Yeasts collectively extend the limits of habitable temperatures by secreting glutathione

The conventional view is that high temperatures cause microorganisms to replicate slowly or die. In this view, microorganisms autonomously combat heat-induced damages. However, microorganisms co-exist with each other, which raises the underexplored and timely question of whether microorganisms can c...

Full description

Saved in:
Bibliographic Details
Published inNature microbiology Vol. 5; no. 7; pp. 943 - 954
Main Authors Laman Trip, Diederik S, Youk, Hyun
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The conventional view is that high temperatures cause microorganisms to replicate slowly or die. In this view, microorganisms autonomously combat heat-induced damages. However, microorganisms co-exist with each other, which raises the underexplored and timely question of whether microorganisms can cooperatively combat heat-induced damages at high temperatures. Here, we use the budding yeast Saccharomyces cerevisiae to show that cells can help each other and their future generations to survive and replicate at high temperatures. As a consequence, even at the same temperature, a yeast population can exponentially grow, never grow or grow after unpredictable durations (hours to days) of stasis, depending on its population density. Through the same mechanism, yeasts collectively delay and can eventually stop their approach to extinction, with higher population densities stopping faster. These features arise from yeasts secreting and extracellularly accumulating glutathione-a ubiquitous heat-damage-preventing antioxidant. We show that the secretion of glutathione, which eliminates harmful extracellular chemicals, is both necessary and sufficient for yeasts to collectively survive at high temperatures. A mathematical model, which is generally applicable to any cells that cooperatively replicate by secreting molecules, recapitulates all of these features. Our study demonstrates how organisms can cooperatively define and extend the boundaries of life-permitting temperatures.
AbstractList The conventional view is that high temperatures cause microorganisms to replicate slowly or die. In this view, microorganisms autonomously combat heat-induced damages. However, microorganisms co-exist with each other, which raises the underexplored and timely question of whether microorganisms can cooperatively combat heat-induced damages at high temperatures. Here, we use the budding yeast Saccharomyces cerevisiae to show that cells can help each other and their future generations to survive and replicate at high temperatures. As a consequence, even at the same temperature, a yeast population can exponentially grow, never grow or grow after unpredictable durations (hours to days) of stasis, depending on its population density. Through the same mechanism, yeasts collectively delay and can eventually stop their approach to extinction, with higher population densities stopping faster. These features arise from yeasts secreting and extracellularly accumulating glutathione—a ubiquitous heat-damage-preventing antioxidant. We show that the secretion of glutathione, which eliminates harmful extracellular chemicals, is both necessary and sufficient for yeasts to collectively survive at high temperatures. A mathematical model, which is generally applicable to any cells that cooperatively replicate by secreting molecules, recapitulates all of these features. Our study demonstrates how organisms can cooperatively define and extend the boundaries of life-permitting temperatures.Saccharomyces cerevisiae cells work collectively to survive and replicate at high temperatures by secreting glutathione, an antioxidant that mitigates heat-mediated damage to yeast cells.
The conventional view is that high temperatures cause microorganisms to replicate slowly or die. In this view, microorganisms autonomously combat heat-induced damages. However, microorganisms co-exist with each other, which raises the underexplored and timely question of whether microorganisms can cooperatively combat heat-induced damages at high temperatures. Here, we use the budding yeast Saccharomyces cerevisiae to show that cells can help each other and their future generations to survive and replicate at high temperatures. As a consequence, even at the same temperature, a yeast population can exponentially grow, never grow or grow after unpredictable durations (hours to days) of stasis, depending on its population density. Through the same mechanism, yeasts collectively delay and can eventually stop their approach to extinction, with higher population densities stopping faster. These features arise from yeasts secreting and extracellularly accumulating glutathione-a ubiquitous heat-damage-preventing antioxidant. We show that the secretion of glutathione, which eliminates harmful extracellular chemicals, is both necessary and sufficient for yeasts to collectively survive at high temperatures. A mathematical model, which is generally applicable to any cells that cooperatively replicate by secreting molecules, recapitulates all of these features. Our study demonstrates how organisms can cooperatively define and extend the boundaries of life-permitting temperatures.
Author Youk, Hyun
Laman Trip, Diederik S
Author_xml – sequence: 1
  givenname: Diederik S
  orcidid: 0000-0001-6635-0626
  surname: Laman Trip
  fullname: Laman Trip, Diederik S
  organization: Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
– sequence: 2
  givenname: Hyun
  orcidid: 0000-0003-1687-5760
  surname: Youk
  fullname: Youk, Hyun
  email: h.youk@tudelft.nl, h.youk@tudelft.nl, h.youk@tudelft.nl
  organization: CIFAR, CIFAR Azrieli Global Scholars Program, Toronto, Ontario, Canada. h.youk@tudelft.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32313201$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaJJtfkAvRZBLL25GH5bsYwlpGwjkkkByEmN5nHWQ7a0kh-y_j8NuS-khpxmYZ15eeE7YwTiNxNhnAd8EqOo8aVEaXYCEAizoQn5gxxLKqiilNQf_7EfsNKUnABBGGlOZj-xISSWUBHHM7h8IU07cTyGQz_0zhS2nl0xjy_OaeOiHfjlPHV9j02dsAvFMw4Yi5jlS4s2WJ_KRcj8-8scwZ8zrfmn6iR12GBKd7ueK3f24vL34VVzf_Ly6-H5deA2Qi7pVWIu261rTNlCXiKgkakuikyh0jW3psYS6QtVVRi6ob4g66W1pvNKgVuzrLncTp98zpeyGPnkKAUea5uSkqhVooaVY0LP_0KdpjuPSzkltdV1Bbe37lLDCGKvKhRI7yscppUid28R-wLh1AtybH7fz4xY_7s3PUmTFvuyT52ag9u_HHxvqFVrFjLM
CitedBy_id crossref_primary_10_1016_j_tim_2023_06_006
crossref_primary_10_1007_s00253_022_11826_0
crossref_primary_10_1038_s41467_022_35151_2
crossref_primary_10_1038_s41598_023_40932_w
crossref_primary_10_1016_j_fbr_2021_03_002
crossref_primary_10_1016_j_celrep_2022_111290
crossref_primary_10_1016_j_isci_2023_106952
crossref_primary_10_1128_AEM_01005_21
crossref_primary_10_1186_s40643_021_00449_4
crossref_primary_10_1038_s41567_024_02418_y
crossref_primary_10_1038_s41589_022_01225_x
crossref_primary_10_1093_molbev_msac228
crossref_primary_10_1016_j_ymben_2021_07_006
crossref_primary_10_1038_s41564_020_0748_3
crossref_primary_10_1038_s41564_024_01721_x
crossref_primary_10_1016_j_ymben_2024_07_001
crossref_primary_10_1093_gbe_evad207
crossref_primary_10_1038_s44320_024_00046_5
crossref_primary_10_15252_msb_20199245
crossref_primary_10_1016_j_foodres_2024_114557
crossref_primary_10_1016_j_tim_2023_11_014
crossref_primary_10_1016_j_ymben_2020_06_003
crossref_primary_10_3389_fbioe_2024_1408361
crossref_primary_10_1002_lol2_10233
crossref_primary_10_1371_journal_pbio_3000757
crossref_primary_10_1371_journal_pbio_3002439
crossref_primary_10_1186_s13068_021_02071_0
crossref_primary_10_1016_j_isci_2020_101545
crossref_primary_10_1128_aem_00125_23
crossref_primary_10_1016_j_algal_2022_102664
crossref_primary_10_1111_1541_4337_13135
crossref_primary_10_1007_s00253_022_12119_2
crossref_primary_10_1038_s41467_023_44623_y
crossref_primary_10_1093_femsyr_foac007
crossref_primary_10_1186_s12934_021_01623_1
crossref_primary_10_15252_embr_202256019
Cites_doi 10.1201/9780429258770
10.1038/s41559-018-0535-1
10.1126/science.1242782
10.1073/pnas.94.2.514
10.1002/yea.3209
10.1007/s00253-012-4075-3
10.1038/nature07921
10.1111/j.1365-2958.2012.08085.x
10.1074/jbc.275.18.13259
10.1063/1.4823332
10.1002/j.2050-0416.1977.tb06813.x
10.1016/j.copbio.2011.04.014
10.1042/bj3520071
10.1111/j.1567-1364.2011.00753.x
10.1126/science.aai7825
10.1126/science.1219805
10.1016/0375-9601(92)90325-G
10.1016/j.jchromb.2016.02.015
10.1099/00221287-143-6-1885
10.1128/MMBR.05018-11
10.1073/pnas.1810858115
10.1146/annurev.micro.55.1.165
10.1016/j.febslet.2007.07.002
10.1016/S0021-9258(19)61523-1
10.1038/nprot.2012.016
10.1371/journal.pbio.2000640
10.1016/j.molcel.2010.10.006
10.1016/j.bpj.2010.10.036
10.1091/mbc.12.2.323
10.1091/mbc.e10-11-0906
10.1091/mbc.e04-07-0560
10.1038/nature03842
10.1074/jbc.275.20.15535
10.1007/BF02426954
10.1099/00221287-137-3-637
10.1016/j.talanta.2007.09.028
10.1128/JB.154.3.1222-1226.1983
10.1016/j.gde.2011.10.001
10.1074/jbc.M802908200
10.1073/pnas.93.10.5116
10.1038/emboj.2011.105
10.1091/mbc.11.12.4241
10.7554/eLife.00367
10.1016/0005-2760(89)90312-3
10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
10.1371/journal.pbio.1001122
10.1038/nprot.2006.238
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1038/s41564-020-0704-2
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2058-5276
EndPage 954
ExternalDocumentID 10_1038_s41564_020_0704_2
32313201
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
53G
8FE
8FH
AAEEF
AAHBH
AARCD
AAZLF
ABLJU
ABVXF
ACGFS
ADBBV
AFBBN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
CCPQU
CGR
CUY
CVF
EBS
ECM
EIF
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK8
M7P
NNMJJ
NPM
O9-
ODYON
R9-
RNT
SHXYY
SIXXV
SNYQT
TAOOD
TBHMF
TDRGL
TSG
AAYXX
CITATION
AZQEC
DWQXO
GNUQQ
PQEST
PQQKQ
PQUKI
PRINS
7X8
ABEEJ
ADZGE
ID FETCH-LOGICAL-c400t-9d3a91dffd6db095aaa32a47e1f2a149ad5ca5098a3f86291dcbeef2c756c3403
IEDL.DBID BENPR
ISSN 2058-5276
IngestDate Fri Aug 16 00:39:45 EDT 2024
Fri Sep 13 06:28:27 EDT 2024
Fri Sep 13 00:37:34 EDT 2024
Thu Sep 12 18:19:12 EDT 2024
Sat Sep 28 08:33:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-9d3a91dffd6db095aaa32a47e1f2a149ad5ca5098a3f86291dcbeef2c756c3403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6635-0626
0000-0003-1687-5760
OpenAccessLink https://www.biorxiv.org/content/biorxiv/early/2020/02/23/726463.full.pdf
PMID 32313201
PQID 2417166735
PQPubID 2069616
PageCount 12
ParticipantIDs proquest_miscellaneous_2393041421
proquest_journals_2474980977
proquest_journals_2417166735
crossref_primary_10_1038_s41564_020_0704_2
pubmed_primary_32313201
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Nature microbiology
PublicationTitleAlternate Nat Microbiol
PublicationYear 2020
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
References 32587374 - Nat Microbiol. 2020 Jul;5(7):883-884
M Dhaoui (704_CR42) 2011; 22
M Mojtahedi (704_CR46) 2016; 14
J Garcia-Ojalvo (704_CR47) 1992; 168
NQ Balaban (704_CR21) 2011; 21
FM Yakes (704_CR27) 1997; 94
704_CR3
704_CR4
K Ghosh (704_CR5) 2010; 99
JH Koschwanez (704_CR11) 2011; 9
L Dai (704_CR44) 2012; 336
C Kumar (704_CR32) 2011; 30
K Sugiyama (704_CR24) 2000; 352
M Thorsen (704_CR36) 2012; 84
CM Grant (704_CR40) 1996; 29
K Richter (704_CR8) 2010; 40
K Sugiyama (704_CR25) 2000; 275
V Bharathi (704_CR19) 2016; 33
P Leuenberger (704_CR6) 2017; 355
C Riccardi (704_CR50) 2006; 1
DJ Jamieson (704_CR30) 1998; 14
DA Charlebois (704_CR20) 2018; 115
T Bilinski (704_CR29) 1989; 1001
704_CR1
RM Walsh (704_CR15) 1977; 83
704_CR2
M Scott (704_CR18) 2011; 22
J Postmus (704_CR14) 2008; 283
MB Toledano (704_CR33) 2007; 581
K Mehdi (704_CR35) 1997; 143
J Gore (704_CR10) 2009; 459
E Dekel (704_CR17) 2005; 436
J Verghese (704_CR7) 2012; 76
AP Gasch (704_CR23) 2000; 11
E Cabiscol (704_CR28) 2000; 275
MT Elskens (704_CR34) 1991; 137
HC Causton (704_CR22) 2001; 12
D Giustarini (704_CR38) 2016; 1019
704_CR45
GG Perrone (704_CR37) 2005; 16
K Kiriyama (704_CR43) 2012; 96
C Trapnell (704_CR49) 2012; 7
H Youk (704_CR48) 2014; 343
B Zechmann (704_CR31) 2011; 11
DA Ratkowsky (704_CR16) 1983; 154
JH Koschwanez (704_CR12) 2013; 2
A Bourbouloux (704_CR41) 2000; 275
MB Miller (704_CR9) 2001; 55
C Ratzke (704_CR13) 2018; 2
AR Araujo (704_CR39) 2008; 74
JF Davidson (704_CR26) 1996; 93
References_xml – ident: 704_CR2
  doi: 10.1201/9780429258770
– volume: 2
  start-page: 867
  year: 2018
  ident: 704_CR13
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0535-1
  contributor:
    fullname: C Ratzke
– volume: 343
  start-page: 1242782
  year: 2014
  ident: 704_CR48
  publication-title: Science
  doi: 10.1126/science.1242782
  contributor:
    fullname: H Youk
– volume: 94
  start-page: 514
  year: 1997
  ident: 704_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.2.514
  contributor:
    fullname: FM Yakes
– ident: 704_CR3
– volume: 33
  start-page: 607
  year: 2016
  ident: 704_CR19
  publication-title: Yeast
  doi: 10.1002/yea.3209
  contributor:
    fullname: V Bharathi
– volume: 96
  start-page: 1021
  year: 2012
  ident: 704_CR43
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4075-3
  contributor:
    fullname: K Kiriyama
– volume: 459
  start-page: 253
  year: 2009
  ident: 704_CR10
  publication-title: Nature
  doi: 10.1038/nature07921
  contributor:
    fullname: J Gore
– volume: 84
  start-page: 1177
  year: 2012
  ident: 704_CR36
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2012.08085.x
  contributor:
    fullname: M Thorsen
– volume: 275
  start-page: 13259
  year: 2000
  ident: 704_CR41
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.18.13259
  contributor:
    fullname: A Bourbouloux
– ident: 704_CR45
  doi: 10.1063/1.4823332
– volume: 83
  start-page: 169
  year: 1977
  ident: 704_CR15
  publication-title: J. Inst. Brew.
  doi: 10.1002/j.2050-0416.1977.tb06813.x
  contributor:
    fullname: RM Walsh
– volume: 22
  start-page: 559
  year: 2011
  ident: 704_CR18
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.04.014
  contributor:
    fullname: M Scott
– volume: 352
  start-page: 71
  year: 2000
  ident: 704_CR24
  publication-title: Biochem. J.
  doi: 10.1042/bj3520071
  contributor:
    fullname: K Sugiyama
– volume: 11
  start-page: 631
  year: 2011
  ident: 704_CR31
  publication-title: FEMS Yeast Res.
  doi: 10.1111/j.1567-1364.2011.00753.x
  contributor:
    fullname: B Zechmann
– volume: 355
  start-page: eaai7825
  year: 2017
  ident: 704_CR6
  publication-title: Science
  doi: 10.1126/science.aai7825
  contributor:
    fullname: P Leuenberger
– volume: 336
  start-page: 1175
  year: 2012
  ident: 704_CR44
  publication-title: Science
  doi: 10.1126/science.1219805
  contributor:
    fullname: L Dai
– volume: 168
  start-page: 35
  year: 1992
  ident: 704_CR47
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(92)90325-G
  contributor:
    fullname: J Garcia-Ojalvo
– volume: 1019
  start-page: 21
  year: 2016
  ident: 704_CR38
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2016.02.015
  contributor:
    fullname: D Giustarini
– volume: 143
  start-page: 1885
  year: 1997
  ident: 704_CR35
  publication-title: Microbiology
  doi: 10.1099/00221287-143-6-1885
  contributor:
    fullname: K Mehdi
– volume: 76
  start-page: 115
  year: 2012
  ident: 704_CR7
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.05018-11
  contributor:
    fullname: J Verghese
– volume: 115
  start-page: E10797
  year: 2018
  ident: 704_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1810858115
  contributor:
    fullname: DA Charlebois
– volume: 55
  start-page: 165
  year: 2001
  ident: 704_CR9
  publication-title: Annu. Rev. Microbiol
  doi: 10.1146/annurev.micro.55.1.165
  contributor:
    fullname: MB Miller
– volume: 581
  start-page: 3598
  year: 2007
  ident: 704_CR33
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.07.002
  contributor:
    fullname: MB Toledano
– ident: 704_CR1
– volume: 275
  start-page: 27393
  year: 2000
  ident: 704_CR28
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)61523-1
  contributor:
    fullname: E Cabiscol
– volume: 7
  start-page: 562
  year: 2012
  ident: 704_CR49
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.016
  contributor:
    fullname: C Trapnell
– volume: 14
  start-page: e2000640
  year: 2016
  ident: 704_CR46
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2000640
  contributor:
    fullname: M Mojtahedi
– volume: 40
  start-page: 253
  year: 2010
  ident: 704_CR8
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.10.006
  contributor:
    fullname: K Richter
– volume: 99
  start-page: 3996
  year: 2010
  ident: 704_CR5
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.10.036
  contributor:
    fullname: K Ghosh
– volume: 12
  start-page: 323
  year: 2001
  ident: 704_CR22
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.2.323
  contributor:
    fullname: HC Causton
– volume: 22
  start-page: 2054
  year: 2011
  ident: 704_CR42
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-11-0906
  contributor:
    fullname: M Dhaoui
– volume: 16
  start-page: 218
  year: 2005
  ident: 704_CR37
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-07-0560
  contributor:
    fullname: GG Perrone
– volume: 436
  start-page: 588
  year: 2005
  ident: 704_CR17
  publication-title: Nature
  doi: 10.1038/nature03842
  contributor:
    fullname: E Dekel
– volume: 275
  start-page: 15535
  year: 2000
  ident: 704_CR25
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.20.15535
  contributor:
    fullname: K Sugiyama
– volume: 29
  start-page: 511
  year: 1996
  ident: 704_CR40
  publication-title: Curr. Genet.
  doi: 10.1007/BF02426954
  contributor:
    fullname: CM Grant
– volume: 137
  start-page: 637
  year: 1991
  ident: 704_CR34
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-137-3-637
  contributor:
    fullname: MT Elskens
– volume: 74
  start-page: 1511
  year: 2008
  ident: 704_CR39
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.09.028
  contributor:
    fullname: AR Araujo
– ident: 704_CR4
– volume: 154
  start-page: 1222
  year: 1983
  ident: 704_CR16
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.154.3.1222-1226.1983
  contributor:
    fullname: DA Ratkowsky
– volume: 21
  start-page: 768
  year: 2011
  ident: 704_CR21
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2011.10.001
  contributor:
    fullname: NQ Balaban
– volume: 283
  start-page: 23524
  year: 2008
  ident: 704_CR14
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802908200
  contributor:
    fullname: J Postmus
– volume: 93
  start-page: 5116
  year: 1996
  ident: 704_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.10.5116
  contributor:
    fullname: JF Davidson
– volume: 30
  start-page: 2044
  year: 2011
  ident: 704_CR32
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.105
  contributor:
    fullname: C Kumar
– volume: 11
  start-page: 4241
  year: 2000
  ident: 704_CR23
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.12.4241
  contributor:
    fullname: AP Gasch
– volume: 2
  start-page: e00367
  year: 2013
  ident: 704_CR12
  publication-title: eLife
  doi: 10.7554/eLife.00367
  contributor:
    fullname: JH Koschwanez
– volume: 1001
  start-page: 102
  year: 1989
  ident: 704_CR29
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(89)90312-3
  contributor:
    fullname: T Bilinski
– volume: 14
  start-page: 1511
  year: 1998
  ident: 704_CR30
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  contributor:
    fullname: DJ Jamieson
– volume: 9
  start-page: e1001122
  year: 2011
  ident: 704_CR11
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001122
  contributor:
    fullname: JH Koschwanez
– volume: 1
  start-page: 1458
  year: 2006
  ident: 704_CR50
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.238
  contributor:
    fullname: C Riccardi
SSID ssj0001626686
Score 2.3606882
Snippet The conventional view is that high temperatures cause microorganisms to replicate slowly or die. In this view, microorganisms autonomously combat heat-induced...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 943
SubjectTerms Antioxidants
Biological Transport
Cell Proliferation
Ecosystem
Gene Expression Regulation, Fungal
Genes, Fungal
Glutathione
Glutathione - biosynthesis
Heat
High temperature
Mathematical models
Microorganisms
Models, Theoretical
Population density
Saccharomyces cerevisiae
Species extinction
Temperature
Yeast
Yeasts - metabolism
Title Yeasts collectively extend the limits of habitable temperatures by secreting glutathione
URI https://www.ncbi.nlm.nih.gov/pubmed/32313201
https://www.proquest.com/docview/2417166735/abstract/
https://www.proquest.com/docview/2474980977/abstract/
https://search.proquest.com/docview/2393041421
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxsxDBdtQ6Evo93aLm1WPNjTwOT8dR9PpRkJobAwSgvZ02H77L6UJN1dH_LfT8rddeyhfbYxRpKlnyRLAviWZs6gKZVcBSG5tl5zh4aeJ0XUmQtKCU_VyD8X6fxB3y7Ncg_mfS0MfavsdeJOUVdrTzHysdSZLvIE4crYOooC-GZ8vXnmND-K8qzdMI19GEihKWE7mEwXv-7-xVsQuad52ic2VT6uyXfRnPwnlHvN5f-m6Q28ubM7s2P40AFGdtNy-AT2wuojHLYjJLefYPmbhu_UjPjZ6q6nLWsj2wyxHXuiAqaarSOjjtwNFUoxakfV9VKumduymqAjfX9mjyiH9B1xvQqn8DCb3v-Y825aAvf4DhteVMoWooqRRkQhcLLWKml1FkSUFv0gWxkaf1DkVkV0Y3CrdyFE6TOTeqUTdQYHKzz-M7DoUOs4Q70jjZaVsTEmPg1RKW0Ka7IhfO8JVW7aphjlLpmt8rKlaolULYmqpRzCqCdl2b2PukTcgI5aminzxnLP7CF8fV1Gwadshl2F9QvuUYVKtNBSDOG85dDrZZSkjpSJuHj_8Es4ki37eSJGcND8eQlfEGM07goGN7PJZHHVidFfN_7Srg
link.rule.ids 315,786,790,21416,27957,27958,33779,33780,43840
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxwxDLbooqq9IGgpLM8gcUKKmImTeZwQINBCYYUQSMspyswkXFa7tLMc9t_X3pkBcaDnRKOR7dif7cQfwGGSFoZCqZLoYyW1K7UsKNDLKA86LTxiXPJr5NthMnjU1yMzagtudXutsvOJC0ddTUuukR8rneo8iwiunLz8kcwaxd3VlkLjCyxrpFSlB8tnF8O7-_cqC-H1JEu6diZmxzVnLFpy1kTWrqX6GJA-QZmLaHO5CistTBSnjV7XYMlPfsDXhjhy_hNGT0y5UwvWYuOxxnPR1LMFITox5mdLtZgGwXO4Z_w8SvAQqnaCci2KuagZMPKlZ_FM1seXEKcTvw6PlxcP5wPZciTIkk7fTOYVujyuQmBiKIJLzjlUTqc-DspR9uMqw6QHeeYwUPJCW8vC-6DK1CQl6gh_QW9Cn98EEQryNYXhiZFGq8q4EKIy8QFRm9yZtA9HnaDsSzMKwy5a2JjZRqqWpGpZqlb1YacTpW1PRW0JLVB6lqRoPlnuVNyHg7dlMnfuYbiJn77SHswx0rFWcR82Gg29_QwqnkMZxVv___g-fBs83N7Ym6vh7234rhpTkFG8A73Z31e_SyhjVuy1pvQPbIfQZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Yeasts+collectively+extend+the+limits+of+habitable+temperatures+by+secreting+glutathione&rft.jtitle=Nature+microbiology&rft.au=Laman+Trip+Diederik+S&rft.au=Youk+Hyun&rft.date=2020-07-01&rft.pub=Nature+Publishing+Group&rft.eissn=2058-5276&rft.volume=5&rft.issue=7&rft.spage=943&rft.epage=954&rft_id=info:doi/10.1038%2Fs41564-020-0704-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon