Greatly boosting electrochemical hydrogen evolution reaction over Ni3S2 nanosheets rationally decorated by Ni3Sn2S2 quantum dots
[Display omitted] •Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize both strong water absorption and strong H atom desorption.•The optimized Ni3Sn2S2@Ni3S2 surpass commercial Pt/C toward HER.•The more detaile...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 267; p. 118675 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize both strong water absorption and strong H atom desorption.•The optimized Ni3Sn2S2@Ni3S2 surpass commercial Pt/C toward HER.•The more detailed enhancement mechanism were investigated by combining experimental and theoretical investigations.
The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron transfer while prompting hydrogen evolution, but it is very challenging to achieve due to the tough trading off between water absorption and H-desorption ability of the catalyst. Herein, a unique high-surficial multi-heteroatomic catalytic process is realized by rationally design and tailor Ni3Sn2S2 dots-decorated thin Ni3S2 nanosheets to form sheets-on-sheets array self-supported electrode by simple hydrothermal process. The formed Ni3Sn2S2@Ni3S2-2 NF delivers a superior performance very close to the noble catalyst (Pt/C) at low current densities with an onset-potential of nearly 0 mV and overpotentials of 50.7 mV at 10 mA cm−2 while surprisingly surpassing Pt/C at high current densities. The outstanding HER performance of the catalyst can be ascribed that the rationally tuned multi-heterogeneous interfaces and electronic structure control can realize both strong water absorption and strong H atom desorption to not only significantly promotes fast electron transfer, but also greatly enhances the gas release toward efficient HER. This work holds a great promise to fabricate a non-noble HER catalyst for high-performance close to the noble catalysts such as Pt/C while shedding a light on fundamentals to guide construction of high-surficial heteroatomic multi-heterogeneous catalysts with superior performance. |
---|---|
AbstractList | [Display omitted]
•Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize both strong water absorption and strong H atom desorption.•The optimized Ni3Sn2S2@Ni3S2 surpass commercial Pt/C toward HER.•The more detailed enhancement mechanism were investigated by combining experimental and theoretical investigations.
The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron transfer while prompting hydrogen evolution, but it is very challenging to achieve due to the tough trading off between water absorption and H-desorption ability of the catalyst. Herein, a unique high-surficial multi-heteroatomic catalytic process is realized by rationally design and tailor Ni3Sn2S2 dots-decorated thin Ni3S2 nanosheets to form sheets-on-sheets array self-supported electrode by simple hydrothermal process. The formed Ni3Sn2S2@Ni3S2-2 NF delivers a superior performance very close to the noble catalyst (Pt/C) at low current densities with an onset-potential of nearly 0 mV and overpotentials of 50.7 mV at 10 mA cm−2 while surprisingly surpassing Pt/C at high current densities. The outstanding HER performance of the catalyst can be ascribed that the rationally tuned multi-heterogeneous interfaces and electronic structure control can realize both strong water absorption and strong H atom desorption to not only significantly promotes fast electron transfer, but also greatly enhances the gas release toward efficient HER. This work holds a great promise to fabricate a non-noble HER catalyst for high-performance close to the noble catalysts such as Pt/C while shedding a light on fundamentals to guide construction of high-surficial heteroatomic multi-heterogeneous catalysts with superior performance. The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron transfer while prompting hydrogen evolution, but it is very challenging to achieve due to the tough trading off between water absorption and H-desorption ability of the catalyst. Herein, a unique high-surficial multi-heteroatomic catalytic process is realized by rationally design and tailor Ni3Sn2S2 dots-decorated thin Ni3S2 nanosheets to form sheets-on-sheets array self-supported electrode by simple hydrothermal process. The formed Ni3Sn2S2@Ni3S2-2 NF delivers a superior performance very close to the noble catalyst (Pt/C) at low current densities with an onset-potential of nearly 0 mV and overpotentials of 50.7 mV at 10 mA cm−2 while surprisingly surpassing Pt/C at high current densities. The outstanding HER performance of the catalyst can be ascribed that the rationally tuned multi-heterogeneous interfaces and electronic structure control can realize both strong water absorption and strong H atom desorption to not only significantly promotes fast electron transfer, but also greatly enhances the gas release toward efficient HER. This work holds a great promise to fabricate a non-noble HER catalyst for high-performance close to the noble catalysts such as Pt/C while shedding a light on fundamentals to guide construction of high-surficial heteroatomic multi-heterogeneous catalysts with superior performance. |
ArticleNumber | 118675 |
Author | Li, Shengwen Lu, Shi-Yu Jin, Meng Zhang, Yanning Gao, Jiechang |
Author_xml | – sequence: 1 givenname: Shi-Yu orcidid: 0000-0001-7685-684X surname: Lu fullname: Lu, Shi-Yu email: lushiyu1990@pku.edu.cn organization: The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), College of Engineering, Peking University, Beijing 100871, China – sequence: 2 givenname: Shengwen surname: Li fullname: Li, Shengwen organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China – sequence: 3 givenname: Meng surname: Jin fullname: Jin, Meng organization: College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, China – sequence: 4 givenname: Jiechang orcidid: 0000-0001-9062-763X surname: Gao fullname: Gao, Jiechang organization: Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China – sequence: 5 givenname: Yanning orcidid: 0000-0002-3839-2965 surname: Zhang fullname: Zhang, Yanning email: yanningz@uestc.edu.cn organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China |
BookMark | eNqFkUFvGyEQhVGVSHWS_oMekHJeh4XNwvYQqYpap1KUHpqcETvMxlhrcIC15Ft_erG3px6aEwO872nmzQU588EjIZ9rtqxZ3d5slmYHJvdLznh5qlUrbz-QRa2kqIRS4owsWMfbSggpPpKLlDaMMS64WpDfq4gmjwfah5Cy868UR4QcA6xx68CMdH2wMbyip7gP45Rd8LQgcCrCHiN9cuIXp974kNaIOdFojp9mLK4WIZQrWtofTkLPi_ZtMj5PW2pDTlfkfDBjwk9_z0vy8v3b8_1D9fhz9eP-62MFDWO5MhYUE6qGvoFGKYOqgw472wrZDcBQouBMWm5UNzQSbNf1zdBzK3ouJJQMLsn17LuL4W3ClPUmTLF0mTRvuLxtRNvWRfVlVkEMKUUcNLh8GidH40ZdM31MXG_0nLg-Jq7nxAvc_APvotuaeHgPu5sxLOPvHUadwKEHtC6WVWgb3P8N_gDPHaE0 |
CitedBy_id | crossref_primary_10_1021_acsami_1c08148 crossref_primary_10_1002_smtd_202300855 crossref_primary_10_3390_molecules28135073 crossref_primary_10_1039_D2YA00296E crossref_primary_10_1002_adfm_202107651 crossref_primary_10_1016_j_jelechem_2020_114071 crossref_primary_10_1039_D2QI00673A crossref_primary_10_1016_j_cej_2022_134571 crossref_primary_10_1016_j_ijhydene_2024_01_186 crossref_primary_10_1016_j_ijhydene_2020_12_192 crossref_primary_10_1016_j_jcis_2023_06_082 crossref_primary_10_1038_s41467_021_24829_8 crossref_primary_10_1016_j_ijhydene_2024_12_395 crossref_primary_10_1016_j_apcatb_2020_119120 crossref_primary_10_1016_j_cej_2024_158627 crossref_primary_10_1002_smll_202404060 crossref_primary_10_1016_j_jallcom_2024_173647 crossref_primary_10_1021_acscatal_4c05712 crossref_primary_10_1016_j_ijhydene_2024_08_297 crossref_primary_10_1002_smll_202203042 crossref_primary_10_1002_chem_202004267 crossref_primary_10_1016_j_jpowsour_2020_228526 crossref_primary_10_1016_j_renene_2025_122371 crossref_primary_10_1016_j_jcis_2023_05_176 crossref_primary_10_1016_j_nanoen_2023_109090 crossref_primary_10_1016_j_coelec_2022_100963 crossref_primary_10_1360_TB_2022_0174 crossref_primary_10_1016_j_jallcom_2020_155029 crossref_primary_10_1016_j_apcatb_2021_120493 crossref_primary_10_1016_j_jallcom_2020_157207 crossref_primary_10_3390_ma18030549 crossref_primary_10_1016_j_cej_2022_138905 crossref_primary_10_1016_j_ijhydene_2022_12_266 crossref_primary_10_1016_j_psep_2020_04_041 crossref_primary_10_1016_j_fuel_2024_132780 crossref_primary_10_1016_j_jcis_2020_09_099 crossref_primary_10_1021_acs_langmuir_2c02289 crossref_primary_10_1016_j_jcis_2023_03_179 crossref_primary_10_1002_smtd_202101551 crossref_primary_10_1016_S1872_2067_22_64149_4 crossref_primary_10_1039_D1TA09142E crossref_primary_10_1039_D4QI00582A crossref_primary_10_1021_acsami_0c10476 crossref_primary_10_1021_acsanm_3c04566 crossref_primary_10_1002_adfm_202010912 crossref_primary_10_3866_PKU_WHXB202308024 crossref_primary_10_1021_acsanm_0c02391 crossref_primary_10_1039_D0NR07275C crossref_primary_10_1002_smtd_202000494 crossref_primary_10_1016_j_mtnano_2021_100120 crossref_primary_10_1021_acsanm_0c03200 crossref_primary_10_1021_acssuschemeng_1c02807 crossref_primary_10_1016_j_apcatb_2023_123617 crossref_primary_10_1039_D1TA01062J crossref_primary_10_1016_j_jelechem_2023_117852 crossref_primary_10_1038_s44160_023_00444_x crossref_primary_10_1039_D2YA00181K crossref_primary_10_1016_j_colsurfa_2023_132978 crossref_primary_10_1016_j_ijleo_2021_166517 crossref_primary_10_1016_j_est_2022_106540 crossref_primary_10_1016_j_ijbiomac_2021_05_028 crossref_primary_10_1016_j_flatc_2023_100581 crossref_primary_10_1021_acsami_1c09948 crossref_primary_10_1039_D0NR08817J crossref_primary_10_1016_j_fuel_2022_125794 crossref_primary_10_3390_catal10030290 crossref_primary_10_1016_j_jcis_2022_02_066 crossref_primary_10_1039_D2TA03181G crossref_primary_10_1021_acsanm_0c01790 crossref_primary_10_1039_D0TA10855C crossref_primary_10_1021_acs_iecr_9b06988 crossref_primary_10_1016_j_apsusc_2022_153201 crossref_primary_10_1016_j_est_2021_102844 crossref_primary_10_1021_acsanm_4c01502 |
Cites_doi | 10.1021/ja503372r 10.1126/science.aad4998 10.1002/chem.201901215 10.1016/j.jpowsour.2016.12.013 10.1002/aenm.201100223 10.1039/C5EE00751H 10.1016/j.nanoen.2016.06.019 10.1002/adma.201704091 10.1039/c1ee01488a 10.1002/adma.201501692 10.1021/acs.chemmater.8b01699 10.1021/jacs.7b08521 10.1039/C8EE01270A 10.1002/aenm.201402031 10.1016/j.jpowsour.2015.09.027 10.1002/aenm.201802983 10.1002/ange.201508715 10.1021/ja510442p 10.1021/acsami.6b13984 10.1021/nl2020476 10.1038/nmat4778 10.1021/jacs.5b08186 10.1021/jacs.7b07606 10.1021/acsami.5b00873 10.1021/acsenergylett.8b00908 10.1039/C4CS00470A 10.1002/aenm.201670020 10.1038/nenergy.2016.130 10.1002/aenm.201702545 10.1039/C8EE01129J 10.1002/smll.201703323 10.1002/anie.201311111 10.1038/nnano.2016.304 10.1016/j.nanoen.2018.05.033 10.1038/ncomms5695 10.1038/s41570-016-0003 10.1021/acsami.6b13244 10.1021/acsnano.8b03141 10.1016/j.nanoen.2014.09.022 10.1039/C8CC06975A 10.1002/anie.201407031 10.1021/acscatal.6b03192 10.1016/j.ensm.2017.11.006 10.1002/aenm.201502585 10.1039/c3cc43107j |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Jun 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Jun 15, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.118675 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_118675 S0926337320300904 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-adc80381cb4c488ae89c9e9d6379fc0e7e3207d2a89f47cd99b4fb2d3b237c883 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 08:46:41 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 04:35:03 EDT 2025 Sat Mar 02 16:00:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterointerfaces Hydrogen evolution reaction Earth-abundant hybrid catalyst Electronic structure control Metal sulfides |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-adc80381cb4c488ae89c9e9d6379fc0e7e3207d2a89f47cd99b4fb2d3b237c883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9062-763X 0000-0002-3839-2965 0000-0001-7685-684X |
PQID | 2427543661 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2427543661 crossref_citationtrail_10_1016_j_apcatb_2020_118675 crossref_primary_10_1016_j_apcatb_2020_118675 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_118675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Guo, Wang, Chen, Lou, Li (bib0170) 2011; 1 Xu, Wu, Zhang, Shi, Zhang (bib0210) 2013; 49 Deng, Li, Xiao, Tu, Deng, Yang, Tian, Li, Ren, Bao (bib0230) 2015; 8 Zhao, Pi, Shao, Feng, Zhang, Huang (bib0160) 2018; 12 Liu, Gu, Li (bib0200) 2015; 299 Song, Li, Bai, Yan, Li, Sun (bib0240) 2016; 26 Zhang, Rui, Ma, Sun, Wang, Wu, Zhang, Li, Du, Zhang, Lin, Zhu (bib0080) 2018; 30 McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0035) 2015; 137 Hu, Liu, Zhu, Fan, Chai, Zhang, Liu, He, Lin (bib0070) 2018; 50 Fu, Wu, Fu, Gao, Han, Yao, Zhang, Zhong, Wang, Song (bib0095) 2018; 3 Jiao, Zheng, Davey, Qiao (bib0150) 2016; 1 Peng, Jia, Al‐Enizi, Elzatahry, Zheng (bib0190) 2015; 5 Deng, Zhong, Zeng, Wang, Wang, Lu, Xia, Tu (bib0045) 2018; 5 Feng, Wu, Tong, Li (bib0145) 2018; 140 Wu, Lu, Zheng, Ho (bib0060) 2018; 8 Feng, Yu, Wu, Li, Li, Sun, Asefa, Chen, Zou (bib0130) 2015; 137 Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Nørskov (bib0025) 2017; 16 Duan, Chen, Chambers, Andersson, Qiao (bib0155) 2015; 27 Li, Wang, Peng, Zhang, Al-Enizi, Zhang, Sun, Zheng (bib0085) 2016; 6 Zheng, Jiao, Jaroniec, Qiao (bib0135) 2015; 54 Jiao, Zheng, Jaroniec, Qiao (bib0020) 2015; 44 Yang, Zhang, Lin, Li, Chan, Yang, Gao (bib0050) 2017; 7 Xu, Wan, Zhang, Fang, Liu, Huang, Li, Gu, Wang (bib0075) 2018 Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang (bib0205) 2014; 5 Lu, Jin, Zhang, Niu, Gao, Li (bib0165) 2018; 8 Lang, Shi, Wang, Wang, Xia (bib0220) 2015; 7 Liu, Wang, Zhong, Lu, Yang, Liu, Hu, Li (bib0040) 2019; 25 Luo, Zhang, Liu, Zhang, Deng, Xu, Hu, Wang (bib0115) 2017; 9 McKone, Warren, Bierman, Boettcher, Brunschwig, Lewis, Gray (bib0030) 2011; 4 Qu, Yang, Chai, Tang, Shao, Kwok, Yang, Wang, Chua, Wang, Lu, Pan (bib0110) 2017; 9 Yilmaz, Tan, Lim, Ho (bib0120) 2019; 9 Yang, Wang, Wu, Ho (bib0125) 2018; 14 Chen, Duan, Tang, Jin, Qiao (bib0235) 2015; 11 Roger, Shipman, Symes (bib0010) 2017; 1 Mahmood, Li, Jung, Okyay, Ahmad, Kim, Park, Jeong, Baek (bib0015) 2017; 12 Mishra, Zhou, Sun, Dahal, Chen, Ren (bib0100) 2018; 11 Tian, Liu, Asiri, Sun (bib0185) 2014; 136 Zhu, Jin, Tian, Lu, Liu, Zeng, Zhuang, Yang, He, Liu, Dai (bib0055) 2017; 29 Jin, Lu, Ma, Gan, Lei, Zhang, Fu, Yang, Yan (bib0175) 2017; 341 Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib0005) 2017; 355 Ma, Lang, Yan, Wang, Tan, Feng, Xia, Zhong, Liu, Kang, Li (bib0065) 2018; 11 Liu, Tang, Lu, Zou, Gu, Zhang, Li (bib0105) 2018; 54 Jia, Zhao, Chen, Shang, Shi, Kang, Waterhouse, Wu, Tung, Zhang (bib0180) 2016; 6 Saadi, Carim, Drisdell, Gul, Baricuatro, Yano, Soriaga, Lewis (bib0090) 2017; 139 Chen, Cummins, Reinecke, Clark, Sunkara, Jaramillo (bib0225) 2011; 11 Ma, Wu, Xia, Xu, Lou (bib0195) 2015; 127 Li, Li, Cao, Jin, Wang, Sun, Ning, Wang, Jiao (bib0140) 2018; 12 Zou, Huang, Goswami, Silva, Sathe, Mikmeková, Asefa (bib0215) 2014; 53 Liu (10.1016/j.apcatb.2020.118675_bib0040) 2019; 25 Zheng (10.1016/j.apcatb.2020.118675_bib0135) 2015; 54 Li (10.1016/j.apcatb.2020.118675_bib0140) 2018; 12 Fu (10.1016/j.apcatb.2020.118675_bib0095) 2018; 3 Gong (10.1016/j.apcatb.2020.118675_bib0205) 2014; 5 Yang (10.1016/j.apcatb.2020.118675_bib0050) 2017; 7 Jin (10.1016/j.apcatb.2020.118675_bib0175) 2017; 341 Tian (10.1016/j.apcatb.2020.118675_bib0185) 2014; 136 Yang (10.1016/j.apcatb.2020.118675_bib0125) 2018; 14 Xu (10.1016/j.apcatb.2020.118675_bib0075) 2018 Jia (10.1016/j.apcatb.2020.118675_bib0180) 2016; 6 Wu (10.1016/j.apcatb.2020.118675_bib0060) 2018; 8 Peng (10.1016/j.apcatb.2020.118675_bib0190) 2015; 5 Luo (10.1016/j.apcatb.2020.118675_bib0115) 2017; 9 Seh (10.1016/j.apcatb.2020.118675_bib0005) 2017; 355 Feng (10.1016/j.apcatb.2020.118675_bib0130) 2015; 137 Mahmood (10.1016/j.apcatb.2020.118675_bib0015) 2017; 12 McCrory (10.1016/j.apcatb.2020.118675_bib0035) 2015; 137 Deng (10.1016/j.apcatb.2020.118675_bib0045) 2018; 5 Saadi (10.1016/j.apcatb.2020.118675_bib0090) 2017; 139 McKone (10.1016/j.apcatb.2020.118675_bib0030) 2011; 4 Mishra (10.1016/j.apcatb.2020.118675_bib0100) 2018; 11 Ma (10.1016/j.apcatb.2020.118675_bib0195) 2015; 127 Jiao (10.1016/j.apcatb.2020.118675_bib0150) 2016; 1 Chen (10.1016/j.apcatb.2020.118675_bib0235) 2015; 11 Qu (10.1016/j.apcatb.2020.118675_bib0110) 2017; 9 Lu (10.1016/j.apcatb.2020.118675_bib0165) 2018; 8 Zhang (10.1016/j.apcatb.2020.118675_bib0080) 2018; 30 Song (10.1016/j.apcatb.2020.118675_bib0240) 2016; 26 Roger (10.1016/j.apcatb.2020.118675_bib0010) 2017; 1 Montoya (10.1016/j.apcatb.2020.118675_bib0025) 2017; 16 Duan (10.1016/j.apcatb.2020.118675_bib0155) 2015; 27 Guo (10.1016/j.apcatb.2020.118675_bib0170) 2011; 1 Chen (10.1016/j.apcatb.2020.118675_bib0225) 2011; 11 Zhao (10.1016/j.apcatb.2020.118675_bib0160) 2018; 12 Zou (10.1016/j.apcatb.2020.118675_bib0215) 2014; 53 Lang (10.1016/j.apcatb.2020.118675_bib0220) 2015; 7 Deng (10.1016/j.apcatb.2020.118675_bib0230) 2015; 8 Zhu (10.1016/j.apcatb.2020.118675_bib0055) 2017; 29 Hu (10.1016/j.apcatb.2020.118675_bib0070) 2018; 50 Xu (10.1016/j.apcatb.2020.118675_bib0210) 2013; 49 Liu (10.1016/j.apcatb.2020.118675_bib0105) 2018; 54 Yilmaz (10.1016/j.apcatb.2020.118675_bib0120) 2019; 9 Feng (10.1016/j.apcatb.2020.118675_bib0145) 2018; 140 Liu (10.1016/j.apcatb.2020.118675_bib0200) 2015; 299 Jiao (10.1016/j.apcatb.2020.118675_bib0020) 2015; 44 Ma (10.1016/j.apcatb.2020.118675_bib0065) 2018; 11 Li (10.1016/j.apcatb.2020.118675_bib0085) 2016; 6 |
References_xml | – volume: 136 start-page: 7587 year: 2014 end-page: 7590 ident: bib0185 article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 7826 year: 2019 end-page: 7830 ident: bib0040 article-title: Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights publication-title: Chemistry – volume: 8 year: 2018 ident: bib0060 article-title: Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis publication-title: Adv. Energy Mater. – volume: 137 start-page: 14023 year: 2015 end-page: 14026 ident: bib0130 article-title: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 ident: bib0165 article-title: Chemically exfoliating biomass into a grapheme-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors publication-title: Adv. Energy Mater. – volume: 11 start-page: 11 year: 2015 end-page: 18 ident: bib0235 article-title: Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst publication-title: Nano Energy – volume: 299 start-page: 342 year: 2015 end-page: 346 ident: bib0200 article-title: Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water publication-title: J. Power Sources – volume: 9 start-page: 5959 year: 2017 end-page: 5967 ident: bib0110 article-title: Facile synthesis of vanadium-doped Ni publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2016 ident: bib0180 article-title: Ni publication-title: Adv. Energy Mater. – volume: 140 start-page: 610 year: 2018 end-page: 617 ident: bib0145 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1744 year: 2018 end-page: 1752 ident: bib0095 article-title: Skutterudite-type ternary Co publication-title: ACS Energy Lett. – volume: 12 start-page: 6245 year: 2018 end-page: 6251 ident: bib0160 article-title: Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface publication-title: ACS Nano – volume: 50 start-page: 212 year: 2018 end-page: 219 ident: bib0070 article-title: Crafting MoC publication-title: Nano Energy – volume: 5 year: 2015 ident: bib0190 article-title: From water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts publication-title: Adv. Energy Mater. – volume: 137 start-page: 4347 year: 2015 end-page: 4357 ident: bib0035 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. – volume: 14 start-page: e1703323 year: 2018 ident: bib0125 article-title: Noble metal-free nanocatalysts with vacancies for electrochemical water splitting publication-title: Small – volume: 11 start-page: 4168 year: 2011 end-page: 4175 ident: bib0225 article-title: Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials publication-title: Nano Lett. – volume: 9 start-page: 2500 year: 2017 end-page: 2508 ident: bib0115 article-title: Targeted synthesis of unique nickel sulfide (NiS, NiS publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2019 ident: bib0120 article-title: Pseudomorphic transformation of interpenetrated Prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting publication-title: Adv. Energy Mater. – volume: 4 start-page: 3573 year: 2011 end-page: 3583 ident: bib0030 article-title: Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes publication-title: Energy Environ. Sci. – volume: 12 start-page: 441 year: 2017 ident: bib0015 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat. Nanotechnol. – volume: 7 start-page: 2357 year: 2017 end-page: 2366 ident: bib0050 article-title: MoS publication-title: ACS Catal. – volume: 127 start-page: 15615 year: 2015 end-page: 15619 ident: bib0195 article-title: Hierarchical β-Mo publication-title: Angew. Chem. – volume: 139 start-page: 12927 year: 2017 end-page: 12930 ident: bib0090 article-title: Operando spectroscopic analysis of CoP films electrocatalyzing the hydrogen-evolution reaction publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 0003 year: 2017 ident: bib0010 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. – year: 2018 ident: bib0075 article-title: A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V publication-title: Adv. Energy Mater. – volume: 29 year: 2017 ident: bib0055 article-title: In situ coupling strategy for the preparation of FeCo alloys and Co publication-title: Adv. Mater. – volume: 5 start-page: 4695 year: 2014 ident: bib0205 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat. Commun. – volume: 49 start-page: 6656 year: 2013 end-page: 6658 ident: bib0210 article-title: Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction publication-title: Chem. Commun. – volume: 341 start-page: 294 year: 2017 end-page: 301 ident: bib0175 article-title: Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors publication-title: J. Power Sources – volume: 54 start-page: 12408 year: 2018 end-page: 12411 ident: bib0105 article-title: Rationally tuning the atomic ratio of electrodeposited NiP for greatly enhanced hydrogen evolution in alkaline media publication-title: Chem. Commun. (Camb.) – volume: 30 start-page: 4762 year: 2018 end-page: 4769 ident: bib0080 article-title: Cost-effective vertical carbon nanosheets/iron-based composites as efficient electrocatalysts for water splitting reaction publication-title: Chem. Mater. – volume: 12 start-page: 44 year: 2018 end-page: 53 ident: bib0140 article-title: Electrospun three dimensional Co/CoP@ nitrogen-doped carbon nanofibers network for efficient hydrogen evolution publication-title: Energy Storage Mater. – volume: 1 start-page: 736 year: 2011 end-page: 741 ident: bib0170 article-title: A hierarchically nanostructured composite of MnO publication-title: Adv. Energy Mater. – volume: 1 start-page: 16130 year: 2016 ident: bib0150 article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene publication-title: Nat. Energy – volume: 26 start-page: 533 year: 2016 end-page: 540 ident: bib0240 article-title: Morphology-dependent performance of nanostructured Ni publication-title: Nano Energy – volume: 53 start-page: 4372 year: 2014 end-page: 4376 ident: bib0215 article-title: Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1594 year: 2015 end-page: 1601 ident: bib0230 article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS publication-title: Energy Environ. Sci. – volume: 11 start-page: 2114 year: 2018 end-page: 2123 ident: bib0065 article-title: High efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst publication-title: Energy Environ. Sci. – volume: 11 start-page: 2246 year: 2018 end-page: 2252 ident: bib0100 article-title: Hierarchical CoP/Ni publication-title: Energy Environ. Sci. – volume: 355 year: 2017 ident: bib0005 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: bib0020 article-title: Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 6 year: 2016 ident: bib0085 article-title: Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts publication-title: adv. energy mater. – volume: 16 start-page: 70 year: 2017 ident: bib0025 article-title: Materials for solar fuels and chemicals publication-title: Nat. Mater. – volume: 54 start-page: 52 year: 2015 end-page: 65 ident: bib0135 article-title: Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 9098 year: 2015 end-page: 9102 ident: bib0220 article-title: Hollow core–shell structured Ni–Sn@ C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2018 ident: bib0045 article-title: Hollow TiO publication-title: Adv. Sci. (Weinh) – volume: 27 start-page: 4234 year: 2015 end-page: 4241 ident: bib0155 article-title: 3D WS publication-title: Adv. Mater. – volume: 136 start-page: 7587 year: 2014 ident: 10.1016/j.apcatb.2020.118675_bib0185 article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503372r – volume: 355 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0005 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 25 start-page: 7826 year: 2019 ident: 10.1016/j.apcatb.2020.118675_bib0040 article-title: Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights publication-title: Chemistry doi: 10.1002/chem.201901215 – volume: 341 start-page: 294 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0175 article-title: Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.12.013 – volume: 1 start-page: 736 year: 2011 ident: 10.1016/j.apcatb.2020.118675_bib0170 article-title: A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100223 – volume: 8 start-page: 1594 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0230 article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00751H – volume: 26 start-page: 533 year: 2016 ident: 10.1016/j.apcatb.2020.118675_bib0240 article-title: Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.019 – volume: 5 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0045 article-title: Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient Oxygen/Hydrogen production publication-title: Adv. Sci. (Weinh) – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0055 article-title: In situ coupling strategy for the preparation of FeCo alloys and Co4N hybrid for highly efficient oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201704091 – volume: 4 start-page: 3573 year: 2011 ident: 10.1016/j.apcatb.2020.118675_bib0030 article-title: Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01488a – volume: 27 start-page: 4234 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0155 article-title: 3D WS2 nanolayers@ heteroatom-doped graphene films as hydrogen evolution catalyst electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201501692 – volume: 30 start-page: 4762 issue: 14 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0080 article-title: Cost-effective vertical carbon nanosheets/iron-based composites as efficient electrocatalysts for water splitting reaction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01699 – volume: 140 start-page: 610 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0145 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08521 – volume: 11 start-page: 2246 issue: 8 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0100 article-title: Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01270A – volume: 5 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0190 article-title: From water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402031 – volume: 299 start-page: 342 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0200 article-title: Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.027 – volume: 9 year: 2019 ident: 10.1016/j.apcatb.2020.118675_bib0120 article-title: Pseudomorphic transformation of interpenetrated Prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802983 – volume: 127 start-page: 15615 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0195 article-title: Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production publication-title: Angew. Chem. doi: 10.1002/ange.201508715 – volume: 137 start-page: 4347 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0035 article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510442p – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0060 article-title: Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis publication-title: Adv. Energy Mater. – volume: 9 start-page: 2500 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0115 article-title: Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13984 – volume: 11 start-page: 4168 year: 2011 ident: 10.1016/j.apcatb.2020.118675_bib0225 article-title: Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials publication-title: Nano Lett. doi: 10.1021/nl2020476 – volume: 16 start-page: 70 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0025 article-title: Materials for solar fuels and chemicals publication-title: Nat. Mater. doi: 10.1038/nmat4778 – volume: 137 start-page: 14023 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0130 article-title: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08186 – volume: 139 start-page: 12927 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0090 article-title: Operando spectroscopic analysis of CoP films electrocatalyzing the hydrogen-evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07606 – volume: 7 start-page: 9098 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0220 article-title: Hollow core–shell structured Ni–Sn@ C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00873 – volume: 3 start-page: 1744 issue: 7 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0095 article-title: Skutterudite-type ternary Co1-xNixP3 nanoneedle arrays electrocatalysts for enhanced hydrogen and oxygen evolution publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00908 – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0020 article-title: Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 6 year: 2016 ident: 10.1016/j.apcatb.2020.118675_bib0085 article-title: Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts publication-title: adv. energy mater. doi: 10.1002/aenm.201670020 – volume: 1 start-page: 16130 year: 2016 ident: 10.1016/j.apcatb.2020.118675_bib0150 article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene publication-title: Nat. Energy doi: 10.1038/nenergy.2016.130 – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0165 article-title: Chemically exfoliating biomass into a grapheme-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702545 – volume: 11 start-page: 2114 issue: 8 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0065 article-title: High efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01129J – year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0075 article-title: A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V8C7 networks publication-title: Adv. Energy Mater. – volume: 14 start-page: e1703323 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0125 article-title: Noble metal-free nanocatalysts with vacancies for electrochemical water splitting publication-title: Small doi: 10.1002/smll.201703323 – volume: 53 start-page: 4372 year: 2014 ident: 10.1016/j.apcatb.2020.118675_bib0215 article-title: Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201311111 – volume: 12 start-page: 441 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0015 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 50 start-page: 212 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0070 article-title: Crafting MoC2 doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.033 – volume: 5 start-page: 4695 year: 2014 ident: 10.1016/j.apcatb.2020.118675_bib0205 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat. Commun. doi: 10.1038/ncomms5695 – volume: 1 start-page: 0003 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0010 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 9 start-page: 5959 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0110 article-title: Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13244 – volume: 12 start-page: 6245 issue: 6 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0160 article-title: Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface publication-title: ACS Nano doi: 10.1021/acsnano.8b03141 – volume: 11 start-page: 11 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0235 article-title: Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.09.022 – volume: 54 start-page: 12408 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0105 article-title: Rationally tuning the atomic ratio of electrodeposited NiP for greatly enhanced hydrogen evolution in alkaline media publication-title: Chem. Commun. (Camb.) doi: 10.1039/C8CC06975A – volume: 54 start-page: 52 year: 2015 ident: 10.1016/j.apcatb.2020.118675_bib0135 article-title: Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407031 – volume: 7 start-page: 2357 year: 2017 ident: 10.1016/j.apcatb.2020.118675_bib0050 article-title: MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.6b03192 – volume: 12 start-page: 44 year: 2018 ident: 10.1016/j.apcatb.2020.118675_bib0140 article-title: Electrospun three dimensional Co/CoP@ nitrogen-doped carbon nanofibers network for efficient hydrogen evolution publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.11.006 – volume: 6 year: 2016 ident: 10.1016/j.apcatb.2020.118675_bib0180 article-title: Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502585 – volume: 49 start-page: 6656 year: 2013 ident: 10.1016/j.apcatb.2020.118675_bib0210 article-title: Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction publication-title: Chem. Commun. doi: 10.1039/c3cc43107j |
SSID | ssj0002328 |
Score | 2.578761 |
Snippet | [Display omitted]
•Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize... The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118675 |
SubjectTerms | Absorption Catalysts Current density Desorption Earth-abundant hybrid catalyst Electrochemistry Electrodes Electron transfer Electronic structure Electronic structure control Evolution Heterointerfaces Hydrogen Hydrogen evolution reaction Hydrogen evolution reactions Interfaces Low currents Metal sulfides Nanosheets Nickel sulfide Quantum dots Reaction kinetics Sheets Water absorption |
Title | Greatly boosting electrochemical hydrogen evolution reaction over Ni3S2 nanosheets rationally decorated by Ni3Sn2S2 quantum dots |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.118675 https://www.proquest.com/docview/2427543661 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CcBg7TFsBjQ2QD7t6LbYb20dUgcqm9cKQuFnxR0QnlpYmndTLtD99z44DG5qEtGOi96zI79v5vWeAD54z7cWppawqCirUyFKFpRCtOEY_5kIVUhf_l1kxvRafbsY3WzDpe2EirDL7_s6nJ2-d3wzzbg6X8_nwaqRZwbnkDPV0pNNMUCFk1PKPPx9hHpgxJG-MxDRS9-1zCeNVLl3ZWqwSWfQdqohow3-HpyeOOkWfi9fwKqeN5Kz7sjewFeoBvJj0t7UN4OUfgwUHcHD-2L-GbNmAmz34lY4E7jYEk-smIp5JvgfH5cEB5HbjVwvUKhJ-ZK0kyJK6H0iEe5LZnF8xUpf1orkNoW3IKp8n4qo-FrOYvXpiN4mwZkh7v0bxrb8TLICbfbi-OP86mdJ8CQN1aN4tLb1T8W-is8KhsZdBaaeD9gWXunKjIAMKQHpWKl0J6bzWVlSWeW4Zl04pfgDb9aIOb4EoK3WJYTFgmiOsK7CUqQoefCg1lvSsOgTe771xeUJ5vCjjzvRQtG-mk5iJEjOdxA6BPnAtuwkdz9DLXqzmL00zGESe4TzqtcBkS28MpjhyLDimOe_-e-H3sBufIgLtdHwE2-1qHY4x12ntSVLmE9g5u_w8nf0GVf4AZQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9C5QA7TKwDjVE2H3a1Wuw0to-oKioDegEkblb8EdGJpaVJkXrjT-c5cWAgJKRdk_esyO_r95z3ngF-Oc6US44MZXma0kQODJWYCtGcY_Rj1ue-7uK_mKaT6-T3zfBmA0ZtL0woq4y-v_HptbeOT_pxN_uL2ax_OVAs5Vxwhno6UGEm6GaYTjXswObx6dlk-uyQETTUDhnpaWBoO-jqMq9sYbPKYKLIgvuQaSg4fD9CvfHVdQA62YHPETmS4-bjvsCGL7qwNWovbOvCp39mC3Zhb_zSwoZs0YbLr_BYnwrcrQni6zIUPZN4FY6NswPI7dot56hYxD9ExSTIUjdAkFDxSaYzfslIkRXz8tb7qiTLeKSIq7qQzyKAdcSsa8KCIe39CiW4-kswBy534fpkfDWa0HgPA7Vo4RXNnJXhh6I1iUV7z7xUVnnlUi5UbgdeeJSBcCyTKk-EdUqZJDfMccO4sFLyPegU88J_AyKNUBlGRo9IJzE2xWwmT7l3PlOY1bN8H3i799rGIeXhrow73Vaj_dGNxHSQmG4ktg_0mWvRDOn4gF60YtWvlE1jHPmAs9dqgY7GXmpEOWKYcEQ63_974Z-wNbm6ONfnp9OzA9gOb0JB2tGwB51qufKHCH0q8yOq9hMTKwMW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greatly+boosting+electrochemical+hydrogen+evolution+reaction+over+Ni3S2+nanosheets+rationally+decorated+by+Ni3Sn2S2+quantum+dots&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Lu%2C+Shi-Yu&rft.au=Li%2C+Shengwen&rft.au=Jin%2C+Meng&rft.au=Gao%2C+Jiechang&rft.date=2020-06-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=267&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2020.118675&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |