Investigating the origin of high efficiency in confined multienzyme catalysis

Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 45; pp. 2218 - 22117
Main Authors Cao, Yufei, Li, Xiaoyang, Xiong, Jiarong, Wang, Licheng, Yan, Li-Tang, Ge, Jun
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes. Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes.
AbstractList Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal–organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes.
Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal–organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes.
Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes. Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes.
Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes.Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes.
Author Li, Xiaoyang
Cao, Yufei
Yan, Li-Tang
Wang, Licheng
Ge, Jun
Xiong, Jiarong
AuthorAffiliation Ministry of Education
Department of Chemical Engineering
Tsinghua University
Key Lab for Industrial Biocatalysis
State Key Laboratory of Chemical Engineering
AuthorAffiliation_xml – name: Ministry of Education
– name: Department of Chemical Engineering
– name: Tsinghua University
– name: State Key Laboratory of Chemical Engineering
– name: Key Lab for Industrial Biocatalysis
Author_xml – sequence: 1
  givenname: Yufei
  surname: Cao
  fullname: Cao, Yufei
– sequence: 2
  givenname: Xiaoyang
  surname: Li
  fullname: Li, Xiaoyang
– sequence: 3
  givenname: Jiarong
  surname: Xiong
  fullname: Xiong, Jiarong
– sequence: 4
  givenname: Licheng
  surname: Wang
  fullname: Wang, Licheng
– sequence: 5
  givenname: Li-Tang
  surname: Yan
  fullname: Yan, Li-Tang
– sequence: 6
  givenname: Jun
  surname: Ge
  fullname: Ge, Jun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31720641$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLxDAQxoMovi_elYoXEVbzatoeZfEFPkD0HNLspBtpkzVphfWvN7o-QMTTDDO_GT6-bwMtO-8AoR2Cjwlm1YmuXMAFK0mzhNYp5njEWEGXv3vB19BGjE8Yi4oJtorWGCkoFpyso5sr9wKxt43qrWuyfgqZD7axLvMmm9pmmoExVltwep6lqfbOWAeTrBvaPk1f5x1kWvWqnUcbt9CKUW2E7c-6iR7Pzx7Gl6Pru4ur8en1SHOM-5FSvCwpFHWpVAU1S8Lqss6BMKCc14XOJzivc1MWhgvABVHMaAZElMIoXuVsEx0u_s6Cfx6SftnZqKFtlQM_REkZ4TQXOSUJPfiFPvkhuKTunRIc07ISidr7pIa6g4mcBdupMJdfRiUALwAdfIwBjNS2T5551wdlW0mwfM9Cjqvb-48sLtLJ0a-Tr69_wrsLOET9zf0Em_b7_-3lbGLYG-U3nfk
CitedBy_id crossref_primary_10_1002_cctc_202400699
crossref_primary_10_1021_acs_jpclett_1c00243
crossref_primary_10_1039_D1BM01106E
crossref_primary_10_1039_D1CS00968K
crossref_primary_10_1039_D0RA01204A
crossref_primary_10_1016_j_cej_2022_136153
crossref_primary_10_1021_acsmaterialslett_4c02185
crossref_primary_10_1016_j_colsurfb_2023_113443
crossref_primary_10_1021_acsami_4c14661
crossref_primary_10_1016_j_cjche_2020_05_035
crossref_primary_10_1016_j_cej_2025_161230
crossref_primary_10_1021_acsnano_2c00475
crossref_primary_10_1016_S1872_2067_24_60172_5
crossref_primary_10_1002_pro_5175
crossref_primary_10_1016_j_mcat_2024_114268
crossref_primary_10_1016_j_jcou_2020_101171
crossref_primary_10_3389_fbioe_2020_00660
crossref_primary_10_1021_acsabm_0c01293
crossref_primary_10_34133_2022_9847698
crossref_primary_10_1007_s11426_022_1254_5
crossref_primary_10_1016_j_tibtech_2021_01_002
crossref_primary_10_1021_acssuschemeng_3c02296
crossref_primary_10_1016_j_cej_2025_160994
crossref_primary_10_1016_j_cis_2025_103444
crossref_primary_10_1021_acsmaterialslett_4c00629
crossref_primary_10_1021_acs_chemrev_2c00397
crossref_primary_10_1002_agt2_635
crossref_primary_10_1039_D0DT02045A
crossref_primary_10_1039_D3SC01367G
crossref_primary_10_1002_cbic_202400147
crossref_primary_10_1021_acscatal_1c02221
crossref_primary_10_1039_D4DT01667J
crossref_primary_10_1016_j_ccr_2025_216571
crossref_primary_10_1039_D2NA00605G
crossref_primary_10_1016_j_foodchem_2024_139533
crossref_primary_10_1038_s41467_022_27983_9
crossref_primary_10_1016_j_mcat_2023_113290
crossref_primary_10_3389_fchem_2020_587975
crossref_primary_10_1016_S1872_2067_21_63798_1
crossref_primary_10_1039_D4CY01381F
crossref_primary_10_1021_acsami_1c15506
crossref_primary_10_1016_j_cjche_2020_07_042
crossref_primary_10_1039_D1CC04162B
crossref_primary_10_2139_ssrn_4015334
crossref_primary_10_3390_molecules27196309
crossref_primary_10_1186_s40643_025_00857_w
crossref_primary_10_1016_j_partic_2025_02_002
crossref_primary_10_1002_smll_202404018
crossref_primary_10_1016_j_bios_2020_112827
crossref_primary_10_1016_j_cej_2021_131482
crossref_primary_10_1021_acssuschemeng_2c04390
crossref_primary_10_1016_j_cis_2025_103427
crossref_primary_10_1002_smll_202412264
crossref_primary_10_3390_reactions3010011
Cites_doi 10.1038/ncomms11568
10.1038/ncomms13982
10.1002/ejlt.200800017
10.1126/science.1096920
10.1007/s00253-004-1595-5
10.1038/ncomms8240
10.1074/jbc.274.18.12193
10.1016/S0021-9258(19)77913-7
10.1039/C5CC05136C
10.1126/science.1206938
10.1021/ct5007482
10.1007/s11746-007-1157-y
10.1021/acs.jctc.8b00920
10.1038/nchem.2459
10.1038/nbt.1557
10.1021/acscatal.7b01766
10.1021/ja305144x
10.1021/ja513058h
10.1038/s41598-018-37034-3
10.1126/science.1230381
10.1016/S0959-440X(98)80143-7
10.1038/nrm1525
10.1038/s41467-017-02103-0
10.1021/ja300897h
10.1063/1.474784
10.1007/s11746-007-1104-y
10.1021/nl5026419
10.1021/nn402823k
10.1016/j.biortech.2009.08.016
10.1038/nbt.3018
10.1039/c3cs35506c
10.1021/nl100550k
10.1038/s41929-018-0117-2
10.1021/jz1002007
10.1021/jacs.8b04457
10.1021/jacs.5b10198
10.1021/acscatal.8b00986
10.1021/acscatal.6b01302
10.1038/nnano.2009.50
10.1038/ncomms6979
10.1006/meth.1999.0858
10.1126/science.1152241
10.1021/jacs.6b03673
10.1038/srep39587
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c9nr07381g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 22117
ExternalDocumentID 31720641
10_1039_C9NR07381G
c9nr07381g
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
H13
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
HZ~
RAOCF
RVUXY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c400t-aa4882e7b8aa9eb3006b8b5e13e244b7c5d05b5f87f46e071a3fc3e1686fa4953
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 08:35:32 EDT 2025
Mon Jun 30 06:03:10 EDT 2025
Thu Apr 03 06:59:10 EDT 2025
Tue Jul 01 01:13:46 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Sat Jan 08 04:36:49 EST 2022
Wed Nov 11 00:25:30 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-aa4882e7b8aa9eb3006b8b5e13e244b7c5d05b5f87f46e071a3fc3e1686fa4953
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c9nr07381g
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5503-8899
0000-0002-6090-3039
PMID 31720641
PQID 2316402896
PQPubID 2047485
PageCount 1
ParticipantIDs rsc_primary_c9nr07381g
crossref_primary_10_1039_C9NR07381G
proquest_miscellaneous_2314256521
pubmed_primary_31720641
proquest_journals_2316402896
crossref_citationtrail_10_1039_C9NR07381G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191121
PublicationDateYYYYMMDD 2019-11-21
PublicationDate_xml – month: 11
  year: 2019
  text: 20191121
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chado (C9NR07381G-(cit15)/*[position()=1]) 2016; 6
Webb (C9NR07381G-(cit24)/*[position()=1]) 2019; 15
Chen (C9NR07381G-(cit44)/*[position()=1]) 2018; 140
Spivey (C9NR07381G-(cit4)/*[position()=1]) 1999; 19
Wheeldon (C9NR07381G-(cit27)/*[position()=1]) 2016; 8
Dueber (C9NR07381G-(cit9)/*[position()=1]) 2009; 27
Shieh (C9NR07381G-(cit39)/*[position()=1]) 2015; 137
Zhang (C9NR07381G-(cit16)/*[position()=1]) 2016; 7
Criado (C9NR07381G-(cit21)/*[position()=1]) 2008; 110
Idan (C9NR07381G-(cit14)/*[position()=1]) 2013; 7
Grime (C9NR07381G-(cit23)/*[position()=1]) 2016; 7
Bayer (C9NR07381G-(cit2)/*[position()=1]) 1998; 8
Lim (C9NR07381G-(cit28)/*[position()=1]) 2016; 6
Hyde (C9NR07381G-(cit25)/*[position()=1]) 2010; 1
Ngo (C9NR07381G-(cit11)/*[position()=1]) 2016; 138
Takasaki (C9NR07381G-(cit18)/*[position()=1]) 1966; 30
Delebecque (C9NR07381G-(cit7)/*[position()=1]) 2011; 333
Lian (C9NR07381G-(cit43)/*[position()=1]) 2017; 8
Wu (C9NR07381G-(cit41)/*[position()=1]) 2015; 51
Li (C9NR07381G-(cit42)/*[position()=1]) 2016; 138
Criado (C9NR07381G-(cit20)/*[position()=1]) 2007; 84
Miles (C9NR07381G-(cit5)/*[position()=1]) 1999; 274
Fu (C9NR07381G-(cit10)/*[position()=1]) 2012; 134
Ibrahim (C9NR07381G-(cit19)/*[position()=1]) 2008; 85
Montoro-García (C9NR07381G-(cit35)/*[position()=1]) 2010; 101
An (C9NR07381G-(cit30)/*[position()=1]) 2008; 320
Wendell (C9NR07381G-(cit32)/*[position()=1]) 2010; 10
Kuzmak (C9NR07381G-(cit13)/*[position()=1]) 2019; 9
Castellana (C9NR07381G-(cit17)/*[position()=1]) 2014; 32
Lyu (C9NR07381G-(cit37)/*[position()=1]) 2014; 14
Chen (C9NR07381G-(cit36)/*[position()=1]) 2012; 134
Zhang (C9NR07381G-(cit8)/*[position()=1]) 2018; 8
Hyde (C9NR07381G-(cit26)/*[position()=1]) 1988; 263
DiCosimo (C9NR07381G-(cit31)/*[position()=1]) 2013; 42
Lapuente-Brun (C9NR07381G-(cit1)/*[position()=1]) 2013; 340
Nelson (C9NR07381G-(cit3)/*[position()=1]) 2004; 5
Roberts (C9NR07381G-(cit29)/*[position()=1]) 2014; 11
Chen (C9NR07381G-(cit45)/*[position()=1]) 2018; 1
Wilner (C9NR07381G-(cit6)/*[position()=1]) 2009; 4
Jung (C9NR07381G-(cit33)/*[position()=1]) 2004; 304
Groot (C9NR07381G-(cit22)/*[position()=1]) 1997; 107
Feng (C9NR07381G-(cit38)/*[position()=1]) 2015; 6
Zhang (C9NR07381G-(cit12)/*[position()=1]) 2017; 7
Liang (C9NR07381G-(cit40)/*[position()=1]) 2015; 6
Takimoto (C9NR07381G-(cit34)/*[position()=1]) 2004; 65
References_xml – volume: 7
  start-page: 11568
  year: 2016
  ident: C9NR07381G-(cit23)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11568
– volume: 7
  start-page: 13982
  year: 2016
  ident: C9NR07381G-(cit16)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13982
– volume: 110
  start-page: 714
  year: 2008
  ident: C9NR07381G-(cit21)/*[position()=1]
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200800017
– volume: 304
  start-page: 428
  year: 2004
  ident: C9NR07381G-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1096920
– volume: 65
  start-page: 263
  year: 2004
  ident: C9NR07381G-(cit34)/*[position()=1]
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1595-5
– volume: 6
  start-page: 7240
  year: 2015
  ident: C9NR07381G-(cit40)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8240
– volume: 274
  start-page: 12193
  year: 1999
  ident: C9NR07381G-(cit5)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.18.12193
– volume: 263
  start-page: 17857
  year: 1988
  ident: C9NR07381G-(cit26)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)77913-7
– volume: 51
  start-page: 13408
  year: 2015
  ident: C9NR07381G-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05136C
– volume: 333
  start-page: 470
  year: 2011
  ident: C9NR07381G-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1206938
– volume: 11
  start-page: 286
  year: 2014
  ident: C9NR07381G-(cit29)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct5007482
– volume: 85
  start-page: 37
  year: 2008
  ident: C9NR07381G-(cit19)/*[position()=1]
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-007-1157-y
– volume: 15
  start-page: 1199
  year: 2019
  ident: C9NR07381G-(cit24)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00920
– volume: 8
  start-page: 299
  year: 2016
  ident: C9NR07381G-(cit27)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2459
– volume: 27
  start-page: 753
  year: 2009
  ident: C9NR07381G-(cit9)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1557
– volume: 7
  start-page: 6018
  year: 2017
  ident: C9NR07381G-(cit12)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01766
– volume: 30
  start-page: 1247
  year: 1966
  ident: C9NR07381G-(cit18)/*[position()=1]
  publication-title: Agric. Biol. Chem.
– volume: 134
  start-page: 13188
  year: 2012
  ident: C9NR07381G-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305144x
– volume: 137
  start-page: 4276
  year: 2015
  ident: C9NR07381G-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513058h
– volume: 9
  start-page: 455
  year: 2019
  ident: C9NR07381G-(cit13)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37034-3
– volume: 340
  start-page: 1567
  year: 2013
  ident: C9NR07381G-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1230381
– volume: 8
  start-page: 548
  year: 1998
  ident: C9NR07381G-(cit2)/*[position()=1]
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(98)80143-7
– volume: 5
  start-page: 971
  year: 2004
  ident: C9NR07381G-(cit3)/*[position()=1]
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1525
– volume: 8
  start-page: 2075
  year: 2017
  ident: C9NR07381G-(cit43)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02103-0
– volume: 134
  start-page: 5516
  year: 2012
  ident: C9NR07381G-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300897h
– volume: 107
  start-page: 4423
  year: 1997
  ident: C9NR07381G-(cit22)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474784
– volume: 84
  start-page: 717
  year: 2007
  ident: C9NR07381G-(cit20)/*[position()=1]
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-007-1104-y
– volume: 14
  start-page: 5761
  year: 2014
  ident: C9NR07381G-(cit37)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5026419
– volume: 7
  start-page: 8658
  year: 2013
  ident: C9NR07381G-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn402823k
– volume: 101
  start-page: 331
  year: 2010
  ident: C9NR07381G-(cit35)/*[position()=1]
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.08.016
– volume: 32
  start-page: 1011
  year: 2014
  ident: C9NR07381G-(cit17)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3018
– volume: 42
  start-page: 6437
  year: 2013
  ident: C9NR07381G-(cit31)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35506c
– volume: 10
  start-page: 3231
  year: 2010
  ident: C9NR07381G-(cit32)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl100550k
– volume: 1
  start-page: 689
  year: 2018
  ident: C9NR07381G-(cit45)/*[position()=1]
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0117-2
– volume: 1
  start-page: 1332
  year: 2010
  ident: C9NR07381G-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1002007
– volume: 140
  start-page: 9912
  year: 2018
  ident: C9NR07381G-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04457
– volume: 138
  start-page: 3012
  year: 2016
  ident: C9NR07381G-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10198
– volume: 8
  start-page: 5611
  year: 2018
  ident: C9NR07381G-(cit8)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00986
– volume: 6
  start-page: 5161
  year: 2016
  ident: C9NR07381G-(cit15)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01302
– volume: 4
  start-page: 249
  year: 2009
  ident: C9NR07381G-(cit6)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.50
– volume: 6
  start-page: 5979
  year: 2015
  ident: C9NR07381G-(cit38)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6979
– volume: 19
  start-page: 306
  year: 1999
  ident: C9NR07381G-(cit4)/*[position()=1]
  publication-title: Methods
  doi: 10.1006/meth.1999.0858
– volume: 320
  start-page: 103
  year: 2008
  ident: C9NR07381G-(cit30)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1152241
– volume: 138
  start-page: 8052
  year: 2016
  ident: C9NR07381G-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03673
– volume: 6
  start-page: 39587
  year: 2016
  ident: C9NR07381G-(cit28)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep39587
SSID ssj0069363
Score 2.5146894
Snippet Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2218
SubjectTerms Biomimetic Materials - chemistry
Biomimetics
Catalysis
Coarsening
Efficiency
Enzymes
Enzymes, Immobilized - chemistry
Kinetics
Metal-organic frameworks
Metal-Organic Frameworks - chemistry
Models, Chemical
Multienzyme Complexes - chemistry
Nanocrystals
Reaction intermediates
Reaction kinetics
Title Investigating the origin of high efficiency in confined multienzyme catalysis
URI https://www.ncbi.nlm.nih.gov/pubmed/31720641
https://www.proquest.com/docview/2316402896
https://www.proquest.com/docview/2314256521
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4lVIKcgILhxSNrHjtY9lBa2A9oBadTlFTmJXkSCpttlD--sZP-Jk2T0ULlEydjabzHjmG3tmjND7lJWSJpWOOc2MgyISGHOCxrTgaVWxAiCCmYc8OWXH5_TrIlsM4bY2u6QrDsrbrXkl_8NVoAFfTZbsP3A2_CgQ4Bz4C0fgMBzvxONRkQyf9OT2ubIIELxuE61R28Frs_vA9dUAKisXRaia25vfJuqrc2VJxjAVdG57DdwLXJ9LO6X6c6VVHWJ4bCDAopbtjfT2D6iLug_yreWyHegXfmL6u4k99WQ_25AIk3bnUpidUkpNBCIhrvL4gRrTZutaNRlJD83GOhK8TD4yuHDt0jc3tPmUmGKoc3H6AxQRT44Gm9Wv0_9lykKAoV1aJyIf7r2PdlLwJNIJ2jn89unoojfXTBC73V54sb6GLREfh7vXUcuGKwLAZNlvGGOBydlj9Mh7FPjQiccTdE81T9HDUZ3JZ-hkTVAwCAp2goJbjY2g4EFQMFB7QcEjQcFBUJ6j8y-fz-bHsd9HIy5BQ3exlKClUzUruJRCFQReuuBFphKiANwVszKrplmRaT7TlCnAnJLokqiEcaaliT_eRZOmbdRLhAEOVlxzwUHPU1NUViRUaga0ZMr0tIzQh_475aUvMm_2OvmVb3IkQu9C3ytXWmVrr_3-c-d-6F3n4JQwatbIWYTehmZQjGa1SzaqXdk-YI8YwNMIvXBsCo8B0JwCFoeWXeBbIJeiWdqnXkZob3tDflXpvTv98VfowTCA9tGkW67UawCwXfHGi-Afg5iX0g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+origin+of+high+efficiency+in+confined+multienzyme+catalysis&rft.jtitle=Nanoscale&rft.au=Cao%2C+Yufei&rft.au=Li%2C+Xiaoyang&rft.au=Xiong%2C+Jiarong&rft.au=Wang%2C+Licheng&rft.date=2019-11-21&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=45&rft.spage=22108&rft.epage=22117&rft_id=info:doi/10.1039%2FC9NR07381G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9NR07381G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon