Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview

Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and l...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 15; no. 19; p. 7186
Main Authors Fekih, Afef, Habibi, Hamed, Simani, Silvio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en15197186

Cover

Loading…
Abstract Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic.
AbstractList Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic.
Audience Academic
Author Habibi, Hamed
Fekih, Afef
Simani, Silvio
Author_xml – sequence: 1
  givenname: Afef
  orcidid: 0000-0003-4522-502X
  surname: Fekih
  fullname: Fekih, Afef
– sequence: 2
  givenname: Hamed
  orcidid: 0000-0002-7393-6235
  surname: Habibi
  fullname: Habibi, Hamed
– sequence: 3
  givenname: Silvio
  orcidid: 0000-0003-1815-2478
  surname: Simani
  fullname: Simani, Silvio
BookMark eNptUcFqGzEQFSWBpkku-YKF3gp2Jc2udpWbcZsmEMjFIUchaUdGZiMlkpzSv6-cLW0J0Rw0vHnvMcz7RI5CDEjIBaNLAEm_YmAdkz0bxAdywqQUC0Z7OPqv_0jOc97R-gAYAJyQ6yu9n0rzzettiNnnRoexmbFNnDDpUJp1DCXFqYmuefB1vNkn4wPmy2YVmrsXTC8ef56RY6enjOd__lNyf_V9s75e3N79uFmvbhe2pbQsNLZiHK0D6RgdqWDCQd8OwnDX2sE6yhAtZcBRD2g74QQ1TFoztKIacAun5Gb2HaPeqafkH3X6paL26hWIaat0Kt5OqKw2XAI3FnFsJQNTO6oNHQwfBIysen2evZ5SfN5jLmoX9ynU9RXvectBdPLAWs6sra6mPrhYkra1Rnz0tkbgfMVXfdt1UvY9VMGXWWBTzDmh-7smo-qQlPqXVCXTN2Triy7-cHPtp_ckvwEf2ZYd
CitedBy_id crossref_primary_10_3390_en17163963
crossref_primary_10_54021_seesv5n3_118
crossref_primary_10_3390_su162410875
crossref_primary_10_1109_TSTE_2023_3344749
crossref_primary_10_1016_j_oceaneng_2023_115471
crossref_primary_10_3390_machines11020307
crossref_primary_10_1016_j_compeleceng_2024_109797
crossref_primary_10_3390_pr11061690
crossref_primary_10_54097_fcis_v4i2_9970
crossref_primary_10_1016_j_ymssp_2024_111941
crossref_primary_10_1016_j_oceaneng_2024_118678
crossref_primary_10_1080_15435075_2024_2448294
crossref_primary_10_3389_fenrg_2024_1434695
crossref_primary_10_3390_su15108333
Cites_doi 10.1002/we.2290
10.1109/GlobConET53749.2022.9872498
10.1007/978-3-030-05971-2
10.1109/ICCIA49288.2019.9030913
10.1016/j.renene.2012.03.003
10.1016/j.ress.2020.107062
10.1007/s13369-017-2525-z
10.1016/j.arcontrol.2015.09.004
10.1016/j.renene.2018.12.066
10.1002/acs.2476
10.1016/j.rser.2022.112734
10.1016/j.renene.2016.12.005
10.3390/pr9020300
10.1109/CCA.2010.5611266
10.1109/JSEN.2022.3175866
10.1109/TCST.2014.2310513
10.20944/preprints202105.0315.v1
10.1016/j.jclepro.2018.05.126
10.1109/ACCESS.2021.3090434
10.1109/TII.2016.2607179
10.3390/s22134881
10.1016/j.renene.2020.08.001
10.1016/j.renene.2017.12.047
10.1109/JSEN.2021.3131722
10.1007/978-3-642-31488-9_6
10.1016/j.arcontrol.2004.12.002
10.1016/j.ijepes.2022.108443
10.3390/pr10010054
10.1109/ACC.2012.6315452
10.1016/j.measurement.2016.05.102
10.1109/JPROC.2022.3171691
10.1049/iet-cta:20070090
10.1109/MCS.2010.939962
10.1016/j.enconman.2012.06.008
10.3390/app10155251
10.1016/j.renene.2018.12.094
10.1016/j.renene.2018.11.106
10.1109/JESTPE.2020.3034604
10.1109/TSTE.2011.2163430
10.1007/1-84628-493-7
10.1016/j.ymssp.2022.109175
10.1115/1.2936235
10.1155/2020/6210407
10.1177/1077546320926274
10.1016/j.ifacol.2021.04.157
10.1016/j.ifacol.2017.08.1622
10.3390/en5072424
10.1016/j.renene.2018.08.097
10.1109/ChiCC.2016.7554363
10.1002/we.2179
10.1002/acs.1162
10.1016/j.measurement.2019.03.029
10.1016/j.arcontrol.2015.08.003
10.1109/TCST.2014.2361291
10.1109/CCTA.2017.8062530
10.1109/ACC.2013.6580525
10.1016/j.renene.2019.07.033
10.1016/j.jfranklin.2018.08.021
10.1109/IRSEC.2017.8477263
10.3182/20120829-3-MX-2028.00010
10.1016/j.ymssp.2020.106908
10.1109/ECC.2015.7331098
10.1109/JAS.2021.1003931
10.1016/j.ijepes.2021.107306
10.1109/TSTE.2019.2950681
10.1016/j.renene.2019.03.136
10.1016/j.ifacol.2018.09.303
10.1109/WCICA.2008.4593608
10.1016/j.ress.2017.10.004
10.1016/j.marstruc.2020.102729
10.1109/TSTE.2018.2884699
10.1002/rnc.2993
10.1109/CoDIT.2013.6689600
10.1016/j.segan.2014.12.001
10.1016/j.eswa.2013.06.018
10.1049/iet-cta.2011.0250
10.1109/TIE.2015.2422394
10.2172/882048
10.1186/s10033-021-00570-7
10.2478/v10006-010-0046-y
10.1016/j.mechatronics.2011.02.001
10.1016/j.oceaneng.2021.109261
10.1016/j.jfranklin.2013.05.007
10.1109/GreenTech.2019.8767157
10.1109/SYSTOL.2016.7739820
10.1016/j.egypro.2017.10.374
10.3390/s19143092
10.1002/oca.2635
10.1016/j.ress.2020.107077
10.1109/CSEPS53726.2021.00013
10.1109/IEMDC.2017.8002012
10.1109/TCST.2013.2259235
10.3390/en11092248
10.1109/TIE.2015.2422112
10.1002/stc.2411
10.1002/rnc.1329
10.1109/TIE.2015.2442216
10.1007/978-1-4471-4799-2
10.1016/j.renene.2020.09.033
10.1109/TIE.2018.2844805
10.1115/1.4041114
10.3390/en14061791
10.1088/1742-6596/753/5/052017
10.1109/TSG.2014.2386305
10.1016/j.ymssp.2013.09.010
10.3390/en13112972
10.1007/978-3-662-47943-8
10.1016/j.renene.2020.12.116
10.1109/ACCESS.2022.3185259
10.1016/j.rser.2014.10.087
10.3390/en8054300
10.1109/TIE.2015.2442212
10.1016/j.renene.2014.10.061
10.1109/TMECH.2017.2759301
10.1016/j.oceaneng.2022.111433
10.1016/j.oceaneng.2020.107827
10.1109/eIT53891.2022.9814030
10.1016/j.ress.2020.107192
10.1002/we.1742
10.4028/www.scientific.net/AST.101.45
10.1016/j.renene.2016.06.016
10.1016/j.ifacol.2015.09.597
10.1109/TIE.2009.2031193
10.1109/JAS.2019.1911414
10.1109/TCST.2014.2364956
10.1049/iet-rpg.2015.0320
10.1109/CCA.2009.5281171
10.1109/TIE.2010.2045318
10.1016/j.engappai.2014.04.005
10.1016/j.oceaneng.2019.106226
10.1002/we.437
10.1016/j.ress.2005.11.037
10.1109/TSTE.2011.2178105
10.1109/ACCESS.2018.2853090
10.1016/j.measurement.2021.109094
10.1109/SysTol.2013.6693872
10.1016/j.oceaneng.2020.107393
10.1016/j.ifacol.2018.09.620
10.2514/6.2009-481
10.1016/j.ijepes.2018.09.015
10.1016/j.asoc.2013.09.016
10.1080/14399776.2005.10781210
10.1016/j.oceaneng.2021.109724
10.1109/ACC.2012.6314887
10.1109/MED.2015.7158749
10.2514/6.1999-28
10.1016/j.oceaneng.2020.107381
10.1016/S0951-8320(00)00077-6
10.1109/CCA.2009.5281172
10.1109/TII.2015.2475219
10.1002/we.1689
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15197186
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_cab2932bceed4913bbce0ab08b2863d1
A745599773
10_3390_en15197186
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c400t-ae46ddcf39f10d0616f37486b2f4c8cf01eec0132ea8ec56f60b19cb846c402c3
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Wed Aug 27 00:53:34 EDT 2025
Mon Jun 30 07:31:35 EDT 2025
Tue Jul 01 05:44:39 EDT 2025
Tue Jul 01 01:28:22 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-ae46ddcf39f10d0616f37486b2f4c8cf01eec0132ea8ec56f60b19cb846c402c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1815-2478
0000-0003-4522-502X
0000-0002-7393-6235
OpenAccessLink https://doaj.org/article/cab2932bceed4913bbce0ab08b2863d1
PQID 2724236591
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_cab2932bceed4913bbce0ab08b2863d1
proquest_journals_2724236591
gale_infotracacademiconefile_A745599773
crossref_primary_10_3390_en15197186
crossref_citationtrail_10_3390_en15197186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_92
Blesa (ref_48) 2014; 47
ref_138
Odgaard (ref_21) 2015; 40
ref_13
Tobias (ref_28) 2012; 46
Wang (ref_93) 2017; 3
Musarrat (ref_136) 2021; 133
ref_11
ref_10
(ref_52) 2020; 209
Ghane (ref_106) 2018; 21
Grigoriadis (ref_182) 2015; 18
ref_18
Yang (ref_156) 2012; 45
ref_16
Odgaard (ref_12) 2013; 21
Zimroz (ref_110) 2014; 46
Yoon (ref_119) 2015; 62
ref_126
Casau (ref_171) 2012; 45
Zhang (ref_41) 2018; 195
Bhardwaj (ref_60) 2019; 141
Ghane (ref_105) 2017; 753
ref_24
ref_22
Fekih (ref_142) 2008; 2
ref_122
Schulte (ref_175) 2015; 40
ref_20
Wei (ref_85) 2010; 24
Nguyen (ref_111) 2018; 5
Mauricio (ref_114) 2019; 141
Azizi (ref_132) 2019; 135
Langseth (ref_66) 2007; 92
Mansouri (ref_90) 2022; 22
Mousavi (ref_137) 2022; 18
Badihi (ref_133) 2014; 351
Sloth (ref_17) 2011; 21
Reder (ref_63) 2018; 169
Papatheou (ref_98) 2015; 62
Blesa (ref_37) 2016; 30
ref_27
Zhang (ref_32) 2022; 177
Abdelmalek (ref_46) 2016; 91
ref_72
ref_159
Shi (ref_170) 2015; 75
ref_71
ref_158
ref_70
Han (ref_181) 2016; 10
Vidal (ref_7) 2015; 8
Odgaard (ref_125) 2015; 23
Badihi (ref_168) 2015; 23
Li (ref_29) 2016; 12
An (ref_77) 2005; 6
ref_151
ref_79
ref_78
ref_153
Wang (ref_108) 2022; 10
ref_76
ref_155
ref_75
ref_154
ref_74
ref_157
Kim (ref_116) 2019; 188
Rotondo (ref_121) 2012; 45
Chen (ref_95) 2013; 40
Karimi (ref_14) 2009; 56
Schlechtingen (ref_96) 2014; 14
Sanchez (ref_40) 2015; 62
Silva (ref_55) 2020; 207
Yeter (ref_56) 2020; 202
Odgaard (ref_124) 2012; 45
Jiang (ref_88) 2019; 4
Morshed (ref_143) 2020; 41
Puig (ref_50) 2010; 20
ref_82
ref_147
ref_80
Shaker (ref_141) 2017; 42
ref_149
Alkaff (ref_64) 2020; 204
Jiang (ref_109) 2018; 23
ref_89
Kamal (ref_129) 2012; 3
ref_144
ref_86
Parker (ref_15) 2011; 58
ref_84
ref_145
Isermann (ref_69) 2005; 29
Habibi (ref_9) 2019; 135
Frost (ref_152) 2009; 19
Badihi (ref_167) 2020; 11
Tutiven (ref_81) 2018; 51
Pao (ref_150) 2011; 31
Shaker (ref_123) 2012; 45
Bobbio (ref_67) 2001; 71
Kong (ref_99) 2020; 146
ref_172
Kang (ref_61) 2019; 133
Qiao (ref_26) 2015; 62
ref_177
ref_179
ref_178
Badihi (ref_148) 2019; 51
Habibi (ref_36) 2021; 8
Noshirvani (ref_34) 2018; 28
ref_169
Zhu (ref_91) 2020; 53
Sinha (ref_62) 2015; 42
Carroll (ref_97) 2019; 22
Martins (ref_54) 2016; 97
Xiang (ref_100) 2021; 175
Sun (ref_102) 2022; 22
Yang (ref_140) 2018; 119
ref_163
Li (ref_68) 2020; 217
Chen (ref_173) 2022; 143
Wu (ref_184) 2019; 105
Tabatabaeipour (ref_51) 2012; 5
Bangalore (ref_87) 2015; 6
Morshed (ref_139) 2019; 6
Chen (ref_94) 2019; 139
Noshirvani (ref_135) 2019; 26
Adams (ref_30) 2011; 14
Heydari (ref_107) 2021; 9
Habibi (ref_183) 2018; 6
ref_115
Kim (ref_146) 2012; 45
Fan (ref_180) 2012; 6
McMillan (ref_4) 2007; 31
ref_118
Li (ref_59) 2021; 234
Teng (ref_112) 2019; 136
Aitouche (ref_174) 2012; 45
ref_33
ref_113
Aitouche (ref_166) 2022; 2022
Cho (ref_39) 2021; 169
Evans (ref_162) 2015; 23
ref_38
Eryilmaz (ref_65) 2020; 203
ref_103
Shaker (ref_130) 2014; 34
Li (ref_53) 2022; 256
Wen (ref_120) 2020; 71
Maati (ref_165) 2020; 2020
Badihi (ref_8) 2022; 110
Li (ref_131) 2018; 355
Gangsar (ref_31) 2020; 144
ref_47
Mazare (ref_134) 2021; 238
Mousavi (ref_164) 2022; 167
Benlahrache (ref_161) 2017; 50
ref_45
Simani (ref_49) 2015; 1
ref_44
ref_43
ref_42
Nazir (ref_73) 2017; 29
Li (ref_57) 2020; 164
ref_101
ref_1
Zhao (ref_185) 2021; 34
Lan (ref_128) 2018; 116
Hovgaard (ref_160) 2015; 18
ref_3
Musarrat (ref_176) 2021; 9
ref_2
Guo (ref_23) 2012; 3
Echivarria (ref_6) 2008; 130
Haghani (ref_83) 2015; 48
Simani (ref_127) 2014; 24
Guo (ref_104) 2020; 11
Ziyabari (ref_35) 2021; 27
Qiao (ref_25) 2015; 62
Ghane (ref_19) 2017; 137
Abouhnik (ref_117) 2012; 64
ref_5
Li (ref_58) 2020; 162
References_xml – volume: 22
  start-page: 360
  year: 2019
  ident: ref_97
  article-title: Wind turbine gearbox failure and remaining useful life prediction using machine learning techniques
  publication-title: Wind Energy
  doi: 10.1002/we.2290
– ident: ref_138
  doi: 10.1109/GlobConET53749.2022.9872498
– ident: ref_22
  doi: 10.1007/978-3-030-05971-2
– ident: ref_78
  doi: 10.1109/ICCIA49288.2019.9030913
– volume: 46
  start-page: 169
  year: 2012
  ident: ref_28
  article-title: Condition monitoring of wind turbines: Techniques and methods
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.03.003
– volume: 202
  start-page: 107062
  year: 2020
  ident: ref_56
  article-title: Risk-based maintenance planning of offshore wind turbine farms
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107062
– ident: ref_80
– volume: 42
  start-page: 3055
  year: 2017
  ident: ref_141
  article-title: Robust fault-tolerant control of wind turbine systems against actuator and sensor faults
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-017-2525-z
– volume: 40
  start-page: 50
  year: 2015
  ident: ref_21
  article-title: Gear-box fault detection using time frequency-based methods
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2015.09.004
– volume: 45
  start-page: 120
  year: 2012
  ident: ref_171
  article-title: Fault detection and isolation and fault tolerant control of wind turbines using set-valued observers
  publication-title: IFAC Proc.
– volume: 135
  start-page: 877
  year: 2019
  ident: ref_9
  article-title: Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.12.066
– volume: 30
  start-page: 186
  year: 2016
  ident: ref_37
  article-title: Set-membership parity space approach for fault detection in linear uncertain dynamic systems
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.2476
– volume: 28
  start-page: e2625
  year: 2018
  ident: ref_34
  article-title: A Robust Fault Detection and Isolation Filter for the Pitch System of a Variable Speed Wind Turbine
  publication-title: Int. J. Electr. Eng. Syst.
– volume: 167
  start-page: 112734
  year: 2022
  ident: ref_164
  article-title: Sliding Mode Control of Wind Energy Conversion Systems: Trends and Applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112734
– volume: 29
  start-page: 244
  year: 2017
  ident: ref_73
  article-title: Robust fault detection for wind turbines using reference model-based approach
  publication-title: J. King Saud Univ. Eng. Sci.
– ident: ref_16
– volume: 116
  start-page: 219
  year: 2018
  ident: ref_128
  article-title: Fault tolerant wind turbine pitch control using adaptive sliding mode estimation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.005
– ident: ref_18
  doi: 10.3390/pr9020300
– ident: ref_43
  doi: 10.1109/CCA.2010.5611266
– volume: 22
  start-page: 13581
  year: 2022
  ident: ref_90
  article-title: Interval-Valued Reduced RNN for Fault Detection and Diagnosis for Wind Energy Conversion Systems
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3175866
– volume: 23
  start-page: 290
  year: 2015
  ident: ref_162
  article-title: Robust MPC Tower Damping for Variable Speed Wind Turbines
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2310513
– ident: ref_92
  doi: 10.20944/preprints202105.0315.v1
– ident: ref_1
– volume: 195
  start-page: 1214
  year: 2018
  ident: ref_41
  article-title: An anomaly identification model for wind turbine state parameters
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.05.126
– volume: 9
  start-page: 89878
  year: 2021
  ident: ref_107
  article-title: A hybrid intelligent model for the condition monitoring and diagnostics of wind turbines gearbox
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090434
– ident: ref_71
– volume: 3
  start-page: 1360
  year: 2017
  ident: ref_93
  article-title: Wind turbine gearbox failure identification with deep neural networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2607179
– ident: ref_103
  doi: 10.3390/s22134881
– volume: 45
  start-page: 114
  year: 2012
  ident: ref_121
  article-title: Fault tolerant control of the wind turbine benchmark using virtual sensors/actuators
  publication-title: IFAC Proc.
– volume: 162
  start-page: 1438
  year: 2020
  ident: ref_58
  article-title: A Two-Stage Failure Mode and Effect Analysis of an Offshore Wind Turbine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.08.001
– volume: 18
  start-page: 5887
  year: 2022
  ident: ref_137
  article-title: Maximum Power Extraction from Wind Turbines using a Fault-Tolerant Fractional-order Nonsingular Terminal Sliding Mode Control
  publication-title: Energies
– volume: 119
  start-page: 577
  year: 2018
  ident: ref_140
  article-title: Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.12.047
– volume: 22
  start-page: 1541
  year: 2022
  ident: ref_102
  article-title: Bearing Fault Diagnosis Based on Multiple Transformation Domain Fusion and Improved Residual Dense Networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3131722
– ident: ref_24
  doi: 10.1007/978-3-642-31488-9_6
– volume: 29
  start-page: 71
  year: 2005
  ident: ref_69
  article-title: Model-based Fault Detection and Diagnosis-Status and Applications
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2004.12.002
– volume: 143
  start-page: 108443
  year: 2022
  ident: ref_173
  article-title: Adaptive active fault-tolerant MPPT control of variable speed wind turbine considering generator actuator failure
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108443
– ident: ref_82
  doi: 10.3390/pr10010054
– ident: ref_153
  doi: 10.1109/ACC.2012.6315452
– volume: 91
  start-page: 680
  year: 2016
  ident: ref_46
  article-title: A novel scheme for current sensor faults diagnosis in the stator of a DFIG described by a T-S fuzzy model
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.102
– volume: 110
  start-page: 754
  year: 2022
  ident: ref_8
  article-title: A comprehensive review on signal-based and model-based condition monitoring of wind turbines: Fault diagnosis and life prognosis
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2022.3171691
– volume: 2
  start-page: 762
  year: 2008
  ident: ref_142
  article-title: Effective Fault Tolerant Control Design for a Class of Nonlinear Systems: Application to a Class of Motor Control
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta:20070090
– volume: 31
  start-page: 44
  year: 2011
  ident: ref_150
  article-title: Control of Wind Turbines
  publication-title: IEEE Control Syst.
  doi: 10.1109/MCS.2010.939962
– ident: ref_13
– volume: 64
  start-page: 606
  year: 2012
  ident: ref_117
  article-title: Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.06.008
– volume: 62
  start-page: 3783
  year: 2015
  ident: ref_40
  article-title: Fault diagnosis of an advanced wind turbine benchmark using interval-based ARRs and observers
  publication-title: IEEE Trans. Ind. Electron.
– ident: ref_113
  doi: 10.3390/app10155251
– volume: 136
  start-page: 393
  year: 2019
  ident: ref_112
  article-title: Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.12.094
– volume: 135
  start-page: 55
  year: 2019
  ident: ref_132
  article-title: Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.11.106
– volume: 9
  start-page: 7237
  year: 2021
  ident: ref_176
  article-title: A fault tolerant control paradigm for DFIG-based wind energy conversion systems in a Wind/PV hybrid microgrid
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
  doi: 10.1109/JESTPE.2020.3034604
– volume: 3
  start-page: 124
  year: 2012
  ident: ref_23
  article-title: Wind turbine generator condition monitoring using temperature trend analysis
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2011.2163430
– ident: ref_42
  doi: 10.1109/CCA.2010.5611266
– ident: ref_155
  doi: 10.1007/1-84628-493-7
– volume: 177
  start-page: 109175
  year: 2022
  ident: ref_32
  article-title: Vibration feature extraction using signal processing techniques for structural health monitoring: A review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109175
– volume: 130
  start-page: 031005
  year: 2008
  ident: ref_6
  article-title: Reliability of Wind Turbine Technology Through Time
  publication-title: J. Sol. Eng.
  doi: 10.1115/1.2936235
– volume: 2020
  start-page: 6210407
  year: 2020
  ident: ref_165
  article-title: Optimal fault tolerant control of large-scale wind turbines in the case of the pitch actuator partial faults
  publication-title: Complexity
  doi: 10.1155/2020/6210407
– volume: 27
  start-page: 277
  year: 2021
  ident: ref_35
  article-title: Robust fault estimation of a blade pitch and drivetrain system in wind turbine model
  publication-title: J. Vib. Control
  doi: 10.1177/1077546320926274
– ident: ref_3
– volume: 53
  start-page: 664
  year: 2020
  ident: ref_91
  article-title: A Novel Wind Turbine Fault Detection Method Based on Fuzzy Logic System Using Neural Network Construction Method
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2021.04.157
– ident: ref_11
– volume: 50
  start-page: 9902
  year: 2017
  ident: ref_161
  article-title: Fault Tolerant Control of Wind Turbine Using Robust Model Predictive Min-Max approach
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.1622
– volume: 5
  start-page: 2424
  year: 2012
  ident: ref_51
  article-title: Fault detection of wind turbines with uncertain parameters: A set-membership approach
  publication-title: Energies
  doi: 10.3390/en5072424
– ident: ref_86
– volume: 133
  start-page: 1455
  year: 2019
  ident: ref_61
  article-title: Fault Tree Analysis of floating offshore wind turbines
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.097
– ident: ref_75
  doi: 10.1109/ChiCC.2016.7554363
– volume: 21
  start-page: 575
  year: 2018
  ident: ref_106
  article-title: Condition monitoring of spar-type floating wind turbine drivetrain using statistical fault diagnosis
  publication-title: Wind Energy
  doi: 10.1002/we.2179
– ident: ref_44
– volume: 24
  start-page: 687
  year: 2010
  ident: ref_85
  article-title: Sensor fault detection and isolation for wind turbines based on subspace identification and Kalman filter techniques
  publication-title: Int. J. Adapt. Control
  doi: 10.1002/acs.1162
– volume: 47
  start-page: 4322
  year: 2014
  ident: ref_48
  article-title: Fault Diagnosis of a Wind Farm using Interval Parity Equations
  publication-title: IFAC Proc.
– volume: 139
  start-page: 370
  year: 2019
  ident: ref_94
  article-title: Learning deep representation of imbalanced SCADA data for fault detection of wind turbines
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.03.029
– volume: 40
  start-page: 82
  year: 2015
  ident: ref_175
  article-title: Fault-tolerant control of wind turbines with hydro-static transmission using Takagie Sugeno and sliding mode techniques
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2015.08.003
– volume: 23
  start-page: 1221
  year: 2015
  ident: ref_125
  article-title: A benchmark evaluation of fault tolerant wind turbine control concepts
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2361291
– volume: 2022
  start-page: 1290639
  year: 2022
  ident: ref_166
  article-title: Fault-Tolerant Control of Wind Turbine System Using Linear Parameter-Varying Model
  publication-title: Math. Probl. Eng.
– ident: ref_144
  doi: 10.1109/CCTA.2017.8062530
– ident: ref_149
  doi: 10.1109/ACC.2013.6580525
– volume: 146
  start-page: 760
  year: 2020
  ident: ref_99
  article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.07.033
– volume: 355
  start-page: 8194
  year: 2018
  ident: ref_131
  article-title: Active fault tolerant control of wind turbine systems based on DFIG with actuator fault and disturbance using Takagi–Sugeno fuzzy model
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2018.08.021
– ident: ref_38
  doi: 10.1109/IRSEC.2017.8477263
– volume: 45
  start-page: 313
  year: 2012
  ident: ref_124
  article-title: Fault tolerant control of wind turbines using unknown input observers
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20120829-3-MX-2028.00010
– volume: 144
  start-page: 106908
  year: 2020
  ident: ref_31
  article-title: Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the art review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106908
– ident: ref_157
  doi: 10.1109/ECC.2015.7331098
– volume: 8
  start-page: 837
  year: 2021
  ident: ref_36
  article-title: Decoupling adaptive sliding mode observer design for wind turbines subject to simultaneous faults in sensors and actuators
  publication-title: IEEE/CCA Autom. Sin.
  doi: 10.1109/JAS.2021.1003931
– volume: 133
  start-page: 107306
  year: 2021
  ident: ref_136
  article-title: A fractional order sliding mode control-based topology to improve the transient stability of wind energy systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107306
– volume: 11
  start-page: 2119
  year: 2020
  ident: ref_167
  article-title: Fault-Tolerant Cooperative Control in a Wind Farm Using Adaptive Control Reconfiguration and Control Reallocation
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2950681
– volume: 45
  start-page: 499
  year: 2012
  ident: ref_123
  article-title: Fault tolerant adaptive sliding mode controller for wind turbine power maximization
  publication-title: IFAC Proc.
– ident: ref_126
– ident: ref_70
– volume: 141
  start-page: 693
  year: 2019
  ident: ref_60
  article-title: Reliability prediction of an offshore wind turbine gearbox
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.03.136
– volume: 51
  start-page: 221
  year: 2019
  ident: ref_148
  article-title: Model-Based Fault-Tolerant Pitch Control of an Offshore Wind Turbine
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.303
– ident: ref_84
  doi: 10.1109/WCICA.2008.4593608
– volume: 169
  start-page: 554
  year: 2018
  ident: ref_63
  article-title: Data-driven learning framework for associating weather conditions and wind turbine failures
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.10.004
– volume: 71
  start-page: 102729
  year: 2020
  ident: ref_120
  article-title: Monitoring blade loads for a floating wind turbine in wave basin model tests using fiber Bragg grating sensors: A feasibility study
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2020.102729
– volume: 11
  start-page: 107
  year: 2020
  ident: ref_104
  article-title: Wind turbine power curve modeling and monitoring with Gaussian process and SPRT
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2884699
– volume: 31
  start-page: 267
  year: 2007
  ident: ref_4
  article-title: Quantification of condition monitoring benefit for offshore wind turbines
  publication-title: Wind. Energy
– ident: ref_159
– volume: 24
  start-page: 1283
  year: 2014
  ident: ref_127
  article-title: Active actuator fault-tolerant control of a wind turbine benchmark model
  publication-title: Int. J. Robust Nonlinear Cont.
  doi: 10.1002/rnc.2993
– ident: ref_45
  doi: 10.1109/CoDIT.2013.6689600
– volume: 1
  start-page: 45
  year: 2015
  ident: ref_49
  article-title: Wind turbine simulator fault diagnosis via fuzzy modeling and identification techniques
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2014.12.001
– volume: 40
  start-page: 6863
  year: 2013
  ident: ref_95
  article-title: Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.018
– volume: 6
  start-page: 475
  year: 2012
  ident: ref_180
  article-title: Neuro-adaptive model-reference fault-tolerant control with application to wind turbines
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2011.0250
– volume: 62
  start-page: 6546
  year: 2015
  ident: ref_26
  article-title: A survey on wind turbine condition monitoring and fault diagnosis—Part II: Signals and signal processing methods
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2422394
– ident: ref_5
  doi: 10.2172/882048
– volume: 34
  start-page: 56
  year: 2021
  ident: ref_185
  article-title: Challenges and Opportunities of AI-Enabled Monitoring, Diagnosis & Prognosis: A Review
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-021-00570-7
– volume: 20
  start-page: 619
  year: 2010
  ident: ref_50
  article-title: Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/v10006-010-0046-y
– volume: 21
  start-page: 645
  year: 2011
  ident: ref_17
  article-title: Robust and fault-tolerant linear parameter-varying control of wind turbines
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2011.02.001
– volume: 234
  start-page: 109261
  year: 2021
  ident: ref_59
  article-title: A Failure Analysis of Floating Offshore Wind Turbines using AHP-FMEA Methodology
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109261
– volume: 351
  start-page: 3677
  year: 2014
  ident: ref_133
  article-title: Fuzzy gain-scheduled active fault tolerant control of a wind turbine
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2013.05.007
– ident: ref_27
  doi: 10.1109/GreenTech.2019.8767157
– ident: ref_179
  doi: 10.1109/SYSTOL.2016.7739820
– volume: 137
  start-page: 204
  year: 2017
  ident: ref_19
  article-title: Diagnostic monitoring of drivetrain in a 5 MW spar-type floating wind turbine using Hilbert spectral analysis
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.10.374
– ident: ref_115
  doi: 10.3390/s19143092
– volume: 41
  start-page: 1718
  year: 2020
  ident: ref_143
  article-title: Design of a Chattering-free integral terminal sliding mode approach for DFIG-based wind energy systems
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.2635
– volume: 203
  start-page: 107077
  year: 2020
  ident: ref_65
  article-title: Reliability based modelling and analysis for a wind power system integrated by two wind farms considering wind speed dependence
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107077
– ident: ref_169
  doi: 10.1109/CSEPS53726.2021.00013
– ident: ref_172
  doi: 10.1109/IEMDC.2017.8002012
– volume: 21
  start-page: 1168
  year: 2013
  ident: ref_12
  article-title: Fault Tolerant Control of Wind Turbines: A Benchmark Model
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2013.2259235
– ident: ref_101
  doi: 10.3390/en11092248
– volume: 62
  start-page: 6536
  year: 2015
  ident: ref_25
  article-title: A survey on wind turbine condition monitoring and fault diagnosis—Part I: Components and systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2422112
– volume: 26
  start-page: e2411
  year: 2019
  ident: ref_135
  article-title: Fractional-order fault-tolerant pitch control design for a 2.5 MW wind turbine subject to actuator faults
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2411
– volume: 19
  start-page: 59
  year: 2009
  ident: ref_152
  article-title: Direct adaptive control of a utility-scale wind turbine for speed regulation
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.1329
– volume: 62
  start-page: 6585
  year: 2015
  ident: ref_119
  article-title: On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2442216
– ident: ref_33
  doi: 10.1007/978-1-4471-4799-2
– volume: 164
  start-page: 133
  year: 2020
  ident: ref_57
  article-title: A Developed Failure Mode and Effect Analysis for Floating Offshore Wind Turbine Support Structures
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.09.033
– volume: 4
  start-page: 3196
  year: 2019
  ident: ref_88
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2844805
– volume: 141
  start-page: 031026
  year: 2019
  ident: ref_114
  article-title: Vibration-based condition monitoring of wind turbine gearboxes based on cyclostationary analysis
  publication-title: J. Eng. Gas Turbines Power
  doi: 10.1115/1.4041114
– ident: ref_145
  doi: 10.3390/en14061791
– volume: 753
  start-page: 052017
  year: 2017
  ident: ref_105
  article-title: Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/753/5/052017
– volume: 6
  start-page: 980
  year: 2015
  ident: ref_87
  article-title: An artificial neural network approach for early fault detection of gearbox bearings
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2386305
– volume: 46
  start-page: 16
  year: 2014
  ident: ref_110
  article-title: Diagnostics of bearings in presence of strong operating conditions non-stationarity—A procedure of load-dependent features processing with application to wind turbine bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.09.010
– ident: ref_74
  doi: 10.3390/en13112972
– volume: 5
  start-page: 507
  year: 2018
  ident: ref_111
  article-title: Vibration-based damage detection in wind turbine towers using artificial neural networks
  publication-title: Struct. Monit. Maint.
– ident: ref_10
  doi: 10.1007/978-3-662-47943-8
– volume: 169
  start-page: 1
  year: 2021
  ident: ref_39
  article-title: Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.12.116
– volume: 10
  start-page: 67532
  year: 2022
  ident: ref_108
  article-title: A SCADA-Data-Driven Condition Monitoring Method of Wind Turbine Generators
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3185259
– ident: ref_72
– volume: 42
  start-page: 735
  year: 2015
  ident: ref_62
  article-title: A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.10.087
– volume: 45
  start-page: 946
  year: 2012
  ident: ref_174
  article-title: Unknown Input Observer with Fuzzy Fault Tolerant Control for Wind Energy System
  publication-title: IFAC Proc.
– volume: 8
  start-page: 4300
  year: 2015
  ident: ref_7
  article-title: Fault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator
  publication-title: Energies
  doi: 10.3390/en8054300
– ident: ref_20
– volume: 62
  start-page: 6636
  year: 2015
  ident: ref_98
  article-title: A performance monitoring approach for the novel lillgrund offshore wind farm
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2442212
– volume: 75
  start-page: 788
  year: 2015
  ident: ref_170
  article-title: An active fault tolerant control approach to an offshore wind turbine model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.10.061
– volume: 23
  start-page: 89
  year: 2018
  ident: ref_109
  article-title: Wind Turbine Fault Detection Using a Denoising Autoencoder with Temporal Information
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2759301
– volume: 45
  start-page: 337
  year: 2012
  ident: ref_156
  article-title: Fault-tolerant model predictive control of a wind turbine benchmark
  publication-title: IFAC Proc.
– ident: ref_76
– volume: 256
  start-page: 111433
  year: 2022
  ident: ref_53
  article-title: A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111433
– volume: 217
  start-page: 107827
  year: 2020
  ident: ref_68
  article-title: Reliability analysis of floating offshore wind turbine using Bayesian Networks
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107827
– ident: ref_89
  doi: 10.1109/eIT53891.2022.9814030
– volume: 204
  start-page: 107192
  year: 2020
  ident: ref_64
  article-title: Network reliability analysis: Matrixexponential approach
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107192
– volume: 18
  start-page: 991
  year: 2015
  ident: ref_160
  article-title: Model predictive control for wind power gradients
  publication-title: Wind Energy
  doi: 10.1002/we.1742
– ident: ref_118
  doi: 10.4028/www.scientific.net/AST.101.45
– volume: 97
  start-page: 866
  year: 2016
  ident: ref_54
  article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.06.016
– volume: 48
  start-page: 633
  year: 2015
  ident: ref_83
  article-title: Data-Driven Multimode Fault Detection for Wind Energy Conversion Systems
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.597
– volume: 56
  start-page: 4660
  year: 2009
  ident: ref_14
  article-title: Current sensor fault-tolerant control for WECS with DFIG
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2031193
– volume: 6
  start-page: 566
  year: 2019
  ident: ref_139
  article-title: A Sliding mode approach to enhance the power quality of wind turbines under unbalanced grid conditions
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911414
– volume: 23
  start-page: 1351
  year: 2015
  ident: ref_168
  article-title: Wind Turbine Fault Diagnosis and Fault-Tolerant Torque Load Control Against Actuator Faults
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2364956
– volume: 10
  start-page: 687
  year: 2016
  ident: ref_181
  article-title: Individual pitch controller based on fuzzy logic control for wind turbine load mitigation
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2015.0320
– ident: ref_147
  doi: 10.1109/CCA.2009.5281171
– volume: 58
  start-page: 305
  year: 2011
  ident: ref_15
  article-title: Fault-tolerant control for a modular generator–converter scheme for direct-drive wind turbines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2045318
– volume: 34
  start-page: 1
  year: 2014
  ident: ref_130
  article-title: Active sensor fault tolerant output feedback tracking control for wind turbine systems via T–S model
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.04.005
– volume: 188
  start-page: 106226
  year: 2019
  ident: ref_116
  article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106226
– volume: 14
  start-page: 603
  year: 2011
  ident: ref_30
  article-title: Structural health monitoring of wind turbines: Method and application to a HAWT
  publication-title: Wind Energy
  doi: 10.1002/we.437
– ident: ref_79
– volume: 92
  start-page: 92
  year: 2007
  ident: ref_66
  article-title: Bayesian networks in reliability
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2005.11.037
– volume: 3
  start-page: 231
  year: 2012
  ident: ref_129
  article-title: Robust fuzzy fault tolerant control of wind energy conversion systems subject to sensor faults
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2011.2178105
– volume: 45
  start-page: 355
  year: 2012
  ident: ref_146
  article-title: Control allocation based compensation for faulty blade actuator of wind turbine
  publication-title: IFAC Proc.
– volume: 6
  start-page: 37464
  year: 2018
  ident: ref_183
  article-title: Adaptive PID control of wind turbines for power regulation with unknown control direction and actuator faults
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853090
– volume: 175
  start-page: 109094
  year: 2021
  ident: ref_100
  article-title: Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109094
– ident: ref_47
  doi: 10.1109/SysTol.2013.6693872
– volume: 207
  start-page: 107393
  year: 2020
  ident: ref_55
  article-title: Economic feasibility of floating offshore wind farms in Portugal
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107393
– ident: ref_122
– ident: ref_2
– volume: 51
  start-page: 480
  year: 2018
  ident: ref_81
  article-title: Fault detection and isolation of pitch actuator faults in a floating wind turbine
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.620
– ident: ref_154
  doi: 10.2514/6.2009-481
– ident: ref_158
– volume: 105
  start-page: 660
  year: 2019
  ident: ref_184
  article-title: Adaptive active fault-tolerant MPPT control for wind power generation systems under partial loss of actuator effectiveness
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.09.015
– volume: 14
  start-page: 447
  year: 2014
  ident: ref_96
  article-title: Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2: Application examples
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.016
– volume: 6
  start-page: 41
  year: 2005
  ident: ref_77
  article-title: Hydraulic actuator leakage fault detection using extended Kalman filter
  publication-title: Int. J. Fluid Power
  doi: 10.1080/14399776.2005.10781210
– volume: 238
  start-page: 109724
  year: 2021
  ident: ref_134
  article-title: Pitch actuator fault-tolerant control of wind turbines based on time delay control and disturbance observer
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109724
– ident: ref_163
  doi: 10.1109/ACC.2012.6314887
– ident: ref_177
  doi: 10.1109/MED.2015.7158749
– ident: ref_151
  doi: 10.2514/6.1999-28
– volume: 209
  start-page: 107381
  year: 2020
  ident: ref_52
  article-title: Review of the current status, technology and future trends of offshore wind farms
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107381
– volume: 71
  start-page: 249
  year: 2001
  ident: ref_67
  article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/S0951-8320(00)00077-6
– ident: ref_178
  doi: 10.1109/CCA.2009.5281172
– volume: 12
  start-page: 393
  year: 2016
  ident: ref_29
  article-title: Feature denoising and nearest-farthest distance preserving projection for machine fault diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2015.2475219
– volume: 18
  start-page: 187
  year: 2015
  ident: ref_182
  article-title: Anti-windup linear parameter-varying control of pitch actuators in wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.1689
SSID ssj0000331333
Score 2.4135358
SecondaryResourceType review_article
Snippet Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 7186
SubjectTerms Air-turbines
Alternative energy
Alternative energy sources
Controllers
data-driven and model-based approaches
Design
Electric power production
Electricity
Failure
fault detection and diagnosis
Fault diagnosis
Fault tolerance
fault-tolerant control
Maintenance and repair
Maintenance costs
Offshore
Propagation
robustness and reliability
Sensors
Shutdowns
Signal processing
signal-based schemes
Statistical methods
Systems stability
Wavelet transforms
Wind power
wind turbine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeQvqim6RFkELpwUSyLNnOJWzSLEuhaSkbmpvQsxQWO9n1tn8_M7Z2k0Obm5GFsGc0L2nmG0I-1CVY9RDBc8utzYpoZGZgJPNGVYWsovIcC5y_XqrZVfHlWl6nA7dVSqvc6MReUfvW4Rn5cV6i5Vey5qc3txl2jcLb1dRC4ynZARVcyRHZObu4_P5je8rChIAgTAy4pALi--PQcKzV5Fg8_cAS9YD9_1PLva2Z7pHd5CTSycDVF-RJaF6S5w-gA1-R2dSsFx39PGTK_V5R03g6jM3bRQAL1NHzIQ2dtpH-hNCbztdLi1nuJ3TS0G9_UEuEv6_J1fRifj7LUleEzIG8dZkJhfLeRVFHzjyYYxURQkbZPBaucpHxEBzeoARTBSdVVMzy2llwNGCB3Ik3ZNS0TXhLKCtrKSOXZWTAGO9r4VRlS6MMMMkZNiafNhTSLkGGY-eKhYbQAamp76k5JkfbuTcDUMY_Z50hobczENy6H2iXv3SSFe2MBSckt2i_i5oLC0_MWFbZvFLC8zH5iGzSKILwOc6kSgL4KQSz0pOyQBy1shRjcrjhpE6yudL3O2n_8dcH5FmOxQ596t4hGXXLdXgHLkhn36d9dgcilNs5
  priority: 102
  providerName: ProQuest
Title Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview
URI https://www.proquest.com/docview/2724236591
https://doaj.org/article/cab2932bceed4913bbce0ab08b2863d1
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB6sfbEPUqvi2euxYEF8CGazySbp2531PISqyIn3tuxPEI6cnLn23-9MEu09WHzxJYRlCZv5svPNkJlvAb6XObK6Dxi5JcZEadBZpHEkcloWaVYE6Tg1OP-6kpO79HKWzdaO-qKasFYeuDXcqdUGGSkx5MzTkguDd7E2cWGSQgrXJD7IeWvJVOODhcDkS7R6pALz-lNfcerR5NQ0vcZAjVD__9xxwzHjz7DdBYds2C5qBzZ89QU-rUkG7sJkrFfzmv1sK-QenpiuHGvHpou5R-ap2Vlbfs4Wgd1jys2mq6Wh6vYfbFix69_kHfyfPbgbn0_PJlF3GkJkcZ_VkfapdM4GUQYeO6RhGUg6RpokpLawIebeW_pz4nXhbSaDjA0vrcEAAx-QWLEPm9Wi8gfA4rzMssCzPMQIiHOlsLIwuZYawbE67sHJs4WU7aTC6cSKucKUgayp_lmzB0cvcx9bgYxXZ43I0C8zSNS6GUCoVQe1egvqHhwTTIq2Hi7H6q6DAF-KRKzUME9JPy3PRQ_6z0iqbk8-qSSn2FFmJT98j9V8ha2EWiGawr4-bNbLlf-GAUptBvChGF8M4OPo_OrmdtB8mXi9mPG_6qnnMw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKfYUsASIMQhqh0nToKE0Pax2tJ2QWgrenP9REirpN3NUvGn-I3M5LHtAbj1FjmWlYw_z4ztmW8IeV1kYNV9AM8tNiZKgk4jDS2R0zJP0jxIxzHB-XgixyfJp9P0dI387nNhMKyy14mNonaVxTPy7ThDyy_Tgn88v4iwahTervYlNFpYHPpfl7BlW3w42IP5fRPHo_3p7jjqqgpEFvBaR9on0jkbRBE4c2DOZEAKFmnikNjcBsa9t3gD4XXubSqDZIYX1oChhgFiK2DcW2QD3IwCVtHGzv7ky9fVqQ4TAjZ9ouVBFaJg277kmBvKMVn7muVrCgT8yww0tm10n9zrnFI6bFH0gKz58iG5e42q8BEZj_RyVtO9NjLvx4Lq0tG2bVrNPFi8mu62Ye-0CvQbbPXpdDk3GFX_ng5L-vknaiV_-Zic3Ii8npD1sir9U0JZVqRp4GkWGADBuUJYmZtMSw2gsJoNyLteQsp2FOVYKWOmYKuC0lRX0hyQV6u-5y0xx1977aCgVz2QTLtpqObfVbc2ldUGnJ7YoL-QFFwYeGLasNzEuRSOD8hbnCaFSx4-x-oucwF-Csmz1DBLkLcty8SAbPUzqTpdsFBXyN38_-uX5PZ4enykjg4mh8_InRgTLZqwwS2yXs-X_jm4P7V50WGOkrObhvkfwJMY9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QFxFxwBLgBAPUe04cRIkhLp1VcegTKgTezO-oklVMtqUib_Gr-OcJO32ALztLXIsKzn-fL5j-1wIeVlkwOo-gOUWGxMlQaeRhpbIaZknaR6k4xjg_GkqJyfJh9P0dIv8XsfCoFvlWic2itpVFs_IB3GGzC_Tgg9C5xZxPBq_P_8RYQUpvGldl9NoIXLkf13A9m357nAEc_0qjscHs_1J1FUYiCxgt460T6RzNogicOaA2mTAdCzSxCGxuQ2Me2_xNsLr3NtUBskML6wB0oYBYitg3BtkOwNWzHtke-9gevxlc8LDhIANoGhzogpRsIEvOcaJcgzcvsKCTbGAf1FCw3Pju-ROZ6DSYYuoe2TLl_fJ7StpCx-QyViv5jUdtV56Z0uqS0fbtlk198B-Nd1vXeBpFehX2PbT2Wph0MP-LR2W9PNP1FD-4iE5uRZ5PSK9sir9Y0JZVqRp4GkWGIDCuUJYmZtMSw0AsZr1yZu1hJTt0pVj1Yy5gm0LSlNdSrNPXmz6nrdJOv7aaw8FvemBibWbhmrxXXXrVFltwACKDdoOScGFgSemDctNnEvheJ-8xmlSuPzhc6zuohjgpzCRlhpmCeZwyzLRJ7vrmVSdXliqSxTv_P_1c3IT4K0-Hk6PnpBbMcZcNB6Eu6RXL1b-KVhCtXnWQY6Sb9eN8j9-kh0h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+and+Fault+Tolerant+Control+of+Wind+Turbines%3A+An+Overview&rft.jtitle=Energies+%28Basel%29&rft.au=Fekih%2C+Afef&rft.au=Habibi%2C+Hamed&rft.au=Simani%2C+Silvio&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=19&rft_id=info:doi/10.3390%2Fen15197186&rft.externalDocID=A745599773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon