The nonlinear dynamics of baroclinic wave ensembles

A theory is developed to describe the weakly nonlinear dynamics which applies in the simultaneous presence of several, long, baroclinic waves. The geometry is flat (i.e. β = 0) and dissipation is modelled by Ekman friction in the context of the quasi-geostrophic two-layer model. Three main problems...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 102; pp. 169 - 209
Main Author Pedlosky, Joseph
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.01.1981
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A theory is developed to describe the weakly nonlinear dynamics which applies in the simultaneous presence of several, long, baroclinic waves. The geometry is flat (i.e. β = 0) and dissipation is modelled by Ekman friction in the context of the quasi-geostrophic two-layer model. Three main problems are discussed. For free, unstable waves it is shown that the wave which is realized in finite amplitude is not the linearly most unstable wave. Rather a longer wave, capable of achieving the single largest steady amplitude, is favoured in the competition for the potential energy of the basic state. This result is shown necessary if the end state is steady and numerous numerical calculations indicate the pre-eminence of the same wave if the final state is vacillatory. The notion of conjugate waves, capable of identical final amplitude, is also discussed.If the free waves are subject to time-varying supercriticality so that intervals of stability ensue, the response is asymmetric over the period of the forcing. Sufficiently rapid ‘seasonal’ forcing leads to long-term aperiodic response.If each wave in the spectrum is directly forced a wave hysteresis phenomenon occurs. Sudden jumps in the wave amplitude at critical values of the forcing are intrinsic to the wave response. Again, sufficiently rapid wave forcing produces an aperiodic response. The forced wave problem exhibits multiple equilibria. Each solution branch corresponds to a different dominant wave. The determination of the realized branch depends on the relative stability criteria developed for the free waves.
AbstractList A theory is developed to describe the weakly nonlinear dynamics which applies in the simultaneous presence of several, long, baroclinic waves. The geometry is flat (i.e. β = 0) and dissipation is modelled by Ekman friction in the context of the quasi-geostrophic two-layer model. Three main problems are discussed. For free, unstable waves it is shown that the wave which is realized in finite amplitude is not the linearly most unstable wave. Rather a longer wave, capable of achieving the single largest steady amplitude, is favoured in the competition for the potential energy of the basic state. This result is shown necessary if the end state is steady and numerous numerical calculations indicate the pre-eminence of the same wave if the final state is vacillatory. The notion of conjugate waves, capable of identical final amplitude, is also discussed.If the free waves are subject to time-varying supercriticality so that intervals of stability ensue, the response is asymmetric over the period of the forcing. Sufficiently rapid ‘seasonal’ forcing leads to long-term aperiodic response.If each wave in the spectrum is directly forced a wave hysteresis phenomenon occurs. Sudden jumps in the wave amplitude at critical values of the forcing are intrinsic to the wave response. Again, sufficiently rapid wave forcing produces an aperiodic response. The forced wave problem exhibits multiple equilibria. Each solution branch corresponds to a different dominant wave. The determination of the realized branch depends on the relative stability criteria developed for the free waves.
A theory is developed to describe the weakly nonlinear dynamics that applies in the simultaneous presence of several long, baroclinic waves. The geometry is flat (i.e., beta = 0), and dissipation is modelled by Ekman friction in the context of the quasi-geostrophic two-layer model. Three main problems are discussed. 1) For free, unstable waves, it is shown that the wave that is realized in finite amplitude is not the linearly most unstable wave. A longer wave, capable of achieving the single largest steady amplitude, is favored in the competition for the potential energy of the basic state. This result is necessary if the end state is steady, and numerous numerical calculations indicate the preeminence of the same wave if the final state is vacillatory. The notion of conjugate waves, capable of identical final amplitude, is also discussed. 2) If the free waves are subject to time-varying supercriticality so that intervals of stability ensue, the response is asymmetric over the period of the forcing. Sufficiently rapid seasonal forcing leads to long-term aperiodic response. 3) If each wave in the spectrum is directly forced, a wave hysteresis phenomenon occurs. Sudden jumps in the wave amplitude at critical values of the forcing are intrinsic to the wave response. Again, sufficiently rapid wave forcing produces an aperiodic response. The forced wave problem exhibits multiple equilibria. Each solution branch corresponds to a different dominant wave. The determination of the realized branch depends upon the relative stability criteria developed for the free waves.
A theory is developed to describe the weakly nonlinear dynamics which applies in the simultaneous presence of several, long, baroclinic waves. The geometry is flat (i.e. β = 0) and dissipation is modelled by Ekman friction in the context of the quasi-geostrophic two-layer model. Three main problems are discussed. For free, unstable waves it is shown that the wave which is realized in finite amplitude is not the linearly most unstable wave. Rather a longer wave, capable of achieving the single largest steady amplitude, is favoured in the competition for the potential energy of the basic state. This result is shown necessary if the end state is steady and numerous numerical calculations indicate the pre-eminence of the same wave if the final state is vacillatory. The notion of conjugate waves, capable of identical final amplitude, is also discussed. If the free waves are subject to time-varying supercriticality so that intervals of stability ensue, the response is asymmetric over the period of the forcing. Sufficiently rapid ‘seasonal’ forcing leads to long-term aperiodic response. If each wave in the spectrum is directly forced a wave hysteresis phenomenon occurs. Sudden jumps in the wave amplitude at critical values of the forcing are intrinsic to the wave response. Again, sufficiently rapid wave forcing produces an aperiodic response. The forced wave problem exhibits multiple equilibria. Each solution branch corresponds to a different dominant wave. The determination of the realized branch depends on the relative stability criteria developed for the free waves.
Author Pedlosky, Joseph
Author_xml – sequence: 1
  givenname: Joseph
  surname: Pedlosky
  fullname: Pedlosky, Joseph
  organization: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
BookMark eNqFkUlPxDAMhSMEEsPyA7j1BKeC3SRNewTEJoHYz1GauhDoAkmH5d-T0SAOIA0nW_b3_KTnNbbcDz0xtoWwi4Bq7xYgyxAzKDB2soQlNkGRl6nKhVxmk9k6ne1X2VoITwDIoVQTxu8eKYm3WteT8Un92ZvO2ZAMTVIZP9g4dzZ5N2-UUB-oq1oKG2ylMW2gze-6zu6Pj-4OT9Pzy5Ozw_3z1AqAMTW1wFqUDeZQSSny2jbckigym-WmKGUNNVjkTcYhx6y0VVWogqRCKGtqOPB1tjO_--KH1ymFUXcuWGpb09MwDVoJISVKpSK5vZDMuBJFTOBfEAtegOAigjgHrR9C8NToF-864z81gp4lrv8kHjXql8a60Yxu6EdvXLtQmc6VLoz08WNl_LPOFVdS5yfX-grU7cH11YW-iTz_djJd5V39QPppmPo-fmOByxe4CaI7
CitedBy_id crossref_primary_10_1098_rsta_1997_0003
crossref_primary_10_1002_qj_49711448214
crossref_primary_10_1080_03091929408203644
crossref_primary_10_1175_JAS3788_1
crossref_primary_10_1175_JPO_D_13_0248_1
crossref_primary_10_1007_BF02249381
crossref_primary_10_1017_S0022112009993405
crossref_primary_10_1098_rspa_1983_0060
crossref_primary_10_1175_JPO_D_21_0163_1
crossref_primary_10_2151_jmsj1965_62_6_809
crossref_primary_10_1080_03091928608210090
crossref_primary_10_1175_JPO_2684_1
crossref_primary_10_1063_1_4731294
crossref_primary_10_1103_PhysRevFluids_9_103801
crossref_primary_10_1080_03091929108227772
crossref_primary_10_1016_S0377_0265_03_00012_5
crossref_primary_10_1175_2010JAS3537_1
crossref_primary_10_1017_S0022112091002495
crossref_primary_10_1175_2011JPO4404_1
crossref_primary_10_1016_0169_5983_90_90021_P
crossref_primary_10_1002_sapm198470121
ContentType Journal Article
Copyright 1981 Cambridge University Press
Copyright_xml – notice: 1981 Cambridge University Press
DBID BSCLL
AAYXX
CITATION
7TG
KL.
8FD
F28
FR3
DOI 10.1017/S0022112081002590
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 209
ExternalDocumentID 10_1017_S0022112081002590
ark_67375_6GQ_P07SBQPM_R
GroupedDBID -1F
-2P
-2V
-DZ
-E.
-~6
-~N
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
6~7
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
8WZ
9M5
A6W
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABDMP
ABDPE
ABFSI
ABGDZ
ABITZ
ABJCF
ABJNI
ABKAW
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABXAU
ABZCX
ABZUI
ACBEA
ACBMC
ACDLN
ACETC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACKIV
ACMRT
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTW
AENCP
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AI.
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BESQT
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KAFGG
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
NMFBF
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
VH1
VOH
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZJOSE
ZMEZD
ZY4
ZYDXJ
~02
~V1
ABXHF
ADMLS
AGQPQ
AKMAY
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
7TG
KL.
8FD
F28
FR3
ID FETCH-LOGICAL-c400t-ad41d49f160b5546dcf3ce482c26a895d0d0c13f2306129cbb878e57109def303
ISSN 0022-1120
IngestDate Mon Jul 21 11:25:54 EDT 2025
Fri Jul 11 15:20:59 EDT 2025
Thu Jul 10 22:13:38 EDT 2025
Thu Apr 24 23:09:38 EDT 2025
Tue Jul 01 02:50:19 EDT 2025
Sun Aug 31 06:48:33 EDT 2025
Tue Jan 21 06:29:33 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://www.cambridge.org/core/terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-ad41d49f160b5546dcf3ce482c26a895d0d0c13f2306129cbb878e57109def303
Notes PII:S0022112081002590
ark:/67375/6GQ-P07SBQPM-R
istex:52AE6F5B1F1C8AE08DE0E0A0E7A2D410DAF6B5BC
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 18380434
PQPubID 23500
PageCount 41
ParticipantIDs proquest_miscellaneous_744551577
proquest_miscellaneous_23748022
proquest_miscellaneous_18380434
crossref_primary_10_1017_S0022112081002590
crossref_citationtrail_10_1017_S0022112081002590
istex_primary_ark_67375_6GQ_P07SBQPM_R
cambridge_journals_10_1017_S0022112081002590
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19810100
1981-01
1981-01-00
19810101
PublicationDateYYYYMMDD 1981-01-01
PublicationDate_xml – month: 1
  year: 1981
  text: 19810100
PublicationDecade 1980
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 1981
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0022112081002590_ref003
S0022112081002590_ref002
S0022112081002590_ref001
S0022112081002590_ref007
S0022112081002590_ref006
S0022112081002590_ref005
S0022112081002590_ref004
S0022112081002590_ref008
References_xml – ident: S0022112081002590_ref001
– ident: S0022112081002590_ref004
– ident: S0022112081002590_ref005
– ident: S0022112081002590_ref003
– ident: S0022112081002590_ref002
– ident: S0022112081002590_ref007
– ident: S0022112081002590_ref006
– ident: S0022112081002590_ref008
SSID ssj0013097
Score 1.3084422
Snippet A theory is developed to describe the weakly nonlinear dynamics which applies in the simultaneous presence of several, long, baroclinic waves. The geometry is...
A theory is developed to describe the weakly nonlinear dynamics that applies in the simultaneous presence of several long, baroclinic waves. The geometry is...
SourceID proquest
crossref
istex
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Baroclinic wave ensembles
Nonlinearity
Wave ensembles
Title The nonlinear dynamics of baroclinic wave ensembles
URI https://www.cambridge.org/core/product/identifier/S0022112081002590/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-P07SBQPM-R/fulltext.pdf
https://www.proquest.com/docview/18380434
https://www.proquest.com/docview/23748022
https://www.proquest.com/docview/744551577
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgFRI8MCggCgP8gHigBNmJYzuP43NCFHVsk_YW-SvStK5F_RCIv55z4nzQrtPgJYoiJ3Z85_Od7-53CL2k2nKXwErj1mQR45xEmeQuIqpQDpiAc-lzh0ff-MEJ-3KanraFLsvskqV-a35fmlfyP1SFZ0BXnyX7D5RtPgoP4B7oC1egMFyvTeNphXWh5kNbFZcvYzO0go2pTHoc_vT1hcBYdRd6EgIGN5XRYrI6s8ML5_OAO_HvY2cns3C8GnwFzSkBzSRdOyW4NAGsG-RRB_aD-lW5SVwlD8F6jgSvEB8bgUnijsijVamVsHvGJdjBpmAOaE6-D9-F9MivaUbaXaj2vK9tTk3IoJqf-xg0keb882E-JuLo3eF4lH-_iXoxWAgg4nr7H0Zfj1oXEslEDRXvu6xd2iVe-NowusAafykoPb_Wfm3s06XycXwP3Q2EwvsVC9xHN9y0j3aDBYGDfF700Z0OvGQf3SrDe83iAUqAU3DDKbjmFDwrcMsp2HMKbjjlITr59PH4_UEUymVEBgTxMlKWUcuygnKifeyhNUViHJOxibmSWWqJJYYmhTc6QcszWkshXeqDca0rQJV5hHZgJO4xwkob0AQpKSRLWEYSRRhllhbOCEOl4gP0ppmvPCyIRV4FDIp8Y3oHiNRTmpsAPe8roEyueuV188qPCnflqsavSjo1LbcxywC9qAmZgxj1vjE1dbMVjF0mksDPbm8Re6Am6HiA8JYWgjGwP1Ihnlx3PE_R7Xax7qGd5XzlnoGSu9TPAzv_Afmznzg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nonlinear+dynamics+of+baroclinic+wave+ensembles&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Pedlosky%2C+Joseph&rft.date=1981-01-01&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=102&rft.spage=169&rft.epage=209&rft_id=info:doi/10.1017%2FS0022112081002590&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_6GQ_P07SBQPM_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon