MFINet: Multi-Scale Feature Interaction Network for Change Detection of High-Resolution Remote Sensing Images

Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided high-resolution data. However, unlike other tasks, change detection focuses on the difference between dual-input images, so the interaction between bi-te...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 7; p. 1269
Main Authors Ren, Wuxu, Wang, Zhongchen, Xia, Min, Lin, Haifeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided high-resolution data. However, unlike other tasks, change detection focuses on the difference between dual-input images, so the interaction between bi-temporal features is crucial. However, the existing methods have not fully tapped the potential of multi-scale bi-temporal features to interact layer by layer. Therefore, this paper proposes a multi-scale feature interaction network (MFINet). The network realizes the information interaction of multi-temporal images by inserting a bi-temporal feature interaction layer (BFIL) between backbone networks at the same level, guides the attention to focus on the difference region, and suppresses the interference. At the same time, a double temporal feature fusion layer (BFFL) is used at the end of the coding layer to extract subtle difference features. By introducing the transformer decoding layer and improving the recovery effect of the feature size, the ability of the network to accurately capture the details and contour information of the building is further improved. The F1 of our model on the public dataset LEVIR-CD reaches 90.12%, which shows better accuracy and generalization performance than many state-of-the-art change detection models.
AbstractList Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided high-resolution data. However, unlike other tasks, change detection focuses on the difference between dual-input images, so the interaction between bi-temporal features is crucial. However, the existing methods have not fully tapped the potential of multi-scale bi-temporal features to interact layer by layer. Therefore, this paper proposes a multi-scale feature interaction network (MFINet). The network realizes the information interaction of multi-temporal images by inserting a bi-temporal feature interaction layer (BFIL) between backbone networks at the same level, guides the attention to focus on the difference region, and suppresses the interference. At the same time, a double temporal feature fusion layer (BFFL) is used at the end of the coding layer to extract subtle difference features. By introducing the transformer decoding layer and improving the recovery effect of the feature size, the ability of the network to accurately capture the details and contour information of the building is further improved. The F1 of our model on the public dataset LEVIR-CD reaches 90.12%, which shows better accuracy and generalization performance than many state-of-the-art change detection models.
Audience Academic
Author Wang, Zhongchen
Xia, Min
Ren, Wuxu
Lin, Haifeng
Author_xml – sequence: 1
  givenname: Wuxu
  surname: Ren
  fullname: Ren, Wuxu
– sequence: 2
  givenname: Zhongchen
  orcidid: 0000-0003-0549-3759
  surname: Wang
  fullname: Wang, Zhongchen
– sequence: 3
  givenname: Min
  orcidid: 0000-0003-4681-9129
  surname: Xia
  fullname: Xia, Min
– sequence: 4
  givenname: Haifeng
  orcidid: 0000-0002-3835-6075
  surname: Lin
  fullname: Lin, Haifeng
BookMark eNpNUcFu1DAQtVCRKEsvfIElbkgptsdxEm7VwtJILZXacra8ziT1ksTFdoT69_U2CPAcbL0Zv3kz7y05mf2MhLzn7BygYZ9C5IpVXKjmFTkVrBKFFI04-e_9hpzFeGD5APCGyVMyXe_a75g-0-tlTK64s2ZEukOTloC0nRMGY5PzM81Fv334SXsf6PbBzAPSL5hwTfqeXrrhobjF6MflBbrFySekdzhHNw-0ncyA8R153Zsx4tmfe0N-7L7eby-Lq5tv7fbiqrCSsVQYpvY1q6AGbmStTClsKTrcZ8lNJ4QRZV3XtsQjJisQBjjjFTR1Z3vLlYINaVfezpuDfgxuMuFJe-P0C-DDoE1Izo6ozV50UjUCur2RRvEGVF0xWXYKqlKCzVwfVq7H4H8tGJM--CXMWb4GBpUCLuHY8XytGvICtZt7n_LmcnQ4OZt96l3GL6qGMcFZnmxDPq4fbPAxBuz_yuRMH-3U_-yEZ9HzkQM
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3400925
crossref_primary_10_1109_JSTARS_2024_3405971
crossref_primary_10_3390_rs16101665
crossref_primary_10_3390_rs16101765
crossref_primary_10_3390_rs16132435
crossref_primary_10_3390_rs16111907
Cites_doi 10.1109/TGRS.2014.2363548
10.1109/TGRS.2023.3277496
10.3390/rs13183707
10.3390/rs12101662
10.3390/rs11030359
10.1016/j.biocon.2014.12.006
10.1109/IGARSS46834.2022.9883686
10.1609/aaai.v37i12.26660
10.1109/JSTARS.2024.3362370
10.1016/j.rse.2005.09.008
10.3390/rs11111382
10.1201/9781003175025-5
10.1109/TGRS.2008.916643
10.1162/neco_a_00990
10.1109/TGRS.2020.3011913
10.3390/rs15174186
10.1109/ACCESS.2020.2964798
10.1007/s11769-018-0988-9
10.1109/ACCESS.2019.2922839
10.3390/rs10020276
10.1109/JSTARS.2020.3037893
10.1016/j.isprsjprs.2020.06.003
10.1007/s00704-015-1428-8
10.1109/LGRS.2009.2025059
10.3390/rs16010112
10.1109/JSTARS.2023.3347595
10.1007/s11263-021-01515-2
10.1109/TGRS.2020.3033009
10.1109/JSTARS.2022.3177235
10.3390/s20185076
10.1016/0098-3004(93)90090-R
10.5194/isprs-archives-XLII-2-565-2018
10.1109/JSTARS.2017.2712119
10.1109/LGRS.2017.2738149
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs16071269
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ab2d46923dba4a6193687045d637543c
A790021038
10_3390_rs16071269
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c400t-a06b8073831a486a52c52deb1909d22a25888c5e2deb4732a31017398dcfc1663
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:13:26 EDT 2024
Sat Oct 26 13:55:19 EDT 2024
Tue Sep 03 04:00:15 EDT 2024
Thu Sep 26 18:20:07 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-a06b8073831a486a52c52deb1909d22a25888c5e2deb4732a31017398dcfc1663
ORCID 0000-0003-0549-3759
0000-0002-3835-6075
0000-0003-4681-9129
OpenAccessLink https://doaj.org/article/ab2d46923dba4a6193687045d637543c
PQID 3037631436
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ab2d46923dba4a6193687045d637543c
proquest_journals_3037631436
gale_infotracacademiconefile_A790021038
crossref_primary_10_3390_rs16071269
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Peng (ref_2) 2021; 59
Marin (ref_3) 2015; 53
Chen (ref_44) 2021; 14
Willis (ref_7) 2015; 182
Zhang (ref_11) 2018; 28
Rawat (ref_23) 2017; 29
Fang (ref_42) 2022; 19
Chen (ref_35) 2022; 60
ref_33
Lebedev (ref_41) 2018; XLII-2
Liu (ref_25) 2022; 15
ref_30
Bovolo (ref_18) 2008; 46
Im (ref_19) 2005; 99
Xu (ref_14) 2019; 7
Ratajczak (ref_15) 1993; 19
ref_38
Rokni (ref_12) 2015; 34
ref_37
Zhang (ref_31) 2020; 166
Jin (ref_8) 2016; 124
Volpi (ref_20) 2013; 20
Zhang (ref_34) 2022; 60
Feng (ref_36) 2023; 61
Peng (ref_40) 2021; 59
ref_24
ref_22
ref_21
ref_43
Lunetta (ref_10) 2022; Volume II
Yin (ref_32) 2023; 117
ref_1
Yu (ref_39) 2021; 129
Zhan (ref_28) 2017; 14
Wiratama (ref_13) 2020; 8
ref_29
Fang (ref_5) 2023; 61
ref_27
Wang (ref_4) 2024; 17
ref_9
Celik (ref_16) 2009; 6
Ren (ref_26) 2024; 17
Liu (ref_17) 2017; 10
ref_6
References_xml – volume: 53
  start-page: 2664
  year: 2015
  ident: ref_3
  article-title: Building Change Detection in Multitemporal Very High Resolution SAR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2363548
  contributor:
    fullname: Marin
– volume: 61
  start-page: 5610111
  year: 2023
  ident: ref_5
  article-title: Changer: Feature Interaction is What You Need for Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3277496
  contributor:
    fullname: Fang
– ident: ref_24
– ident: ref_6
  doi: 10.3390/rs13183707
– ident: ref_33
  doi: 10.3390/rs12101662
– ident: ref_22
  doi: 10.3390/rs11030359
– volume: 182
  start-page: 233
  year: 2015
  ident: ref_7
  article-title: Remote sensing change detection for ecological monitoring in United States protected areas
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2014.12.006
  contributor:
    fullname: Willis
– ident: ref_27
  doi: 10.1109/IGARSS46834.2022.9883686
– ident: ref_37
  doi: 10.1609/aaai.v37i12.26660
– volume: 17
  start-page: 4899
  year: 2024
  ident: ref_26
  article-title: Dual-Attention-Guided Multiscale Feature Aggregation Network for Remote Sensing Image Change Detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3362370
  contributor:
    fullname: Ren
– volume: 99
  start-page: 326
  year: 2005
  ident: ref_19
  article-title: A change detection model based on neighborhood correlation image analysis and decision tree classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.09.008
  contributor:
    fullname: Im
– volume: 117
  start-page: 103206
  year: 2023
  ident: ref_32
  article-title: Attention-guided siamese networks for change detection in high resolution remote sensing images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Yin
– ident: ref_30
  doi: 10.3390/rs11111382
– volume: Volume II
  start-page: 65
  year: 2022
  ident: ref_10
  article-title: Land-cover change detection using multi-temporal MODIS NDVI data
  publication-title: Geospatial Information Handbook for Water Resources and Watershed Management
  doi: 10.1201/9781003175025-5
  contributor:
    fullname: Lunetta
– volume: 46
  start-page: 2070
  year: 2008
  ident: ref_18
  article-title: A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.916643
  contributor:
    fullname: Bovolo
– volume: 34
  start-page: 226
  year: 2015
  ident: ref_12
  article-title: A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Rokni
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_42
  article-title: SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Fang
– volume: 29
  start-page: 2352
  year: 2017
  ident: ref_23
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_00990
  contributor:
    fullname: Rawat
– volume: 59
  start-page: 5891
  year: 2021
  ident: ref_40
  article-title: SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3011913
  contributor:
    fullname: Peng
– ident: ref_43
  doi: 10.3390/rs15174186
– volume: 8
  start-page: 12279
  year: 2020
  ident: ref_13
  article-title: Change detection on multi-spectral images based on feature-level U-Net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964798
  contributor:
    fullname: Wiratama
– volume: 61
  start-page: 1
  year: 2023
  ident: ref_36
  article-title: Change detection on remote sensing images using dual-branch multilevel intertemporal network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Feng
– volume: 28
  start-page: 727
  year: 2018
  ident: ref_11
  article-title: Urban Expansion in China Based on Remote Sensing Technology: A Review
  publication-title: Chin. Geogr. Sci.
  doi: 10.1007/s11769-018-0988-9
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 78909
  year: 2019
  ident: ref_14
  article-title: High-resolution remote sensing image change detection combined with pixel-level and object-level
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922839
  contributor:
    fullname: Xu
– volume: 20
  start-page: 77
  year: 2013
  ident: ref_20
  article-title: Supervised change detection in VHR images using contextual information and support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Volpi
– ident: ref_21
  doi: 10.3390/rs10020276
– ident: ref_29
– volume: 14
  start-page: 1194
  year: 2021
  ident: ref_44
  article-title: DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3037893
  contributor:
    fullname: Chen
– volume: 166
  start-page: 183
  year: 2020
  ident: ref_31
  article-title: A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.003
  contributor:
    fullname: Zhang
– volume: 124
  start-page: 475
  year: 2016
  ident: ref_8
  article-title: The applicability of research on moving cut data-approximate entropy on abrupt climate change detection
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1428-8
  contributor:
    fullname: Jin
– volume: 6
  start-page: 772
  year: 2009
  ident: ref_16
  article-title: Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
  contributor:
    fullname: Celik
– ident: ref_1
  doi: 10.3390/rs16010112
– volume: 17
  start-page: 2372
  year: 2024
  ident: ref_4
  article-title: Dual Encoder–Decoder Network for Land Cover Segmentation of Remote Sensing Image
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2023.3347595
  contributor:
    fullname: Wang
– volume: 129
  start-page: 3051
  year: 2021
  ident: ref_39
  article-title: Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01515-2
  contributor:
    fullname: Yu
– volume: 59
  start-page: 7296
  year: 2021
  ident: ref_2
  article-title: Optical Remote Sensing Image Change Detection Based on Attention Mechanism and Image Difference
  publication-title: IEEE Trans. Geosci. Remote Sns.
  doi: 10.1109/TGRS.2020.3033009
  contributor:
    fullname: Peng
– volume: 15
  start-page: 4297
  year: 2022
  ident: ref_25
  article-title: A CNN-transformer network with multiscale context aggregation for fine-grained cropland change detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3177235
  contributor:
    fullname: Liu
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_35
  article-title: Remote Sensing Image Change Detection With Transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Chen
– ident: ref_38
– ident: ref_9
  doi: 10.3390/s20185076
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_34
  article-title: SwinSUNet: Pure transformer network for remote sensing image change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 303
  year: 1993
  ident: ref_15
  article-title: Principal components analysis (PCA)
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(93)90090-R
  contributor:
    fullname: Ratajczak
– volume: XLII-2
  start-page: 565
  year: 2018
  ident: ref_41
  article-title: Change detection in remote sensing images using conditional adversarial networks
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-565-2018
  contributor:
    fullname: Lebedev
– volume: 10
  start-page: 4124
  year: 2017
  ident: ref_17
  article-title: Multiscale Morphological Compressed Change Vector Analysis for Unsupervised Multiple Change Detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2712119
  contributor:
    fullname: Liu
– volume: 14
  start-page: 1845
  year: 2017
  ident: ref_28
  article-title: Change Detection Based on Deep Siamese Convolutional Network for Optical Aerial Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2738149
  contributor:
    fullname: Zhan
SSID ssj0000331904
Score 2.45788
Snippet Change detection is widely used in the field of building monitoring. In recent years, the progress of remote sensing image technology has provided...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 1269
SubjectTerms Accuracy
Artificial intelligence
Change detection
CNN
Comparative analysis
Computer networks
Decoding
Deep learning
High resolution
Image processing
Image resolution
Machine learning
Methods
Morphology
Neural networks
Remote sensing
remote sensing images
Satellites
self-attention mechanism
Semantics
Support vector machines
Technology application
Temporal variations
transformer
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07TxwxEB6Ro0iaCEiiXALIEpFSWez6sQ8axOsESJwiCBKd5bW90HBH7pYi_z4ztg_SJK29hTXvb3YeAN9qR47PltzVWnFVNZo3fee5VaHTXom6jI3CV9Pq_FZd3um7nHBb5rLKlU2MhtrPHeXI99HUoiqgd68On35x2hpFf1fzCo03sC4QKYgRrB-fTX9cv2RZCokiVqg0l1Qivt9fLONINUEVzn95ojiw_19mOfqayQa8z0EiO0pc3YS1MNuCt3lf-cPvD_B4NbmYhuGAxf5ZfoOEDoyiuedFYDHJl_oV2DRVeTMMTVlqJGCnYQjpct4zKvPglMJPAsiuA7IusBsqa5_ds4tHNDfLj3A7Oft5cs7z4gTuUCUHbouqa1B3G1la1VRWC6eFR6vcFq0XwgqNuNfpQGeqlsJKUkzZNt71rsQY5BOMZvNZ-AwMvZcNletLF0pFYLIQfY0gsO2sKxBsjWFvRUTzlOZjGMQVRGrzSuoxHBN9X76gmdbxYL64N1lFjO2ER7AupO-ssgjsZIXGRGlf0Zpe6cbwnbhjSPMGJKPNDQT4UJphZY7qNiJY2Yxhe8VAk1VyaV4F6Mv_r7_CO4GRSyrP2YbRsHgOOxh5DN1uFq8_Cg7WnA
  priority: 102
  providerName: ProQuest
Title MFINet: Multi-Scale Feature Interaction Network for Change Detection of High-Resolution Remote Sensing Images
URI https://www.proquest.com/docview/3037631436
https://doaj.org/article/ab2d46923dba4a6193687045d637543c
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JTxsxFH6C9FAuqAtVUyCyBFJPFjNeZumNQEKCRISASLlZHo-nvRCqZDjw73nPnrS5VFx69czBeuv3WW8BOM0dJT6bcpdrxVVWaF40Vc2t8pWulcjT0Ch8M8smc3W90IutVV9UExbHA0fBndlK1EjhhKwrqyzCfZmhiSldZ7S8VboQfZNyi0yFGCzRtBIV55FK5PVnq3UYpSaosnkrA4VB_f8KxyHHjD_AfgcO2Xm81EfY8ctP8L7bU_7r5TM83oynM9_-YKFvlt-jgD0jFPe88iw87sU-BTaL1d0MISmLDQTs0rc-fnxqGJV3cHq6j4bH7jyqzLN7Kmdf_mTTRwwz6wOYj0cPFxPeLUzgDl2x5TbJqgJ9tpCpVUVmtXBa1BiNy6SshbBCI9912tOZyqWwkhxSlkXtGpci9vgCveXT0n8FhlnL-sw1qfOpIhKZiCZH8ldW1iVIsvpwshGi-R3nYhjkEyRq81fUfRiSfP_8QbOswwFq2HQaNm9puA_fSTuGPK5FMdqucQAvSrOrzHleBuYqiz4cbRRoOldcG8zRGEMRFmbf_sdtDmFPIK6JxTtH0GtXz_4YcUlbDWC3GF8N4N1wNLu9GwSDfAU-K99E
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07bxQxEB5BKEKDeIqDBCyBRGVl14990ERJ4LiD3BUkkdJZXtubNLkLd5si_z4zti-hgdbewpr3NzsPgM-1I8dnS-5qrbiqGs2bvvPcqtBpr0Rdxkbh2byanKmf5_o8J9zWuaxyYxOjofZLRznyPTS1qAro3av96z-ctkbR39W8QuMxPMGLkmbnN-Mf9zmWQqKAFSpNJZWI7vdW6zhQTVB9819-KI7r_5dRjp5m_Bye5RCRHSSevoBHYfEStvO28svbV3A1G0_nYfjKYvcsP0EyB0ax3M0qsJjiS90KbJ5qvBkGpiy1EbBvYQjpctkzKvLglMBP4sd-B2RcYCdU1L64YNMrNDbr13A2_n56NOF5bQJ3qJADt0XVNai5jSytaiqrhdPCo01ui9YLYYVG1Ot0oDNVS2ElqaVsG-96V2IE8ga2FstFeAsMfZcNletLF0pFULIQfY0QsO2sKxBqjeDThojmOk3HMIgqiNTmgdQjOCT63n9BE63jwXJ1YbKCGNsJj1BdSN9ZZRHWyQpNidK-oiW90o3gC3HHkN4NSEab2wfwoTTByhzUbcSvshnBzoaBJivk2jyIz7v_X3-E7cnp7NgcT-e_3sNTgTFMKtTZga1hdRN2MQYZug9R0O4AoDHYJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgIuiKe6pYAlkDhZm9jOq5eqr1UXaFS1VOrNcmynXLrb7qYH_j0ztrflQq9xDtF4Xt_kmxmAr5WlwGdybqtCcVXWBa_7znGjfFc4Jao8NAqftOXxhfp-WVwm_tMq0SrXPjE4arewVCOfoKtFU8DoXk76RIs4PZzu3txy2iBFf1rTOo2nsFEp1KoRbOwftadn9xWXTKK6ZSrOKJWI9SfLVRivJojt_E9UCsP7_-eiQ9yZvoKXKWFke_GGX8MTP38Dz9Pu8t9_3sL1yXTW-mGHhV5afo5C94wyu7ulZ6HgF3sXWBsZ3wzTVBabCtihH3w8XPSMKB-cyvlRGdmZx2v07Jwo7vMrNrtG17N6BxfTo18HxzwtUeAWzXPgJiu7Gu24lrlRdWkKYQvh0EM3WeOEMKJADGwLT89UJYWRZKSyqZ3tbY75yHsYzRdzvwkMI5nxpe1z63NFwDITfYWAsOmMzRB4jeHLWoj6Js7K0IgxSNT6QdRj2Cf53r9B863Dg8XySidz0aYTDoG7kK4zyiDIkyU6FlW4klb2SjuGb3Q7mqxwQDGa1EyAH0rzrPRe1QQ0K-sxbK8vUCfzXOkHZdp6_PgzPEMt0z9n7Y8P8EJgQhNZO9swGpZ3_iMmJEP3KWnaX4tV3co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFINet%3A+Multi-Scale+Feature+Interaction+Network+for+Change+Detection+of+High-Resolution+Remote+Sensing+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Wuxu+Ren&rft.au=Zhongchen+Wang&rft.au=Min+Xia&rft.au=Haifeng+Lin&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=7&rft.spage=1269&rft_id=info:doi/10.3390%2Frs16071269&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ab2d46923dba4a6193687045d637543c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon