Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance
[Display omitted] •Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction with g-C3N4.•Ni5P4 cocatalyst with lower adsorption behavior is favor for H2 production.•Ni5P4 cocatalyst can accelerate the separation of t...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 275; p. 119144 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0926-3373 1873-3883 |
DOI | 10.1016/j.apcatb.2020.119144 |
Cover
Loading…
Abstract | [Display omitted]
•Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction with g-C3N4.•Ni5P4 cocatalyst with lower adsorption behavior is favor for H2 production.•Ni5P4 cocatalyst can accelerate the separation of the light-induced carriers.
Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel phosphide compound, namely Ni5P4, with porous carnation-like superstructure has been target-synthesized and then employed as HER cocatalyst to in-situ build a hybrid with protonated g-C3N4 nanosheets via an electrostatic self-assembly method. Owing to the synergistic advantages of the excellent metallic conductivity and porous carnation-like superstructure of Ni5P4, the as-obtained HCN/Ni5P4 Schottky-junction with abundant active sites, low H* atom adsorption energy and efficient charge carrier transport channel, affords the photocatalytic H2 production rate of 1157.5 μmol g−1 h−1 when exposed to visible light (λ > 420 nm). This photocatalytic H2 production rate was much higher than those of the corresponding reference cocatalysts, namely Ni2P and NiS2 (169.1 and 593.1 μmol g−1 h−1, respectively), both of which were derived from the same Ni(OH)2 precursor. This study provides a new idea for the design of highly active noble-metal-free materials for the photocatalytic HER. |
---|---|
AbstractList | [Display omitted]
•Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction with g-C3N4.•Ni5P4 cocatalyst with lower adsorption behavior is favor for H2 production.•Ni5P4 cocatalyst can accelerate the separation of the light-induced carriers.
Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel phosphide compound, namely Ni5P4, with porous carnation-like superstructure has been target-synthesized and then employed as HER cocatalyst to in-situ build a hybrid with protonated g-C3N4 nanosheets via an electrostatic self-assembly method. Owing to the synergistic advantages of the excellent metallic conductivity and porous carnation-like superstructure of Ni5P4, the as-obtained HCN/Ni5P4 Schottky-junction with abundant active sites, low H* atom adsorption energy and efficient charge carrier transport channel, affords the photocatalytic H2 production rate of 1157.5 μmol g−1 h−1 when exposed to visible light (λ > 420 nm). This photocatalytic H2 production rate was much higher than those of the corresponding reference cocatalysts, namely Ni2P and NiS2 (169.1 and 593.1 μmol g−1 h−1, respectively), both of which were derived from the same Ni(OH)2 precursor. This study provides a new idea for the design of highly active noble-metal-free materials for the photocatalytic HER. Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel phosphide compound, namely Ni5P4, with porous carnation-like superstructure has been target-synthesized and then employed as HER cocatalyst to in-situ build a hybrid with protonated g-C3N4 nanosheets via an electrostatic self-assembly method. Owing to the synergistic advantages of the excellent metallic conductivity and porous carnation-like superstructure of Ni5P4, the as-obtained HCN/Ni5P4 Schottky-junction with abundant active sites, low H* atom adsorption energy and efficient charge carrier transport channel, affords the photocatalytic H2 production rate of 1157.5 μmol g−1 h−1 when exposed to visible light (λ > 420 nm). This photocatalytic H2 production rate was much higher than those of the corresponding reference cocatalysts, namely Ni2P and NiS2 (169.1 and 593.1 μmol g−1 h−1, respectively), both of which were derived from the same Ni(OH)2 precursor. This study provides a new idea for the design of highly active noble-metal-free materials for the photocatalytic HER. |
ArticleNumber | 119144 |
Author | Yang, Xiaofei Zhang, Tierui Liu, Qinqin Li, Youyong Zhao, Yunxuan Tang, Hua Yu, Xiaohui Liu, Xin |
Author_xml | – sequence: 1 givenname: Xin surname: Liu fullname: Liu, Xin organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 2 givenname: Yunxuan surname: Zhao fullname: Zhao, Yunxuan organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Xiaofei surname: Yang fullname: Yang, Xiaofei organization: College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China – sequence: 4 givenname: Qinqin surname: Liu fullname: Liu, Qinqin email: qqliu@ujs.edu.cn organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 5 givenname: Xiaohui surname: Yu fullname: Yu, Xiaohui organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Youyong surname: Li fullname: Li, Youyong organization: Institute of Nanoscience and Technology, Soochow University, Soochow 215000, China – sequence: 7 givenname: Hua surname: Tang fullname: Tang, Hua email: huatang79@163.com organization: School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 8 givenname: Tierui orcidid: 0000-0002-7948-9413 surname: Zhang fullname: Zhang, Tierui organization: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw8Bz1vzsZvNehCk-AVFC3oP2XS2TWk3a5IW-u9N3Z486ClhMs87mWeEBq1rAaFrSiaUUHG7nujO6FhPGGGpRCua52doSGXJMy4lH6AhqZjIOC_5BRqFsCaEMM7kELVz590u4DdbzHOsA9a4825rg22X2LiUqjeHEHHjPK6dC_FYjyvA3crF03O0Bq8OC--W0GLYu80uWtdiD9r8XDrwCd_q1sAlOm_0JsDV6Ryjj6fHz-lLNnt_fp0-zDKTExIz3RS0qkUjamEYFCBkQXVNS9AFMaaSRVFRJitopICSNbQilBeCA5GacMPH6KZPTat87SBEtXY736aBiuU5E7QkZZW67vou410IHhplbNTHH0ev7UZRoo521Vr1dtXRrurtJjj_BXfebrU__Ifd9xik5fcWvArGQhKzsB5MVAtn_w74BkE0mWY |
CitedBy_id | crossref_primary_10_1016_j_jece_2023_111084 crossref_primary_10_1021_acssuschemeng_1c00165 crossref_primary_10_1007_s11164_022_04749_y crossref_primary_10_1021_acscatal_3c02024 crossref_primary_10_1016_j_optmat_2021_111237 crossref_primary_10_1016_j_ijhydene_2021_11_027 crossref_primary_10_1016_j_ijhydene_2021_10_221 crossref_primary_10_1021_acsanm_1c00044 crossref_primary_10_1016_j_jallcom_2023_169693 crossref_primary_10_1016_j_apcatb_2021_121053 crossref_primary_10_1002_adfm_202201518 crossref_primary_10_1016_j_apcatb_2023_122701 crossref_primary_10_1039_D2CC01557A crossref_primary_10_1002_smll_202309439 crossref_primary_10_1016_j_ceramint_2021_05_054 crossref_primary_10_1016_j_ijhydene_2025_01_427 crossref_primary_10_1016_S1872_2067_21_63969_4 crossref_primary_10_1016_j_apcatb_2024_124165 crossref_primary_10_1016_j_ijhydene_2022_05_148 crossref_primary_10_1016_j_surfin_2024_104100 crossref_primary_10_1021_acsaem_2c03274 crossref_primary_10_1016_j_jssc_2020_121641 crossref_primary_10_1021_acssuschemeng_0c08903 crossref_primary_10_1016_j_jcis_2022_10_079 crossref_primary_10_1016_S1872_2067_23_64492_4 crossref_primary_10_1002_solr_202200966 crossref_primary_10_1039_D2QI00064D crossref_primary_10_1039_D2TC00594H crossref_primary_10_1016_j_ijhydene_2021_10_218 crossref_primary_10_1016_j_apsusc_2022_153300 crossref_primary_10_1016_j_jhazmat_2021_125400 crossref_primary_10_1016_j_colsurfa_2021_127671 crossref_primary_10_1039_D0TC03641B crossref_primary_10_1016_j_jallcom_2021_161951 crossref_primary_10_1016_j_jece_2025_115343 crossref_primary_10_1021_acs_inorgchem_2c00045 crossref_primary_10_1016_j_jcis_2022_12_016 crossref_primary_10_1002_smtd_202301560 crossref_primary_10_1039_D3RE00309D crossref_primary_10_1021_acsanm_1c02688 crossref_primary_10_1039_D0TC06095J crossref_primary_10_1016_j_cej_2022_140791 crossref_primary_10_1016_j_jclepro_2023_136672 crossref_primary_10_1016_j_ceramint_2021_09_308 crossref_primary_10_1021_acs_inorgchem_3c00703 crossref_primary_10_1039_D2SE00984F crossref_primary_10_1039_D2NJ00512C crossref_primary_10_1088_1361_6463_ac58d0 crossref_primary_10_1016_j_surfin_2021_101312 crossref_primary_10_1002_app_55699 crossref_primary_10_1002_adsu_202200030 crossref_primary_10_1016_j_ijhydene_2022_10_174 crossref_primary_10_1016_j_cej_2020_127682 crossref_primary_10_1016_j_jcis_2021_11_027 crossref_primary_10_1039_D1SE00670C crossref_primary_10_1016_j_jelechem_2021_115842 crossref_primary_10_1016_j_watres_2022_118320 crossref_primary_10_1002_adfm_202407834 crossref_primary_10_1016_j_apcatb_2021_120438 crossref_primary_10_1016_j_cej_2021_131338 crossref_primary_10_5004_dwt_2022_28670 crossref_primary_10_1016_j_cej_2021_130368 crossref_primary_10_1016_j_chemosphere_2021_132987 crossref_primary_10_1016_j_ijhydene_2021_08_209 crossref_primary_10_1021_acssuschemeng_2c06430 crossref_primary_10_1016_j_jcis_2020_10_028 crossref_primary_10_3389_fctls_2021_816538 crossref_primary_10_1007_s40145_022_0598_y crossref_primary_10_1039_D1CC00214G crossref_primary_10_1016_j_jcis_2024_03_194 crossref_primary_10_1021_acs_energyfuels_3c03032 crossref_primary_10_1039_D2CY00792D crossref_primary_10_1016_j_diamond_2024_111189 crossref_primary_10_1039_D1QI01632F crossref_primary_10_1016_j_ijhydene_2021_03_235 crossref_primary_10_1016_j_jallcom_2023_169006 crossref_primary_10_1007_s12274_023_5629_7 crossref_primary_10_1016_j_apcatb_2024_123702 crossref_primary_10_1016_j_jece_2022_109119 crossref_primary_10_1021_acs_inorgchem_1c01716 crossref_primary_10_1016_j_apsusc_2020_147234 crossref_primary_10_1016_j_ijhydene_2021_03_227 crossref_primary_10_1021_acs_inorgchem_1c00186 crossref_primary_10_1016_j_ijhydene_2022_08_189 crossref_primary_10_1039_D2QM00970F crossref_primary_10_1016_j_jallcom_2020_157609 crossref_primary_10_1016_j_molliq_2022_120147 crossref_primary_10_1016_j_jpcs_2020_109911 crossref_primary_10_1021_acsami_2c04734 crossref_primary_10_1039_D2DT02543D crossref_primary_10_1016_j_jcis_2022_07_112 crossref_primary_10_1007_s11051_020_05133_w crossref_primary_10_1016_j_jallcom_2021_159319 crossref_primary_10_3389_fchem_2021_804204 crossref_primary_10_1016_j_chemosphere_2021_132611 crossref_primary_10_1016_j_jallcom_2021_159797 crossref_primary_10_1016_j_chemosphere_2021_132298 crossref_primary_10_1016_j_jallcom_2024_176770 crossref_primary_10_1039_D0NA01074J crossref_primary_10_1016_j_colsurfa_2021_126252 crossref_primary_10_1016_j_apmate_2025_100284 crossref_primary_10_1021_acsami_0c16287 crossref_primary_10_1039_D2DT01195F crossref_primary_10_1002_asia_202000912 crossref_primary_10_1016_j_carbon_2022_07_032 crossref_primary_10_1016_j_jmst_2021_10_033 crossref_primary_10_1039_D2QI02662G crossref_primary_10_1016_S1872_2067_21_63830_5 crossref_primary_10_1007_s12598_020_01616_w crossref_primary_10_1016_j_jallcom_2024_174465 crossref_primary_10_1021_acsami_1c01101 crossref_primary_10_1016_j_ijhydene_2021_06_074 crossref_primary_10_1016_S1872_2067_23_64542_5 crossref_primary_10_1002_pssr_202000513 crossref_primary_10_1016_j_apcatb_2021_119923 crossref_primary_10_1016_j_apsusc_2022_154371 crossref_primary_10_1039_D2QI01003H crossref_primary_10_1002_solr_202100832 crossref_primary_10_1016_j_ceramint_2020_12_010 crossref_primary_10_1002_smll_202309032 crossref_primary_10_1039_D2TA06468E crossref_primary_10_1016_j_ceramint_2021_10_245 crossref_primary_10_1016_j_jcis_2022_10_108 crossref_primary_10_1016_j_ceramint_2024_08_152 crossref_primary_10_1007_s11244_021_01440_1 crossref_primary_10_1007_s10562_020_03408_4 crossref_primary_10_1016_j_cej_2021_131491 crossref_primary_10_1016_j_jpcs_2021_110137 crossref_primary_10_3390_nano13152261 crossref_primary_10_1016_j_jmst_2022_02_034 crossref_primary_10_1016_j_jclepro_2023_137700 crossref_primary_10_1021_acs_inorgchem_3c03818 crossref_primary_10_1039_D3CY00815K crossref_primary_10_1016_j_apcatb_2021_120002 crossref_primary_10_1039_D3SE01324C crossref_primary_10_1002_aenm_202302436 crossref_primary_10_1002_aic_18153 crossref_primary_10_1016_j_ijhydene_2024_07_155 crossref_primary_10_1016_j_jallcom_2022_166636 crossref_primary_10_1002_cssc_202002764 crossref_primary_10_1016_j_ceja_2021_100105 crossref_primary_10_1002_sstr_202200247 crossref_primary_10_1016_j_fuel_2022_123279 crossref_primary_10_1021_acs_inorgchem_0c02572 crossref_primary_10_1021_acsnano_3c12049 crossref_primary_10_1016_j_apcatb_2021_120139 crossref_primary_10_1016_j_ijhydene_2021_05_019 crossref_primary_10_1021_acssuschemeng_1c02767 crossref_primary_10_1016_j_cej_2023_145407 crossref_primary_10_1016_j_matlet_2021_130068 crossref_primary_10_1016_j_jcis_2023_09_166 crossref_primary_10_1016_j_jpcs_2020_109796 crossref_primary_10_1016_j_jmst_2021_12_051 crossref_primary_10_1002_celc_202001614 crossref_primary_10_1016_j_ceramint_2022_01_194 crossref_primary_10_1016_j_apcatb_2022_122008 crossref_primary_10_1016_j_apcatb_2024_124461 crossref_primary_10_1016_j_jiec_2024_03_054 crossref_primary_10_1002_adsu_202100507 crossref_primary_10_1016_j_apcatb_2022_122004 crossref_primary_10_1002_solr_202100387 crossref_primary_10_1021_acs_inorgchem_3c03936 crossref_primary_10_1088_2752_5724_ac8170 crossref_primary_10_1016_j_carbon_2021_11_050 crossref_primary_10_1016_j_jtice_2021_104195 crossref_primary_10_1039_D1NR07398B crossref_primary_10_1021_acscatal_2c04042 crossref_primary_10_1002_cnma_202000536 crossref_primary_10_1016_j_jes_2023_01_027 crossref_primary_10_1016_j_optmat_2021_111407 crossref_primary_10_1016_j_ica_2023_121517 crossref_primary_10_1016_j_ijhydene_2023_10_077 crossref_primary_10_1002_adsu_202200134 crossref_primary_10_1002_solr_202000504 crossref_primary_10_1016_j_apsusc_2020_148608 crossref_primary_10_1007_s12598_022_01966_7 crossref_primary_10_1016_j_jcis_2021_09_020 crossref_primary_10_1039_D4TC03098B crossref_primary_10_1002_cctc_202001631 crossref_primary_10_1016_S1872_2067_20_63753_6 crossref_primary_10_1002_adfm_202111875 crossref_primary_10_1016_j_cej_2021_131507 crossref_primary_10_1002_adfm_202212746 crossref_primary_10_1016_j_apcatb_2020_119455 crossref_primary_10_1039_D1SC06015E crossref_primary_10_1016_j_solidstatesciences_2021_106605 crossref_primary_10_1039_D2TB00397J crossref_primary_10_1039_D4QI01447B crossref_primary_10_1016_j_jallcom_2025_179916 crossref_primary_10_1016_j_seppur_2023_125486 crossref_primary_10_1039_D2TA07117G crossref_primary_10_1016_j_ccr_2022_214516 crossref_primary_10_1021_acssuschemeng_3c00398 crossref_primary_10_1016_j_surfin_2021_101013 crossref_primary_10_1016_j_cej_2022_141032 crossref_primary_10_1016_j_apcatb_2021_120619 crossref_primary_10_1021_acs_iecr_2c02304 crossref_primary_10_1016_j_ceramint_2021_10_147 crossref_primary_10_1016_j_solmat_2023_112385 crossref_primary_10_1016_j_ceramint_2020_11_220 crossref_primary_10_1016_j_jmst_2022_10_040 crossref_primary_10_1016_j_apcatb_2022_121910 crossref_primary_10_1007_s10562_022_03997_2 crossref_primary_10_1016_j_optmat_2023_114355 crossref_primary_10_1016_j_ccr_2024_215752 crossref_primary_10_1016_j_jece_2024_113359 crossref_primary_10_1021_acsaenm_3c00190 crossref_primary_10_1016_j_surfin_2022_102619 crossref_primary_10_1016_j_jcis_2021_07_106 crossref_primary_10_1016_j_jphotochem_2021_113316 crossref_primary_10_1016_j_colsurfa_2023_131806 crossref_primary_10_1016_j_ijhydene_2023_01_014 crossref_primary_10_1016_j_nanoso_2023_101008 |
Cites_doi | 10.1016/j.apcatb.2018.09.055 10.1039/C8TA03048K 10.1021/acscatal.5b02193 10.1021/acs.inorgchem.5b01125 10.1016/S1872-2067(19)63294-8 10.1039/C8NR03846E 10.1016/j.apsusc.2018.06.014 10.1002/adma.201800128 10.1016/j.jechem.2018.09.011 10.1016/j.apcatb.2018.11.056 10.1021/acscatal.8b01105 10.1016/j.electacta.2018.01.194 10.1016/j.apsusc.2014.05.015 10.1038/s41467-018-04837-x 10.1016/j.mtchem.2018.09.005 10.1016/j.apcatb.2018.12.011 10.1002/aenm.201700005 10.1016/S0022-3093(97)00023-9 10.1039/C7NR07336D 10.1016/j.apcatb.2019.02.020 10.1016/j.apsusc.2017.08.042 10.1002/adma.201806482 10.1016/j.diamond.2020.107800 10.1002/adfm.201800136 10.1016/j.apcatb.2019.03.037 10.1016/j.ijhydene.2018.07.055 10.1016/j.apcatb.2018.09.035 10.1016/j.ceramint.2017.12.179 10.1021/acsami.5b01212 10.1002/adfm.201102660 10.1016/j.apcatb.2018.03.100 10.1016/j.ijhydene.2019.03.176 10.1016/j.apsusc.2016.07.021 10.1016/j.nanoen.2019.03.010 10.1016/j.apcatb.2019.01.088 10.1016/j.cej.2019.06.029 10.1007/s12274-016-1391-4 10.1002/adma.201700803 10.1039/C7TA10073F 10.1021/acssuschemeng.9b00252 10.1021/acssuschemeng.8b01300 10.1039/c1gc15465f |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Oct 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Oct 15, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119144 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119144 S0926337320305592 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-af519b6f6b6c2e5e6851ab17ea50cc985591289ef86e72f19013563e08a03c3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 09:30:34 EDT 2025 Tue Jul 01 04:35:06 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Sat Mar 02 16:00:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous carnation-like Ni5P4 Photocatalytic H2 evolution HCN Cocatalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-af519b6f6b6c2e5e6851ab17ea50cc985591289ef86e72f19013563e08a03c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7948-9413 |
PQID | 2442617079 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2442617079 crossref_citationtrail_10_1016_j_apcatb_2020_119144 crossref_primary_10_1016_j_apcatb_2020_119144 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-15 |
PublicationDateYYYYMMDD | 2020-10-15 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ran, Yu, Jaroniec (bib0060) 2011; 13 Xie, Yang, Duan, Tang, Wang, Wang, Courtois (bib0090) 2018; 44 Si, Xiao, Wang, Zhu, Xia, Huang, Gao (bib0190) 2018; 10 He, Xie, Liu, Li, Chen, Hu, Li (bib0030) 2018; 6 Zhang, Yang, Wang, Li, Zhang, Chang, Li, Li, Jia, Wang, Fu (bib0105) 2018; 8 Li, Senevirathne, Aquilina, Brock (bib0165) 2015; 54 Tang, Wang, Zhao, Chen, Yang, Bukhvalov, Lin, Liu (bib0115) 2019; 15 Feng, Zhao, Liu, Mo, Liu, Chen, Yan, Jin, Chen, Duan, Chen, Yang (bib0085) 2018; 43 Li, Wang, Tang, Yang, Liu (bib0195) 2019; 7 Huang, Hu, Liu, Hu, Xiong, Qiu, Sadeeq, Balogun, Pan, Tong (bib0110) 2019; 251 Khattak, Salim, A1-Harthi, Thompson, Wenger (bib0150) 1997; 212 Liu, Shen, Yang, Zhang, Tang (bib0180) 2018; 232 Xue, Ma, Zhou, Zhang, He (bib0040) 2015; 7 Li, Ding, Shi, Xu, Ying, Huang, Liu (bib0140) 2018; 265 Wu, Wei, Ren, Ji, Liu, Guo, Liu, Asiri, Wei, Sun (bib0175) 2018; 30 Lu, Tu, Xiong, Xiang, Mai, Zhang, Qiao, Wang, Gu, Mao (bib0135) 2012; 22 Shi, Cao, Bao, Zhao, Waterhouse, Fang, Wu, Tung, Yin, Zhang (bib0045) 2017; 29 Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib0120) 2017; 10 Zhou, Shi, Yang, Meng, Wu, Tung, Zhang (bib0010) 2018; 10 You, Jiang, Sheng, Bhushan, Sun (bib0080) 2015; 6 Wang, Jin (bib0100) 2019; 4 Wu, Wang, Wang, Yu (bib0200) 2019; 247 Meng, Wu, Cheng, Yu, Xu (bib0160) 2018; 6 Wang, Tian, Sun, Zhu, Li, Mu, Zhao (bib0220) 2018; 10 Tang, Chang, Tang, Liang (bib0130) 2017; 391 Jia, Zhang, Zhao, Zhao, Zhao, Waterhouse, Shi, Wu, Tung, Zhang (bib0005) 2019; 34 Reddy, Kim, Gopannagari, Kim, Kumar, Kim (bib0065) 2019; 241 Bjelajac, Djokic, Petrovic, Socol, Mihailescu, Florea, Ersen, Jankovic (bib0205) 2014; 309 Liu, Shen, Yu, Yang, Liu, Yang, Tang, Xu, Li, Li, Xu (bib0225) 2019; 248 Kim, Anjum, Lee, Lee, Lee (bib0075) 2019; 29 Xia, Liu, Cheng, Yu, Zhang (bib0015) 2018; 6 Shen, Xie, Xiang, Chen, Jiang, Li (bib0185) 2019; 40 Zhao, Zhao, Shi, Wang, Waterhouse, Wu, Tung, Zhang (bib0020) 2019; 31 Cao, Shen, Tong, Fu, Yu (bib0170) 2018; 28 Chen, Shi, Chen, Zhang, Jiang, Zhu, Zhang (bib0035) 2019; 59 Ran, Guo, Wang, Zhu, Yu, Qiao (bib0155) 2018; 30 Xu, Qi, Wang, Wang (bib0095) 2019; 241 Tian, Yang, Liu, Qu, Tang (bib0215) 2018; 455 Johnsirani, Pandurangan (bib0145) 2020; 105 Cao, Guo, Shi, Waterhouse, Pan, Du, Yao, Wu, Tung, Xie, Zhang (bib0050) 2018; 9 Zhao, Chang, Teng, Zhao, Chen, Shi, Waterhouse, Huang, Zhang (bib0025) 2017; 7 Rahman, Wei, Feng, Wang (bib0055) 2019; 44 Guo, Liang, Gao, Gan, Li, Li, Lin, Tung, Wu (bib0070) 2018; 8 She, Xu, Li, Mo, Zhu, Yu, Song, Wu, Qian, Yuan, Li (bib0230) 2019; 245 Fu, Liang, Guo, Tang, Liu (bib0210) 2018; 430 Yang, Tian, Zhao, Tang, Liu, Li (bib0125) 2019; 244 Ong (10.1016/j.apcatb.2020.119144_bib0120) 2017; 10 Liu (10.1016/j.apcatb.2020.119144_bib0180) 2018; 232 Zhou (10.1016/j.apcatb.2020.119144_bib0010) 2018; 10 Chen (10.1016/j.apcatb.2020.119144_bib0035) 2019; 59 Guo (10.1016/j.apcatb.2020.119144_bib0070) 2018; 8 He (10.1016/j.apcatb.2020.119144_bib0030) 2018; 6 Ran (10.1016/j.apcatb.2020.119144_bib0060) 2011; 13 Jia (10.1016/j.apcatb.2020.119144_bib0005) 2019; 34 Xie (10.1016/j.apcatb.2020.119144_bib0090) 2018; 44 Wu (10.1016/j.apcatb.2020.119144_bib0175) 2018; 30 Huang (10.1016/j.apcatb.2020.119144_bib0110) 2019; 251 Bjelajac (10.1016/j.apcatb.2020.119144_bib0205) 2014; 309 Tang (10.1016/j.apcatb.2020.119144_bib0115) 2019; 15 Xue (10.1016/j.apcatb.2020.119144_bib0040) 2015; 7 Li (10.1016/j.apcatb.2020.119144_bib0165) 2015; 54 She (10.1016/j.apcatb.2020.119144_bib0230) 2019; 245 Shi (10.1016/j.apcatb.2020.119144_bib0045) 2017; 29 Lu (10.1016/j.apcatb.2020.119144_bib0135) 2012; 22 Rahman (10.1016/j.apcatb.2020.119144_bib0055) 2019; 44 Zhang (10.1016/j.apcatb.2020.119144_bib0105) 2018; 8 You (10.1016/j.apcatb.2020.119144_bib0080) 2015; 6 Cao (10.1016/j.apcatb.2020.119144_bib0170) 2018; 28 Si (10.1016/j.apcatb.2020.119144_bib0190) 2018; 10 Cao (10.1016/j.apcatb.2020.119144_bib0050) 2018; 9 Wang (10.1016/j.apcatb.2020.119144_bib0220) 2018; 10 Tian (10.1016/j.apcatb.2020.119144_bib0215) 2018; 455 Reddy (10.1016/j.apcatb.2020.119144_bib0065) 2019; 241 Shen (10.1016/j.apcatb.2020.119144_bib0185) 2019; 40 Johnsirani (10.1016/j.apcatb.2020.119144_bib0145) 2020; 105 Li (10.1016/j.apcatb.2020.119144_bib0140) 2018; 265 Wang (10.1016/j.apcatb.2020.119144_bib0100) 2019; 4 Feng (10.1016/j.apcatb.2020.119144_bib0085) 2018; 43 Yang (10.1016/j.apcatb.2020.119144_bib0125) 2019; 244 Zhao (10.1016/j.apcatb.2020.119144_bib0020) 2019; 31 Wu (10.1016/j.apcatb.2020.119144_bib0200) 2019; 247 Xia (10.1016/j.apcatb.2020.119144_bib0015) 2018; 6 Tang (10.1016/j.apcatb.2020.119144_bib0130) 2017; 391 Xu (10.1016/j.apcatb.2020.119144_bib0095) 2019; 241 Li (10.1016/j.apcatb.2020.119144_bib0195) 2019; 7 Fu (10.1016/j.apcatb.2020.119144_bib0210) 2018; 430 Kim (10.1016/j.apcatb.2020.119144_bib0075) 2019; 29 Khattak (10.1016/j.apcatb.2020.119144_bib0150) 1997; 212 Meng (10.1016/j.apcatb.2020.119144_bib0160) 2018; 6 Liu (10.1016/j.apcatb.2020.119144_bib0225) 2019; 248 Ran (10.1016/j.apcatb.2020.119144_bib0155) 2018; 30 Zhao (10.1016/j.apcatb.2020.119144_bib0025) 2017; 7 |
References_xml | – volume: 29 year: 2017 ident: bib0045 article-title: Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution publication-title: Adv. Mater. – volume: 6 start-page: 4729 year: 2018 end-page: 4736 ident: bib0160 article-title: Hierarchical TiO publication-title: J. Mater. Chem. A – volume: 28 year: 2018 ident: bib0170 article-title: 2D/2D heterojunction of ultrathin MXene/Bi publication-title: Adv. Funct. Mater. – volume: 34 start-page: 57 year: 2019 end-page: 63 ident: bib0005 article-title: Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation publication-title: J. Energy Chem. – volume: 309 start-page: 225 year: 2014 end-page: 230 ident: bib0205 publication-title: Appl. Surf. Sci. – volume: 15 start-page: 1064 year: 2019 end-page: 1075 ident: bib0115 article-title: Oxamide-modified g-C publication-title: Chem. Eng. J. – volume: 10 start-page: 1673 year: 2017 end-page: 1696 ident: bib0120 article-title: Unravelling charge carrier dynamics in protonated g-C publication-title: Nano Res. – volume: 29 year: 2019 ident: bib0075 article-title: Activating MoS publication-title: Adv. Funct. Mater. – volume: 232 start-page: 562 year: 2018 end-page: 573 ident: bib0180 article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics publication-title: Appl. Catal. B-Environ. – volume: 430 start-page: 234 year: 2018 end-page: 242 ident: bib0210 article-title: MoS publication-title: Appl. Surf. Sci. – volume: 10 start-page: 12315 year: 2018 end-page: 12321 ident: bib0220 article-title: Enhanced schottky effect of a 2D-2D CoP/g-C publication-title: Nanoscale – volume: 30 year: 2018 ident: bib0155 article-title: Metal-free 2D/2D phosphorene/g-C publication-title: Adv. Mater. – volume: 30 year: 2018 ident: bib0175 article-title: Co(OH) publication-title: Adv. Mater. – volume: 4 start-page: 3602 year: 2019 end-page: 3610 ident: bib0100 article-title: Rationally rationally designed functional Ni publication-title: Chem. Select – volume: 241 start-page: 491 year: 2019 end-page: 498 ident: bib0065 article-title: Few layered black phosphorus/MoS publication-title: Appl. Catal. B: Environ. – volume: 43 start-page: 17112 year: 2018 end-page: 17120 ident: bib0085 article-title: Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni publication-title: Int. J. Hydrog. Energy – volume: 44 start-page: 5459 year: 2018 end-page: 5465 ident: bib0090 article-title: Amorphous NiP as cocatalyst for photocatalytic water splitting publication-title: Ceram. Int. – volume: 455 start-page: 403 year: 2018 end-page: 409 ident: bib0215 article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. – volume: 31 year: 2019 ident: bib0020 article-title: Tuning oxygen vacancies in ultrathin TiO publication-title: Adv. Mater. – volume: 54 start-page: 7968 year: 2015 end-page: 7975 ident: bib0165 article-title: Effect of synthetic levers on nickel phosphide nanoparticle formation: Ni publication-title: Inorg. Chem. – volume: 241 start-page: 178 year: 2019 end-page: 186 ident: bib0095 article-title: NH publication-title: Appl. Catal. B: Environ. – volume: 247 start-page: 70 year: 2019 end-page: 77 ident: bib0200 article-title: Soluble g-C publication-title: Appl. Catal. B: Environ. – volume: 265 start-page: 455 year: 2018 end-page: 473 ident: bib0140 article-title: Hierarchical porous Co(OH)F/Ni(OH) publication-title: Electrochim. Acta – volume: 245 start-page: 477 year: 2019 end-page: 485 ident: bib0230 article-title: Steering charge transfer for boosting photocatalytic H publication-title: Appl. Catal. B: Environ. – volume: 7 year: 2017 ident: bib0025 article-title: Defect-engineered ultrathin delta-MnO publication-title: Adv. Energy Mater. – volume: 59 start-page: 644 year: 2019 end-page: 650 ident: bib0035 article-title: Three-dimensional porous g-C publication-title: Nano Energy – volume: 44 start-page: 13221 year: 2019 end-page: 13231 ident: bib0055 article-title: TiO publication-title: Int. J. Hydrogen Energy – volume: 248 start-page: 84 year: 2019 end-page: 94 ident: bib0225 article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C publication-title: Appl. Catal. B: Environ. – volume: 10 start-page: 2596 year: 2018 end-page: 2602 ident: bib0190 article-title: Sub-nanometer Co publication-title: Nanoscale – volume: 7 start-page: 8466 year: 2019 end-page: 8474 ident: bib0195 article-title: Remarkable enhancement in solar oxygen evolution from MoSe publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 9630 year: 2015 end-page: 9637 ident: bib0040 article-title: Facile photochemical synthesis of Au/Pt/g-C publication-title: ACS Appl. Mater. Interfaces – volume: 251 start-page: 181 year: 2019 end-page: 194 ident: bib0110 article-title: Nitrogen treatment generates tunable nanohybridization of Ni publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 8945 year: 2018 end-page: 8953 ident: bib0015 article-title: Dopamine modified g-C publication-title: ACS Sustain. Chem. Eng. – volume: 10 start-page: 259 year: 2018 end-page: 263 ident: bib0010 article-title: Spatial separation of charge carriers in Nb publication-title: Mater. Today Chem. – volume: 105 year: 2020 ident: bib0145 article-title: Chromium, fluorine and nitrogen tri-doped graphene sheets as an active electrode material for symmetric supercapacitors publication-title: Diam. Relat. Mater. – volume: 391 start-page: 440 year: 2017 end-page: 448 ident: bib0130 article-title: AgBr and g-C publication-title: Appl. Surf. Sci. – volume: 40 start-page: 240 year: 2019 end-page: 288 ident: bib0185 article-title: Ni-based photocatalytic H publication-title: Chin. J. Catal. – volume: 8 start-page: 5890 year: 2018 end-page: 5895 ident: bib0070 article-title: Metallic Co publication-title: ACS Catal. – volume: 13 start-page: 2708 year: 2011 end-page: 2713 ident: bib0060 article-title: Ni(OH) publication-title: Green Chem. – volume: 212 start-page: 180 year: 1997 end-page: 191 ident: bib0150 article-title: Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS) publication-title: J. Non-Cryst. Solids – volume: 22 start-page: 3927 year: 2012 end-page: 3935 ident: bib0135 article-title: Controllable synthesis of a monophase nickel phosphide/carbon (Ni publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2379 year: 2018 ident: bib0050 article-title: Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates publication-title: Nat. Commun. – volume: 6 start-page: 13110 year: 2018 end-page: 13122 ident: bib0030 article-title: Multi-functional Ni publication-title: J. Mater. Chem. A – volume: 6 start-page: 714 year: 2015 end-page: 721 ident: bib0080 article-title: Hierarchically porous urchin-like Ni publication-title: ACS Catal. – volume: 8 year: 2018 ident: bib0105 article-title: Nanometric Ni publication-title: Adv. Energy Mater. – volume: 244 start-page: 240 year: 2019 end-page: 249 ident: bib0125 article-title: Interfacial optimization of g-C publication-title: Appl. Catal. B: Environ. – volume: 241 start-page: 491 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0065 article-title: Few layered black phosphorus/MoS2 nanohybrid: a promising co-catalyst for solar driven hydrogen evolution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.09.055 – volume: 6 start-page: 13110 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0030 article-title: Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03048K – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0175 article-title: Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis publication-title: Adv. Mater. – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0075 article-title: Activating MoS2 basal plane with Ni2P nanoparticles for Pt-like hydrogen evolution reaction in acidic media publication-title: Adv. Funct. Mater. – volume: 6 start-page: 714 year: 2015 ident: 10.1016/j.apcatb.2020.119144_bib0080 article-title: Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.5b02193 – volume: 54 start-page: 7968 year: 2015 ident: 10.1016/j.apcatb.2020.119144_bib0165 article-title: Effect of synthetic levers on nickel phosphide nanoparticle formation: Ni5P4 and NiP2 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b01125 – volume: 40 start-page: 240 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0185 article-title: Ni-based photocatalytic H2 production cocatalysts publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(19)63294-8 – volume: 10 start-page: 12315 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0220 article-title: Enhanced schottky effect of a 2D-2D CoP/g-C3N4 interface for boosting photocatalytic H2 evolution publication-title: Nanoscale doi: 10.1039/C8NR03846E – volume: 455 start-page: 403 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0215 article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.014 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0155 article-title: Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production publication-title: Adv. Mater. doi: 10.1002/adma.201800128 – volume: 34 start-page: 57 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0005 article-title: Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.09.011 – volume: 244 start-page: 240 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0125 article-title: Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.11.056 – volume: 8 start-page: 5890 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0070 article-title: Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots publication-title: ACS Catal. doi: 10.1021/acscatal.8b01105 – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0105 article-title: Nanometric Ni5P4 clusters nested on NiCo2O4 for efficient hydrogen production via alkaline water electrolysis publication-title: Adv. Energy Mater. – volume: 265 start-page: 455 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0140 article-title: Hierarchical porous Co(OH)F/Ni(OH)2: a new hybrid for supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.194 – volume: 309 start-page: 225 year: 2014 ident: 10.1016/j.apcatb.2020.119144_bib0205 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.05.015 – volume: 9 start-page: 2379 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0050 article-title: Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates publication-title: Nat. Commun. doi: 10.1038/s41467-018-04837-x – volume: 10 start-page: 259 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0010 article-title: Spatial separation of charge carriers in Nb2O5 nanorod superstructures for enhanced photocatalytic H2 production activity publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2018.09.005 – volume: 245 start-page: 477 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0230 article-title: Steering charge transfer for boosting photocatalytic H2 evolution: integration of two-dimensional semiconductor superiorities and noble metal-free schottky junction effect publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.12.011 – volume: 7 year: 2017 ident: 10.1016/j.apcatb.2020.119144_bib0025 article-title: Defect-engineered ultrathin delta-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700005 – volume: 212 start-page: 180 year: 1997 ident: 10.1016/j.apcatb.2020.119144_bib0150 article-title: Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS) publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(97)00023-9 – volume: 10 start-page: 2596 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0190 article-title: Sub-nanometer Co3O4 clusters anchored on TiO2(B) nano-sheets: Pt replaceable co-catalysts for H2 evolution publication-title: Nanoscale doi: 10.1039/C7NR07336D – volume: 248 start-page: 84 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0225 article-title: Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-codoped and exfoliated ultrathin g-C3N4 nanosheets publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.02.020 – volume: 430 start-page: 234 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0210 article-title: MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.08.042 – volume: 31 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0020 article-title: Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm publication-title: Adv. Mater. doi: 10.1002/adma.201806482 – volume: 105 year: 2020 ident: 10.1016/j.apcatb.2020.119144_bib0145 article-title: Chromium, fluorine and nitrogen tri-doped graphene sheets as an active electrode material for symmetric supercapacitors publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2020.107800 – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0170 article-title: 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800136 – volume: 251 start-page: 181 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0110 article-title: Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr (oxy) oxides for efficient hydrogen production in alkaline, seawater and acidic media publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.03.037 – volume: 43 start-page: 17112 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0085 article-title: Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.07.055 – volume: 241 start-page: 178 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0095 article-title: NH2-MIL-101(Fe)/Ni(OH)2-derived C,N-codoped Fe2P/Ni2P cocatalyst modified g-C3N4 for enhanced photocatalytic hydrogen evolution from water splitting publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.09.035 – volume: 44 start-page: 5459 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0090 article-title: Amorphous NiP as cocatalyst for photocatalytic water splitting publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.12.179 – volume: 7 start-page: 9630 year: 2015 ident: 10.1016/j.apcatb.2020.119144_bib0040 article-title: Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01212 – volume: 22 start-page: 3927 year: 2012 ident: 10.1016/j.apcatb.2020.119144_bib0135 article-title: Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102660 – volume: 232 start-page: 562 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0180 article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.03.100 – volume: 44 start-page: 13221 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0055 article-title: TiO2 hollow spheres with separated Au and RuO2 co-catalysts for efficient photocatalytic water splitting publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.03.176 – volume: 391 start-page: 440 year: 2017 ident: 10.1016/j.apcatb.2020.119144_bib0130 article-title: AgBr and g-C3N4 Co-modified Ag2CO3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.021 – volume: 59 start-page: 644 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0035 article-title: Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.010 – volume: 4 start-page: 3602 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0100 article-title: Rationally rationally designed functional Ni2P nanoparticles as Co-catalyst modified CdS@g-C3N4 heterojunction for efficient photocatalytic hydrogen evolution publication-title: Chem. Select – volume: 247 start-page: 70 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0200 article-title: Soluble g-C3N4 nanosheets: facile synthesis and application in photocatalytic hydrogen evolution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.01.088 – volume: 15 start-page: 1064 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0115 article-title: Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visiblelight photocatalysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.06.029 – volume: 10 start-page: 1673 year: 2017 ident: 10.1016/j.apcatb.2020.119144_bib0120 article-title: Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study publication-title: Nano Res. doi: 10.1007/s12274-016-1391-4 – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2020.119144_bib0045 article-title: Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201700803 – volume: 6 start-page: 4729 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0160 article-title: Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10073F – volume: 7 start-page: 8466 year: 2019 ident: 10.1016/j.apcatb.2020.119144_bib0195 article-title: Remarkable enhancement in solar oxygen evolution from MoSe2/Ag3PO4 heterojunction photocatalyst via in situ constructing interfacial contact publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00252 – volume: 6 start-page: 8945 year: 2018 ident: 10.1016/j.apcatb.2020.119144_bib0015 article-title: Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2 production activity publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01300 – volume: 13 start-page: 2708 year: 2011 ident: 10.1016/j.apcatb.2020.119144_bib0060 article-title: Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation publication-title: Green Chem. doi: 10.1039/c1gc15465f |
SSID | ssj0002328 |
Score | 2.6681654 |
Snippet | [Display omitted]
•Porous and carnation-like Ni5P4 was synthesized using phosphorization process.•Ni5P4 was used as cocatalyst to construct a Schottky-junction... Nonmetallic cocatalysts have demonstrated unprecedented potential for accelerating photocatalytic hydrogen evolution reaction (HER). In this study, a nickel... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119144 |
SubjectTerms | Carbon nitride Carrier transport Charge transport Cocatalyst Current carriers Dianthus caryophyllus Energy charge HCN Hydrogen evolution reactions Hydrogen production Nickel Noble metals Phosphides Photocatalysis Photocatalytic H2 evolution Porous carnation-like Ni5P4 Self-assembly Superstructures |
Title | Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119144 https://www.proquest.com/docview/2442617079 |
Volume | 275 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED5kPqgPotPhjyl58DWubdq0fZThmIpDmMLeQpKlOJGtrFXwxb_dS5s6FUTwsW0uTXOX776UuwvAWZr5Uk-ZT7NEBzQMTUIVn2rqpSo0LNDKNzY5-XbEhw_h9SSarEG_yYWxYZUO-2tMr9Da3em52ezls1lv7KUBZyxmQVXmKrU4bKvXoU2fv6_CPJAxVGiMjalt3aTPVTFeMteyVLhLDCx2pLi5-M09_QDqyvsMdmDb0UZyUY9sF9bMvA0b_ea0tjZsfSks2IbO5Sp_DcXcAi72YH63WOJen4xm0V1IZEEkwVdiJyhGEBvtz5y3oiRIZQny78IGRRPkiCR_XJTuMQ6BPL5Nlwu0PWJene0SZJ9VjgTJV7kI-zAeXN73h9QduUA1LuaSygwZneIZV1wHJjIcCZlUfmxk5GmdJjjP6NBSkyXcxEFm2QSLODNeIj2mWQda88XcHADhNoHOFg9TSodhZKQMmORZksVIESXjh8CaeRbaVSO3h2I8iybs7EnU2hFWO6LWziHQT6m8rsbxR_u4UaH4ZlUCHcYfkt1G48Kt6kLgJ1UF7OP06N8dH8OmvbLuz4-60CqXL-YEeU2pTivDPYX1i6ub4egDL9747w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kPkwfRKfit3nwNaxt2rR9lKFM94Gggm8hyVKcyFbWKvjfe2nTTQURfG1yaZq7_O6XcncBuEgzX-oJ82mW6ICGoUmo4hNNvVSFhgVa-cYmJ4_GvP8Y3j5FT2vQa3JhbFilw_4a0yu0dk-6bjW7-XTavffSgDMWs6Aqc5UiDq_b6lRhC9Yvbwb98RKQkTRUgIz9qRVoMuiqMC-Za1kqPCgGFj5SPF_85qF-YHXlgK63YcsxR3JZT24H1sysA-1ec2FbBza_1BbswP7VKoUNxdweLnZhdjdf4HGfjKfRXUhkQSTBV-IgKEYQHu3_nI-iJMhmCVLwwsZFE6SJJH-el64Zp0CePyaLOZofMe_OfAkS0CpNguSrdIQ9uL--euj1qbt1gWrczyWVGZI6xTOuuA5MZDhyMqn82MjI0zpNcKnRp6UmS7iJg8wSChZxZrxEekyzfWjN5jNzAITbHDpbP0wpHYaRkTJgkmdJFiNLlIwfAmvWWWhXkNzei_EqmsizF1FrR1jtiFo7h0CXUnldkOOP_nGjQvHNsAT6jD8kTxqNC7exC4GfVNWwj9Ojfw98Du3-w2gohjfjwTFs2BbrDf3oBFrl4s2cIs0p1Zkz40-0ufug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Ni5P4+as+a+promising+cocatalyst+for+boosting+the+photocatalytic+hydrogen+evolution+reaction+performance&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Liu%2C+Xin&rft.au=Zhao%2C+Yunxuan&rft.au=Yang%2C+Xiaofei&rft.au=Liu%2C+Qinqin&rft.date=2020-10-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=275&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119144&rft.externalDocID=S0926337320305592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |