MFINet: Multi-Scale Feature Interaction Network for Change Detection of High-Resolution Remote Sensing Images
Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided high-resolution data. However, unlike other tasks, change detection focuses on the difference between dual-input images, so the interaction between bi-te...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 7; p. 1269 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided high-resolution data. However, unlike other tasks, change detection focuses on the difference between dual-input images, so the interaction between bi-temporal features is crucial. However, the existing methods have not fully tapped the potential of multi-scale bi-temporal features to interact layer by layer. Therefore, this paper proposes a multi-scale feature interaction network (MFINet). The network realizes the information interaction of multi-temporal images by inserting a bi-temporal feature interaction layer (BFIL) between backbone networks at the same level, guides the attention to focus on the difference region, and suppresses the interference. At the same time, a double temporal feature fusion layer (BFFL) is used at the end of the coding layer to extract subtle difference features. By introducing the transformer decoding layer and improving the recovery effect of the feature size, the ability of the network to accurately capture the details and contour information of the building is further improved. The F1 of our model on the public dataset LEVIR-CD reaches 90.12%, which shows better accuracy and generalization performance than many state-of-the-art change detection models. |
---|---|
AbstractList | Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided high-resolution data. However, unlike other tasks, change detection focuses on the difference between dual-input images, so the interaction between bi-temporal features is crucial. However, the existing methods have not fully tapped the potential of multi-scale bi-temporal features to interact layer by layer. Therefore, this paper proposes a multi-scale feature interaction network (MFINet). The network realizes the information interaction of multi-temporal images by inserting a bi-temporal feature interaction layer (BFIL) between backbone networks at the same level, guides the attention to focus on the difference region, and suppresses the interference. At the same time, a double temporal feature fusion layer (BFFL) is used at the end of the coding layer to extract subtle difference features. By introducing the transformer decoding layer and improving the recovery effect of the feature size, the ability of the network to accurately capture the details and contour information of the building is further improved. The F1 of our model on the public dataset LEVIR-CD reaches 90.12%, which shows better accuracy and generalization performance than many state-of-the-art change detection models. |
Audience | Academic |
Author | Wang, Zhongchen Xia, Min Ren, Wuxu Lin, Haifeng |
Author_xml | – sequence: 1 givenname: Wuxu surname: Ren fullname: Ren, Wuxu – sequence: 2 givenname: Zhongchen orcidid: 0000-0003-0549-3759 surname: Wang fullname: Wang, Zhongchen – sequence: 3 givenname: Min orcidid: 0000-0003-4681-9129 surname: Xia fullname: Xia, Min – sequence: 4 givenname: Haifeng orcidid: 0000-0002-3835-6075 surname: Lin fullname: Lin, Haifeng |
BookMark | eNpNUcFu1DAQtVCRKEsvfIElbkgptsdxEm7VwtJILZXacra8ziT1ksTFdoT69_U2CPAcbL0Zv3kz7y05mf2MhLzn7BygYZ9C5IpVXKjmFTkVrBKFFI04-e_9hpzFeGD5APCGyVMyXe_a75g-0-tlTK64s2ZEukOTloC0nRMGY5PzM81Fv334SXsf6PbBzAPSL5hwTfqeXrrhobjF6MflBbrFySekdzhHNw-0ncyA8R153Zsx4tmfe0N-7L7eby-Lq5tv7fbiqrCSsVQYpvY1q6AGbmStTClsKTrcZ8lNJ4QRZV3XtsQjJisQBjjjFTR1Z3vLlYINaVfezpuDfgxuMuFJe-P0C-DDoE1Izo6ozV50UjUCur2RRvEGVF0xWXYKqlKCzVwfVq7H4H8tGJM--CXMWb4GBpUCLuHY8XytGvICtZt7n_LmcnQ4OZt96l3GL6qGMcFZnmxDPq4fbPAxBuz_yuRMH-3U_-yEZ9HzkQM |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3400925 crossref_primary_10_1109_JSTARS_2024_3405971 crossref_primary_10_3390_rs16101665 crossref_primary_10_3390_rs16101765 crossref_primary_10_3390_rs16132435 crossref_primary_10_3390_rs16111907 |
Cites_doi | 10.1109/TGRS.2014.2363548 10.1109/TGRS.2023.3277496 10.3390/rs13183707 10.3390/rs12101662 10.3390/rs11030359 10.1016/j.biocon.2014.12.006 10.1109/IGARSS46834.2022.9883686 10.1609/aaai.v37i12.26660 10.1109/JSTARS.2024.3362370 10.1016/j.rse.2005.09.008 10.3390/rs11111382 10.1201/9781003175025-5 10.1109/TGRS.2008.916643 10.1162/neco_a_00990 10.1109/TGRS.2020.3011913 10.3390/rs15174186 10.1109/ACCESS.2020.2964798 10.1007/s11769-018-0988-9 10.1109/ACCESS.2019.2922839 10.3390/rs10020276 10.1109/JSTARS.2020.3037893 10.1016/j.isprsjprs.2020.06.003 10.1007/s00704-015-1428-8 10.1109/LGRS.2009.2025059 10.3390/rs16010112 10.1109/JSTARS.2023.3347595 10.1007/s11263-021-01515-2 10.1109/TGRS.2020.3033009 10.1109/JSTARS.2022.3177235 10.3390/s20185076 10.1016/0098-3004(93)90090-R 10.5194/isprs-archives-XLII-2-565-2018 10.1109/JSTARS.2017.2712119 10.1109/LGRS.2017.2738149 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs16071269 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ab2d46923dba4a6193687045d637543c A790021038 10_3390_rs16071269 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c400t-a06b8073831a486a52c52deb1909d22a25888c5e2deb4732a31017398dcfc1663 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:13:26 EDT 2024 Sat Oct 26 13:55:19 EDT 2024 Tue Sep 03 04:00:15 EDT 2024 Thu Sep 26 18:20:07 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-a06b8073831a486a52c52deb1909d22a25888c5e2deb4732a31017398dcfc1663 |
ORCID | 0000-0003-0549-3759 0000-0002-3835-6075 0000-0003-4681-9129 |
OpenAccessLink | https://doaj.org/article/ab2d46923dba4a6193687045d637543c |
PQID | 3037631436 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab2d46923dba4a6193687045d637543c proquest_journals_3037631436 gale_infotracacademiconefile_A790021038 crossref_primary_10_3390_rs16071269 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Peng (ref_2) 2021; 59 Marin (ref_3) 2015; 53 Chen (ref_44) 2021; 14 Willis (ref_7) 2015; 182 Zhang (ref_11) 2018; 28 Rawat (ref_23) 2017; 29 Fang (ref_42) 2022; 19 Chen (ref_35) 2022; 60 ref_33 Lebedev (ref_41) 2018; XLII-2 Liu (ref_25) 2022; 15 ref_30 Bovolo (ref_18) 2008; 46 Im (ref_19) 2005; 99 Xu (ref_14) 2019; 7 Ratajczak (ref_15) 1993; 19 ref_38 Rokni (ref_12) 2015; 34 ref_37 Zhang (ref_31) 2020; 166 Jin (ref_8) 2016; 124 Volpi (ref_20) 2013; 20 Zhang (ref_34) 2022; 60 Feng (ref_36) 2023; 61 Peng (ref_40) 2021; 59 ref_24 ref_22 ref_21 ref_43 Lunetta (ref_10) 2022; Volume II Yin (ref_32) 2023; 117 ref_1 Yu (ref_39) 2021; 129 Zhan (ref_28) 2017; 14 Wiratama (ref_13) 2020; 8 ref_29 Fang (ref_5) 2023; 61 ref_27 Wang (ref_4) 2024; 17 ref_9 Celik (ref_16) 2009; 6 Ren (ref_26) 2024; 17 Liu (ref_17) 2017; 10 ref_6 |
References_xml | – volume: 53 start-page: 2664 year: 2015 ident: ref_3 article-title: Building Change Detection in Multitemporal Very High Resolution SAR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2363548 contributor: fullname: Marin – volume: 61 start-page: 5610111 year: 2023 ident: ref_5 article-title: Changer: Feature Interaction is What You Need for Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3277496 contributor: fullname: Fang – ident: ref_24 – ident: ref_6 doi: 10.3390/rs13183707 – ident: ref_33 doi: 10.3390/rs12101662 – ident: ref_22 doi: 10.3390/rs11030359 – volume: 182 start-page: 233 year: 2015 ident: ref_7 article-title: Remote sensing change detection for ecological monitoring in United States protected areas publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2014.12.006 contributor: fullname: Willis – ident: ref_27 doi: 10.1109/IGARSS46834.2022.9883686 – ident: ref_37 doi: 10.1609/aaai.v37i12.26660 – volume: 17 start-page: 4899 year: 2024 ident: ref_26 article-title: Dual-Attention-Guided Multiscale Feature Aggregation Network for Remote Sensing Image Change Detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3362370 contributor: fullname: Ren – volume: 99 start-page: 326 year: 2005 ident: ref_19 article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.09.008 contributor: fullname: Im – volume: 117 start-page: 103206 year: 2023 ident: ref_32 article-title: Attention-guided siamese networks for change detection in high resolution remote sensing images publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Yin – ident: ref_30 doi: 10.3390/rs11111382 – volume: Volume II start-page: 65 year: 2022 ident: ref_10 article-title: Land-cover change detection using multi-temporal MODIS NDVI data publication-title: Geospatial Information Handbook for Water Resources and Watershed Management doi: 10.1201/9781003175025-5 contributor: fullname: Lunetta – volume: 46 start-page: 2070 year: 2008 ident: ref_18 article-title: A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.916643 contributor: fullname: Bovolo – volume: 34 start-page: 226 year: 2015 ident: ref_12 article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Rokni – volume: 19 start-page: 1 year: 2022 ident: ref_42 article-title: SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Fang – volume: 29 start-page: 2352 year: 2017 ident: ref_23 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comput. doi: 10.1162/neco_a_00990 contributor: fullname: Rawat – volume: 59 start-page: 5891 year: 2021 ident: ref_40 article-title: SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3011913 contributor: fullname: Peng – ident: ref_43 doi: 10.3390/rs15174186 – volume: 8 start-page: 12279 year: 2020 ident: ref_13 article-title: Change detection on multi-spectral images based on feature-level U-Net publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964798 contributor: fullname: Wiratama – volume: 61 start-page: 1 year: 2023 ident: ref_36 article-title: Change detection on remote sensing images using dual-branch multilevel intertemporal network publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Feng – volume: 28 start-page: 727 year: 2018 ident: ref_11 article-title: Urban Expansion in China Based on Remote Sensing Technology: A Review publication-title: Chin. Geogr. Sci. doi: 10.1007/s11769-018-0988-9 contributor: fullname: Zhang – volume: 7 start-page: 78909 year: 2019 ident: ref_14 article-title: High-resolution remote sensing image change detection combined with pixel-level and object-level publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922839 contributor: fullname: Xu – volume: 20 start-page: 77 year: 2013 ident: ref_20 article-title: Supervised change detection in VHR images using contextual information and support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Volpi – ident: ref_21 doi: 10.3390/rs10020276 – ident: ref_29 – volume: 14 start-page: 1194 year: 2021 ident: ref_44 article-title: DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3037893 contributor: fullname: Chen – volume: 166 start-page: 183 year: 2020 ident: ref_31 article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.003 contributor: fullname: Zhang – volume: 124 start-page: 475 year: 2016 ident: ref_8 article-title: The applicability of research on moving cut data-approximate entropy on abrupt climate change detection publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1428-8 contributor: fullname: Jin – volume: 6 start-page: 772 year: 2009 ident: ref_16 article-title: Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2025059 contributor: fullname: Celik – ident: ref_1 doi: 10.3390/rs16010112 – volume: 17 start-page: 2372 year: 2024 ident: ref_4 article-title: Dual Encoder–Decoder Network for Land Cover Segmentation of Remote Sensing Image publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2023.3347595 contributor: fullname: Wang – volume: 129 start-page: 3051 year: 2021 ident: ref_39 article-title: Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-021-01515-2 contributor: fullname: Yu – volume: 59 start-page: 7296 year: 2021 ident: ref_2 article-title: Optical Remote Sensing Image Change Detection Based on Attention Mechanism and Image Difference publication-title: IEEE Trans. Geosci. Remote Sns. doi: 10.1109/TGRS.2020.3033009 contributor: fullname: Peng – volume: 15 start-page: 4297 year: 2022 ident: ref_25 article-title: A CNN-transformer network with multiscale context aggregation for fine-grained cropland change detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3177235 contributor: fullname: Liu – volume: 60 start-page: 1 year: 2022 ident: ref_35 article-title: Remote Sensing Image Change Detection With Transformers publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Chen – ident: ref_38 – ident: ref_9 doi: 10.3390/s20185076 – volume: 60 start-page: 1 year: 2022 ident: ref_34 article-title: SwinSUNet: Pure transformer network for remote sensing image change detection publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Zhang – volume: 19 start-page: 303 year: 1993 ident: ref_15 article-title: Principal components analysis (PCA) publication-title: Comput. Geosci. doi: 10.1016/0098-3004(93)90090-R contributor: fullname: Ratajczak – volume: XLII-2 start-page: 565 year: 2018 ident: ref_41 article-title: Change detection in remote sensing images using conditional adversarial networks publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-565-2018 contributor: fullname: Lebedev – volume: 10 start-page: 4124 year: 2017 ident: ref_17 article-title: Multiscale Morphological Compressed Change Vector Analysis for Unsupervised Multiple Change Detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2712119 contributor: fullname: Liu – volume: 14 start-page: 1845 year: 2017 ident: ref_28 article-title: Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2738149 contributor: fullname: Zhan |
SSID | ssj0000331904 |
Score | 2.45788 |
Snippet | Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1269 |
SubjectTerms | Accuracy Artificial intelligence Change detection CNN Comparative analysis Computer networks Decoding Deep learning High resolution Image processing Image resolution Machine learning Methods Morphology Neural networks Remote sensing remote sensing images Satellites self-attention mechanism Semantics Support vector machines Technology application Temporal variations transformer |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07TxwxEB6Ro0iaCEiiXALIEpFSWez6sQ8axOsESJwiCBKd5bW90HBH7pYi_z4ztg_SJK29hTXvb3YeAN9qR47PltzVWnFVNZo3fee5VaHTXom6jI3CV9Pq_FZd3um7nHBb5rLKlU2MhtrPHeXI99HUoiqgd68On35x2hpFf1fzCo03sC4QKYgRrB-fTX9cv2RZCokiVqg0l1Qivt9fLONINUEVzn95ojiw_19mOfqayQa8z0EiO0pc3YS1MNuCt3lf-cPvD_B4NbmYhuGAxf5ZfoOEDoyiuedFYDHJl_oV2DRVeTMMTVlqJGCnYQjpct4zKvPglMJPAsiuA7IusBsqa5_ds4tHNDfLj3A7Oft5cs7z4gTuUCUHbouqa1B3G1la1VRWC6eFR6vcFq0XwgqNuNfpQGeqlsJKUkzZNt71rsQY5BOMZvNZ-AwMvZcNletLF0pFYLIQfY0gsO2sKxBsjWFvRUTzlOZjGMQVRGrzSuoxHBN9X76gmdbxYL64N1lFjO2ER7AupO-ssgjsZIXGRGlf0Zpe6cbwnbhjSPMGJKPNDQT4UJphZY7qNiJY2Yxhe8VAk1VyaV4F6Mv_r7_CO4GRSyrP2YbRsHgOOxh5DN1uFq8_Cg7WnA priority: 102 providerName: ProQuest |
Title | MFINet: Multi-Scale Feature Interaction Network for Change Detection of High-Resolution Remote Sensing Images |
URI | https://www.proquest.com/docview/3037631436 https://doaj.org/article/ab2d46923dba4a6193687045d637543c |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JTxsxFH6C9FAuqAtVUyCyBFJPFjNeZumNQEKCRISASLlZHo-nvRCqZDjw73nPnrS5VFx69czBeuv3WW8BOM0dJT6bcpdrxVVWaF40Vc2t8pWulcjT0Ch8M8smc3W90IutVV9UExbHA0fBndlK1EjhhKwrqyzCfZmhiSldZ7S8VboQfZNyi0yFGCzRtBIV55FK5PVnq3UYpSaosnkrA4VB_f8KxyHHjD_AfgcO2Xm81EfY8ctP8L7bU_7r5TM83oynM9_-YKFvlt-jgD0jFPe88iw87sU-BTaL1d0MISmLDQTs0rc-fnxqGJV3cHq6j4bH7jyqzLN7Kmdf_mTTRwwz6wOYj0cPFxPeLUzgDl2x5TbJqgJ9tpCpVUVmtXBa1BiNy6SshbBCI9912tOZyqWwkhxSlkXtGpci9vgCveXT0n8FhlnL-sw1qfOpIhKZiCZH8ldW1iVIsvpwshGi-R3nYhjkEyRq81fUfRiSfP_8QbOswwFq2HQaNm9puA_fSTuGPK5FMdqucQAvSrOrzHleBuYqiz4cbRRoOldcG8zRGEMRFmbf_sdtDmFPIK6JxTtH0GtXz_4YcUlbDWC3GF8N4N1wNLu9GwSDfAU-K99E |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07bxQxEB5BKEKDeIqDBCyBRGVl14990ERJ4LiD3BUkkdJZXtubNLkLd5si_z4zti-hgdbewpr3NzsPgM-1I8dnS-5qrbiqGs2bvvPcqtBpr0Rdxkbh2byanKmf5_o8J9zWuaxyYxOjofZLRznyPTS1qAro3av96z-ctkbR39W8QuMxPMGLkmbnN-Mf9zmWQqKAFSpNJZWI7vdW6zhQTVB9819-KI7r_5dRjp5m_Bye5RCRHSSevoBHYfEStvO28svbV3A1G0_nYfjKYvcsP0EyB0ax3M0qsJjiS90KbJ5qvBkGpiy1EbBvYQjpctkzKvLglMBP4sd-B2RcYCdU1L64YNMrNDbr13A2_n56NOF5bQJ3qJADt0XVNai5jSytaiqrhdPCo01ui9YLYYVG1Ot0oDNVS2ElqaVsG-96V2IE8ga2FstFeAsMfZcNletLF0pFULIQfY0QsO2sKxBqjeDThojmOk3HMIgqiNTmgdQjOCT63n9BE63jwXJ1YbKCGNsJj1BdSN9ZZRHWyQpNidK-oiW90o3gC3HHkN4NSEab2wfwoTTByhzUbcSvshnBzoaBJivk2jyIz7v_X3-E7cnp7NgcT-e_3sNTgTFMKtTZga1hdRN2MQYZug9R0O4AoDHYJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgIuiKe6pYAlkDhZm9jOq5eqr1UXaFS1VOrNcmynXLrb7qYH_j0ztrflQq9xDtF4Xt_kmxmAr5WlwGdybqtCcVXWBa_7znGjfFc4Jao8NAqftOXxhfp-WVwm_tMq0SrXPjE4arewVCOfoKtFU8DoXk76RIs4PZzu3txy2iBFf1rTOo2nsFEp1KoRbOwftadn9xWXTKK6ZSrOKJWI9SfLVRivJojt_E9UCsP7_-eiQ9yZvoKXKWFke_GGX8MTP38Dz9Pu8t9_3sL1yXTW-mGHhV5afo5C94wyu7ulZ6HgF3sXWBsZ3wzTVBabCtihH3w8XPSMKB-cyvlRGdmZx2v07Jwo7vMrNrtG17N6BxfTo18HxzwtUeAWzXPgJiu7Gu24lrlRdWkKYQvh0EM3WeOEMKJADGwLT89UJYWRZKSyqZ3tbY75yHsYzRdzvwkMI5nxpe1z63NFwDITfYWAsOmMzRB4jeHLWoj6Js7K0IgxSNT6QdRj2Cf53r9B863Dg8XySidz0aYTDoG7kK4zyiDIkyU6FlW4klb2SjuGb3Q7mqxwQDGa1EyAH0rzrPRe1QQ0K-sxbK8vUCfzXOkHZdp6_PgzPEMt0z9n7Y8P8EJgQhNZO9swGpZ3_iMmJEP3KWnaX4tV3co |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFINet%3A+Multi-Scale+Feature+Interaction+Network+for+Change+Detection+of+High-Resolution+Remote+Sensing+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wuxu+Ren&rft.au=Zhongchen+Wang&rft.au=Min+Xia&rft.au=Haifeng+Lin&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=7&rft.spage=1269&rft_id=info:doi/10.3390%2Frs16071269&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab2d46923dba4a6193687045d637543c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |