; 6
Tang (10.1016/j.apcatb.2020.119144_bib0130) 2017; 391
Xu (10.1016/j.apcatb.2020.119144_bib0095) 2019; 241
Li (10.1016/j.apcatb.2020.119144_bib0195) 2019; 7
Fu (10.1016/j.apcatb.2020.119144_bib0210) 2018; 430
Kim (10.1016/j.apcatb.2020.119144_bib0075) 2019; 29
Khattak (10.1016/j.apcatb.2020.119144_bib0150) 1997; 212
Meng (10.1016/j.apcatb.2020.119144_bib0160) 2018; 6
Liu (10.1016/j.apcatb.2020.119144_bib0225) 2019; 248
Ran (10.1016/j.apcatb.2020.119144_bib0155) 2018; 30
Zhao (10.1016/j.apcatb.2020.119144_bib0025) 2017; 7
References_xml – volume: 29
  year: 2017
  ident: bib0045
  article-title: Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4729
  year: 2018
  end-page: 4736
  ident: bib0160
  article-title: Hierarchical TiO
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2018
  ident: bib0170
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 57
  year: 2019
  end-page: 63
  ident: bib0005
  article-title: Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation
  publication-title: J. Energy Chem.
– volume: 309
  start-page: 225
  year: 2014
  end-page: 230
  ident: bib0205
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 1064
  year: 2019
  end-page: 1075
  ident: bib0115
  article-title: Oxamide-modified g-C
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 1673
  year: 2017
  end-page: 1696
  ident: bib0120
  article-title: Unravelling charge carrier dynamics in protonated g-C
  publication-title: Nano Res.
– volume: 29
  year: 2019
  ident: bib0075
  article-title: Activating MoS
  publication-title: Adv. Funct. Mater.
– volume: 232
  start-page: 562
  year: 2018
  end-page: 573
  ident: bib0180
  article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics
  publication-title: Appl. Catal. B-Environ.
– volume: 430
  start-page: 234
  year: 2018
  end-page: 242
  ident: bib0210
  article-title: MoS
  publication-title: Appl. Surf. Sci.
– volume: 10
  start-page: 12315
  year: 2018
  end-page: 12321
  ident: bib0220
  article-title: Enhanced schottky effect of a 2D-2D CoP/g-C
  publication-title: Nanoscale
– volume: 30
  year: 2018
  ident: bib0155
  article-title: Metal-free 2D/2D phosphorene/g-C
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  ident: bib0175
  article-title: Co(OH)
  publication-title: Adv. Mater.
– volume: 4
  start-page: 3602
  year: 2019
  end-page: 3610
  ident: bib0100
  article-title: Rationally rationally designed functional Ni
  publication-title: Chem. Select
– volume: 241
  start-page: 491
  year: 2019
  end-page: 498
  ident: bib0065
  article-title: Few layered black phosphorus/MoS
  publication-title: Appl. Catal. B: Environ.
– volume: 43
  start-page: 17112
  year: 2018
  end-page: 17120
  ident: bib0085
  article-title: Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni
  publication-title: Int. J. Hydrog. Energy
– volume: 44
  start-page: 5459
  year: 2018
  end-page: 5465
  ident: bib0090
  article-title: Amorphous NiP as cocatalyst for photocatalytic water splitting
  publication-title: Ceram. Int.
– volume: 455
  start-page: 403
  year: 2018
  end-page: 409
  ident: bib0215
  article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
– volume: 31
  year: 2019
  ident: bib0020
  article-title: Tuning oxygen vacancies in ultrathin TiO
  publication-title: Adv. Mater.
– volume: 54
  start-page: 7968
  year: 2015
  end-page: 7975
  ident: bib0165
  article-title: Effect of synthetic levers on nickel phosphide nanoparticle formation: Ni
  publication-title: Inorg. Chem.
– volume: 241
  start-page: 178
  year: 2019
  end-page: 186
  ident: bib0095
  article-title: NH
  publication-title: Appl. Catal. B: Environ.
– volume: 247
  start-page: 70
  year: 2019
  end-page: 77
  ident: bib0200
  article-title: Soluble g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 265
  start-page: 455
  year: 2018
  end-page: 473
  ident: bib0140
  article-title: Hierarchical porous Co(OH)F/Ni(OH)
  publication-title: Electrochim. Acta
– volume: 245
  start-page: 477
  year: 2019
  end-page: 485
  ident: bib0230
  article-title: Steering charge transfer for boosting photocatalytic H
  publication-title: Appl. Catal. B: Environ.
– volume: 7
  year: 2017
  ident: bib0025
  article-title: Defect-engineered ultrathin delta-MnO
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 644
  year: 2019
  end-page: 650
  ident: bib0035
  article-title: Three-dimensional porous g-C
  publication-title: Nano Energy
– volume: 44
  start-page: 13221
  year: 2019
  end-page: 13231
  ident: bib0055
  article-title: TiO
  publication-title: Int. J. Hydrogen Energy
– volume: 248
  start-page: 84
  year: 2019
  end-page: 94
  ident: bib0225
  article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 10
  start-page: 2596
  year: 2018
  end-page: 2602
  ident: bib0190
  article-title: Sub-nanometer Co
  publication-title: Nanoscale
– volume: 7
  start-page: 8466
  year: 2019
  end-page: 8474
  ident: bib0195
  article-title: Remarkable enhancement in solar oxygen evolution from MoSe
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 9630
  year: 2015
  end-page: 9637
  ident: bib0040
  article-title: Facile photochemical synthesis of Au/Pt/g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 251
  start-page: 181
  year: 2019
  end-page: 194
  ident: bib0110
  article-title: Nitrogen treatment generates tunable nanohybridization of Ni
  publication-title: Appl. Catal. B: Environ.
– volume: 6
  start-page: 8945
  year: 2018
  end-page: 8953
  ident: bib0015
  article-title: Dopamine modified g-C
  publication-title: ACS Sustain. Chem. Eng.
– volume: 10
  start-page: 259
  year: 2018
  end-page: 263
  ident: bib0010
  article-title: Spatial separation of charge carriers in Nb
  publication-title: Mater. Today Chem.
– volume: 105
  year: 2020
  ident: bib0145
  article-title: Chromium, fluorine and nitrogen tri-doped graphene sheets as an active electrode material for symmetric supercapacitors
  publication-title: Diam. Relat. Mater.
– volume: 391
  start-page: 440
  year: 2017
  end-page: 448
  ident: bib0130
  article-title: AgBr and g-C
  publication-title: Appl. Surf. Sci.
– volume: 40
  start-page: 240
  year: 2019
  end-page: 288
  ident: bib0185
  article-title: Ni-based photocatalytic H
  publication-title: Chin. J. Catal.
– volume: 8
  start-page: 5890
  year: 2018
  end-page: 5895
  ident: bib0070
  article-title: Metallic Co
  publication-title: ACS Catal.
– volume: 13
  start-page: 2708
  year: 2011
  end-page: 2713
  ident: bib0060
  article-title: Ni(OH)
  publication-title: Green Chem.
– volume: 212
  start-page: 180
  year: 1997
  end-page: 191
  ident: bib0150
  article-title: Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS)
  publication-title: J. Non-Cryst. Solids
– volume: 22
  start-page: 3927
  year: 2012
  end-page: 3935
  ident: bib0135
  article-title: Controllable synthesis of a monophase nickel phosphide/carbon (Ni
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2379
  year: 2018
  ident: bib0050
  article-title: Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates
  publication-title: Nat. Commun.
– volume: 6
  start-page: 13110
  year: 2018
  end-page: 13122
  ident: bib0030
  article-title: Multi-functional Ni
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 714
  year: 2015
  end-page: 721
  ident: bib0080
  article-title: Hierarchically porous urchin-like Ni
  publication-title: ACS Catal.
– volume: 8
  year: 2018
  ident: bib0105
  article-title: Nanometric Ni
  publication-title: Adv. Energy Mater.
– volume: 244
  start-page: 240
  year: 2019
  end-page: 249
  ident: bib0125
  article-title: Interfacial optimization of g-C
  publication-title: Appl. Catal. B: Environ.
– volume: 241
  start-page: 491
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0065
  article-title: Few layered black phosphorus/MoS2 nanohybrid: a promising co-catalyst for solar driven hydrogen evolution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.09.055
– volume: 6
  start-page: 13110
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0030
  article-title: Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03048K
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0175
  article-title: Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0075
  article-title: Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 714
  year: 2015
  ident: 10.1016/j.apcatb.2020.119144_bib0080
  article-title: Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02193
– volume: 54
  start-page: 7968
  year: 2015
  ident: 10.1016/j.apcatb.2020.119144_bib0165
  article-title: Effect of synthetic levers on nickel phosphide nanoparticle formation: Ni5P4 and NiP2
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b01125
– volume: 40
  start-page: 240
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0185
  article-title: Ni-based photocatalytic H2 production cocatalysts
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(19)63294-8
– volume: 10
  start-page: 12315
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0220
  article-title: Enhanced schottky effect of a 2D-2D CoP/g-C3N4 interface for boosting photocatalytic H2 evolution
  publication-title: Nanoscale
  doi: 10.1039/C8NR03846E
– volume: 455
  start-page: 403
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0215
  article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.014
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0155
  article-title: Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800128
– volume: 34
  start-page: 57
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0005
  article-title: Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.09.011
– volume: 244
  start-page: 240
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0125
  article-title: Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.11.056
– volume: 8
  start-page: 5890
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0070
  article-title: Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01105
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0105
  article-title: Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis
  publication-title: Adv. Energy Mater.
– volume: 265
  start-page: 455
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0140
  article-title: Hierarchical porous Co(OH)F/Ni(OH)2: a new hybrid for supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.194
– volume: 309
  start-page: 225
  year: 2014
  ident: 10.1016/j.apcatb.2020.119144_bib0205
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.05.015
– volume: 9
  start-page: 2379
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0050
  article-title: Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04837-x
– volume: 10
  start-page: 259
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0010
  article-title: Spatial separation of charge carriers in Nb2O5 nanorod superstructures for enhanced photocatalytic H2 production activity
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2018.09.005
– volume: 245
  start-page: 477
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0230
  article-title: Steering charge transfer for boosting photocatalytic H2 evolution: integration of two-dimensional semiconductor superiorities and noble metal-free schottky junction effect
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.12.011
– volume: 7
  year: 2017
  ident: 10.1016/j.apcatb.2020.119144_bib0025
  article-title: Defect-engineered ultrathin delta-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700005
– volume: 212
  start-page: 180
  year: 1997
  ident: 10.1016/j.apcatb.2020.119144_bib0150
  article-title: Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS)
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(97)00023-9
– volume: 10
  start-page: 2596
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0190
  article-title: Sub-nanometer Co3O4 clusters anchored on TiO2(B) nano-sheets: Pt replaceable co-catalysts for H2 evolution
  publication-title: Nanoscale
  doi: 10.1039/C7NR07336D
– volume: 248
  start-page: 84
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0225
  article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.02.020
– volume: 430
  start-page: 234
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0210
  article-title: MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.042
– volume: 31
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0020
  article-title: Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806482
– volume: 105
  year: 2020
  ident: 10.1016/j.apcatb.2020.119144_bib0145
  article-title: Chromium, fluorine and nitrogen tri-doped graphene sheets as an active electrode material for symmetric supercapacitors
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2020.107800
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0170
  article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800136
– volume: 251
  start-page: 181
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0110
  article-title: Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr (oxy) oxides for efficient hydrogen production in alkaline, seawater and acidic media
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.03.037
– volume: 43
  start-page: 17112
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0085
  article-title: Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.07.055
– volume: 241
  start-page: 178
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0095
  article-title: NH2-MIL-101(Fe)/Ni(OH)2-derived C,N-codoped Fe2P/Ni2P cocatalyst modified g-C3N4 for enhanced photocatalytic hydrogen evolution from water splitting
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.09.035
– volume: 44
  start-page: 5459
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0090
  article-title: Amorphous NiP as cocatalyst for photocatalytic water splitting
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.12.179
– volume: 7
  start-page: 9630
  year: 2015
  ident: 10.1016/j.apcatb.2020.119144_bib0040
  article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01212
– volume: 22
  start-page: 3927
  year: 2012
  ident: 10.1016/j.apcatb.2020.119144_bib0135
  article-title: Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102660
– volume: 232
  start-page: 562
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0180
  article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.03.100
– volume: 44
  start-page: 13221
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0055
  article-title: TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.03.176
– volume: 391
  start-page: 440
  year: 2017
  ident: 10.1016/j.apcatb.2020.119144_bib0130
  article-title: AgBr and g-C3N4 Co-modified Ag2CO3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.07.021
– volume: 59
  start-page: 644
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0035
  article-title: Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.010
– volume: 4
  start-page: 3602
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0100
  article-title: Rationally rationally designed functional Ni2P nanoparticles as Co-catalyst modified CdS@g-C3N4 heterojunction for efficient photocatalytic hydrogen evolution
  publication-title: Chem. Select
– volume: 247
  start-page: 70
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0200
  article-title: Soluble g-C3N4 nanosheets: facile synthesis and application in photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.01.088
– volume: 15
  start-page: 1064
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0115
  article-title: Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visiblelight photocatalysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.06.029
– volume: 10
  start-page: 1673
  year: 2017
  ident: 10.1016/j.apcatb.2020.119144_bib0120
  article-title: Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1391-4
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2020.119144_bib0045
  article-title: Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700803
– volume: 6
  start-page: 4729
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0160
  article-title: Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10073F
– volume: 7
  start-page: 8466
  year: 2019
  ident: 10.1016/j.apcatb.2020.119144_bib0195
  article-title: Remarkable enhancement in solar oxygen evolution from MoSe2/Ag3PO4 heterojunction photocatalyst via in situ constructing interfacial contact
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00252
– volume: 6
  start-page: 8945
  year: 2018
  ident: 10.1016/j.apcatb.2020.119144_bib0015
  article-title: Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2 production activity
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01300
– volume: 13
  start-page: 2708
  year: 2011
  ident: 10.1016/j.apcatb.2020.119144_bib0060
  article-title: Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation
  publication-title: Green Chem.
  doi: 10.1039/c1gc15465f
SSID ssj0002328
Score 2.6681654
Snippet [Display omitted] •Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction...
Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119144
SubjectTerms Carbon nitride
Carrier transport
Charge transport
Cocatalyst
Current carriers
Dianthus caryophyllus
Energy charge
HCN
Hydrogen evolution reactions
Hydrogen production
Nickel
Noble metals
Phosphides
Photocatalysis
Photocatalytic H2 evolution
Porous carnation-like Ni5P4
Self-assembly
Superstructures
Title Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance
URI https://dx.doi.org/10.1016/j.apcatb.2020.119144
https://www.proquest.com/docview/2442617079
Volume 275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5kPqgPotPhjyl58DWubdq0fZThmIpDmMLeQpKlOJGtrFXwxb_dS5s6FUTwsW0uTXOX776UuwvAWZr5Uk-ZT7NEBzQMTUIVn2rqpSo0LNDKNzY5-XbEhw_h9SSarEG_yYWxYZUO-2tMr9Da3em52ezls1lv7KUBZyxmQVXmKrU4bKvXoU2fv6_CPJAxVGiMjalt3aTPVTFeMteyVLhLDCx2pLi5-M09_QDqyvsMdmDb0UZyUY9sF9bMvA0b_ea0tjZsfSks2IbO5Sp_DcXcAi72YH63WOJen4xm0V1IZEEkwVdiJyhGEBvtz5y3oiRIZQny78IGRRPkiCR_XJTuMQ6BPL5Nlwu0PWJene0SZJ9VjgTJV7kI-zAeXN73h9QduUA1LuaSygwZneIZV1wHJjIcCZlUfmxk5GmdJjjP6NBSkyXcxEFm2QSLODNeIj2mWQda88XcHADhNoHOFg9TSodhZKQMmORZksVIESXjh8CaeRbaVSO3h2I8iybs7EnU2hFWO6LWziHQT6m8rsbxR_u4UaH4ZlUCHcYfkt1G48Kt6kLgJ1UF7OP06N8dH8OmvbLuz4-60CqXL-YEeU2pTivDPYX1i6ub4egDL9747w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kPkwfRKfit3nwNaxt2rR9lKFM94Gggm8hyVKcyFbWKvjfe2nTTQURfG1yaZq7_O6XcncBuEgzX-oJ82mW6ICGoUmo4hNNvVSFhgVa-cYmJ4_GvP8Y3j5FT2vQa3JhbFilw_4a0yu0dk-6bjW7-XTavffSgDMWs6Aqc5UiDq_b6lRhC9Yvbwb98RKQkTRUgIz9qRVoMuiqMC-Za1kqPCgGFj5SPF_85qF-YHXlgK63YcsxR3JZT24H1sysA-1ec2FbBza_1BbswP7VKoUNxdweLnZhdjdf4HGfjKfRXUhkQSTBV-IgKEYQHu3_nI-iJMhmCVLwwsZFE6SJJH-el64Zp0CePyaLOZofMe_OfAkS0CpNguSrdIQ9uL--euj1qbt1gWrczyWVGZI6xTOuuA5MZDhyMqn82MjI0zpNcKnRp6UmS7iJg8wSChZxZrxEekyzfWjN5jNzAITbHDpbP0wpHYaRkTJgkmdJFiNLlIwfAmvWWWhXkNzei_EqmsizF1FrR1jtiFo7h0CXUnldkOOP_nGjQvHNsAT6jD8kTxqNC7exC4GfVNWwj9Ojfw98Du3-w2gohjfjwTFs2BbrDf3oBFrl4s2cIs0p1Zkz40-0ufug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Ni5P4+as+a+promising+cocatalyst+for+boosting+the+photocatalytic+hydrogen+evolution+reaction+performance&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Liu%2C+Xin&rft.au=Zhao%2C+Yunxuan&rft.au=Yang%2C+Xiaofei&rft.au=Liu%2C+Qinqin&rft.date=2020-10-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=275&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119144&rft.externalDocID=S0926337320305592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon