Enhanced full solar spectrum photocatalysis by nitrogen-doped graphene quantum dots decorated BiO2-x nanosheets: Ultrafast charge transfer and molecular oxygen activation
[Display omitted] •N-GQDs/BiO2-x nanoscale heterojunctions were prepared based on 0D/2D interface engineering.•Tetracycline was efficiently degraded under full-spectrum, visible and NIR light irradiations.•Highly oxidative capacity of holes and reductive properties of electrons were achieved.•Synerg...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 277; p. 119218 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•N-GQDs/BiO2-x nanoscale heterojunctions were prepared based on 0D/2D interface engineering.•Tetracycline was efficiently degraded under full-spectrum, visible and NIR light irradiations.•Highly oxidative capacity of holes and reductive properties of electrons were achieved.•Synergistic effects were found to accelerate the molecular oxygen activation.
It is still challenging to produce superoxide and hydroxyl radicals through activating molecular oxygen under broad-spectrum light in environmental photocatalysis. In this work, nitrogen-doped graphene quantum dots (N-GQDs) modified BiO2-x nanosheets were successfully fabricated and exhibited superior performance in light-harvesting, electron-hole pair separation, and full-spectrum driven molecular oxygen activation. The hybridized photocatalyst with a N-GQDs weight ratio of 0.4wt% (GBO-0.4) exhibited an excellent photocatalytic activity toward tetracycline degradation with a 4.0-fold, 2.9-fold and 5.5-fold higher reaction rate under full-spectrum, visible and near-infrared light irradiations than that of pure BiO2-x, respectively. The enhanced photocatalytic performance was ascribed to the electron collection effect and up-conversion photoluminescence properties of the N-GQDs as well as the synergistic effects of the developed nanojunction. Efficient molecular oxygen activation was achieved via the construction of a bulk-to-surface channel between BiO2-x and N-GQDs. DFT calculations were also used to explore the geometric and electronic structure variations of BiO2-x after the introduction of N-GQDs. The high photostability and mineralization ability toward tetracycline degradation confirm the promising application prospects of the N-GQDs/BiO2-x photocatalyst. This work provides a rational strategy for designing 0D/2D nanoscale heterostructure photocatalysts with improved full-spectrum photoactivity for environmental applications. |
---|---|
AbstractList | It is still challenging to produce superoxide and hydroxyl radicals through activating molecular oxygen under broad-spectrum light in environmental photocatalysis. In this work, nitrogen-doped graphene quantum dots (N-GQDs) modified BiO2-x nanosheets were successfully fabricated and exhibited superior performance in light-harvesting, electron-hole pair separation, and full-spectrum driven molecular oxygen activation. The hybridized photocatalyst with a N-GQDs weight ratio of 0.4wt% (GBO-0.4) exhibited an excellent photocatalytic activity toward tetracycline degradation with a 4.0-fold, 2.9-fold and 5.5-fold higher reaction rate under full-spectrum, visible and near-infrared light irradiations than that of pure BiO2-x, respectively. The enhanced photocatalytic performance was ascribed to the electron collection effect and up-conversion photoluminescence properties of the N-GQDs as well as the synergistic effects of the developed nanojunction. Efficient molecular oxygen activation was achieved via the construction of a bulk-to-surface channel between BiO2-x and N-GQDs. DFT calculations were also used to explore the geometric and electronic structure variations of BiO2-x after the introduction of N-GQDs. The high photostability and mineralization ability toward tetracycline degradation confirm the promising application prospects of the N-GQDs/BiO2-x photocatalyst. This work provides a rational strategy for designing 0D/2D nanoscale heterostructure photocatalysts with improved full-spectrum photoactivity for environmental applications. [Display omitted] •N-GQDs/BiO2-x nanoscale heterojunctions were prepared based on 0D/2D interface engineering.•Tetracycline was efficiently degraded under full-spectrum, visible and NIR light irradiations.•Highly oxidative capacity of holes and reductive properties of electrons were achieved.•Synergistic effects were found to accelerate the molecular oxygen activation. It is still challenging to produce superoxide and hydroxyl radicals through activating molecular oxygen under broad-spectrum light in environmental photocatalysis. In this work, nitrogen-doped graphene quantum dots (N-GQDs) modified BiO2-x nanosheets were successfully fabricated and exhibited superior performance in light-harvesting, electron-hole pair separation, and full-spectrum driven molecular oxygen activation. The hybridized photocatalyst with a N-GQDs weight ratio of 0.4wt% (GBO-0.4) exhibited an excellent photocatalytic activity toward tetracycline degradation with a 4.0-fold, 2.9-fold and 5.5-fold higher reaction rate under full-spectrum, visible and near-infrared light irradiations than that of pure BiO2-x, respectively. The enhanced photocatalytic performance was ascribed to the electron collection effect and up-conversion photoluminescence properties of the N-GQDs as well as the synergistic effects of the developed nanojunction. Efficient molecular oxygen activation was achieved via the construction of a bulk-to-surface channel between BiO2-x and N-GQDs. DFT calculations were also used to explore the geometric and electronic structure variations of BiO2-x after the introduction of N-GQDs. The high photostability and mineralization ability toward tetracycline degradation confirm the promising application prospects of the N-GQDs/BiO2-x photocatalyst. This work provides a rational strategy for designing 0D/2D nanoscale heterostructure photocatalysts with improved full-spectrum photoactivity for environmental applications. |
ArticleNumber | 119218 |
Author | Wu, Jing-Hang Chen, Fei Zhang, Ying-Jie Yu, Han-Qing Huang, Gui-Xiang Yang, Qi Chen, Jie-Jie Liu, Lian-Lian |
Author_xml | – sequence: 1 givenname: Fei surname: Chen fullname: Chen, Fei organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 2 givenname: Lian-Lian surname: Liu fullname: Liu, Lian-Lian organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 3 givenname: Ying-Jie surname: Zhang fullname: Zhang, Ying-Jie organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 4 givenname: Jing-Hang orcidid: 0000-0002-8087-8440 surname: Wu fullname: Wu, Jing-Hang organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 5 givenname: Gui-Xiang orcidid: 0000-0003-1223-0164 surname: Huang fullname: Huang, Gui-Xiang organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 6 givenname: Qi orcidid: 0000-0001-6781-770X surname: Yang fullname: Yang, Qi organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 7 givenname: Jie-Jie orcidid: 0000-0002-2539-8305 surname: Chen fullname: Chen, Jie-Jie email: chenjiej@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China – sequence: 8 givenname: Han-Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han-Qing email: hqyu@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei, China |
BookMark | eNqFkctu1DAUQC1UJKaFP2BhiXUGv5pHF0hQFYpUqRu6tm7sm4lHGTu1narzS_1KPKQrFrDy65778DknZz54JOQjZ1vOeP15v4XZQO63golyxTvB2zdkw9tGVrJt5RnZsE7UlZSNfEfOU9ozxoQU7Ya83PgRvEFLh2WaaAoTRJpmNDkuBzqPIYeSGaZjcon2R-pdjmGHvrJhLtAuwjyiR_q4gM-FsCEnatGECLm8f3P3onqmHnxII2JOV_RhyhEGSJmaEeIOaTn6NGCk4C09hAnNcmoiPB9LHQomuyfILvj35O0AU8IPr-sFefh-8-v6trq7__Hz-utdZRRjuYK-YUMHTWdEy5StFaICZe0lDnVX_geGppa2uRR9LQ2w2vKyB8YHY63teyUvyKc17xzD44Ip631Yoi8ltVCqZrxr265EXa1RJoaUIg7auPynzzKPmzRn-uRG7_XqRp_c6NVNgdVf8BzdAeLxf9iXFcMy_pPDqJNxeLLnYjGmbXD_TvAbsn-x5Q |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_148813 crossref_primary_10_1016_j_jhazmat_2021_127721 crossref_primary_10_1016_j_cplett_2023_140982 crossref_primary_10_1016_j_jece_2024_114910 crossref_primary_10_1016_j_jcis_2021_06_085 crossref_primary_10_1016_j_jhazmat_2024_134420 crossref_primary_10_1039_D4NR00608A crossref_primary_10_1016_j_cej_2021_132355 crossref_primary_10_1016_j_jhazmat_2025_137810 crossref_primary_10_1016_j_watres_2021_117314 crossref_primary_10_1016_j_apcatb_2023_123350 crossref_primary_10_1039_D3NJ00562C crossref_primary_10_1038_s41467_024_52158_z crossref_primary_10_1039_D1TA01537K crossref_primary_10_1016_j_apcatb_2021_120882 crossref_primary_10_1016_j_jclepro_2023_136054 crossref_primary_10_1002_slct_202103845 crossref_primary_10_1002_ange_202316998 crossref_primary_10_1016_j_jwpe_2024_106221 crossref_primary_10_2139_ssrn_4122859 crossref_primary_10_1016_j_jhazmat_2025_137149 crossref_primary_10_1016_j_jallcom_2023_172881 crossref_primary_10_1016_j_cej_2024_151802 crossref_primary_10_1016_j_cej_2024_150712 crossref_primary_10_1016_j_optmat_2022_113037 crossref_primary_10_1021_acs_langmuir_4c01421 crossref_primary_10_1016_j_jhazmat_2021_125528 crossref_primary_10_1016_j_jece_2023_110257 crossref_primary_10_1002_anie_202316998 crossref_primary_10_1016_j_jece_2024_112874 crossref_primary_10_1016_j_matlet_2023_135717 crossref_primary_10_1016_j_cej_2024_153310 crossref_primary_10_1007_s11581_023_05057_0 crossref_primary_10_1016_j_cej_2025_160404 crossref_primary_10_1016_j_seppur_2024_130045 crossref_primary_10_1016_j_jallcom_2022_168061 crossref_primary_10_1016_j_seppur_2023_123792 crossref_primary_10_1016_j_memsci_2021_119782 crossref_primary_10_1016_j_cej_2021_129596 crossref_primary_10_1016_j_apcatb_2023_122363 crossref_primary_10_1016_j_seppur_2024_129978 crossref_primary_10_1016_j_solidstatesciences_2021_106663 crossref_primary_10_1016_j_surfin_2023_103812 crossref_primary_10_1016_j_colsurfa_2021_126217 crossref_primary_10_1039_D3NJ03470D crossref_primary_10_1016_j_mssp_2023_107672 crossref_primary_10_1016_j_jhazmat_2023_132110 crossref_primary_10_1016_j_cej_2021_131794 crossref_primary_10_1039_D1RA07290K crossref_primary_10_3390_ijms232315221 crossref_primary_10_1016_j_seppur_2022_120717 crossref_primary_10_1016_j_cej_2023_145590 crossref_primary_10_2139_ssrn_4092243 crossref_primary_10_1016_j_apsusc_2024_159347 crossref_primary_10_1080_00986445_2022_2116322 crossref_primary_10_1016_j_jhazmat_2021_126555 crossref_primary_10_1016_j_seppur_2021_118423 crossref_primary_10_1039_D0SE01224F crossref_primary_10_1016_j_jclepro_2024_143752 crossref_primary_10_1016_j_cej_2022_139067 crossref_primary_10_1016_j_apsusc_2021_149665 crossref_primary_10_1016_j_colsurfa_2025_136202 crossref_primary_10_1016_j_jece_2023_109801 crossref_primary_10_1007_s11356_022_24489_1 crossref_primary_10_1016_j_cej_2020_128281 crossref_primary_10_1016_j_chemosphere_2023_139946 crossref_primary_10_1016_j_jpcs_2022_110692 crossref_primary_10_12677_HJCET_2020_106056 crossref_primary_10_1007_s10311_021_01295_8 crossref_primary_10_1007_s11164_021_04520_9 crossref_primary_10_1016_j_seppur_2022_121712 crossref_primary_10_1016_j_apsusc_2023_157836 crossref_primary_10_1016_j_cej_2021_131749 crossref_primary_10_1016_j_apcatb_2021_120845 crossref_primary_10_1016_j_envres_2023_115854 crossref_primary_10_1073_pnas_2215305120 crossref_primary_10_1016_j_apmate_2024_100201 crossref_primary_10_1016_j_colsurfa_2022_128559 crossref_primary_10_1016_j_jece_2023_110516 crossref_primary_10_1016_j_apsusc_2024_162130 crossref_primary_10_1021_acsanm_3c04969 crossref_primary_10_1016_j_apcatb_2021_120573 crossref_primary_10_1016_j_jece_2021_106668 crossref_primary_10_2139_ssrn_4015152 crossref_primary_10_1016_j_cej_2023_142694 crossref_primary_10_1002_cssc_202401307 crossref_primary_10_1016_j_cej_2024_152022 crossref_primary_10_1002_solr_202300872 crossref_primary_10_1016_j_jcis_2021_04_143 crossref_primary_10_1016_j_apsusc_2022_154389 crossref_primary_10_1002_smll_202306983 crossref_primary_10_1016_j_ceramint_2021_03_020 crossref_primary_10_1002_adma_202005922 crossref_primary_10_1039_D3NR04937J crossref_primary_10_1016_j_jwpe_2023_104282 crossref_primary_10_1016_j_seppur_2024_128554 crossref_primary_10_1039_D4TC03643C crossref_primary_10_1002_lpor_202300499 crossref_primary_10_1021_acs_langmuir_4c04739 crossref_primary_10_1002_smll_202305004 crossref_primary_10_1016_j_seppur_2024_127900 |
Cites_doi | 10.1038/s41467-019-10218-9 10.1016/j.apcatb.2018.02.011 10.1016/j.apcatb.2018.04.016 10.1016/j.jcat.2017.11.029 10.1016/j.cej.2013.08.048 10.1016/j.apcatb.2017.07.030 10.1021/jacs.0c00054 10.1021/nn501996a 10.1002/anie.201708709 10.1021/acsami.8b03250 10.1016/j.electacta.2017.10.030 10.1021/acsami.7b14412 10.1021/cs401025u 10.1021/jacs.6b09863 10.1016/j.apsusc.2014.11.003 10.1039/C2CS35355E 10.1016/j.apcatb.2016.08.049 10.1039/B800489G 10.1016/j.apcatb.2018.08.049 10.1039/C7CY01709J 10.1021/acsami.7b14541 10.1021/acsnano.7b03513 10.1021/jacs.5b03105 10.1039/C6TA00284F 10.1021/jacs.6b12850 10.1016/j.watres.2017.06.060 10.1016/j.chempr.2018.06.004 10.1021/acsami.5b05268 10.1016/j.nanoen.2018.07.018 10.1016/j.apcatb.2018.05.022 10.1039/C4NR04810E 10.1016/j.apcatb.2017.11.040 10.1016/j.apcatb.2017.05.035 10.1039/C8TA00336J 10.1002/adma.201305299 10.1016/j.apcatb.2017.01.015 10.1016/j.apcatb.2016.09.039 10.1016/j.apcatb.2016.12.027 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 15, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 15, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.119218 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_119218 S0926337320306330 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-ab70f9a79c2804d64ee4a4dd5ef69020af763d752b63ca06d1752a01fcdddbb43 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 11:07:43 EDT 2025 Tue Jul 01 04:35:06 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Sat Mar 02 15:59:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | N-GQDs/BiO2-x Molecular oxygen activation Photocatalytic degradation mechanism Full spectrum Tetracycline |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-ab70f9a79c2804d64ee4a4dd5ef69020af763d752b63ca06d1752a01fcdddbb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2539-8305 0000-0003-1223-0164 0000-0002-8087-8440 0000-0001-6781-770X 0000-0001-5247-6244 |
PQID | 2446019889 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2446019889 crossref_citationtrail_10_1016_j_apcatb_2020_119218 crossref_primary_10_1016_j_apcatb_2020_119218 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_119218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-15 |
PublicationDateYYYYMMDD | 2020-11-15 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Lee, Zhuo, Shao (bib0140) 2012; 2 Wang, Zhang, Qiu, Huang, Yu (bib0205) 2017; 205 Yeh, Teng, Chen, Teng (bib0145) 2014; 26 Wang, Qian, Liu, Zeng, Wang, Zhao (bib0020) 2020; 142 Li, Shi, Zhao, Zhang (bib0195) 2014; 6 Dong, Hu, Wu, Gao, Ren, Cai (bib0085) 2017; 139 Li, Wu, Pan, Zhang, Chen (bib0130) 2018; 57 Atta, Pennington, Celik, Fabris (bib0015) 2018; 4 Qu, Duan (bib0010) 2013; 42 Liu, Cai, Wang, Zhu (bib0100) 2018; 236 Li, Wang, Zhang, Li, Wang (bib0165) 2018; 234 Feng, Deng, Tang, Zeng, Wang, Yu, Liu, Peng, Feng, Wang (bib0135) 2018; 239 Chang, Xie, Sha, Lu, Qi, Dong, Yan, Gondal, Rashid, Dai, Zhang, Yang, Mao, Wang (bib0055) 2017; 201 Shang, Hao, Lv, Wang, Wang, Du, Dou, Xie, Wang, Wang (bib0105) 2014; 4 Hu, He, Xia, Huang, Xu, Li, He, Yang, Shu, Wong (bib0090) 2018; 10 Kudo, Miseki (bib0005) 2009; 38 Che, Liu, Hu, Hu, Li, Dou, Dong (bib0155) 2018; 8 Xie, Feng, Wang, Chen, Zhang, Zeng, Lv, Liu (bib0200) 2018; 229 Li, Li, Feng, Li, Hao, Zhang, Ma, Wang (bib0185) 2019; 10 Hao, Wang, Lu, Xie, Ao, Chen, Ma, Yao, Zhu (bib0115) 2017; 219 Mao, Xiang, Liu, Cui, Yang, Yeung (bib0030) 2017; 11 Wang, Wu, Wang, Ao, Hou, Qian (bib0025) 2015; 325 Di, Xia, Ji, Wang, Yin, Zhang, Chen, Li (bib0060) 2015; 7 Wei, Zhu, Gu, An, Liu, Qu (bib0040) 2018; 51 Chang, Zhu, Fu, Chu (bib0080) 2013; 233 Wu, Yuan, Zeng, Jiang, Zhong, Xie, Wang, Chen (bib0125) 2018; 225 Deng, Tang, Feng, Zeng, Wang, Lu, Liu, Yu, Chen, Zhou (bib0160) 2017; 9 Sun, Wang, Yu, Yu (bib0035) 2018; 30 Zhu, Liu, Chen, Yin, Ge, Wang (bib0050) 2017; 9 Zhou, Bao, Xu, Zhang, Xie, Lei, Xie (bib0045) 2014; 8 Li, Shang, Ai, Zhang (bib0070) 2015; 137 Li, Qin, Yang, Cui, Wang, Zhang (bib0065) 2017; 139 Rekeb, Hamadou, Kadri, Benbrahim (bib0110) 2017; 256 Di, Xia, Ji, Xu, Yin, Chen, Li (bib0180) 2016; 4 Liang, Liu, Deng, Li, Tong (bib0095) 2017; 123 Wen, Niu, Zhang, Liang, Guo, Zeng (bib0190) 2018; 358 Sun, Yip, Jiang, Ye, Lo, Wong (bib0175) 2018; 6 Ye, Liu, Jiang, Peng, Zan (bib0075) 2013; 142 Xia, Wang, Yin, Jiang, An, Li, Zhao, Wong (bib0120) 2017; 214 Yan, Hua, Zhu, Gu, Jiang, Shi (bib0150) 2017; 202 Liu, Di, Qin (bib0170) 2017; 205 Dong (10.1016/j.apcatb.2020.119218_bib0085) 2017; 139 Yan (10.1016/j.apcatb.2020.119218_bib0150) 2017; 202 Xie (10.1016/j.apcatb.2020.119218_bib0200) 2018; 229 Shang (10.1016/j.apcatb.2020.119218_bib0105) 2014; 4 Kudo (10.1016/j.apcatb.2020.119218_bib0005) 2009; 38 Li (10.1016/j.apcatb.2020.119218_bib0165) 2018; 234 Li (10.1016/j.apcatb.2020.119218_bib0185) 2019; 10 Sun (10.1016/j.apcatb.2020.119218_bib0035) 2018; 30 Zhu (10.1016/j.apcatb.2020.119218_bib0050) 2017; 9 Feng (10.1016/j.apcatb.2020.119218_bib0135) 2018; 239 Yeh (10.1016/j.apcatb.2020.119218_bib0145) 2014; 26 Wen (10.1016/j.apcatb.2020.119218_bib0190) 2018; 358 Wang (10.1016/j.apcatb.2020.119218_bib0020) 2020; 142 Di (10.1016/j.apcatb.2020.119218_bib0060) 2015; 7 Wei (10.1016/j.apcatb.2020.119218_bib0040) 2018; 51 Di (10.1016/j.apcatb.2020.119218_bib0180) 2016; 4 Wang (10.1016/j.apcatb.2020.119218_bib0025) 2015; 325 Rekeb (10.1016/j.apcatb.2020.119218_bib0110) 2017; 256 Wu (10.1016/j.apcatb.2020.119218_bib0125) 2018; 225 Hu (10.1016/j.apcatb.2020.119218_bib0090) 2018; 10 Li (10.1016/j.apcatb.2020.119218_bib0070) 2015; 137 Ye (10.1016/j.apcatb.2020.119218_bib0075) 2013; 142 Mao (10.1016/j.apcatb.2020.119218_bib0030) 2017; 11 Li (10.1016/j.apcatb.2020.119218_bib0195) 2014; 6 Li (10.1016/j.apcatb.2020.119218_bib0065) 2017; 139 Li (10.1016/j.apcatb.2020.119218_bib0130) 2018; 57 Chang (10.1016/j.apcatb.2020.119218_bib0055) 2017; 201 Hao (10.1016/j.apcatb.2020.119218_bib0115) 2017; 219 Sun (10.1016/j.apcatb.2020.119218_bib0175) 2018; 6 Che (10.1016/j.apcatb.2020.119218_bib0155) 2018; 8 Chang (10.1016/j.apcatb.2020.119218_bib0080) 2013; 233 Liu (10.1016/j.apcatb.2020.119218_bib0100) 2018; 236 Atta (10.1016/j.apcatb.2020.119218_bib0015) 2018; 4 Xia (10.1016/j.apcatb.2020.119218_bib0120) 2017; 214 Lee (10.1016/j.apcatb.2020.119218_bib0140) 2012; 2 Wang (10.1016/j.apcatb.2020.119218_bib0205) 2017; 205 Qu (10.1016/j.apcatb.2020.119218_bib0010) 2013; 42 Liu (10.1016/j.apcatb.2020.119218_bib0170) 2017; 205 Liang (10.1016/j.apcatb.2020.119218_bib0095) 2017; 123 Deng (10.1016/j.apcatb.2020.119218_bib0160) 2017; 9 Zhou (10.1016/j.apcatb.2020.119218_bib0045) 2014; 8 |
References_xml | – volume: 325 start-page: 112 year: 2015 end-page: 116 ident: bib0025 publication-title: Appl. Surf. Sci. – volume: 51 start-page: 764 year: 2018 end-page: 773 ident: bib0040 publication-title: Nano Energy – volume: 205 start-page: 158 year: 2017 end-page: 164 ident: bib0170 publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 14168 year: 2014 ident: bib0195 publication-title: Nanoscale – volume: 123 start-page: 632 year: 2017 end-page: 641 ident: bib0095 publication-title: Water Res. – volume: 233 start-page: 305 year: 2013 end-page: 314 ident: bib0080 publication-title: Chem. Eng. J. – volume: 358 start-page: 141 year: 2018 end-page: 154 ident: bib0190 publication-title: J. Catal. – volume: 9 start-page: 42816 year: 2017 end-page: 42828 ident: bib0160 publication-title: ACS Appl. Mater. Int. – volume: 2 start-page: 1059 year: 2012 end-page: 1064 ident: bib0140 publication-title: ACS Nano – volume: 8 start-page: 7088 year: 2014 end-page: 7098 ident: bib0045 publication-title: ACS Nano – volume: 225 start-page: 8 year: 2018 end-page: 21 ident: bib0125 publication-title: Appl. Catal. B: Environ. – volume: 139 start-page: 3513 year: 2017 end-page: 3521 ident: bib0065 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 1 year: 2013 end-page: 7 ident: bib0075 publication-title: Appl. Catal. B: Environ. – volume: 10 start-page: 2177 year: 2019 ident: bib0185 publication-title: Nat. Commun. – volume: 4 start-page: 954 year: 2014 end-page: 961 ident: bib0105 publication-title: ACS Catal. – volume: 4 start-page: 5051 year: 2016 end-page: 5061 ident: bib0180 publication-title: J. Mater. Chem. A – volume: 26 start-page: 3297 year: 2014 end-page: 3303 ident: bib0145 publication-title: Adv. Mater. – volume: 4 start-page: 2140 year: 2018 end-page: 2153 ident: bib0015 publication-title: Chem – volume: 9 start-page: 38832 year: 2017 end-page: 38841 ident: bib0050 publication-title: ACS Appl. Mater. Int. – volume: 7 start-page: 20111 year: 2015 end-page: 20123 ident: bib0060 publication-title: ACS Appl. Mater. Int. – volume: 234 start-page: 167 year: 2018 end-page: 177 ident: bib0165 publication-title: Appl. Catal. B: Environ. – volume: 229 start-page: 96 year: 2018 end-page: 104 ident: bib0200 publication-title: Appl. Catal. B: Environ. – volume: 42 start-page: 2568 year: 2013 end-page: 2580 ident: bib0010 publication-title: Chem. Soc. Rev. – volume: 202 start-page: 518 year: 2017 end-page: 527 ident: bib0150 publication-title: Appl. Catal. B: Environ. – volume: 139 start-page: 1722 year: 2017 end-page: 1725 ident: bib0085 publication-title: J. Am. Chem. Soc. – volume: 214 start-page: 23 year: 2017 end-page: 33 ident: bib0120 publication-title: Appl. Catal. B: Environ. – volume: 137 start-page: 6393 year: 2015 end-page: 6399 ident: bib0070 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 622 year: 2018 end-page: 631 ident: bib0155 publication-title: Catal. Sci. Technol. – volume: 38 start-page: 253 year: 2009 end-page: 278 ident: bib0005 publication-title: Chem. Soc. Rev. – volume: 57 start-page: 491 year: 2018 end-page: 495 ident: bib0130 publication-title: Angew Chem. Int. Ed. – volume: 11 start-page: 9010 year: 2017 end-page: 9021 ident: bib0030 publication-title: ACS Nano – volume: 236 start-page: 205 year: 2018 end-page: 211 ident: bib0100 publication-title: Appl. Catal. B: Environ. – volume: 30 year: 2018 ident: bib0035 publication-title: Adv. Mater. – volume: 219 start-page: 63 year: 2017 end-page: 72 ident: bib0115 publication-title: Appl. Catal. B: Environ. – volume: 205 start-page: 615 year: 2017 end-page: 623 ident: bib0205 publication-title: Appl. Catal. B: Environ. – volume: 201 start-page: 495 year: 2017 end-page: 502 ident: bib0055 publication-title: Appl. Catal. B: Environ. – volume: 10 start-page: 18693 year: 2018 end-page: 18708 ident: bib0090 publication-title: ACS Appl. Mater. Int. – volume: 142 start-page: 4862 year: 2020 end-page: 4871 ident: bib0020 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4997 year: 2018 end-page: 5005 ident: bib0175 publication-title: J. Mater. Chem. A – volume: 239 start-page: 525 year: 2018 end-page: 536 ident: bib0135 publication-title: Appl. Catal. B: Environ. – volume: 256 start-page: 162 year: 2017 end-page: 171 ident: bib0110 publication-title: Electrochim. Acta – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0035 publication-title: Adv. Mater. – volume: 10 start-page: 2177 year: 2019 ident: 10.1016/j.apcatb.2020.119218_bib0185 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10218-9 – volume: 2 start-page: 1059 year: 2012 ident: 10.1016/j.apcatb.2020.119218_bib0140 publication-title: ACS Nano – volume: 229 start-page: 96 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0200 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.02.011 – volume: 234 start-page: 167 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0165 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.04.016 – volume: 358 start-page: 141 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0190 publication-title: J. Catal. doi: 10.1016/j.jcat.2017.11.029 – volume: 233 start-page: 305 year: 2013 ident: 10.1016/j.apcatb.2020.119218_bib0080 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.08.048 – volume: 219 start-page: 63 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0115 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.07.030 – volume: 142 start-page: 4862 year: 2020 ident: 10.1016/j.apcatb.2020.119218_bib0020 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00054 – volume: 8 start-page: 7088 year: 2014 ident: 10.1016/j.apcatb.2020.119218_bib0045 publication-title: ACS Nano doi: 10.1021/nn501996a – volume: 57 start-page: 491 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0130 publication-title: Angew Chem. Int. Ed. doi: 10.1002/anie.201708709 – volume: 10 start-page: 18693 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0090 publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.8b03250 – volume: 256 start-page: 162 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0110 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.030 – volume: 9 start-page: 38832 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0050 publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.7b14412 – volume: 4 start-page: 954 year: 2014 ident: 10.1016/j.apcatb.2020.119218_bib0105 publication-title: ACS Catal. doi: 10.1021/cs401025u – volume: 139 start-page: 1722 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0085 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09863 – volume: 325 start-page: 112 year: 2015 ident: 10.1016/j.apcatb.2020.119218_bib0025 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.11.003 – volume: 42 start-page: 2568 year: 2013 ident: 10.1016/j.apcatb.2020.119218_bib0010 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35355E – volume: 201 start-page: 495 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0055 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.08.049 – volume: 38 start-page: 253 year: 2009 ident: 10.1016/j.apcatb.2020.119218_bib0005 publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 239 start-page: 525 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0135 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.08.049 – volume: 8 start-page: 622 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0155 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01709J – volume: 142 start-page: 1 year: 2013 ident: 10.1016/j.apcatb.2020.119218_bib0075 publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 42816 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0160 publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.7b14541 – volume: 11 start-page: 9010 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0030 publication-title: ACS Nano doi: 10.1021/acsnano.7b03513 – volume: 137 start-page: 6393 year: 2015 ident: 10.1016/j.apcatb.2020.119218_bib0070 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03105 – volume: 4 start-page: 5051 year: 2016 ident: 10.1016/j.apcatb.2020.119218_bib0180 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00284F – volume: 139 start-page: 3513 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0065 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12850 – volume: 123 start-page: 632 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0095 publication-title: Water Res. doi: 10.1016/j.watres.2017.06.060 – volume: 4 start-page: 2140 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0015 publication-title: Chem doi: 10.1016/j.chempr.2018.06.004 – volume: 7 start-page: 20111 year: 2015 ident: 10.1016/j.apcatb.2020.119218_bib0060 publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.5b05268 – volume: 51 start-page: 764 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0040 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.018 – volume: 236 start-page: 205 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0100 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.05.022 – volume: 6 start-page: 14168 year: 2014 ident: 10.1016/j.apcatb.2020.119218_bib0195 publication-title: Nanoscale doi: 10.1039/C4NR04810E – volume: 225 start-page: 8 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0125 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.11.040 – volume: 214 start-page: 23 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0120 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.05.035 – volume: 6 start-page: 4997 year: 2018 ident: 10.1016/j.apcatb.2020.119218_bib0175 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00336J – volume: 26 start-page: 3297 year: 2014 ident: 10.1016/j.apcatb.2020.119218_bib0145 publication-title: Adv. Mater. doi: 10.1002/adma.201305299 – volume: 205 start-page: 615 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0205 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.01.015 – volume: 202 start-page: 518 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0150 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.09.039 – volume: 205 start-page: 158 year: 2017 ident: 10.1016/j.apcatb.2020.119218_bib0170 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.12.027 |
SSID | ssj0002328 |
Score | 2.5992174 |
Snippet | [Display omitted]
•N-GQDs/BiO2-x nanoscale heterojunctions were prepared based on 0D/2D interface engineering.•Tetracycline was efficiently degraded under... It is still challenging to produce superoxide and hydroxyl radicals through activating molecular oxygen under broad-spectrum light in environmental... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119218 |
SubjectTerms | Activation Catalytic activity Charge transfer Electronic structure Free radicals Full spectrum Graphene Heterostructures Holes (electron deficiencies) Hydroxyl radicals Mineralization Molecular oxygen activation N-GQDs/BiO2-x Nanosheets Near infrared radiation Nitrogen Oxygen Photocatalysis Photocatalysts Photocatalytic degradation mechanism Photodegradation Photoluminescence Photons Quantum dots Superoxide Synergistic effect Tetracycline Upconversion |
Title | Enhanced full solar spectrum photocatalysis by nitrogen-doped graphene quantum dots decorated BiO2-x nanosheets: Ultrafast charge transfer and molecular oxygen activation |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.119218 https://www.proquest.com/docview/2446019889 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWq9gAcUFmoKC3VHLiazTpOvO6trLbagigHWKm3yJ_aRW2SblKpvfCD-JWMnYQCqlSJYyJPEmUmz-85nhlC3mXKceasoNZJQbmRnirBJdXOp9LrNM9sEIqfz_PFkn-8yC62yGzIhQnbKnvs7zA9onV_Zty_zXG9Xo-_JpLlaSpSFmgvyvKQwc5FiPL3P-63eSBjiGiMg2kYPaTPxT1eqjaq1agSWcAOyULrj4enp3-AOs4-p7vkeU8b4aR7shdky5Uj8mQ2dGsbkWd_FBYckb35ff4amvUfcPOS_JyXq_jPH8K6OzRB2ELMttzcXEG9qtoqLuiEOiWg7wA_-E2FMUZtVaNRLG-N6AjXN-gRtEBN24ANEhY5q4UP6y-M3kKpyqpZOdc2x7C8bDfKq6aFWJTJQRupstuAKi1cDd15obq9w_tAyLPoVolfkeXp_NtsQft2DdQgELRUaZF4qYQ0bJpwm3PnuOLWZs6jBGeJ8ohlVmRM56lRSW6RuTCVTLyx1mrN0z2yXVale03AKBV4GWpF7bjUTiJpyzM38W6SGyXzfZIOXipMX8s8tNS4LIZNa9-LzrdF8G3R-Xaf0N9WdVfL45HxYgiA4q-YLHC6ecTycIiXoseEpkAihepXTqfyzX9f-IA8DUchGXKSHZJtDA73FllRq49i2B-RnZOzT4vzX9sfEc0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOCBYqCgXmAEezWcdJ1kgcoGy1pQ8OdKXejF_RLmqTsElF98IP4sofZOwkFBBSJaRek0wSecbfzGfNg5DniXKcOZtR60RGuRE5VRkXVLs8FrmO08R6onh4lE5n_P1JcrJGfvS1MD6tssP-FtMDWndXht1qDqvFYvgxEiyN4yxmPuxFWt5lVu671VfkbfXrvXeo5BeM7U6Od6a0Gy1ADRptQ5XOolyoTBg2jrhNuXNccWsTlyNdZJHKcd_ZLGE6jY2KUotelqlolBtrrdY8xvfeIDc5woUfm_Dy22VeCYYoAf7x76j_vb5eLySVqcqoRiMtZR6sBPOzRv7tD__yDMHd7d4ld7o4Fd60S3GPrLliQDZ2-vFwA3L7t06GA7I5uSyYQ7EOMer75PukmIckA_AH_VB7Jg2hvHN5fgbVvGzKcILkG6OAXgEizLJEo6a2rFAo9NNGOIYv52gCKIEkugbrOTMGyRbeLj4wegGFKsp67lxTv4LZabNUuaobCF2gHDQhNndLUIWFs34cMJQXK_wO-MKO9lj6AZldixI3yXpRFu4hAaOUDwSRnGrHhXYCo8Q0caPcjVKjRLpF4l5L0nTN0_0Mj1PZZ8l9lq1updetbHW7RegvqaptHnLF81lvAPKPTSDRv10hud3bi-xAqJYYuSHdFuOxePTfL35GNqbHhwfyYO9o_zG55e_4SsxRsk3W0VDcEwzJGv00bAEgn657z_0EuZdOgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+full+solar+spectrum+photocatalysis+by+nitrogen-doped+graphene+quantum+dots+decorated+BiO2-x+nanosheets%3A+Ultrafast+charge+transfer+and+molecular+oxygen+activation&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Chen%2C+Fei&rft.au=Liu%2C+Lian-Lian&rft.au=Zhang%2C+Ying-Jie&rft.au=Wu%2C+Jing-Hang&rft.date=2020-11-15&rft.issn=0926-3373&rft.volume=277&rft.spage=119218&rft_id=info:doi/10.1016%2Fj.apcatb.2020.119218&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_119218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |