Greatly boosting electrochemical hydrogen evolution reaction over Ni3S2 nanosheets rationally decorated by Ni3Sn2S2 quantum dots

[Display omitted] •Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize both strong water absorption and strong H atom desorption.•The optimized Ni3Sn2S2@Ni3S2 surpass commercial Pt/C toward HER.•The more detaile...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 267; p. 118675
Main Authors Lu, Shi-Yu, Li, Shengwen, Jin, Meng, Gao, Jiechang, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize both strong water absorption and strong H atom desorption.•The optimized Ni3Sn2S2@Ni3S2 surpass commercial Pt/C toward HER.•The more detailed enhancement mechanism were investigated by combining experimental and theoretical investigations. The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron transfer while prompting hydrogen evolution, but it is very challenging to achieve due to the tough trading off between water absorption and H-desorption ability of the catalyst. Herein, a unique high-surficial multi-heteroatomic catalytic process is realized by rationally design and tailor Ni3Sn2S2 dots-decorated thin Ni3S2 nanosheets to form sheets-on-sheets array self-supported electrode by simple hydrothermal process. The formed Ni3Sn2S2@Ni3S2-2 NF delivers a superior performance very close to the noble catalyst (Pt/C) at low current densities with an onset-potential of nearly 0 mV and overpotentials of 50.7 mV at 10 mA cm−2 while surprisingly surpassing Pt/C at high current densities. The outstanding HER performance of the catalyst can be ascribed that the rationally tuned multi-heterogeneous interfaces and electronic structure control can realize both strong water absorption and strong H atom desorption to not only significantly promotes fast electron transfer, but also greatly enhances the gas release toward efficient HER. This work holds a great promise to fabricate a non-noble HER catalyst for high-performance close to the noble catalysts such as Pt/C while shedding a light on fundamentals to guide construction of high-surficial heteroatomic multi-heterogeneous catalysts with superior performance.
AbstractList [Display omitted] •Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize both strong water absorption and strong H atom desorption.•The optimized Ni3Sn2S2@Ni3S2 surpass commercial Pt/C toward HER.•The more detailed enhancement mechanism were investigated by combining experimental and theoretical investigations. The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron transfer while prompting hydrogen evolution, but it is very challenging to achieve due to the tough trading off between water absorption and H-desorption ability of the catalyst. Herein, a unique high-surficial multi-heteroatomic catalytic process is realized by rationally design and tailor Ni3Sn2S2 dots-decorated thin Ni3S2 nanosheets to form sheets-on-sheets array self-supported electrode by simple hydrothermal process. The formed Ni3Sn2S2@Ni3S2-2 NF delivers a superior performance very close to the noble catalyst (Pt/C) at low current densities with an onset-potential of nearly 0 mV and overpotentials of 50.7 mV at 10 mA cm−2 while surprisingly surpassing Pt/C at high current densities. The outstanding HER performance of the catalyst can be ascribed that the rationally tuned multi-heterogeneous interfaces and electronic structure control can realize both strong water absorption and strong H atom desorption to not only significantly promotes fast electron transfer, but also greatly enhances the gas release toward efficient HER. This work holds a great promise to fabricate a non-noble HER catalyst for high-performance close to the noble catalysts such as Pt/C while shedding a light on fundamentals to guide construction of high-surficial heteroatomic multi-heterogeneous catalysts with superior performance.
The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron transfer while prompting hydrogen evolution, but it is very challenging to achieve due to the tough trading off between water absorption and H-desorption ability of the catalyst. Herein, a unique high-surficial multi-heteroatomic catalytic process is realized by rationally design and tailor Ni3Sn2S2 dots-decorated thin Ni3S2 nanosheets to form sheets-on-sheets array self-supported electrode by simple hydrothermal process. The formed Ni3Sn2S2@Ni3S2-2 NF delivers a superior performance very close to the noble catalyst (Pt/C) at low current densities with an onset-potential of nearly 0 mV and overpotentials of 50.7 mV at 10 mA cm−2 while surprisingly surpassing Pt/C at high current densities. The outstanding HER performance of the catalyst can be ascribed that the rationally tuned multi-heterogeneous interfaces and electronic structure control can realize both strong water absorption and strong H atom desorption to not only significantly promotes fast electron transfer, but also greatly enhances the gas release toward efficient HER. This work holds a great promise to fabricate a non-noble HER catalyst for high-performance close to the noble catalysts such as Pt/C while shedding a light on fundamentals to guide construction of high-surficial heteroatomic multi-heterogeneous catalysts with superior performance.
ArticleNumber 118675
Author Li, Shengwen
Lu, Shi-Yu
Jin, Meng
Zhang, Yanning
Gao, Jiechang
Author_xml – sequence: 1
  givenname: Shi-Yu
  orcidid: 0000-0001-7685-684X
  surname: Lu
  fullname: Lu, Shi-Yu
  email: lushiyu1990@pku.edu.cn
  organization: The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), College of Engineering, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Shengwen
  surname: Li
  fullname: Li, Shengwen
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
– sequence: 3
  givenname: Meng
  surname: Jin
  fullname: Jin, Meng
  organization: College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 4
  givenname: Jiechang
  orcidid: 0000-0001-9062-763X
  surname: Gao
  fullname: Gao, Jiechang
  organization: Institute for Clean Energy & Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
– sequence: 5
  givenname: Yanning
  orcidid: 0000-0002-3839-2965
  surname: Zhang
  fullname: Zhang, Yanning
  email: yanningz@uestc.edu.cn
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
BookMark eNqFkUFvGyEQhVGVSHWS_oMekHJeh4XNwvYQqYpap1KUHpqcETvMxlhrcIC15Ft_erG3px6aEwO872nmzQU588EjIZ9rtqxZ3d5slmYHJvdLznh5qlUrbz-QRa2kqIRS4owsWMfbSggpPpKLlDaMMS64WpDfq4gmjwfah5Cy868UR4QcA6xx68CMdH2wMbyip7gP45Rd8LQgcCrCHiN9cuIXp974kNaIOdFojp9mLK4WIZQrWtofTkLPi_ZtMj5PW2pDTlfkfDBjwk9_z0vy8v3b8_1D9fhz9eP-62MFDWO5MhYUE6qGvoFGKYOqgw472wrZDcBQouBMWm5UNzQSbNf1zdBzK3ouJJQMLsn17LuL4W3ClPUmTLF0mTRvuLxtRNvWRfVlVkEMKUUcNLh8GidH40ZdM31MXG_0nLg-Jq7nxAvc_APvotuaeHgPu5sxLOPvHUadwKEHtC6WVWgb3P8N_gDPHaE0
CitedBy_id crossref_primary_10_1021_acsami_1c08148
crossref_primary_10_1002_smtd_202300855
crossref_primary_10_3390_molecules28135073
crossref_primary_10_1039_D2YA00296E
crossref_primary_10_1002_adfm_202107651
crossref_primary_10_1016_j_jelechem_2020_114071
crossref_primary_10_1039_D2QI00673A
crossref_primary_10_1016_j_cej_2022_134571
crossref_primary_10_1016_j_ijhydene_2024_01_186
crossref_primary_10_1016_j_ijhydene_2020_12_192
crossref_primary_10_1016_j_jcis_2023_06_082
crossref_primary_10_1038_s41467_021_24829_8
crossref_primary_10_1016_j_ijhydene_2024_12_395
crossref_primary_10_1016_j_apcatb_2020_119120
crossref_primary_10_1016_j_cej_2024_158627
crossref_primary_10_1002_smll_202404060
crossref_primary_10_1016_j_jallcom_2024_173647
crossref_primary_10_1021_acscatal_4c05712
crossref_primary_10_1016_j_ijhydene_2024_08_297
crossref_primary_10_1002_smll_202203042
crossref_primary_10_1002_chem_202004267
crossref_primary_10_1016_j_jpowsour_2020_228526
crossref_primary_10_1016_j_renene_2025_122371
crossref_primary_10_1016_j_jcis_2023_05_176
crossref_primary_10_1016_j_nanoen_2023_109090
crossref_primary_10_1016_j_coelec_2022_100963
crossref_primary_10_1360_TB_2022_0174
crossref_primary_10_1016_j_jallcom_2020_155029
crossref_primary_10_1016_j_apcatb_2021_120493
crossref_primary_10_1016_j_jallcom_2020_157207
crossref_primary_10_3390_ma18030549
crossref_primary_10_1016_j_cej_2022_138905
crossref_primary_10_1016_j_ijhydene_2022_12_266
crossref_primary_10_1016_j_psep_2020_04_041
crossref_primary_10_1016_j_fuel_2024_132780
crossref_primary_10_1016_j_jcis_2020_09_099
crossref_primary_10_1021_acs_langmuir_2c02289
crossref_primary_10_1016_j_jcis_2023_03_179
crossref_primary_10_1002_smtd_202101551
crossref_primary_10_1016_S1872_2067_22_64149_4
crossref_primary_10_1039_D1TA09142E
crossref_primary_10_1039_D4QI00582A
crossref_primary_10_1021_acsami_0c10476
crossref_primary_10_1021_acsanm_3c04566
crossref_primary_10_1002_adfm_202010912
crossref_primary_10_3866_PKU_WHXB202308024
crossref_primary_10_1021_acsanm_0c02391
crossref_primary_10_1039_D0NR07275C
crossref_primary_10_1002_smtd_202000494
crossref_primary_10_1016_j_mtnano_2021_100120
crossref_primary_10_1021_acsanm_0c03200
crossref_primary_10_1021_acssuschemeng_1c02807
crossref_primary_10_1016_j_apcatb_2023_123617
crossref_primary_10_1039_D1TA01062J
crossref_primary_10_1016_j_jelechem_2023_117852
crossref_primary_10_1038_s44160_023_00444_x
crossref_primary_10_1039_D2YA00181K
crossref_primary_10_1016_j_colsurfa_2023_132978
crossref_primary_10_1016_j_ijleo_2021_166517
crossref_primary_10_1016_j_est_2022_106540
crossref_primary_10_1016_j_ijbiomac_2021_05_028
crossref_primary_10_1016_j_flatc_2023_100581
crossref_primary_10_1021_acsami_1c09948
crossref_primary_10_1039_D0NR08817J
crossref_primary_10_1016_j_fuel_2022_125794
crossref_primary_10_3390_catal10030290
crossref_primary_10_1016_j_jcis_2022_02_066
crossref_primary_10_1039_D2TA03181G
crossref_primary_10_1021_acsanm_0c01790
crossref_primary_10_1039_D0TA10855C
crossref_primary_10_1021_acs_iecr_9b06988
crossref_primary_10_1016_j_apsusc_2022_153201
crossref_primary_10_1016_j_est_2021_102844
crossref_primary_10_1021_acsanm_4c01502
Cites_doi 10.1021/ja503372r
10.1126/science.aad4998
10.1002/chem.201901215
10.1016/j.jpowsour.2016.12.013
10.1002/aenm.201100223
10.1039/C5EE00751H
10.1016/j.nanoen.2016.06.019
10.1002/adma.201704091
10.1039/c1ee01488a
10.1002/adma.201501692
10.1021/acs.chemmater.8b01699
10.1021/jacs.7b08521
10.1039/C8EE01270A
10.1002/aenm.201402031
10.1016/j.jpowsour.2015.09.027
10.1002/aenm.201802983
10.1002/ange.201508715
10.1021/ja510442p
10.1021/acsami.6b13984
10.1021/nl2020476
10.1038/nmat4778
10.1021/jacs.5b08186
10.1021/jacs.7b07606
10.1021/acsami.5b00873
10.1021/acsenergylett.8b00908
10.1039/C4CS00470A
10.1002/aenm.201670020
10.1038/nenergy.2016.130
10.1002/aenm.201702545
10.1039/C8EE01129J
10.1002/smll.201703323
10.1002/anie.201311111
10.1038/nnano.2016.304
10.1016/j.nanoen.2018.05.033
10.1038/ncomms5695
10.1038/s41570-016-0003
10.1021/acsami.6b13244
10.1021/acsnano.8b03141
10.1016/j.nanoen.2014.09.022
10.1039/C8CC06975A
10.1002/anie.201407031
10.1021/acscatal.6b03192
10.1016/j.ensm.2017.11.006
10.1002/aenm.201502585
10.1039/c3cc43107j
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jun 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jun 15, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.118675
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_118675
S0926337320300904
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-adc80381cb4c488ae89c9e9d6379fc0e7e3207d2a89f47cd99b4fb2d3b237c883
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 08:46:41 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 04:35:03 EDT 2025
Sat Mar 02 16:00:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterointerfaces
Hydrogen evolution reaction
Earth-abundant hybrid catalyst
Electronic structure control
Metal sulfides
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-adc80381cb4c488ae89c9e9d6379fc0e7e3207d2a89f47cd99b4fb2d3b237c883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9062-763X
0000-0002-3839-2965
0000-0001-7685-684X
PQID 2427543661
PQPubID 2045281
ParticipantIDs proquest_journals_2427543661
crossref_citationtrail_10_1016_j_apcatb_2020_118675
crossref_primary_10_1016_j_apcatb_2020_118675
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_118675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Guo, Wang, Chen, Lou, Li (bib0170) 2011; 1
Xu, Wu, Zhang, Shi, Zhang (bib0210) 2013; 49
Deng, Li, Xiao, Tu, Deng, Yang, Tian, Li, Ren, Bao (bib0230) 2015; 8
Zhao, Pi, Shao, Feng, Zhang, Huang (bib0160) 2018; 12
Liu, Gu, Li (bib0200) 2015; 299
Song, Li, Bai, Yan, Li, Sun (bib0240) 2016; 26
Zhang, Rui, Ma, Sun, Wang, Wu, Zhang, Li, Du, Zhang, Lin, Zhu (bib0080) 2018; 30
McCrory, Jung, Ferrer, Chatman, Peters, Jaramillo (bib0035) 2015; 137
Hu, Liu, Zhu, Fan, Chai, Zhang, Liu, He, Lin (bib0070) 2018; 50
Fu, Wu, Fu, Gao, Han, Yao, Zhang, Zhong, Wang, Song (bib0095) 2018; 3
Jiao, Zheng, Davey, Qiao (bib0150) 2016; 1
Peng, Jia, Al‐Enizi, Elzatahry, Zheng (bib0190) 2015; 5
Deng, Zhong, Zeng, Wang, Wang, Lu, Xia, Tu (bib0045) 2018; 5
Feng, Wu, Tong, Li (bib0145) 2018; 140
Wu, Lu, Zheng, Ho (bib0060) 2018; 8
Feng, Yu, Wu, Li, Li, Sun, Asefa, Chen, Zou (bib0130) 2015; 137
Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Nørskov (bib0025) 2017; 16
Duan, Chen, Chambers, Andersson, Qiao (bib0155) 2015; 27
Li, Wang, Peng, Zhang, Al-Enizi, Zhang, Sun, Zheng (bib0085) 2016; 6
Zheng, Jiao, Jaroniec, Qiao (bib0135) 2015; 54
Jiao, Zheng, Jaroniec, Qiao (bib0020) 2015; 44
Yang, Zhang, Lin, Li, Chan, Yang, Gao (bib0050) 2017; 7
Xu, Wan, Zhang, Fang, Liu, Huang, Li, Gu, Wang (bib0075) 2018
Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang (bib0205) 2014; 5
Lu, Jin, Zhang, Niu, Gao, Li (bib0165) 2018; 8
Lang, Shi, Wang, Wang, Xia (bib0220) 2015; 7
Liu, Wang, Zhong, Lu, Yang, Liu, Hu, Li (bib0040) 2019; 25
Luo, Zhang, Liu, Zhang, Deng, Xu, Hu, Wang (bib0115) 2017; 9
McKone, Warren, Bierman, Boettcher, Brunschwig, Lewis, Gray (bib0030) 2011; 4
Qu, Yang, Chai, Tang, Shao, Kwok, Yang, Wang, Chua, Wang, Lu, Pan (bib0110) 2017; 9
Yilmaz, Tan, Lim, Ho (bib0120) 2019; 9
Yang, Wang, Wu, Ho (bib0125) 2018; 14
Chen, Duan, Tang, Jin, Qiao (bib0235) 2015; 11
Roger, Shipman, Symes (bib0010) 2017; 1
Mahmood, Li, Jung, Okyay, Ahmad, Kim, Park, Jeong, Baek (bib0015) 2017; 12
Mishra, Zhou, Sun, Dahal, Chen, Ren (bib0100) 2018; 11
Tian, Liu, Asiri, Sun (bib0185) 2014; 136
Zhu, Jin, Tian, Lu, Liu, Zeng, Zhuang, Yang, He, Liu, Dai (bib0055) 2017; 29
Jin, Lu, Ma, Gan, Lei, Zhang, Fu, Yang, Yan (bib0175) 2017; 341
Seh, Kibsgaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib0005) 2017; 355
Ma, Lang, Yan, Wang, Tan, Feng, Xia, Zhong, Liu, Kang, Li (bib0065) 2018; 11
Liu, Tang, Lu, Zou, Gu, Zhang, Li (bib0105) 2018; 54
Jia, Zhao, Chen, Shang, Shi, Kang, Waterhouse, Wu, Tung, Zhang (bib0180) 2016; 6
Saadi, Carim, Drisdell, Gul, Baricuatro, Yano, Soriaga, Lewis (bib0090) 2017; 139
Chen, Cummins, Reinecke, Clark, Sunkara, Jaramillo (bib0225) 2011; 11
Ma, Wu, Xia, Xu, Lou (bib0195) 2015; 127
Li, Li, Cao, Jin, Wang, Sun, Ning, Wang, Jiao (bib0140) 2018; 12
Zou, Huang, Goswami, Silva, Sathe, Mikmeková, Asefa (bib0215) 2014; 53
Liu (10.1016/j.apcatb.2020.118675_bib0040) 2019; 25
Zheng (10.1016/j.apcatb.2020.118675_bib0135) 2015; 54
Li (10.1016/j.apcatb.2020.118675_bib0140) 2018; 12
Fu (10.1016/j.apcatb.2020.118675_bib0095) 2018; 3
Gong (10.1016/j.apcatb.2020.118675_bib0205) 2014; 5
Yang (10.1016/j.apcatb.2020.118675_bib0050) 2017; 7
Jin (10.1016/j.apcatb.2020.118675_bib0175) 2017; 341
Tian (10.1016/j.apcatb.2020.118675_bib0185) 2014; 136
Yang (10.1016/j.apcatb.2020.118675_bib0125) 2018; 14
Xu (10.1016/j.apcatb.2020.118675_bib0075) 2018
Jia (10.1016/j.apcatb.2020.118675_bib0180) 2016; 6
Wu (10.1016/j.apcatb.2020.118675_bib0060) 2018; 8
Peng (10.1016/j.apcatb.2020.118675_bib0190) 2015; 5
Luo (10.1016/j.apcatb.2020.118675_bib0115) 2017; 9
Seh (10.1016/j.apcatb.2020.118675_bib0005) 2017; 355
Feng (10.1016/j.apcatb.2020.118675_bib0130) 2015; 137
Mahmood (10.1016/j.apcatb.2020.118675_bib0015) 2017; 12
McCrory (10.1016/j.apcatb.2020.118675_bib0035) 2015; 137
Deng (10.1016/j.apcatb.2020.118675_bib0045) 2018; 5
Saadi (10.1016/j.apcatb.2020.118675_bib0090) 2017; 139
McKone (10.1016/j.apcatb.2020.118675_bib0030) 2011; 4
Mishra (10.1016/j.apcatb.2020.118675_bib0100) 2018; 11
Ma (10.1016/j.apcatb.2020.118675_bib0195) 2015; 127
Jiao (10.1016/j.apcatb.2020.118675_bib0150) 2016; 1
Chen (10.1016/j.apcatb.2020.118675_bib0235) 2015; 11
Qu (10.1016/j.apcatb.2020.118675_bib0110) 2017; 9
Lu (10.1016/j.apcatb.2020.118675_bib0165) 2018; 8
Zhang (10.1016/j.apcatb.2020.118675_bib0080) 2018; 30
Song (10.1016/j.apcatb.2020.118675_bib0240) 2016; 26
Roger (10.1016/j.apcatb.2020.118675_bib0010) 2017; 1
Montoya (10.1016/j.apcatb.2020.118675_bib0025) 2017; 16
Duan (10.1016/j.apcatb.2020.118675_bib0155) 2015; 27
Guo (10.1016/j.apcatb.2020.118675_bib0170) 2011; 1
Chen (10.1016/j.apcatb.2020.118675_bib0225) 2011; 11
Zhao (10.1016/j.apcatb.2020.118675_bib0160) 2018; 12
Zou (10.1016/j.apcatb.2020.118675_bib0215) 2014; 53
Lang (10.1016/j.apcatb.2020.118675_bib0220) 2015; 7
Deng (10.1016/j.apcatb.2020.118675_bib0230) 2015; 8
Zhu (10.1016/j.apcatb.2020.118675_bib0055) 2017; 29
Hu (10.1016/j.apcatb.2020.118675_bib0070) 2018; 50
Xu (10.1016/j.apcatb.2020.118675_bib0210) 2013; 49
Liu (10.1016/j.apcatb.2020.118675_bib0105) 2018; 54
Yilmaz (10.1016/j.apcatb.2020.118675_bib0120) 2019; 9
Feng (10.1016/j.apcatb.2020.118675_bib0145) 2018; 140
Liu (10.1016/j.apcatb.2020.118675_bib0200) 2015; 299
Jiao (10.1016/j.apcatb.2020.118675_bib0020) 2015; 44
Ma (10.1016/j.apcatb.2020.118675_bib0065) 2018; 11
Li (10.1016/j.apcatb.2020.118675_bib0085) 2016; 6
References_xml – volume: 136
  start-page: 7587
  year: 2014
  end-page: 7590
  ident: bib0185
  article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 7826
  year: 2019
  end-page: 7830
  ident: bib0040
  article-title: Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights
  publication-title: Chemistry
– volume: 8
  year: 2018
  ident: bib0060
  article-title: Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 14023
  year: 2015
  end-page: 14026
  ident: bib0130
  article-title: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  ident: bib0165
  article-title: Chemically exfoliating biomass into a grapheme-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 11
  year: 2015
  end-page: 18
  ident: bib0235
  article-title: Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst
  publication-title: Nano Energy
– volume: 299
  start-page: 342
  year: 2015
  end-page: 346
  ident: bib0200
  article-title: Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water
  publication-title: J. Power Sources
– volume: 9
  start-page: 5959
  year: 2017
  end-page: 5967
  ident: bib0110
  article-title: Facile synthesis of vanadium-doped Ni
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2016
  ident: bib0180
  article-title: Ni
  publication-title: Adv. Energy Mater.
– volume: 140
  start-page: 610
  year: 2018
  end-page: 617
  ident: bib0145
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1744
  year: 2018
  end-page: 1752
  ident: bib0095
  article-title: Skutterudite-type ternary Co
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 6245
  year: 2018
  end-page: 6251
  ident: bib0160
  article-title: Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface
  publication-title: ACS Nano
– volume: 50
  start-page: 212
  year: 2018
  end-page: 219
  ident: bib0070
  article-title: Crafting MoC
  publication-title: Nano Energy
– volume: 5
  year: 2015
  ident: bib0190
  article-title: From water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 4347
  year: 2015
  end-page: 4357
  ident: bib0035
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: e1703323
  year: 2018
  ident: bib0125
  article-title: Noble metal-free nanocatalysts with vacancies for electrochemical water splitting
  publication-title: Small
– volume: 11
  start-page: 4168
  year: 2011
  end-page: 4175
  ident: bib0225
  article-title: Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials
  publication-title: Nano Lett.
– volume: 9
  start-page: 2500
  year: 2017
  end-page: 2508
  ident: bib0115
  article-title: Targeted synthesis of unique nickel sulfide (NiS, NiS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2019
  ident: bib0120
  article-title: Pseudomorphic transformation of interpenetrated Prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 3573
  year: 2011
  end-page: 3583
  ident: bib0030
  article-title: Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 441
  year: 2017
  ident: bib0015
  article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 2357
  year: 2017
  end-page: 2366
  ident: bib0050
  article-title: MoS
  publication-title: ACS Catal.
– volume: 127
  start-page: 15615
  year: 2015
  end-page: 15619
  ident: bib0195
  article-title: Hierarchical β-Mo
  publication-title: Angew. Chem.
– volume: 139
  start-page: 12927
  year: 2017
  end-page: 12930
  ident: bib0090
  article-title: Operando spectroscopic analysis of CoP films electrocatalyzing the hydrogen-evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 0003
  year: 2017
  ident: bib0010
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
– year: 2018
  ident: bib0075
  article-title: A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  ident: bib0055
  article-title: In situ coupling strategy for the preparation of FeCo alloys and Co
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4695
  year: 2014
  ident: bib0205
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat. Commun.
– volume: 49
  start-page: 6656
  year: 2013
  end-page: 6658
  ident: bib0210
  article-title: Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction
  publication-title: Chem. Commun.
– volume: 341
  start-page: 294
  year: 2017
  end-page: 301
  ident: bib0175
  article-title: Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors
  publication-title: J. Power Sources
– volume: 54
  start-page: 12408
  year: 2018
  end-page: 12411
  ident: bib0105
  article-title: Rationally tuning the atomic ratio of electrodeposited NiP for greatly enhanced hydrogen evolution in alkaline media
  publication-title: Chem. Commun. (Camb.)
– volume: 30
  start-page: 4762
  year: 2018
  end-page: 4769
  ident: bib0080
  article-title: Cost-effective vertical carbon nanosheets/iron-based composites as efficient electrocatalysts for water splitting reaction
  publication-title: Chem. Mater.
– volume: 12
  start-page: 44
  year: 2018
  end-page: 53
  ident: bib0140
  article-title: Electrospun three dimensional Co/CoP@ nitrogen-doped carbon nanofibers network for efficient hydrogen evolution
  publication-title: Energy Storage Mater.
– volume: 1
  start-page: 736
  year: 2011
  end-page: 741
  ident: bib0170
  article-title: A hierarchically nanostructured composite of MnO
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16130
  year: 2016
  ident: bib0150
  article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene
  publication-title: Nat. Energy
– volume: 26
  start-page: 533
  year: 2016
  end-page: 540
  ident: bib0240
  article-title: Morphology-dependent performance of nanostructured Ni
  publication-title: Nano Energy
– volume: 53
  start-page: 4372
  year: 2014
  end-page: 4376
  ident: bib0215
  article-title: Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1594
  year: 2015
  end-page: 1601
  ident: bib0230
  article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2114
  year: 2018
  end-page: 2123
  ident: bib0065
  article-title: High efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2246
  year: 2018
  end-page: 2252
  ident: bib0100
  article-title: Hierarchical CoP/Ni
  publication-title: Energy Environ. Sci.
– volume: 355
  year: 2017
  ident: bib0005
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: bib0020
  article-title: Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 6
  year: 2016
  ident: bib0085
  article-title: Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts
  publication-title: adv. energy mater.
– volume: 16
  start-page: 70
  year: 2017
  ident: bib0025
  article-title: Materials for solar fuels and chemicals
  publication-title: Nat. Mater.
– volume: 54
  start-page: 52
  year: 2015
  end-page: 65
  ident: bib0135
  article-title: Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 9098
  year: 2015
  end-page: 9102
  ident: bib0220
  article-title: Hollow core–shell structured Ni–Sn@ C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2018
  ident: bib0045
  article-title: Hollow TiO
  publication-title: Adv. Sci. (Weinh)
– volume: 27
  start-page: 4234
  year: 2015
  end-page: 4241
  ident: bib0155
  article-title: 3D WS
  publication-title: Adv. Mater.
– volume: 136
  start-page: 7587
  year: 2014
  ident: 10.1016/j.apcatb.2020.118675_bib0185
  article-title: Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503372r
– volume: 355
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0005
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 25
  start-page: 7826
  year: 2019
  ident: 10.1016/j.apcatb.2020.118675_bib0040
  article-title: Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights
  publication-title: Chemistry
  doi: 10.1002/chem.201901215
– volume: 341
  start-page: 294
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0175
  article-title: Different distribution of in-situ thin carbon layer in hollow cobalt sulfide nanocages and their application for supercapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.013
– volume: 1
  start-page: 736
  year: 2011
  ident: 10.1016/j.apcatb.2020.118675_bib0170
  article-title: A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high-performance lithium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100223
– volume: 8
  start-page: 1594
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0230
  article-title: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00751H
– volume: 26
  start-page: 533
  year: 2016
  ident: 10.1016/j.apcatb.2020.118675_bib0240
  article-title: Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.019
– volume: 5
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0045
  article-title: Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient Oxygen/Hydrogen production
  publication-title: Adv. Sci. (Weinh)
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0055
  article-title: In situ coupling strategy for the preparation of FeCo alloys and Co4N hybrid for highly efficient oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704091
– volume: 4
  start-page: 3573
  year: 2011
  ident: 10.1016/j.apcatb.2020.118675_bib0030
  article-title: Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01488a
– volume: 27
  start-page: 4234
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0155
  article-title: 3D WS2 nanolayers@ heteroatom-doped graphene films as hydrogen evolution catalyst electrodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501692
– volume: 30
  start-page: 4762
  issue: 14
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0080
  article-title: Cost-effective vertical carbon nanosheets/iron-based composites as efficient electrocatalysts for water splitting reaction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01699
– volume: 140
  start-page: 610
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0145
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08521
– volume: 11
  start-page: 2246
  issue: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0100
  article-title: Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01270A
– volume: 5
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0190
  article-title: From water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402031
– volume: 299
  start-page: 342
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0200
  article-title: Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.027
– volume: 9
  year: 2019
  ident: 10.1016/j.apcatb.2020.118675_bib0120
  article-title: Pseudomorphic transformation of interpenetrated Prussian blue analogs into defective nickel iron selenides for enhanced electrochemical and photo-electrochemical water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802983
– volume: 127
  start-page: 15615
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0195
  article-title: Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201508715
– volume: 137
  start-page: 4347
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0035
  article-title: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510442p
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0060
  article-title: Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 2500
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0115
  article-title: Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13984
– volume: 11
  start-page: 4168
  year: 2011
  ident: 10.1016/j.apcatb.2020.118675_bib0225
  article-title: Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials
  publication-title: Nano Lett.
  doi: 10.1021/nl2020476
– volume: 16
  start-page: 70
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0025
  article-title: Materials for solar fuels and chemicals
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4778
– volume: 137
  start-page: 14023
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0130
  article-title: High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08186
– volume: 139
  start-page: 12927
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0090
  article-title: Operando spectroscopic analysis of CoP films electrocatalyzing the hydrogen-evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07606
– volume: 7
  start-page: 9098
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0220
  article-title: Hollow core–shell structured Ni–Sn@ C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00873
– volume: 3
  start-page: 1744
  issue: 7
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0095
  article-title: Skutterudite-type ternary Co1-xNixP3 nanoneedle arrays electrocatalysts for enhanced hydrogen and oxygen evolution
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00908
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0020
  article-title: Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 6
  year: 2016
  ident: 10.1016/j.apcatb.2020.118675_bib0085
  article-title: Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts
  publication-title: adv. energy mater.
  doi: 10.1002/aenm.201670020
– volume: 1
  start-page: 16130
  year: 2016
  ident: 10.1016/j.apcatb.2020.118675_bib0150
  article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.130
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0165
  article-title: Chemically exfoliating biomass into a grapheme-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702545
– volume: 11
  start-page: 2114
  issue: 8
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0065
  article-title: High efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01129J
– year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0075
  article-title: A new platinum-like efficient electrocatalyst for hydrogen evolution reaction at all pH: single-crystal metallic interweaved V8C7 networks
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: e1703323
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0125
  article-title: Noble metal-free nanocatalysts with vacancies for electrochemical water splitting
  publication-title: Small
  doi: 10.1002/smll.201703323
– volume: 53
  start-page: 4372
  year: 2014
  ident: 10.1016/j.apcatb.2020.118675_bib0215
  article-title: Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201311111
– volume: 12
  start-page: 441
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0015
  article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.304
– volume: 50
  start-page: 212
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0070
  article-title: Crafting MoC2 doped bimetallic alloy nanoparticles encapsulated within N-doped graphene as roust bifunctional electrocatalysts for overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.033
– volume: 5
  start-page: 4695
  year: 2014
  ident: 10.1016/j.apcatb.2020.118675_bib0205
  article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5695
– volume: 1
  start-page: 0003
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0010
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 9
  start-page: 5959
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0110
  article-title: Facile synthesis of vanadium-doped Ni3S2 nanowire arrays as active electrocatalyst for hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13244
– volume: 12
  start-page: 6245
  issue: 6
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0160
  article-title: Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03141
– volume: 11
  start-page: 11
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0235
  article-title: Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.09.022
– volume: 54
  start-page: 12408
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0105
  article-title: Rationally tuning the atomic ratio of electrodeposited NiP for greatly enhanced hydrogen evolution in alkaline media
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C8CC06975A
– volume: 54
  start-page: 52
  year: 2015
  ident: 10.1016/j.apcatb.2020.118675_bib0135
  article-title: Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407031
– volume: 7
  start-page: 2357
  year: 2017
  ident: 10.1016/j.apcatb.2020.118675_bib0050
  article-title: MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03192
– volume: 12
  start-page: 44
  year: 2018
  ident: 10.1016/j.apcatb.2020.118675_bib0140
  article-title: Electrospun three dimensional Co/CoP@ nitrogen-doped carbon nanofibers network for efficient hydrogen evolution
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.11.006
– volume: 6
  year: 2016
  ident: 10.1016/j.apcatb.2020.118675_bib0180
  article-title: Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: an efficient overall water splitting electrocatalyst
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502585
– volume: 49
  start-page: 6656
  year: 2013
  ident: 10.1016/j.apcatb.2020.118675_bib0210
  article-title: Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43107j
SSID ssj0002328
Score 2.578761
Snippet [Display omitted] •Rationally tailor Ni3Sn2S2 QDs-decorated Ni3S2 Nanosheets establish high-surficial multi-heterogeneous catalysis.•Ni3Sn2S2@Ni3S2 can realize...
The electrode kinetics of hydrogen evolution reaction (HER) greatly relies on both strong water absorption and strong H atom desorption for fast electron...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118675
SubjectTerms Absorption
Catalysts
Current density
Desorption
Earth-abundant hybrid catalyst
Electrochemistry
Electrodes
Electron transfer
Electronic structure
Electronic structure control
Evolution
Heterointerfaces
Hydrogen
Hydrogen evolution reaction
Hydrogen evolution reactions
Interfaces
Low currents
Metal sulfides
Nanosheets
Nickel sulfide
Quantum dots
Reaction kinetics
Sheets
Water absorption
Title Greatly boosting electrochemical hydrogen evolution reaction over Ni3S2 nanosheets rationally decorated by Ni3Sn2S2 quantum dots
URI https://dx.doi.org/10.1016/j.apcatb.2020.118675
https://www.proquest.com/docview/2427543661
Volume 267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9CcBg7TFsBjQ2QD7t6LbYb20dUgcqm9cKQuFnxR0QnlpYmndTLtD99z44DG5qEtGOi96zI79v5vWeAD54z7cWppawqCirUyFKFpRCtOEY_5kIVUhf_l1kxvRafbsY3WzDpe2EirDL7_s6nJ2-d3wzzbg6X8_nwaqRZwbnkDPV0pNNMUCFk1PKPPx9hHpgxJG-MxDRS9-1zCeNVLl3ZWqwSWfQdqohow3-HpyeOOkWfi9fwKqeN5Kz7sjewFeoBvJj0t7UN4OUfgwUHcHD-2L-GbNmAmz34lY4E7jYEk-smIp5JvgfH5cEB5HbjVwvUKhJ-ZK0kyJK6H0iEe5LZnF8xUpf1orkNoW3IKp8n4qo-FrOYvXpiN4mwZkh7v0bxrb8TLICbfbi-OP86mdJ8CQN1aN4tLb1T8W-is8KhsZdBaaeD9gWXunKjIAMKQHpWKl0J6bzWVlSWeW4Zl04pfgDb9aIOb4EoK3WJYTFgmiOsK7CUqQoefCg1lvSsOgTe771xeUJ5vCjjzvRQtG-mk5iJEjOdxA6BPnAtuwkdz9DLXqzmL00zGESe4TzqtcBkS28MpjhyLDimOe_-e-H3sBufIgLtdHwE2-1qHY4x12ntSVLmE9g5u_w8nf0GVf4AZQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9C5QA7TKwDjVE2H3a1Wuw0to-oKioDegEkblb8EdGJpaVJkXrjT-c5cWAgJKRdk_esyO_r95z3ngF-Oc6US44MZXma0kQODJWYCtGcY_Rj1ue-7uK_mKaT6-T3zfBmA0ZtL0woq4y-v_HptbeOT_pxN_uL2ax_OVAs5Vxwhno6UGEm6GaYTjXswObx6dlk-uyQETTUDhnpaWBoO-jqMq9sYbPKYKLIgvuQaSg4fD9CvfHVdQA62YHPETmS4-bjvsCGL7qwNWovbOvCp39mC3Zhb_zSwoZs0YbLr_BYnwrcrQni6zIUPZN4FY6NswPI7dot56hYxD9ExSTIUjdAkFDxSaYzfslIkRXz8tb7qiTLeKSIq7qQzyKAdcSsa8KCIe39CiW4-kswBy534fpkfDWa0HgPA7Vo4RXNnJXhh6I1iUV7z7xUVnnlUi5UbgdeeJSBcCyTKk-EdUqZJDfMccO4sFLyPegU88J_AyKNUBlGRo9IJzE2xWwmT7l3PlOY1bN8H3i799rGIeXhrow73Vaj_dGNxHSQmG4ktg_0mWvRDOn4gF60YtWvlE1jHPmAs9dqgY7GXmpEOWKYcEQ63_974Z-wNbm6ONfnp9OzA9gOb0JB2tGwB51qufKHCH0q8yOq9hMTKwMW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Greatly+boosting+electrochemical+hydrogen+evolution+reaction+over+Ni3S2+nanosheets+rationally+decorated+by+Ni3Sn2S2+quantum+dots&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Lu%2C+Shi-Yu&rft.au=Li%2C+Shengwen&rft.au=Jin%2C+Meng&rft.au=Gao%2C+Jiechang&rft.date=2020-06-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=267&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2020.118675&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon