Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview
Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and l...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 19; p. 7186 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1073 1996-1073 |
DOI | 10.3390/en15197186 |
Cover
Loading…
Abstract | Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic. |
---|---|
AbstractList | Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in remote locations with harsh environmental conditions and highly variable stochastic loads make fault occurrence inevitable. Early detection and location of faults are vital for maintaining a high degree of availability and reducing maintenance costs. Hence, the deployment of algorithms capable of continuously monitoring and diagnosing potential faults and mitigating their effects before they evolve into failures is crucial. Fault diagnosis and fault tolerant control designs have been the subject of intensive research in the past decades. Significant progress has been made and several methods and control algorithms have been proposed in the literature. This paper provides an overview of the most recent fault diagnosis and fault tolerant control techniques for wind turbines. Following a brief discussion of the typical faults, the most commonly used model-based, data-driven and signal-based approaches are discussed. Passive and active fault tolerant control approaches are also highlighted and relevant publications are discussed. Future development tendencies in fault diagnosis and fault tolerant control of wind turbines are also briefly stated. The paper is written in a tutorial manner to provide a comprehensive overview of this research topic. |
Audience | Academic |
Author | Habibi, Hamed Fekih, Afef Simani, Silvio |
Author_xml | – sequence: 1 givenname: Afef orcidid: 0000-0003-4522-502X surname: Fekih fullname: Fekih, Afef – sequence: 2 givenname: Hamed orcidid: 0000-0002-7393-6235 surname: Habibi fullname: Habibi, Hamed – sequence: 3 givenname: Silvio orcidid: 0000-0003-1815-2478 surname: Simani fullname: Simani, Silvio |
BookMark | eNptUcFqGzEQFSWBpkku-YKF3gp2Jc2udpWbcZsmEMjFIUchaUdGZiMlkpzSv6-cLW0J0Rw0vHnvMcz7RI5CDEjIBaNLAEm_YmAdkz0bxAdywqQUC0Z7OPqv_0jOc97R-gAYAJyQ6yu9n0rzzettiNnnRoexmbFNnDDpUJp1DCXFqYmuefB1vNkn4wPmy2YVmrsXTC8ef56RY6enjOd__lNyf_V9s75e3N79uFmvbhe2pbQsNLZiHK0D6RgdqWDCQd8OwnDX2sE6yhAtZcBRD2g74QQ1TFoztKIacAun5Gb2HaPeqafkH3X6paL26hWIaat0Kt5OqKw2XAI3FnFsJQNTO6oNHQwfBIysen2evZ5SfN5jLmoX9ynU9RXvectBdPLAWs6sra6mPrhYkra1Rnz0tkbgfMVXfdt1UvY9VMGXWWBTzDmh-7smo-qQlPqXVCXTN2Triy7-cHPtp_ckvwEf2ZYd |
CitedBy_id | crossref_primary_10_3390_en17163963 crossref_primary_10_54021_seesv5n3_118 crossref_primary_10_3390_su162410875 crossref_primary_10_1109_TSTE_2023_3344749 crossref_primary_10_1016_j_oceaneng_2023_115471 crossref_primary_10_3390_machines11020307 crossref_primary_10_1016_j_compeleceng_2024_109797 crossref_primary_10_3390_pr11061690 crossref_primary_10_54097_fcis_v4i2_9970 crossref_primary_10_1016_j_ymssp_2024_111941 crossref_primary_10_1016_j_oceaneng_2024_118678 crossref_primary_10_1080_15435075_2024_2448294 crossref_primary_10_3389_fenrg_2024_1434695 crossref_primary_10_3390_su15108333 |
Cites_doi | 10.1002/we.2290 10.1109/GlobConET53749.2022.9872498 10.1007/978-3-030-05971-2 10.1109/ICCIA49288.2019.9030913 10.1016/j.renene.2012.03.003 10.1016/j.ress.2020.107062 10.1007/s13369-017-2525-z 10.1016/j.arcontrol.2015.09.004 10.1016/j.renene.2018.12.066 10.1002/acs.2476 10.1016/j.rser.2022.112734 10.1016/j.renene.2016.12.005 10.3390/pr9020300 10.1109/CCA.2010.5611266 10.1109/JSEN.2022.3175866 10.1109/TCST.2014.2310513 10.20944/preprints202105.0315.v1 10.1016/j.jclepro.2018.05.126 10.1109/ACCESS.2021.3090434 10.1109/TII.2016.2607179 10.3390/s22134881 10.1016/j.renene.2020.08.001 10.1016/j.renene.2017.12.047 10.1109/JSEN.2021.3131722 10.1007/978-3-642-31488-9_6 10.1016/j.arcontrol.2004.12.002 10.1016/j.ijepes.2022.108443 10.3390/pr10010054 10.1109/ACC.2012.6315452 10.1016/j.measurement.2016.05.102 10.1109/JPROC.2022.3171691 10.1049/iet-cta:20070090 10.1109/MCS.2010.939962 10.1016/j.enconman.2012.06.008 10.3390/app10155251 10.1016/j.renene.2018.12.094 10.1016/j.renene.2018.11.106 10.1109/JESTPE.2020.3034604 10.1109/TSTE.2011.2163430 10.1007/1-84628-493-7 10.1016/j.ymssp.2022.109175 10.1115/1.2936235 10.1155/2020/6210407 10.1177/1077546320926274 10.1016/j.ifacol.2021.04.157 10.1016/j.ifacol.2017.08.1622 10.3390/en5072424 10.1016/j.renene.2018.08.097 10.1109/ChiCC.2016.7554363 10.1002/we.2179 10.1002/acs.1162 10.1016/j.measurement.2019.03.029 10.1016/j.arcontrol.2015.08.003 10.1109/TCST.2014.2361291 10.1109/CCTA.2017.8062530 10.1109/ACC.2013.6580525 10.1016/j.renene.2019.07.033 10.1016/j.jfranklin.2018.08.021 10.1109/IRSEC.2017.8477263 10.3182/20120829-3-MX-2028.00010 10.1016/j.ymssp.2020.106908 10.1109/ECC.2015.7331098 10.1109/JAS.2021.1003931 10.1016/j.ijepes.2021.107306 10.1109/TSTE.2019.2950681 10.1016/j.renene.2019.03.136 10.1016/j.ifacol.2018.09.303 10.1109/WCICA.2008.4593608 10.1016/j.ress.2017.10.004 10.1016/j.marstruc.2020.102729 10.1109/TSTE.2018.2884699 10.1002/rnc.2993 10.1109/CoDIT.2013.6689600 10.1016/j.segan.2014.12.001 10.1016/j.eswa.2013.06.018 10.1049/iet-cta.2011.0250 10.1109/TIE.2015.2422394 10.2172/882048 10.1186/s10033-021-00570-7 10.2478/v10006-010-0046-y 10.1016/j.mechatronics.2011.02.001 10.1016/j.oceaneng.2021.109261 10.1016/j.jfranklin.2013.05.007 10.1109/GreenTech.2019.8767157 10.1109/SYSTOL.2016.7739820 10.1016/j.egypro.2017.10.374 10.3390/s19143092 10.1002/oca.2635 10.1016/j.ress.2020.107077 10.1109/CSEPS53726.2021.00013 10.1109/IEMDC.2017.8002012 10.1109/TCST.2013.2259235 10.3390/en11092248 10.1109/TIE.2015.2422112 10.1002/stc.2411 10.1002/rnc.1329 10.1109/TIE.2015.2442216 10.1007/978-1-4471-4799-2 10.1016/j.renene.2020.09.033 10.1109/TIE.2018.2844805 10.1115/1.4041114 10.3390/en14061791 10.1088/1742-6596/753/5/052017 10.1109/TSG.2014.2386305 10.1016/j.ymssp.2013.09.010 10.3390/en13112972 10.1007/978-3-662-47943-8 10.1016/j.renene.2020.12.116 10.1109/ACCESS.2022.3185259 10.1016/j.rser.2014.10.087 10.3390/en8054300 10.1109/TIE.2015.2442212 10.1016/j.renene.2014.10.061 10.1109/TMECH.2017.2759301 10.1016/j.oceaneng.2022.111433 10.1016/j.oceaneng.2020.107827 10.1109/eIT53891.2022.9814030 10.1016/j.ress.2020.107192 10.1002/we.1742 10.4028/www.scientific.net/AST.101.45 10.1016/j.renene.2016.06.016 10.1016/j.ifacol.2015.09.597 10.1109/TIE.2009.2031193 10.1109/JAS.2019.1911414 10.1109/TCST.2014.2364956 10.1049/iet-rpg.2015.0320 10.1109/CCA.2009.5281171 10.1109/TIE.2010.2045318 10.1016/j.engappai.2014.04.005 10.1016/j.oceaneng.2019.106226 10.1002/we.437 10.1016/j.ress.2005.11.037 10.1109/TSTE.2011.2178105 10.1109/ACCESS.2018.2853090 10.1016/j.measurement.2021.109094 10.1109/SysTol.2013.6693872 10.1016/j.oceaneng.2020.107393 10.1016/j.ifacol.2018.09.620 10.2514/6.2009-481 10.1016/j.ijepes.2018.09.015 10.1016/j.asoc.2013.09.016 10.1080/14399776.2005.10781210 10.1016/j.oceaneng.2021.109724 10.1109/ACC.2012.6314887 10.1109/MED.2015.7158749 10.2514/6.1999-28 10.1016/j.oceaneng.2020.107381 10.1016/S0951-8320(00)00077-6 10.1109/CCA.2009.5281172 10.1109/TII.2015.2475219 10.1002/we.1689 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15197186 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_cab2932bceed4913bbce0ab08b2863d1 A745599773 10_3390_en15197186 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c400t-ae46ddcf39f10d0616f37486b2f4c8cf01eec0132ea8ec56f60b19cb846c402c3 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 00:53:34 EDT 2025 Mon Jun 30 07:31:35 EDT 2025 Tue Jul 01 05:44:39 EDT 2025 Tue Jul 01 01:28:22 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-ae46ddcf39f10d0616f37486b2f4c8cf01eec0132ea8ec56f60b19cb846c402c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1815-2478 0000-0003-4522-502X 0000-0002-7393-6235 |
OpenAccessLink | https://doaj.org/article/cab2932bceed4913bbce0ab08b2863d1 |
PQID | 2724236591 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cab2932bceed4913bbce0ab08b2863d1 proquest_journals_2724236591 gale_infotracacademiconefile_A745599773 crossref_primary_10_3390_en15197186 crossref_citationtrail_10_3390_en15197186 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_92 Blesa (ref_48) 2014; 47 ref_138 Odgaard (ref_21) 2015; 40 ref_13 Tobias (ref_28) 2012; 46 Wang (ref_93) 2017; 3 Musarrat (ref_136) 2021; 133 ref_11 ref_10 (ref_52) 2020; 209 Ghane (ref_106) 2018; 21 Grigoriadis (ref_182) 2015; 18 ref_18 Yang (ref_156) 2012; 45 ref_16 Odgaard (ref_12) 2013; 21 Zimroz (ref_110) 2014; 46 Yoon (ref_119) 2015; 62 ref_126 Casau (ref_171) 2012; 45 Zhang (ref_41) 2018; 195 Bhardwaj (ref_60) 2019; 141 Ghane (ref_105) 2017; 753 ref_24 ref_22 Fekih (ref_142) 2008; 2 ref_122 Schulte (ref_175) 2015; 40 ref_20 Wei (ref_85) 2010; 24 Nguyen (ref_111) 2018; 5 Mauricio (ref_114) 2019; 141 Azizi (ref_132) 2019; 135 Langseth (ref_66) 2007; 92 Mansouri (ref_90) 2022; 22 Mousavi (ref_137) 2022; 18 Badihi (ref_133) 2014; 351 Sloth (ref_17) 2011; 21 Reder (ref_63) 2018; 169 Papatheou (ref_98) 2015; 62 Blesa (ref_37) 2016; 30 ref_27 Zhang (ref_32) 2022; 177 Abdelmalek (ref_46) 2016; 91 ref_72 ref_159 Shi (ref_170) 2015; 75 ref_71 ref_158 ref_70 Han (ref_181) 2016; 10 Vidal (ref_7) 2015; 8 Odgaard (ref_125) 2015; 23 Badihi (ref_168) 2015; 23 Li (ref_29) 2016; 12 An (ref_77) 2005; 6 ref_151 ref_79 ref_78 ref_153 Wang (ref_108) 2022; 10 ref_76 ref_155 ref_75 ref_154 ref_74 ref_157 Kim (ref_116) 2019; 188 Rotondo (ref_121) 2012; 45 Chen (ref_95) 2013; 40 Karimi (ref_14) 2009; 56 Schlechtingen (ref_96) 2014; 14 Sanchez (ref_40) 2015; 62 Silva (ref_55) 2020; 207 Yeter (ref_56) 2020; 202 Odgaard (ref_124) 2012; 45 Jiang (ref_88) 2019; 4 Morshed (ref_143) 2020; 41 Puig (ref_50) 2010; 20 ref_82 ref_147 ref_80 Shaker (ref_141) 2017; 42 ref_149 Alkaff (ref_64) 2020; 204 Jiang (ref_109) 2018; 23 ref_89 Kamal (ref_129) 2012; 3 ref_144 ref_86 Parker (ref_15) 2011; 58 ref_84 ref_145 Isermann (ref_69) 2005; 29 Habibi (ref_9) 2019; 135 Frost (ref_152) 2009; 19 Badihi (ref_167) 2020; 11 Tutiven (ref_81) 2018; 51 Pao (ref_150) 2011; 31 Shaker (ref_123) 2012; 45 Bobbio (ref_67) 2001; 71 Kong (ref_99) 2020; 146 ref_172 Kang (ref_61) 2019; 133 Qiao (ref_26) 2015; 62 ref_177 ref_179 ref_178 Badihi (ref_148) 2019; 51 Habibi (ref_36) 2021; 8 Noshirvani (ref_34) 2018; 28 ref_169 Zhu (ref_91) 2020; 53 Sinha (ref_62) 2015; 42 Carroll (ref_97) 2019; 22 Martins (ref_54) 2016; 97 Xiang (ref_100) 2021; 175 Sun (ref_102) 2022; 22 Yang (ref_140) 2018; 119 ref_163 Li (ref_68) 2020; 217 Chen (ref_173) 2022; 143 Wu (ref_184) 2019; 105 Tabatabaeipour (ref_51) 2012; 5 Bangalore (ref_87) 2015; 6 Morshed (ref_139) 2019; 6 Chen (ref_94) 2019; 139 Noshirvani (ref_135) 2019; 26 Adams (ref_30) 2011; 14 Heydari (ref_107) 2021; 9 Habibi (ref_183) 2018; 6 ref_115 Kim (ref_146) 2012; 45 Fan (ref_180) 2012; 6 McMillan (ref_4) 2007; 31 ref_118 Li (ref_59) 2021; 234 Teng (ref_112) 2019; 136 Aitouche (ref_174) 2012; 45 ref_33 ref_113 Aitouche (ref_166) 2022; 2022 Cho (ref_39) 2021; 169 Evans (ref_162) 2015; 23 ref_38 Eryilmaz (ref_65) 2020; 203 ref_103 Shaker (ref_130) 2014; 34 Li (ref_53) 2022; 256 Wen (ref_120) 2020; 71 Maati (ref_165) 2020; 2020 Badihi (ref_8) 2022; 110 Li (ref_131) 2018; 355 Gangsar (ref_31) 2020; 144 ref_47 Mazare (ref_134) 2021; 238 Mousavi (ref_164) 2022; 167 Benlahrache (ref_161) 2017; 50 ref_45 Simani (ref_49) 2015; 1 ref_44 ref_43 ref_42 Nazir (ref_73) 2017; 29 Li (ref_57) 2020; 164 ref_101 ref_1 Zhao (ref_185) 2021; 34 Lan (ref_128) 2018; 116 Hovgaard (ref_160) 2015; 18 ref_3 Musarrat (ref_176) 2021; 9 ref_2 Guo (ref_23) 2012; 3 Echivarria (ref_6) 2008; 130 Haghani (ref_83) 2015; 48 Simani (ref_127) 2014; 24 Guo (ref_104) 2020; 11 Ziyabari (ref_35) 2021; 27 Qiao (ref_25) 2015; 62 Ghane (ref_19) 2017; 137 Abouhnik (ref_117) 2012; 64 ref_5 Li (ref_58) 2020; 162 |
References_xml | – volume: 22 start-page: 360 year: 2019 ident: ref_97 article-title: Wind turbine gearbox failure and remaining useful life prediction using machine learning techniques publication-title: Wind Energy doi: 10.1002/we.2290 – ident: ref_138 doi: 10.1109/GlobConET53749.2022.9872498 – ident: ref_22 doi: 10.1007/978-3-030-05971-2 – ident: ref_78 doi: 10.1109/ICCIA49288.2019.9030913 – volume: 46 start-page: 169 year: 2012 ident: ref_28 article-title: Condition monitoring of wind turbines: Techniques and methods publication-title: Renew. Energy doi: 10.1016/j.renene.2012.03.003 – volume: 202 start-page: 107062 year: 2020 ident: ref_56 article-title: Risk-based maintenance planning of offshore wind turbine farms publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107062 – ident: ref_80 – volume: 42 start-page: 3055 year: 2017 ident: ref_141 article-title: Robust fault-tolerant control of wind turbine systems against actuator and sensor faults publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-017-2525-z – volume: 40 start-page: 50 year: 2015 ident: ref_21 article-title: Gear-box fault detection using time frequency-based methods publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2015.09.004 – volume: 45 start-page: 120 year: 2012 ident: ref_171 article-title: Fault detection and isolation and fault tolerant control of wind turbines using set-valued observers publication-title: IFAC Proc. – volume: 135 start-page: 877 year: 2019 ident: ref_9 article-title: Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review publication-title: Renew. Energy doi: 10.1016/j.renene.2018.12.066 – volume: 30 start-page: 186 year: 2016 ident: ref_37 article-title: Set-membership parity space approach for fault detection in linear uncertain dynamic systems publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.2476 – volume: 28 start-page: e2625 year: 2018 ident: ref_34 article-title: A Robust Fault Detection and Isolation Filter for the Pitch System of a Variable Speed Wind Turbine publication-title: Int. J. Electr. Eng. Syst. – volume: 167 start-page: 112734 year: 2022 ident: ref_164 article-title: Sliding Mode Control of Wind Energy Conversion Systems: Trends and Applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112734 – volume: 29 start-page: 244 year: 2017 ident: ref_73 article-title: Robust fault detection for wind turbines using reference model-based approach publication-title: J. King Saud Univ. Eng. Sci. – ident: ref_16 – volume: 116 start-page: 219 year: 2018 ident: ref_128 article-title: Fault tolerant wind turbine pitch control using adaptive sliding mode estimation publication-title: Renew. Energy doi: 10.1016/j.renene.2016.12.005 – ident: ref_18 doi: 10.3390/pr9020300 – ident: ref_43 doi: 10.1109/CCA.2010.5611266 – volume: 22 start-page: 13581 year: 2022 ident: ref_90 article-title: Interval-Valued Reduced RNN for Fault Detection and Diagnosis for Wind Energy Conversion Systems publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3175866 – volume: 23 start-page: 290 year: 2015 ident: ref_162 article-title: Robust MPC Tower Damping for Variable Speed Wind Turbines publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2310513 – ident: ref_92 doi: 10.20944/preprints202105.0315.v1 – ident: ref_1 – volume: 195 start-page: 1214 year: 2018 ident: ref_41 article-title: An anomaly identification model for wind turbine state parameters publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.05.126 – volume: 9 start-page: 89878 year: 2021 ident: ref_107 article-title: A hybrid intelligent model for the condition monitoring and diagnostics of wind turbines gearbox publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090434 – ident: ref_71 – volume: 3 start-page: 1360 year: 2017 ident: ref_93 article-title: Wind turbine gearbox failure identification with deep neural networks publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2607179 – ident: ref_103 doi: 10.3390/s22134881 – volume: 45 start-page: 114 year: 2012 ident: ref_121 article-title: Fault tolerant control of the wind turbine benchmark using virtual sensors/actuators publication-title: IFAC Proc. – volume: 162 start-page: 1438 year: 2020 ident: ref_58 article-title: A Two-Stage Failure Mode and Effect Analysis of an Offshore Wind Turbine publication-title: Renew. Energy doi: 10.1016/j.renene.2020.08.001 – volume: 18 start-page: 5887 year: 2022 ident: ref_137 article-title: Maximum Power Extraction from Wind Turbines using a Fault-Tolerant Fractional-order Nonsingular Terminal Sliding Mode Control publication-title: Energies – volume: 119 start-page: 577 year: 2018 ident: ref_140 article-title: Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine publication-title: Renew. Energy doi: 10.1016/j.renene.2017.12.047 – volume: 22 start-page: 1541 year: 2022 ident: ref_102 article-title: Bearing Fault Diagnosis Based on Multiple Transformation Domain Fusion and Improved Residual Dense Networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3131722 – ident: ref_24 doi: 10.1007/978-3-642-31488-9_6 – volume: 29 start-page: 71 year: 2005 ident: ref_69 article-title: Model-based Fault Detection and Diagnosis-Status and Applications publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2004.12.002 – volume: 143 start-page: 108443 year: 2022 ident: ref_173 article-title: Adaptive active fault-tolerant MPPT control of variable speed wind turbine considering generator actuator failure publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108443 – ident: ref_82 doi: 10.3390/pr10010054 – ident: ref_153 doi: 10.1109/ACC.2012.6315452 – volume: 91 start-page: 680 year: 2016 ident: ref_46 article-title: A novel scheme for current sensor faults diagnosis in the stator of a DFIG described by a T-S fuzzy model publication-title: Measurement doi: 10.1016/j.measurement.2016.05.102 – volume: 110 start-page: 754 year: 2022 ident: ref_8 article-title: A comprehensive review on signal-based and model-based condition monitoring of wind turbines: Fault diagnosis and life prognosis publication-title: Proc. IEEE doi: 10.1109/JPROC.2022.3171691 – volume: 2 start-page: 762 year: 2008 ident: ref_142 article-title: Effective Fault Tolerant Control Design for a Class of Nonlinear Systems: Application to a Class of Motor Control publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta:20070090 – volume: 31 start-page: 44 year: 2011 ident: ref_150 article-title: Control of Wind Turbines publication-title: IEEE Control Syst. doi: 10.1109/MCS.2010.939962 – ident: ref_13 – volume: 64 start-page: 606 year: 2012 ident: ref_117 article-title: Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.06.008 – volume: 62 start-page: 3783 year: 2015 ident: ref_40 article-title: Fault diagnosis of an advanced wind turbine benchmark using interval-based ARRs and observers publication-title: IEEE Trans. Ind. Electron. – ident: ref_113 doi: 10.3390/app10155251 – volume: 136 start-page: 393 year: 2019 ident: ref_112 article-title: Compound faults diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform publication-title: Renew. Energy doi: 10.1016/j.renene.2018.12.094 – volume: 135 start-page: 55 year: 2019 ident: ref_132 article-title: Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller publication-title: Renew. Energy doi: 10.1016/j.renene.2018.11.106 – volume: 9 start-page: 7237 year: 2021 ident: ref_176 article-title: A fault tolerant control paradigm for DFIG-based wind energy conversion systems in a Wind/PV hybrid microgrid publication-title: IEEE J. Emerg. Sel. Top. Power Electron. doi: 10.1109/JESTPE.2020.3034604 – volume: 3 start-page: 124 year: 2012 ident: ref_23 article-title: Wind turbine generator condition monitoring using temperature trend analysis publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2011.2163430 – ident: ref_42 doi: 10.1109/CCA.2010.5611266 – ident: ref_155 doi: 10.1007/1-84628-493-7 – volume: 177 start-page: 109175 year: 2022 ident: ref_32 article-title: Vibration feature extraction using signal processing techniques for structural health monitoring: A review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109175 – volume: 130 start-page: 031005 year: 2008 ident: ref_6 article-title: Reliability of Wind Turbine Technology Through Time publication-title: J. Sol. Eng. doi: 10.1115/1.2936235 – volume: 2020 start-page: 6210407 year: 2020 ident: ref_165 article-title: Optimal fault tolerant control of large-scale wind turbines in the case of the pitch actuator partial faults publication-title: Complexity doi: 10.1155/2020/6210407 – volume: 27 start-page: 277 year: 2021 ident: ref_35 article-title: Robust fault estimation of a blade pitch and drivetrain system in wind turbine model publication-title: J. Vib. Control doi: 10.1177/1077546320926274 – ident: ref_3 – volume: 53 start-page: 664 year: 2020 ident: ref_91 article-title: A Novel Wind Turbine Fault Detection Method Based on Fuzzy Logic System Using Neural Network Construction Method publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2021.04.157 – ident: ref_11 – volume: 50 start-page: 9902 year: 2017 ident: ref_161 article-title: Fault Tolerant Control of Wind Turbine Using Robust Model Predictive Min-Max approach publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.1622 – volume: 5 start-page: 2424 year: 2012 ident: ref_51 article-title: Fault detection of wind turbines with uncertain parameters: A set-membership approach publication-title: Energies doi: 10.3390/en5072424 – ident: ref_86 – volume: 133 start-page: 1455 year: 2019 ident: ref_61 article-title: Fault Tree Analysis of floating offshore wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.097 – ident: ref_75 doi: 10.1109/ChiCC.2016.7554363 – volume: 21 start-page: 575 year: 2018 ident: ref_106 article-title: Condition monitoring of spar-type floating wind turbine drivetrain using statistical fault diagnosis publication-title: Wind Energy doi: 10.1002/we.2179 – ident: ref_44 – volume: 24 start-page: 687 year: 2010 ident: ref_85 article-title: Sensor fault detection and isolation for wind turbines based on subspace identification and Kalman filter techniques publication-title: Int. J. Adapt. Control doi: 10.1002/acs.1162 – volume: 47 start-page: 4322 year: 2014 ident: ref_48 article-title: Fault Diagnosis of a Wind Farm using Interval Parity Equations publication-title: IFAC Proc. – volume: 139 start-page: 370 year: 2019 ident: ref_94 article-title: Learning deep representation of imbalanced SCADA data for fault detection of wind turbines publication-title: Measurement doi: 10.1016/j.measurement.2019.03.029 – volume: 40 start-page: 82 year: 2015 ident: ref_175 article-title: Fault-tolerant control of wind turbines with hydro-static transmission using Takagie Sugeno and sliding mode techniques publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2015.08.003 – volume: 23 start-page: 1221 year: 2015 ident: ref_125 article-title: A benchmark evaluation of fault tolerant wind turbine control concepts publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2361291 – volume: 2022 start-page: 1290639 year: 2022 ident: ref_166 article-title: Fault-Tolerant Control of Wind Turbine System Using Linear Parameter-Varying Model publication-title: Math. Probl. Eng. – ident: ref_144 doi: 10.1109/CCTA.2017.8062530 – ident: ref_149 doi: 10.1109/ACC.2013.6580525 – volume: 146 start-page: 760 year: 2020 ident: ref_99 article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units publication-title: Renew. Energy doi: 10.1016/j.renene.2019.07.033 – volume: 355 start-page: 8194 year: 2018 ident: ref_131 article-title: Active fault tolerant control of wind turbine systems based on DFIG with actuator fault and disturbance using Takagi–Sugeno fuzzy model publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.08.021 – ident: ref_38 doi: 10.1109/IRSEC.2017.8477263 – volume: 45 start-page: 313 year: 2012 ident: ref_124 article-title: Fault tolerant control of wind turbines using unknown input observers publication-title: IFAC Proc. Vol. doi: 10.3182/20120829-3-MX-2028.00010 – volume: 144 start-page: 106908 year: 2020 ident: ref_31 article-title: Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the art review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106908 – ident: ref_157 doi: 10.1109/ECC.2015.7331098 – volume: 8 start-page: 837 year: 2021 ident: ref_36 article-title: Decoupling adaptive sliding mode observer design for wind turbines subject to simultaneous faults in sensors and actuators publication-title: IEEE/CCA Autom. Sin. doi: 10.1109/JAS.2021.1003931 – volume: 133 start-page: 107306 year: 2021 ident: ref_136 article-title: A fractional order sliding mode control-based topology to improve the transient stability of wind energy systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107306 – volume: 11 start-page: 2119 year: 2020 ident: ref_167 article-title: Fault-Tolerant Cooperative Control in a Wind Farm Using Adaptive Control Reconfiguration and Control Reallocation publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2019.2950681 – volume: 45 start-page: 499 year: 2012 ident: ref_123 article-title: Fault tolerant adaptive sliding mode controller for wind turbine power maximization publication-title: IFAC Proc. – ident: ref_126 – ident: ref_70 – volume: 141 start-page: 693 year: 2019 ident: ref_60 article-title: Reliability prediction of an offshore wind turbine gearbox publication-title: Renew. Energy doi: 10.1016/j.renene.2019.03.136 – volume: 51 start-page: 221 year: 2019 ident: ref_148 article-title: Model-Based Fault-Tolerant Pitch Control of an Offshore Wind Turbine publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2018.09.303 – ident: ref_84 doi: 10.1109/WCICA.2008.4593608 – volume: 169 start-page: 554 year: 2018 ident: ref_63 article-title: Data-driven learning framework for associating weather conditions and wind turbine failures publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.10.004 – volume: 71 start-page: 102729 year: 2020 ident: ref_120 article-title: Monitoring blade loads for a floating wind turbine in wave basin model tests using fiber Bragg grating sensors: A feasibility study publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2020.102729 – volume: 11 start-page: 107 year: 2020 ident: ref_104 article-title: Wind turbine power curve modeling and monitoring with Gaussian process and SPRT publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2018.2884699 – volume: 31 start-page: 267 year: 2007 ident: ref_4 article-title: Quantification of condition monitoring benefit for offshore wind turbines publication-title: Wind. Energy – ident: ref_159 – volume: 24 start-page: 1283 year: 2014 ident: ref_127 article-title: Active actuator fault-tolerant control of a wind turbine benchmark model publication-title: Int. J. Robust Nonlinear Cont. doi: 10.1002/rnc.2993 – ident: ref_45 doi: 10.1109/CoDIT.2013.6689600 – volume: 1 start-page: 45 year: 2015 ident: ref_49 article-title: Wind turbine simulator fault diagnosis via fuzzy modeling and identification techniques publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2014.12.001 – volume: 40 start-page: 6863 year: 2013 ident: ref_95 article-title: Wind turbine pitch faults prognosis using a-priori knowledge-based ANFIS publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.06.018 – volume: 6 start-page: 475 year: 2012 ident: ref_180 article-title: Neuro-adaptive model-reference fault-tolerant control with application to wind turbines publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2011.0250 – volume: 62 start-page: 6546 year: 2015 ident: ref_26 article-title: A survey on wind turbine condition monitoring and fault diagnosis—Part II: Signals and signal processing methods publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2422394 – ident: ref_5 doi: 10.2172/882048 – volume: 34 start-page: 56 year: 2021 ident: ref_185 article-title: Challenges and Opportunities of AI-Enabled Monitoring, Diagnosis & Prognosis: A Review publication-title: Chin. J. Mech. Eng. doi: 10.1186/s10033-021-00570-7 – volume: 20 start-page: 619 year: 2010 ident: ref_50 article-title: Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.2478/v10006-010-0046-y – volume: 21 start-page: 645 year: 2011 ident: ref_17 article-title: Robust and fault-tolerant linear parameter-varying control of wind turbines publication-title: Mechatronics doi: 10.1016/j.mechatronics.2011.02.001 – volume: 234 start-page: 109261 year: 2021 ident: ref_59 article-title: A Failure Analysis of Floating Offshore Wind Turbines using AHP-FMEA Methodology publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109261 – volume: 351 start-page: 3677 year: 2014 ident: ref_133 article-title: Fuzzy gain-scheduled active fault tolerant control of a wind turbine publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2013.05.007 – ident: ref_27 doi: 10.1109/GreenTech.2019.8767157 – ident: ref_179 doi: 10.1109/SYSTOL.2016.7739820 – volume: 137 start-page: 204 year: 2017 ident: ref_19 article-title: Diagnostic monitoring of drivetrain in a 5 MW spar-type floating wind turbine using Hilbert spectral analysis publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.10.374 – ident: ref_115 doi: 10.3390/s19143092 – volume: 41 start-page: 1718 year: 2020 ident: ref_143 article-title: Design of a Chattering-free integral terminal sliding mode approach for DFIG-based wind energy systems publication-title: Optim. Control Appl. Methods doi: 10.1002/oca.2635 – volume: 203 start-page: 107077 year: 2020 ident: ref_65 article-title: Reliability based modelling and analysis for a wind power system integrated by two wind farms considering wind speed dependence publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107077 – ident: ref_169 doi: 10.1109/CSEPS53726.2021.00013 – ident: ref_172 doi: 10.1109/IEMDC.2017.8002012 – volume: 21 start-page: 1168 year: 2013 ident: ref_12 article-title: Fault Tolerant Control of Wind Turbines: A Benchmark Model publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2259235 – ident: ref_101 doi: 10.3390/en11092248 – volume: 62 start-page: 6536 year: 2015 ident: ref_25 article-title: A survey on wind turbine condition monitoring and fault diagnosis—Part I: Components and systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2422112 – volume: 26 start-page: e2411 year: 2019 ident: ref_135 article-title: Fractional-order fault-tolerant pitch control design for a 2.5 MW wind turbine subject to actuator faults publication-title: Struct. Control Health Monit. doi: 10.1002/stc.2411 – volume: 19 start-page: 59 year: 2009 ident: ref_152 article-title: Direct adaptive control of a utility-scale wind turbine for speed regulation publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.1329 – volume: 62 start-page: 6585 year: 2015 ident: ref_119 article-title: On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2442216 – ident: ref_33 doi: 10.1007/978-1-4471-4799-2 – volume: 164 start-page: 133 year: 2020 ident: ref_57 article-title: A Developed Failure Mode and Effect Analysis for Floating Offshore Wind Turbine Support Structures publication-title: Renew. Energy doi: 10.1016/j.renene.2020.09.033 – volume: 4 start-page: 3196 year: 2019 ident: ref_88 article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2844805 – volume: 141 start-page: 031026 year: 2019 ident: ref_114 article-title: Vibration-based condition monitoring of wind turbine gearboxes based on cyclostationary analysis publication-title: J. Eng. Gas Turbines Power doi: 10.1115/1.4041114 – ident: ref_145 doi: 10.3390/en14061791 – volume: 753 start-page: 052017 year: 2017 ident: ref_105 article-title: Statistical fault diagnosis of wind turbine drivetrain applied to a 5MW floating wind turbine publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/753/5/052017 – volume: 6 start-page: 980 year: 2015 ident: ref_87 article-title: An artificial neural network approach for early fault detection of gearbox bearings publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2386305 – volume: 46 start-page: 16 year: 2014 ident: ref_110 article-title: Diagnostics of bearings in presence of strong operating conditions non-stationarity—A procedure of load-dependent features processing with application to wind turbine bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.09.010 – ident: ref_74 doi: 10.3390/en13112972 – volume: 5 start-page: 507 year: 2018 ident: ref_111 article-title: Vibration-based damage detection in wind turbine towers using artificial neural networks publication-title: Struct. Monit. Maint. – ident: ref_10 doi: 10.1007/978-3-662-47943-8 – volume: 169 start-page: 1 year: 2021 ident: ref_39 article-title: Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2020.12.116 – volume: 10 start-page: 67532 year: 2022 ident: ref_108 article-title: A SCADA-Data-Driven Condition Monitoring Method of Wind Turbine Generators publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3185259 – ident: ref_72 – volume: 42 start-page: 735 year: 2015 ident: ref_62 article-title: A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.10.087 – volume: 45 start-page: 946 year: 2012 ident: ref_174 article-title: Unknown Input Observer with Fuzzy Fault Tolerant Control for Wind Energy System publication-title: IFAC Proc. – volume: 8 start-page: 4300 year: 2015 ident: ref_7 article-title: Fault diagnosis and fault-tolerant control of wind turbines via a discrete time controller with a disturbance compensator publication-title: Energies doi: 10.3390/en8054300 – ident: ref_20 – volume: 62 start-page: 6636 year: 2015 ident: ref_98 article-title: A performance monitoring approach for the novel lillgrund offshore wind farm publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2442212 – volume: 75 start-page: 788 year: 2015 ident: ref_170 article-title: An active fault tolerant control approach to an offshore wind turbine model publication-title: Renew. Energy doi: 10.1016/j.renene.2014.10.061 – volume: 23 start-page: 89 year: 2018 ident: ref_109 article-title: Wind Turbine Fault Detection Using a Denoising Autoencoder with Temporal Information publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2759301 – volume: 45 start-page: 337 year: 2012 ident: ref_156 article-title: Fault-tolerant model predictive control of a wind turbine benchmark publication-title: IFAC Proc. – ident: ref_76 – volume: 256 start-page: 111433 year: 2022 ident: ref_53 article-title: A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111433 – volume: 217 start-page: 107827 year: 2020 ident: ref_68 article-title: Reliability analysis of floating offshore wind turbine using Bayesian Networks publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107827 – ident: ref_89 doi: 10.1109/eIT53891.2022.9814030 – volume: 204 start-page: 107192 year: 2020 ident: ref_64 article-title: Network reliability analysis: Matrixexponential approach publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107192 – volume: 18 start-page: 991 year: 2015 ident: ref_160 article-title: Model predictive control for wind power gradients publication-title: Wind Energy doi: 10.1002/we.1742 – ident: ref_118 doi: 10.4028/www.scientific.net/AST.101.45 – volume: 97 start-page: 866 year: 2016 ident: ref_54 article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems publication-title: Renew. Energy doi: 10.1016/j.renene.2016.06.016 – volume: 48 start-page: 633 year: 2015 ident: ref_83 article-title: Data-Driven Multimode Fault Detection for Wind Energy Conversion Systems publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2015.09.597 – volume: 56 start-page: 4660 year: 2009 ident: ref_14 article-title: Current sensor fault-tolerant control for WECS with DFIG publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2009.2031193 – volume: 6 start-page: 566 year: 2019 ident: ref_139 article-title: A Sliding mode approach to enhance the power quality of wind turbines under unbalanced grid conditions publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911414 – volume: 23 start-page: 1351 year: 2015 ident: ref_168 article-title: Wind Turbine Fault Diagnosis and Fault-Tolerant Torque Load Control Against Actuator Faults publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2014.2364956 – volume: 10 start-page: 687 year: 2016 ident: ref_181 article-title: Individual pitch controller based on fuzzy logic control for wind turbine load mitigation publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2015.0320 – ident: ref_147 doi: 10.1109/CCA.2009.5281171 – volume: 58 start-page: 305 year: 2011 ident: ref_15 article-title: Fault-tolerant control for a modular generator–converter scheme for direct-drive wind turbines publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2010.2045318 – volume: 34 start-page: 1 year: 2014 ident: ref_130 article-title: Active sensor fault tolerant output feedback tracking control for wind turbine systems via T–S model publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.04.005 – volume: 188 start-page: 106226 year: 2019 ident: ref_116 article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106226 – volume: 14 start-page: 603 year: 2011 ident: ref_30 article-title: Structural health monitoring of wind turbines: Method and application to a HAWT publication-title: Wind Energy doi: 10.1002/we.437 – ident: ref_79 – volume: 92 start-page: 92 year: 2007 ident: ref_66 article-title: Bayesian networks in reliability publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2005.11.037 – volume: 3 start-page: 231 year: 2012 ident: ref_129 article-title: Robust fuzzy fault tolerant control of wind energy conversion systems subject to sensor faults publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2011.2178105 – volume: 45 start-page: 355 year: 2012 ident: ref_146 article-title: Control allocation based compensation for faulty blade actuator of wind turbine publication-title: IFAC Proc. – volume: 6 start-page: 37464 year: 2018 ident: ref_183 article-title: Adaptive PID control of wind turbines for power regulation with unknown control direction and actuator faults publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853090 – volume: 175 start-page: 109094 year: 2021 ident: ref_100 article-title: Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism publication-title: Measurement doi: 10.1016/j.measurement.2021.109094 – ident: ref_47 doi: 10.1109/SysTol.2013.6693872 – volume: 207 start-page: 107393 year: 2020 ident: ref_55 article-title: Economic feasibility of floating offshore wind farms in Portugal publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107393 – ident: ref_122 – ident: ref_2 – volume: 51 start-page: 480 year: 2018 ident: ref_81 article-title: Fault detection and isolation of pitch actuator faults in a floating wind turbine publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2018.09.620 – ident: ref_154 doi: 10.2514/6.2009-481 – ident: ref_158 – volume: 105 start-page: 660 year: 2019 ident: ref_184 article-title: Adaptive active fault-tolerant MPPT control for wind power generation systems under partial loss of actuator effectiveness publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2018.09.015 – volume: 14 start-page: 447 year: 2014 ident: ref_96 article-title: Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 2: Application examples publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.016 – volume: 6 start-page: 41 year: 2005 ident: ref_77 article-title: Hydraulic actuator leakage fault detection using extended Kalman filter publication-title: Int. J. Fluid Power doi: 10.1080/14399776.2005.10781210 – volume: 238 start-page: 109724 year: 2021 ident: ref_134 article-title: Pitch actuator fault-tolerant control of wind turbines based on time delay control and disturbance observer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109724 – ident: ref_163 doi: 10.1109/ACC.2012.6314887 – ident: ref_177 doi: 10.1109/MED.2015.7158749 – ident: ref_151 doi: 10.2514/6.1999-28 – volume: 209 start-page: 107381 year: 2020 ident: ref_52 article-title: Review of the current status, technology and future trends of offshore wind farms publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107381 – volume: 71 start-page: 249 year: 2001 ident: ref_67 article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/S0951-8320(00)00077-6 – ident: ref_178 doi: 10.1109/CCA.2009.5281172 – volume: 12 start-page: 393 year: 2016 ident: ref_29 article-title: Feature denoising and nearest-farthest distance preserving projection for machine fault diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2015.2475219 – volume: 18 start-page: 187 year: 2015 ident: ref_182 article-title: Anti-windup linear parameter-varying control of pitch actuators in wind turbines publication-title: Wind Energy doi: 10.1002/we.1689 |
SSID | ssj0000331333 |
Score | 2.4135358 |
SecondaryResourceType | review_article |
Snippet | Wind turbines are playing an increasingly important role in renewable power generation. Their complex and large-scale structure, however, and operation in... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 7186 |
SubjectTerms | Air-turbines Alternative energy Alternative energy sources Controllers data-driven and model-based approaches Design Electric power production Electricity Failure fault detection and diagnosis Fault diagnosis Fault tolerance fault-tolerant control Maintenance and repair Maintenance costs Offshore Propagation robustness and reliability Sensors Shutdowns Signal processing signal-based schemes Statistical methods Systems stability Wavelet transforms Wind power wind turbine |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeQvqim6RFkELpwUSyLNnOJWzSLEuhaSkbmpvQsxQWO9n1tn8_M7Z2k0Obm5GFsGc0L2nmG0I-1CVY9RDBc8utzYpoZGZgJPNGVYWsovIcC5y_XqrZVfHlWl6nA7dVSqvc6MReUfvW4Rn5cV6i5Vey5qc3txl2jcLb1dRC4ynZARVcyRHZObu4_P5je8rChIAgTAy4pALi--PQcKzV5Fg8_cAS9YD9_1PLva2Z7pHd5CTSycDVF-RJaF6S5w-gA1-R2dSsFx39PGTK_V5R03g6jM3bRQAL1NHzIQ2dtpH-hNCbztdLi1nuJ3TS0G9_UEuEv6_J1fRifj7LUleEzIG8dZkJhfLeRVFHzjyYYxURQkbZPBaucpHxEBzeoARTBSdVVMzy2llwNGCB3Ik3ZNS0TXhLKCtrKSOXZWTAGO9r4VRlS6MMMMkZNiafNhTSLkGGY-eKhYbQAamp76k5JkfbuTcDUMY_Z50hobczENy6H2iXv3SSFe2MBSckt2i_i5oLC0_MWFbZvFLC8zH5iGzSKILwOc6kSgL4KQSz0pOyQBy1shRjcrjhpE6yudL3O2n_8dcH5FmOxQ596t4hGXXLdXgHLkhn36d9dgcilNs5 priority: 102 providerName: ProQuest |
Title | Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview |
URI | https://www.proquest.com/docview/2724236591 https://doaj.org/article/cab2932bceed4913bbce0ab08b2863d1 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB6sfbEPUqvi2euxYEF8CGazySbp2531PISqyIn3tuxPEI6cnLn23-9MEu09WHzxJYRlCZv5svPNkJlvAb6XObK6Dxi5JcZEadBZpHEkcloWaVYE6Tg1OP-6kpO79HKWzdaO-qKasFYeuDXcqdUGGSkx5MzTkguDd7E2cWGSQgrXJD7IeWvJVOODhcDkS7R6pALz-lNfcerR5NQ0vcZAjVD__9xxwzHjz7DdBYds2C5qBzZ89QU-rUkG7sJkrFfzmv1sK-QenpiuHGvHpou5R-ap2Vlbfs4Wgd1jys2mq6Wh6vYfbFix69_kHfyfPbgbn0_PJlF3GkJkcZ_VkfapdM4GUQYeO6RhGUg6RpokpLawIebeW_pz4nXhbSaDjA0vrcEAAx-QWLEPm9Wi8gfA4rzMssCzPMQIiHOlsLIwuZYawbE67sHJs4WU7aTC6cSKucKUgayp_lmzB0cvcx9bgYxXZ43I0C8zSNS6GUCoVQe1egvqHhwTTIq2Hi7H6q6DAF-KRKzUME9JPy3PRQ_6z0iqbk8-qSSn2FFmJT98j9V8ha2EWiGawr4-bNbLlf-GAUptBvChGF8M4OPo_OrmdtB8mXi9mPG_6qnnMw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKfYUsASIMQhqh0nToKE0Pax2tJ2QWgrenP9REirpN3NUvGn-I3M5LHtAbj1FjmWlYw_z4ztmW8IeV1kYNV9AM8tNiZKgk4jDS2R0zJP0jxIxzHB-XgixyfJp9P0dI387nNhMKyy14mNonaVxTPy7ThDyy_Tgn88v4iwahTervYlNFpYHPpfl7BlW3w42IP5fRPHo_3p7jjqqgpEFvBaR9on0jkbRBE4c2DOZEAKFmnikNjcBsa9t3gD4XXubSqDZIYX1oChhgFiK2DcW2QD3IwCVtHGzv7ky9fVqQ4TAjZ9ouVBFaJg277kmBvKMVn7muVrCgT8yww0tm10n9zrnFI6bFH0gKz58iG5e42q8BEZj_RyVtO9NjLvx4Lq0tG2bVrNPFi8mu62Ye-0CvQbbPXpdDk3GFX_ng5L-vknaiV_-Zic3Ii8npD1sir9U0JZVqRp4GkWGADBuUJYmZtMSw2gsJoNyLteQsp2FOVYKWOmYKuC0lRX0hyQV6u-5y0xx1977aCgVz2QTLtpqObfVbc2ldUGnJ7YoL-QFFwYeGLasNzEuRSOD8hbnCaFSx4-x-oucwF-Csmz1DBLkLcty8SAbPUzqTpdsFBXyN38_-uX5PZ4enykjg4mh8_InRgTLZqwwS2yXs-X_jm4P7V50WGOkrObhvkfwJMY9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QFxFxwBLgBAPUe04cRIkhLp1VcegTKgTezO-oklVMtqUib_Gr-OcJO32ALztLXIsKzn-fL5j-1wIeVlkwOo-gOUWGxMlQaeRhpbIaZknaR6k4xjg_GkqJyfJh9P0dIv8XsfCoFvlWic2itpVFs_IB3GGzC_Tgg9C5xZxPBq_P_8RYQUpvGldl9NoIXLkf13A9m357nAEc_0qjscHs_1J1FUYiCxgt460T6RzNogicOaA2mTAdCzSxCGxuQ2Me2_xNsLr3NtUBskML6wB0oYBYitg3BtkOwNWzHtke-9gevxlc8LDhIANoGhzogpRsIEvOcaJcgzcvsKCTbGAf1FCw3Pju-ROZ6DSYYuoe2TLl_fJ7StpCx-QyViv5jUdtV56Z0uqS0fbtlk198B-Nd1vXeBpFehX2PbT2Wph0MP-LR2W9PNP1FD-4iE5uRZ5PSK9sir9Y0JZVqRp4GkWGIDCuUJYmZtMSw0AsZr1yZu1hJTt0pVj1Yy5gm0LSlNdSrNPXmz6nrdJOv7aaw8FvemBibWbhmrxXXXrVFltwACKDdoOScGFgSemDctNnEvheJ-8xmlSuPzhc6zuohjgpzCRlhpmCeZwyzLRJ7vrmVSdXliqSxTv_P_1c3IT4K0-Hk6PnpBbMcZcNB6Eu6RXL1b-KVhCtXnWQY6Sb9eN8j9-kh0h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Diagnosis+and+Fault+Tolerant+Control+of+Wind+Turbines%3A+An+Overview&rft.jtitle=Energies+%28Basel%29&rft.au=Fekih%2C+Afef&rft.au=Habibi%2C+Hamed&rft.au=Simani%2C+Silvio&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=15&rft.issue=19&rft_id=info:doi/10.3390%2Fen15197186&rft.externalDocID=A745599773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |