Investigating the origin of high efficiency in confined multienzyme catalysis
Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to...
Saved in:
Published in | Nanoscale Vol. 11; no. 45; pp. 2218 - 22117 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing
in vitro
synthetic biology systems based on artificial multienzyme complexes.
Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. |
---|---|
AbstractList | Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal–organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing
in vitro
synthetic biology systems based on artificial multienzyme complexes. Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal–organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes. Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes. Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes.Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than freely distributed enzymes. However, the origin of high efficiency is poorly understood. We developed a coarse-grained, particle-based model to understand the origin of high efficiency. We found that a reaction intermediate is the key in affecting reaction kinetics. In the case of unstable intermediates, the confinement of multiple enzymes in clusters enhanced the catalytic efficiency and a shorter distance between enzymes resulted in a higher reaction rate and yield. This understanding was verified by co-encapsulating multiple enzymes in metal-organic framework (MOF) nanocrystals as artificially confined multienzyme complexes. The activity enhancement of multiple enzymes in MOFs depended on the distance between enzymes, when the decay of intermediates existed. The finding of this study is useful for designing in vitro synthetic biology systems based on artificial multienzyme complexes. |
Author | Li, Xiaoyang Cao, Yufei Yan, Li-Tang Wang, Licheng Ge, Jun Xiong, Jiarong |
AuthorAffiliation | Ministry of Education Department of Chemical Engineering Tsinghua University Key Lab for Industrial Biocatalysis State Key Laboratory of Chemical Engineering |
AuthorAffiliation_xml | – name: Ministry of Education – name: Department of Chemical Engineering – name: Tsinghua University – name: State Key Laboratory of Chemical Engineering – name: Key Lab for Industrial Biocatalysis |
Author_xml | – sequence: 1 givenname: Yufei surname: Cao fullname: Cao, Yufei – sequence: 2 givenname: Xiaoyang surname: Li fullname: Li, Xiaoyang – sequence: 3 givenname: Jiarong surname: Xiong fullname: Xiong, Jiarong – sequence: 4 givenname: Licheng surname: Wang fullname: Wang, Licheng – sequence: 5 givenname: Li-Tang surname: Yan fullname: Yan, Li-Tang – sequence: 6 givenname: Jun surname: Ge fullname: Ge, Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31720641$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLxDAQxoMovi_elYoXEVbzatoeZfEFPkD0HNLspBtpkzVphfWvN7o-QMTTDDO_GT6-bwMtO-8AoR2Cjwlm1YmuXMAFK0mzhNYp5njEWEGXv3vB19BGjE8Yi4oJtorWGCkoFpyso5sr9wKxt43qrWuyfgqZD7axLvMmm9pmmoExVltwep6lqfbOWAeTrBvaPk1f5x1kWvWqnUcbt9CKUW2E7c-6iR7Pzx7Gl6Pru4ur8en1SHOM-5FSvCwpFHWpVAU1S8Lqss6BMKCc14XOJzivc1MWhgvABVHMaAZElMIoXuVsEx0u_s6Cfx6SftnZqKFtlQM_REkZ4TQXOSUJPfiFPvkhuKTunRIc07ISidr7pIa6g4mcBdupMJdfRiUALwAdfIwBjNS2T5551wdlW0mwfM9Cjqvb-48sLtLJ0a-Tr69_wrsLOET9zf0Em_b7_-3lbGLYG-U3nfk |
CitedBy_id | crossref_primary_10_1002_cctc_202400699 crossref_primary_10_1021_acs_jpclett_1c00243 crossref_primary_10_1039_D1BM01106E crossref_primary_10_1039_D1CS00968K crossref_primary_10_1039_D0RA01204A crossref_primary_10_1016_j_cej_2022_136153 crossref_primary_10_1021_acsmaterialslett_4c02185 crossref_primary_10_1016_j_colsurfb_2023_113443 crossref_primary_10_1021_acsami_4c14661 crossref_primary_10_1016_j_cjche_2020_05_035 crossref_primary_10_1016_j_cej_2025_161230 crossref_primary_10_1021_acsnano_2c00475 crossref_primary_10_1016_S1872_2067_24_60172_5 crossref_primary_10_1002_pro_5175 crossref_primary_10_1016_j_mcat_2024_114268 crossref_primary_10_1016_j_jcou_2020_101171 crossref_primary_10_3389_fbioe_2020_00660 crossref_primary_10_1021_acsabm_0c01293 crossref_primary_10_34133_2022_9847698 crossref_primary_10_1007_s11426_022_1254_5 crossref_primary_10_1016_j_tibtech_2021_01_002 crossref_primary_10_1021_acssuschemeng_3c02296 crossref_primary_10_1016_j_cej_2025_160994 crossref_primary_10_1016_j_cis_2025_103444 crossref_primary_10_1021_acsmaterialslett_4c00629 crossref_primary_10_1021_acs_chemrev_2c00397 crossref_primary_10_1002_agt2_635 crossref_primary_10_1039_D0DT02045A crossref_primary_10_1039_D3SC01367G crossref_primary_10_1002_cbic_202400147 crossref_primary_10_1021_acscatal_1c02221 crossref_primary_10_1039_D4DT01667J crossref_primary_10_1016_j_ccr_2025_216571 crossref_primary_10_1039_D2NA00605G crossref_primary_10_1016_j_foodchem_2024_139533 crossref_primary_10_1038_s41467_022_27983_9 crossref_primary_10_1016_j_mcat_2023_113290 crossref_primary_10_3389_fchem_2020_587975 crossref_primary_10_1016_S1872_2067_21_63798_1 crossref_primary_10_1039_D4CY01381F crossref_primary_10_1021_acsami_1c15506 crossref_primary_10_1016_j_cjche_2020_07_042 crossref_primary_10_1039_D1CC04162B crossref_primary_10_2139_ssrn_4015334 crossref_primary_10_3390_molecules27196309 crossref_primary_10_1186_s40643_025_00857_w crossref_primary_10_1016_j_partic_2025_02_002 crossref_primary_10_1002_smll_202404018 crossref_primary_10_1016_j_bios_2020_112827 crossref_primary_10_1016_j_cej_2021_131482 crossref_primary_10_1021_acssuschemeng_2c04390 crossref_primary_10_1016_j_cis_2025_103427 crossref_primary_10_1002_smll_202412264 crossref_primary_10_3390_reactions3010011 |
Cites_doi | 10.1038/ncomms11568 10.1038/ncomms13982 10.1002/ejlt.200800017 10.1126/science.1096920 10.1007/s00253-004-1595-5 10.1038/ncomms8240 10.1074/jbc.274.18.12193 10.1016/S0021-9258(19)77913-7 10.1039/C5CC05136C 10.1126/science.1206938 10.1021/ct5007482 10.1007/s11746-007-1157-y 10.1021/acs.jctc.8b00920 10.1038/nchem.2459 10.1038/nbt.1557 10.1021/acscatal.7b01766 10.1021/ja305144x 10.1021/ja513058h 10.1038/s41598-018-37034-3 10.1126/science.1230381 10.1016/S0959-440X(98)80143-7 10.1038/nrm1525 10.1038/s41467-017-02103-0 10.1021/ja300897h 10.1063/1.474784 10.1007/s11746-007-1104-y 10.1021/nl5026419 10.1021/nn402823k 10.1016/j.biortech.2009.08.016 10.1038/nbt.3018 10.1039/c3cs35506c 10.1021/nl100550k 10.1038/s41929-018-0117-2 10.1021/jz1002007 10.1021/jacs.8b04457 10.1021/jacs.5b10198 10.1021/acscatal.8b00986 10.1021/acscatal.6b01302 10.1038/nnano.2009.50 10.1038/ncomms6979 10.1006/meth.1999.0858 10.1126/science.1152241 10.1021/jacs.6b03673 10.1038/srep39587 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/c9nr07381g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 22117 |
ExternalDocumentID | 31720641 10_1039_C9NR07381G c9nr07381g |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- EJD F5P H13 HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP HZ~ RAOCF RVUXY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c400t-aa4882e7b8aa9eb3006b8b5e13e244b7c5d05b5f87f46e071a3fc3e1686fa4953 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 08:35:32 EDT 2025 Mon Jun 30 06:03:10 EDT 2025 Thu Apr 03 06:59:10 EDT 2025 Tue Jul 01 01:13:46 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Sat Jan 08 04:36:49 EST 2022 Wed Nov 11 00:25:30 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-aa4882e7b8aa9eb3006b8b5e13e244b7c5d05b5f87f46e071a3fc3e1686fa4953 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c9nr07381g ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5503-8899 0000-0002-6090-3039 |
PMID | 31720641 |
PQID | 2316402896 |
PQPubID | 2047485 |
PageCount | 1 |
ParticipantIDs | rsc_primary_c9nr07381g crossref_primary_10_1039_C9NR07381G proquest_miscellaneous_2314256521 pubmed_primary_31720641 proquest_journals_2316402896 crossref_citationtrail_10_1039_C9NR07381G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191121 |
PublicationDateYYYYMMDD | 2019-11-21 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191121 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chado (C9NR07381G-(cit15)/*[position()=1]) 2016; 6 Webb (C9NR07381G-(cit24)/*[position()=1]) 2019; 15 Chen (C9NR07381G-(cit44)/*[position()=1]) 2018; 140 Spivey (C9NR07381G-(cit4)/*[position()=1]) 1999; 19 Wheeldon (C9NR07381G-(cit27)/*[position()=1]) 2016; 8 Dueber (C9NR07381G-(cit9)/*[position()=1]) 2009; 27 Shieh (C9NR07381G-(cit39)/*[position()=1]) 2015; 137 Zhang (C9NR07381G-(cit16)/*[position()=1]) 2016; 7 Criado (C9NR07381G-(cit21)/*[position()=1]) 2008; 110 Idan (C9NR07381G-(cit14)/*[position()=1]) 2013; 7 Grime (C9NR07381G-(cit23)/*[position()=1]) 2016; 7 Bayer (C9NR07381G-(cit2)/*[position()=1]) 1998; 8 Lim (C9NR07381G-(cit28)/*[position()=1]) 2016; 6 Hyde (C9NR07381G-(cit25)/*[position()=1]) 2010; 1 Ngo (C9NR07381G-(cit11)/*[position()=1]) 2016; 138 Takasaki (C9NR07381G-(cit18)/*[position()=1]) 1966; 30 Delebecque (C9NR07381G-(cit7)/*[position()=1]) 2011; 333 Lian (C9NR07381G-(cit43)/*[position()=1]) 2017; 8 Wu (C9NR07381G-(cit41)/*[position()=1]) 2015; 51 Li (C9NR07381G-(cit42)/*[position()=1]) 2016; 138 Criado (C9NR07381G-(cit20)/*[position()=1]) 2007; 84 Miles (C9NR07381G-(cit5)/*[position()=1]) 1999; 274 Fu (C9NR07381G-(cit10)/*[position()=1]) 2012; 134 Ibrahim (C9NR07381G-(cit19)/*[position()=1]) 2008; 85 Montoro-García (C9NR07381G-(cit35)/*[position()=1]) 2010; 101 An (C9NR07381G-(cit30)/*[position()=1]) 2008; 320 Wendell (C9NR07381G-(cit32)/*[position()=1]) 2010; 10 Kuzmak (C9NR07381G-(cit13)/*[position()=1]) 2019; 9 Castellana (C9NR07381G-(cit17)/*[position()=1]) 2014; 32 Lyu (C9NR07381G-(cit37)/*[position()=1]) 2014; 14 Chen (C9NR07381G-(cit36)/*[position()=1]) 2012; 134 Zhang (C9NR07381G-(cit8)/*[position()=1]) 2018; 8 Hyde (C9NR07381G-(cit26)/*[position()=1]) 1988; 263 DiCosimo (C9NR07381G-(cit31)/*[position()=1]) 2013; 42 Lapuente-Brun (C9NR07381G-(cit1)/*[position()=1]) 2013; 340 Nelson (C9NR07381G-(cit3)/*[position()=1]) 2004; 5 Roberts (C9NR07381G-(cit29)/*[position()=1]) 2014; 11 Chen (C9NR07381G-(cit45)/*[position()=1]) 2018; 1 Wilner (C9NR07381G-(cit6)/*[position()=1]) 2009; 4 Jung (C9NR07381G-(cit33)/*[position()=1]) 2004; 304 Groot (C9NR07381G-(cit22)/*[position()=1]) 1997; 107 Feng (C9NR07381G-(cit38)/*[position()=1]) 2015; 6 Zhang (C9NR07381G-(cit12)/*[position()=1]) 2017; 7 Liang (C9NR07381G-(cit40)/*[position()=1]) 2015; 6 Takimoto (C9NR07381G-(cit34)/*[position()=1]) 2004; 65 |
References_xml | – volume: 7 start-page: 11568 year: 2016 ident: C9NR07381G-(cit23)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms11568 – volume: 7 start-page: 13982 year: 2016 ident: C9NR07381G-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13982 – volume: 110 start-page: 714 year: 2008 ident: C9NR07381G-(cit21)/*[position()=1] publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.200800017 – volume: 304 start-page: 428 year: 2004 ident: C9NR07381G-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1096920 – volume: 65 start-page: 263 year: 2004 ident: C9NR07381G-(cit34)/*[position()=1] publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1595-5 – volume: 6 start-page: 7240 year: 2015 ident: C9NR07381G-(cit40)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8240 – volume: 274 start-page: 12193 year: 1999 ident: C9NR07381G-(cit5)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.18.12193 – volume: 263 start-page: 17857 year: 1988 ident: C9NR07381G-(cit26)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)77913-7 – volume: 51 start-page: 13408 year: 2015 ident: C9NR07381G-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05136C – volume: 333 start-page: 470 year: 2011 ident: C9NR07381G-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1206938 – volume: 11 start-page: 286 year: 2014 ident: C9NR07381G-(cit29)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct5007482 – volume: 85 start-page: 37 year: 2008 ident: C9NR07381G-(cit19)/*[position()=1] publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-007-1157-y – volume: 15 start-page: 1199 year: 2019 ident: C9NR07381G-(cit24)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00920 – volume: 8 start-page: 299 year: 2016 ident: C9NR07381G-(cit27)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2459 – volume: 27 start-page: 753 year: 2009 ident: C9NR07381G-(cit9)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1557 – volume: 7 start-page: 6018 year: 2017 ident: C9NR07381G-(cit12)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b01766 – volume: 30 start-page: 1247 year: 1966 ident: C9NR07381G-(cit18)/*[position()=1] publication-title: Agric. Biol. Chem. – volume: 134 start-page: 13188 year: 2012 ident: C9NR07381G-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305144x – volume: 137 start-page: 4276 year: 2015 ident: C9NR07381G-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513058h – volume: 9 start-page: 455 year: 2019 ident: C9NR07381G-(cit13)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-37034-3 – volume: 340 start-page: 1567 year: 2013 ident: C9NR07381G-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.1230381 – volume: 8 start-page: 548 year: 1998 ident: C9NR07381G-(cit2)/*[position()=1] publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(98)80143-7 – volume: 5 start-page: 971 year: 2004 ident: C9NR07381G-(cit3)/*[position()=1] publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1525 – volume: 8 start-page: 2075 year: 2017 ident: C9NR07381G-(cit43)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-02103-0 – volume: 134 start-page: 5516 year: 2012 ident: C9NR07381G-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300897h – volume: 107 start-page: 4423 year: 1997 ident: C9NR07381G-(cit22)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.474784 – volume: 84 start-page: 717 year: 2007 ident: C9NR07381G-(cit20)/*[position()=1] publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-007-1104-y – volume: 14 start-page: 5761 year: 2014 ident: C9NR07381G-(cit37)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5026419 – volume: 7 start-page: 8658 year: 2013 ident: C9NR07381G-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn402823k – volume: 101 start-page: 331 year: 2010 ident: C9NR07381G-(cit35)/*[position()=1] publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.08.016 – volume: 32 start-page: 1011 year: 2014 ident: C9NR07381G-(cit17)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3018 – volume: 42 start-page: 6437 year: 2013 ident: C9NR07381G-(cit31)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35506c – volume: 10 start-page: 3231 year: 2010 ident: C9NR07381G-(cit32)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl100550k – volume: 1 start-page: 689 year: 2018 ident: C9NR07381G-(cit45)/*[position()=1] publication-title: Nat. Catal. doi: 10.1038/s41929-018-0117-2 – volume: 1 start-page: 1332 year: 2010 ident: C9NR07381G-(cit25)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1002007 – volume: 140 start-page: 9912 year: 2018 ident: C9NR07381G-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04457 – volume: 138 start-page: 3012 year: 2016 ident: C9NR07381G-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10198 – volume: 8 start-page: 5611 year: 2018 ident: C9NR07381G-(cit8)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00986 – volume: 6 start-page: 5161 year: 2016 ident: C9NR07381G-(cit15)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01302 – volume: 4 start-page: 249 year: 2009 ident: C9NR07381G-(cit6)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.50 – volume: 6 start-page: 5979 year: 2015 ident: C9NR07381G-(cit38)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6979 – volume: 19 start-page: 306 year: 1999 ident: C9NR07381G-(cit4)/*[position()=1] publication-title: Methods doi: 10.1006/meth.1999.0858 – volume: 320 start-page: 103 year: 2008 ident: C9NR07381G-(cit30)/*[position()=1] publication-title: Science doi: 10.1126/science.1152241 – volume: 138 start-page: 8052 year: 2016 ident: C9NR07381G-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03673 – volume: 6 start-page: 39587 year: 2016 ident: C9NR07381G-(cit28)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep39587 |
SSID | ssj0069363 |
Score | 2.5146894 |
Snippet | Biomimetic strategies have successfully been applied to confine multiple enzymes on scaffolds to obtain higher catalytic efficiency of enzyme cascades than... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2218 |
SubjectTerms | Biomimetic Materials - chemistry Biomimetics Catalysis Coarsening Efficiency Enzymes Enzymes, Immobilized - chemistry Kinetics Metal-organic frameworks Metal-Organic Frameworks - chemistry Models, Chemical Multienzyme Complexes - chemistry Nanocrystals Reaction intermediates Reaction kinetics |
Title | Investigating the origin of high efficiency in confined multienzyme catalysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31720641 https://www.proquest.com/docview/2316402896 https://www.proquest.com/docview/2314256521 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4ED4lVIKcgILhxSNrHjtY9lBa2A9oBadTlFTmJXkSCpttlD--sZP-Jk2T0ULlEydjabzHjmG3tmjND7lJWSJpWOOc2MgyISGHOCxrTgaVWxAiCCmYc8OWXH5_TrIlsM4bY2u6QrDsrbrXkl_8NVoAFfTZbsP3A2_CgQ4Bz4C0fgMBzvxONRkQyf9OT2ubIIELxuE61R28Frs_vA9dUAKisXRaia25vfJuqrc2VJxjAVdG57DdwLXJ9LO6X6c6VVHWJ4bCDAopbtjfT2D6iLug_yreWyHegXfmL6u4k99WQ_25AIk3bnUpidUkpNBCIhrvL4gRrTZutaNRlJD83GOhK8TD4yuHDt0jc3tPmUmGKoc3H6AxQRT44Gm9Wv0_9lykKAoV1aJyIf7r2PdlLwJNIJ2jn89unoojfXTBC73V54sb6GLREfh7vXUcuGKwLAZNlvGGOBydlj9Mh7FPjQiccTdE81T9HDUZ3JZ-hkTVAwCAp2goJbjY2g4EFQMFB7QcEjQcFBUJ6j8y-fz-bHsd9HIy5BQ3exlKClUzUruJRCFQReuuBFphKiANwVszKrplmRaT7TlCnAnJLokqiEcaaliT_eRZOmbdRLhAEOVlxzwUHPU1NUViRUaga0ZMr0tIzQh_475aUvMm_2OvmVb3IkQu9C3ytXWmVrr_3-c-d-6F3n4JQwatbIWYTehmZQjGa1SzaqXdk-YI8YwNMIvXBsCo8B0JwCFoeWXeBbIJeiWdqnXkZob3tDflXpvTv98VfowTCA9tGkW67UawCwXfHGi-Afg5iX0g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+origin+of+high+efficiency+in+confined+multienzyme+catalysis&rft.jtitle=Nanoscale&rft.au=Cao%2C+Yufei&rft.au=Li%2C+Xiaoyang&rft.au=Xiong%2C+Jiarong&rft.au=Wang%2C+Licheng&rft.date=2019-11-21&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=11&rft.issue=45&rft.spage=22108&rft.epage=22117&rft_id=info:doi/10.1039%2FC9NR07381G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9NR07381G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |