A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer
The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging,...
Saved in:
Published in | Journal of Nuclear Medicine Vol. 51; no. 1; pp. 98 - 105 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Nuclear Med
01.01.2010
Society of Nuclear Medicine |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo.
A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively.
TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles.
We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis. |
---|---|
AbstractList | The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo.
A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively.
TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles.
We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis. The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo.UNLABELLEDThe recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo.A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively.METHODSA cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively.TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles.RESULTSTEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles.We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis.CONCLUSIONWe developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis. The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo. Methods: A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylamlnopropyl)-Nethylcarbodlimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with ^sup 67^Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo ^sup 67^Ga radionuclide imaging and MRI were performed using a-γ-camera and a 1.5-T MR imager, respectively. Results: TEM Imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and ^sup 67^Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The ^sup 67^Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles. Conclusion: We developed a nanoparticle-based cancerspecific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis. [PUBLICATION ABSTRACT] |
Author | Lee, Dong Soo Kim, Soonhag Ryu, Sung Ho Kang, Hyungu Lee, Jung Hwan Hwang, Do Won Ko, Hae Young Song, In Chan |
Author_xml | – sequence: 1 fullname: Hwang, Do Won – sequence: 2 fullname: Ko, Hae Young – sequence: 3 fullname: Lee, Jung Hwan – sequence: 4 fullname: Kang, Hyungu – sequence: 5 fullname: Ryu, Sung Ho – sequence: 6 fullname: Song, In Chan – sequence: 7 fullname: Lee, Dong Soo – sequence: 8 fullname: Kim, Soonhag |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20008986$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URKeFH8AGWUiIVQbbiV_L0YhHpVJYTNeW49xMPST2YCdC_Hscpd10weo-9J2ro3uu0EWIARB6S8mWaSE_ncI8QrelRG-J0EqRF2hDec0rLoS8QBtCBa04J_wSXeV8IoQIpdQrdMlKq7QSGwQ7fDe7AeLgQ3Ww6QgTdPj7PEx-jJ0d8J0N8WzT5AuEb0Z79OGIf6bYAu5jwodk3a9ltbfBQcJ7GIaM7_OysgHvzpMdIb1GL3s7ZHjzWK_R_ZfPh_236vbH15v97rZyDSFTpV0rHbNtrRvQmgJnRLresdoqJpUQTjnRcaV7R6xrBe1pL1sFQETPm0Z19TX6uN49p_h7hjyZ0WdXLNkAcc5G1g1jRDeskO-fkac4p1DMGUY1lYLXTYHePUJzWx5tzsmPNv01T-8rgFwBl2LOCXrj_GQnH8OUrB8MJWYJyqxBlVGbNaiipM-UT8f_p_mwah788eGPT2DCEp1NC3cKI6eGGq3qf211pLU |
CODEN | JNMEAQ |
CitedBy_id | crossref_primary_10_2217_nnm_2016_0035 crossref_primary_10_1016_j_apradiso_2017_06_043 crossref_primary_10_1016_j_matbio_2024_04_002 crossref_primary_10_1098_rsta_2017_0261 crossref_primary_10_1016_j_biomaterials_2011_01_011 crossref_primary_10_1016_j_cbpa_2012_03_016 crossref_primary_10_1039_C5CS00645G crossref_primary_10_18632_oncotarget_24902 crossref_primary_10_1016_j_biochi_2017_11_019 crossref_primary_10_1016_j_biomaterials_2016_03_013 crossref_primary_10_1007_s13273_018_0040_2 crossref_primary_10_1016_j_heliyon_2024_e27692 crossref_primary_10_1016_j_chembiol_2011_12_008 crossref_primary_10_1021_acs_chemrev_5b00321 crossref_primary_10_1016_j_aca_2012_06_048 crossref_primary_10_2217_nnm_11_113 crossref_primary_10_1016_j_biomaterials_2015_02_040 crossref_primary_10_1016_j_omtn_2018_01_001 crossref_primary_10_29252_shefa_7_1_91 crossref_primary_10_3390_cells10061455 crossref_primary_10_1016_j_biomaterials_2011_09_023 crossref_primary_10_1039_C4CS00357H crossref_primary_10_1016_j_ejps_2018_02_027 crossref_primary_10_1016_j_addr_2017_07_013 crossref_primary_10_1016_j_biomaterials_2014_11_033 crossref_primary_10_1002_wnan_133 crossref_primary_10_3390_life12111937 crossref_primary_10_1021_je5002285 crossref_primary_10_1016_j_jddst_2023_104255 crossref_primary_10_1158_0008_5472_CAN_12_4556 crossref_primary_10_1002_jps_23146 crossref_primary_10_1039_C0SM00534G crossref_primary_10_1016_j_colsurfb_2015_09_004 crossref_primary_10_1016_j_critrevonc_2018_03_008 crossref_primary_10_2217_nnm_2017_0110 crossref_primary_10_1016_j_ijpharm_2012_03_047 crossref_primary_10_1021_acs_biomac_5b00250 crossref_primary_10_1039_C6NR04489A crossref_primary_10_1073_pnas_1016197108 crossref_primary_10_1002_adma_202311437 crossref_primary_10_3390_ph11030086 crossref_primary_10_1016_j_addr_2018_08_004 crossref_primary_10_1111_j_1440_1681_2012_05700_x crossref_primary_10_1016_j_biochi_2012_02_025 crossref_primary_10_1039_D0CP01660H crossref_primary_10_1016_j_biotechadv_2013_04_007 crossref_primary_10_4137_BCBCR_S29420 crossref_primary_10_1002_anie_202005624 crossref_primary_10_1039_c3ra42645a crossref_primary_10_3390_ph4081137 crossref_primary_10_1039_c4an00132j crossref_primary_10_1016_j_crci_2013_08_006 crossref_primary_10_1038_srep15675 crossref_primary_10_1371_journal_pone_0087002 crossref_primary_10_1007_s00432_023_05215_x crossref_primary_10_1007_s10895_010_0772_4 crossref_primary_10_2967_jnumed_113_126144 crossref_primary_10_1016_j_bios_2021_113040 crossref_primary_10_1039_C3CS60433K crossref_primary_10_1016_j_biomaterials_2010_09_071 crossref_primary_10_1016_j_talanta_2016_04_008 crossref_primary_10_1039_C5AN01995H crossref_primary_10_1021_acs_chemrev_8b00363 crossref_primary_10_1021_acsbiomaterials_1c00357 crossref_primary_10_1016_j_nano_2014_12_010 crossref_primary_10_1021_ac500173d crossref_primary_10_1016_j_aca_2013_12_023 crossref_primary_10_1016_j_biomaterials_2013_05_077 crossref_primary_10_3390_ijms20215243 crossref_primary_10_1016_j_coche_2014_01_007 crossref_primary_10_2217_nnm_14_224 crossref_primary_10_3109_10409238_2011_614592 crossref_primary_10_1016_j_lfs_2017_07_025 crossref_primary_10_1016_j_cej_2023_147865 crossref_primary_10_1016_j_biomaterials_2012_07_011 crossref_primary_10_1517_17425247_2010_527942 crossref_primary_10_1039_C5AY02230D crossref_primary_10_1016_S1872_2040_17_61052_1 crossref_primary_10_1016_j_snb_2017_03_079 crossref_primary_10_1111_cbdd_13135 crossref_primary_10_2217_nnm_10_47 crossref_primary_10_1016_j_bmcl_2020_127278 crossref_primary_10_1002_cyto_a_22715 crossref_primary_10_1146_annurev_anchem_062012_092621 crossref_primary_10_1016_j_actbio_2011_05_031 crossref_primary_10_1016_j_nucmedbio_2016_11_008 crossref_primary_10_3389_fphys_2015_00357 crossref_primary_10_1016_j_biomaterials_2010_10_034 crossref_primary_10_1002_ange_202005624 crossref_primary_10_1007_s00259_022_05782_0 crossref_primary_10_1021_acs_langmuir_5b03534 crossref_primary_10_1158_0008_5472_CAN_17_2880 crossref_primary_10_1016_j_ijbiomac_2017_01_078 crossref_primary_10_1039_C2CS35265F crossref_primary_10_1016_j_biotechadv_2013_08_010 crossref_primary_10_3892_ol_2019_10282 crossref_primary_10_1016_j_addr_2011_10_002 crossref_primary_10_1016_j_talanta_2020_122037 crossref_primary_10_1142_S1793984413400047 crossref_primary_10_1109_TBME_2020_2990873 crossref_primary_10_1039_C5TB00211G crossref_primary_10_3390_cancers10020047 crossref_primary_10_1016_j_ccr_2013_04_014 crossref_primary_10_2217_fon_10_67 crossref_primary_10_1016_j_talanta_2020_121571 crossref_primary_10_3390_nano12040582 crossref_primary_10_1021_ac5024149 crossref_primary_10_1039_C5NR08465B crossref_primary_10_1080_17425247_2018_1547280 crossref_primary_10_1021_ac103261y crossref_primary_10_1007_s00216_013_7086_8 crossref_primary_10_1155_2014_819324 crossref_primary_10_1016_j_jddst_2022_103624 crossref_primary_10_1146_annurev_pharmtox_010716_104558 crossref_primary_10_1016_j_bioelechem_2021_107807 crossref_primary_10_1186_1556_276X_9_104 crossref_primary_10_3390_ijms17122079 crossref_primary_10_1016_j_vibspec_2014_07_013 crossref_primary_10_1039_c0dt01398f crossref_primary_10_1007_s00261_015_0418_8 crossref_primary_10_1016_j_bbagen_2016_12_015 crossref_primary_10_1007_s40846_022_00715_6 crossref_primary_10_1016_j_nano_2024_102778 crossref_primary_10_1039_C0CS00003E crossref_primary_10_1016_j_nucmedbio_2015_09_005 crossref_primary_10_1016_j_msec_2019_110314 crossref_primary_10_1186_s12645_014_0001_y crossref_primary_10_1002_smll_201100250 crossref_primary_10_1002_adma_202300943 crossref_primary_10_1016_j_tibtech_2010_07_005 crossref_primary_10_1007_s12038_016_9632_y crossref_primary_10_1016_j_biopha_2017_07_017 crossref_primary_10_1002_adhm_201300141 crossref_primary_10_1186_s12951_023_01943_x crossref_primary_10_1002_cmmi_1719 crossref_primary_10_1021_acs_molpharmaceut_8b01169 crossref_primary_10_1002_cmdc_201402163 crossref_primary_10_1007_s13238_012_2072_z crossref_primary_10_1016_j_mser_2013_03_001 crossref_primary_10_1093_jac_dku538 crossref_primary_10_4062_biomolther_2013_085 crossref_primary_10_1002_jcb_24373 crossref_primary_10_1016_j_cis_2021_102457 crossref_primary_10_1039_C8TB01563E crossref_primary_10_1002_cmmi_428 crossref_primary_10_1038_s41598_021_98828_6 crossref_primary_10_1007_s11010_013_1857_6 crossref_primary_10_1016_j_biomaterials_2014_04_112 crossref_primary_10_1021_bm5002203 crossref_primary_10_3390_ph13100294 crossref_primary_10_1517_17530059_2010_516248 crossref_primary_10_1016_j_biomaterials_2013_02_018 crossref_primary_10_1007_s10973_014_4177_5 crossref_primary_10_1039_C7TB01425B crossref_primary_10_1039_c3nr03064d crossref_primary_10_1016_j_bmc_2016_12_026 crossref_primary_10_1016_j_ccr_2022_214648 crossref_primary_10_1021_acs_analchem_8b02847 crossref_primary_10_1007_s00432_014_1767_3 crossref_primary_10_1021_acsnano_5b07253 crossref_primary_10_1088_1361_6528_ad06d5 crossref_primary_10_1016_j_biomaterials_2012_05_057 crossref_primary_10_37349_emed_2021_00039 crossref_primary_10_1093_neuonc_noad156 crossref_primary_10_1039_C8CC05831H crossref_primary_10_1515_ntrev_2020_0095 crossref_primary_10_1007_s12274_014_0420_4 crossref_primary_10_1016_j_colsurfb_2015_09_034 crossref_primary_10_1002_mabi_201300165 crossref_primary_10_2967_jnumed_111_088443 crossref_primary_10_1002_fsn3_1677 crossref_primary_10_1016_j_mseb_2021_115344 crossref_primary_10_1016_j_msec_2019_02_086 crossref_primary_10_1021_nn402344v crossref_primary_10_1021_cr300468w crossref_primary_10_2217_nnm_11_94 crossref_primary_10_1002_mabi_201800407 crossref_primary_10_1016_j_bmc_2018_11_031 crossref_primary_10_1016_j_ijbiomac_2019_11_118 crossref_primary_10_3390_molecules24203781 crossref_primary_10_1016_j_actbio_2020_08_038 crossref_primary_10_1155_2022_9946357 crossref_primary_10_3390_biomedicines8030059 crossref_primary_10_1002_adma_201004714 crossref_primary_10_18632_oncotarget_4207 crossref_primary_10_2147_IJN_S471360 crossref_primary_10_1016_j_addr_2014_07_009 crossref_primary_10_1371_journal_pone_0062348 crossref_primary_10_3109_1061186X_2015_1009075 crossref_primary_10_1016_j_biomaterials_2011_07_004 crossref_primary_10_1007_s11426_011_4336_5 crossref_primary_10_1039_C6TB02773C crossref_primary_10_3109_1061186X_2014_886038 crossref_primary_10_1002_adhm_201700306 crossref_primary_10_1016_j_nano_2016_02_019 crossref_primary_10_1016_j_biochi_2018_09_001 crossref_primary_10_1080_07357907_2018_1527930 crossref_primary_10_1371_journal_pone_0099964 |
Cites_doi | 10.1038/nprot.2007.478 10.2967/jnumed.107.043166 10.1021/nl071546n 10.1158/0008-5472.CAN-07-5723 10.2967/jnumed.108.051243 10.1093/toxsci/kfj027 10.1186/1745-6673-2-16 10.1021/bc0498572 10.2967/jnumed.107.047423 10.1158/0008-5472.CAN-03-1816 10.1002/ijc.22709 10.1158/1535-7163.MCT-05-0361 10.1021/bc0602679 10.1006/excr.2000.5071 10.1002/smll.200500360 10.1007/s00259-006-0317-x 10.1242/jcs.112.6.761 10.1227/01.NEU.0000216793.45952.ED 10.1016/j.bios.2005.12.015 10.1038/nbt1188 10.1016/j.cis.2006.05.026 |
ContentType | Journal Article |
Copyright | Copyright Society of Nuclear Medicine Jan 2010 |
Copyright_xml | – notice: Copyright Society of Nuclear Medicine Jan 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 7RV 7X7 7XB 88E 88I 8AF 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 |
DOI | 10.2967/jnumed.109.069880 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (Proquest) Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-5667 2159-662X |
EndPage | 105 |
ExternalDocumentID | 1942108481 20008986 10_2967_jnumed_109_069880 jnm51_1_98 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 1AW 29L 2WC 3V. 53G 55 5RE 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8WZ A6W ABFLS ABSGY ABUWG ACGOD ACIWK ACPRK ADACO ADBIT ADDZX AENEX AFKRA AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BBAFP BBNVY BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI CS3 DIK DU5 DWQXO E3Z EBS EJD EX3 F5P FH7 FYUFA GNUQQ H13 HCIFZ I-F IL9 INIJC KQ8 L7B LK8 M1P M2P M2Q M7P OK1 P2P P62 PQEST PQQKQ PQUKI PRINS PROAC PSQYO Q2X R0Z RHF RHI RNS RWL S0X SJN SV3 TAE TSM VH1 WH7 WOQ WOW X X7M ZA5 123 18M 41~ 5VS 96U AAYXX ACGFO AEGXH AIAGR CITATION GX1 N9A U5U W8F --- -~X .55 .GJ 3O- ABEFU ABSQV ADMOG AFFNX AFOSN AI. ALIPV CCPQU CGR CUY CVF EBD ECM EIF EMOBN F9R HMCUK J5H N4W NAPCQ NPM PHGZM PHGZT PJZUB PPXIY PQGLB TR2 TUS UKHRP YHG YQJ ZGI ZXP 4T- 7XB 8FD 8FK FR3 K9. M7Z P64 PKEHL Q9U 7X8 |
ID | FETCH-LOGICAL-c400t-9cb7c2ab394e991e5207cfc23a827866c8c6d589fc0acb61f1f7b8ee06f5448d3 |
IEDL.DBID | 7X7 |
ISSN | 0161-5505 1535-5667 |
IngestDate | Fri Jul 11 03:42:48 EDT 2025 Fri Jul 25 10:54:52 EDT 2025 Mon Jul 21 05:52:22 EDT 2025 Tue Jul 01 01:45:02 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Mon Jan 18 12:02:58 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-9cb7c2ab394e991e5207cfc23a827866c8c6d589fc0acb61f1f7b8ee06f5448d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://jnm.snmjournals.org/content/51/1/98.full.pdf |
PMID | 20008986 |
PQID | 219176534 |
PQPubID | 40808 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_734220942 proquest_journals_219176534 pubmed_primary_20008986 crossref_citationtrail_10_2967_jnumed_109_069880 crossref_primary_10_2967_jnumed_109_069880 highwire_nuclearmed_jnm51_1_98 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100101 2010-01-00 2010-Jan |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 20100101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of Nuclear Medicine |
PublicationTitleAlternate | J Nucl Med |
PublicationYear | 2010 |
Publisher | Soc Nuclear Med Society of Nuclear Medicine |
Publisher_xml | – name: Soc Nuclear Med – name: Society of Nuclear Medicine |
References | 2021051711595618000_51.1.98.3 2021051711595618000_51.1.98.17 2021051711595618000_51.1.98.4 2021051711595618000_51.1.98.16 2021051711595618000_51.1.98.5 2021051711595618000_51.1.98.19 2021051711595618000_51.1.98.6 2021051711595618000_51.1.98.18 2021051711595618000_51.1.98.7 2021051711595618000_51.1.98.8 (2021051711595618000_51.1.98.15) 1999; 112 2021051711595618000_51.1.98.9 2021051711595618000_51.1.98.20 2021051711595618000_51.1.98.11 2021051711595618000_51.1.98.22 2021051711595618000_51.1.98.21 2021051711595618000_51.1.98.12 (2021051711595618000_51.1.98.13) 1995; 73 2021051711595618000_51.1.98.23 2021051711595618000_51.1.98.14 (2021051711595618000_51.1.98.10) 2006; 47 2021051711595618000_51.1.98.1 2021051711595618000_51.1.98.2 20662640 - Nanomedicine (Lond). 2010 Jul;5(5):687-91 |
References_xml | – ident: 2021051711595618000_51.1.98.8 doi: 10.1038/nprot.2007.478 – ident: 2021051711595618000_51.1.98.6 doi: 10.2967/jnumed.107.043166 – ident: 2021051711595618000_51.1.98.11 doi: 10.1021/nl071546n – ident: 2021051711595618000_51.1.98.14 doi: 10.1158/0008-5472.CAN-07-5723 – ident: 2021051711595618000_51.1.98.20 doi: 10.2967/jnumed.108.051243 – volume: 47 start-page: 668 year: 2006 ident: 2021051711595618000_51.1.98.10 publication-title: J Nucl Med. – ident: 2021051711595618000_51.1.98.23 doi: 10.1093/toxsci/kfj027 – volume: 73 start-page: 497 year: 1995 ident: 2021051711595618000_51.1.98.13 publication-title: Lab Invest. – ident: 2021051711595618000_51.1.98.2 doi: 10.1186/1745-6673-2-16 – ident: 2021051711595618000_51.1.98.5 doi: 10.1021/bc0498572 – ident: 2021051711595618000_51.1.98.19 doi: 10.2967/jnumed.107.047423 – ident: 2021051711595618000_51.1.98.21 doi: 10.1158/0008-5472.CAN-03-1816 – ident: 2021051711595618000_51.1.98.3 doi: 10.1002/ijc.22709 – ident: 2021051711595618000_51.1.98.12 doi: 10.1158/1535-7163.MCT-05-0361 – ident: 2021051711595618000_51.1.98.7 doi: 10.1021/bc0602679 – ident: 2021051711595618000_51.1.98.16 doi: 10.1006/excr.2000.5071 – ident: 2021051711595618000_51.1.98.17 doi: 10.1002/smll.200500360 – ident: 2021051711595618000_51.1.98.22 doi: 10.1007/s00259-006-0317-x – volume: 112 start-page: 761 year: 1999 ident: 2021051711595618000_51.1.98.15 publication-title: J Cell Sci. doi: 10.1242/jcs.112.6.761 – ident: 2021051711595618000_51.1.98.1 doi: 10.1227/01.NEU.0000216793.45952.ED – ident: 2021051711595618000_51.1.98.9 doi: 10.1016/j.bios.2005.12.015 – ident: 2021051711595618000_51.1.98.18 doi: 10.1038/nbt1188 – ident: 2021051711595618000_51.1.98.4 doi: 10.1016/j.cis.2006.05.026 – reference: 20662640 - Nanomedicine (Lond). 2010 Jul;5(5):687-91 |
SSID | ssj0006888 ssj0062072 |
Score | 2.453057 |
Snippet | The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 98 |
SubjectTerms | Animals Aptamers, Nucleotide Atoms & subatomic particles Cancer Cell Line, Tumor Citrates Drug Design Electron microscopes Fluorescent Dyes Gallium Glioma - diagnostic imaging Glioma - metabolism Magnetic Resonance Imaging Mice Mice, Nude Microscopy, Confocal Microscopy, Electron, Transmission Nanoparticles Neoplasms - diagnostic imaging Nucleolin Oligodeoxyribonucleotides Phantoms, Imaging Phosphoproteins - metabolism Quantum dots Radionuclide Imaging Radiopharmaceuticals Rats Rhodamines RNA-Binding Proteins - metabolism Studies Technological change |
Title | A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer |
URI | http://jnm.snmjournals.org/cgi/content/abstract/51/1/98 https://www.ncbi.nlm.nih.gov/pubmed/20008986 https://www.proquest.com/docview/219176534 https://www.proquest.com/docview/734220942 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZtAqWX0ne2SY0OPRXU7Gr1PBXHxEkKMaEk4JvQ8xDstWs7_7-afdFLc9nLSssyD82MZuYbhL5x5usYkyPc-kBY0iXRiiYSsqnlKUppKTQ43y7E9QP7teTLvjZn35dVDmdie1CHjYc78nMKgYXgNfu5_UNgaBQkV_sJGi_RMSCXgVDL5RhvwTgV1UF7VwQc8S6pSbWQ549N1vwAWEo_SqEVgEL-a5YGqOD_u52t-Zm_RW96vxFPO0a_Qy9i8x69uu0z4x9QnOIFQBPDDB5y35Z3x4Db9tr1JuSd-RjN8XG3Hd-s2-FE-A6agXD2W3G2WR5uzfEMxGCHZ3G12uO2oADbBk-3B7uOu4_oYX55P7sm_QgF4rNyHoj2TnpqXa1ZzJ5g5LSUPnlaW0WlEsIrLwJXOvnSeieqVCXpVIylSDwHbqH-hI6aTRNPENY1b_0HF7JFYym5WkbmSpZcklboUKByoKDxPb44jLlYmRxnANFNR3TIeZuO6AX6Pm7ZduAazy2eDGwxDRDU7mDBY7PmlamMVgU6HZhlekXcm1FsCoTHt1mDIC1im7h52htZM0pzlEsL9Llj8fgz0MektBJfnv30KXrd1RTAxcwZOjrsnuLX7Koc3KQVyPxU86sJOr64XNz9_gsdsusE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4lmWQvEBLkimG6-fB4SiQEhoE3FIpd6M7bUPVbIJSSrEj-I_4tmXuNBbz2tbq5nxzDeeF0JvOfNFCNERbn1JWNQ50YpGUiZTy2OQ0lIocJ7NxeSCfbvklwfoT1cLA2mVnU6sFXW59vBGfkrBsRC8YJ82PwkMjYLgajdBo5GKs_D7V_LYdh-nnxN731E6_rIYTUg7VID4JK57or2TnlpXaBYSNgqc5tJHTwurqFRCeOVFyZWOPrfeiUEcROlUCLmIPLkyZZHOvYPusiIZcihMH3_tFb9Q9ZhLAFEEgH8TRKVayNOrKmmaEno3fciFVtCE8l8z2LUm_j_Mrc3d-BF62OJUPGwE6zE6CNUTdG_WRuKfojDEc2iFDDN_yKJOJw8lrst5V-sy7UxqO_njzXY8XdXDkPB3KD7CCSfjZCM9vNLjEYjdFo_CcrnDdQIDthUebvZ2FbbP0MWtUPc5OqzWVXiBsC54jVdcmSwoi9EVMjCXs-iitEKXGco7Chrf9jOHsRpLk_waILppiA4xdtMQPUPv-y2bppnHTYtPOraYCghqt7DgqlrxgRkYrTJ03DHLtBd_Z3oxzRDuv6YbC2EYW4X19c7IglGavGqaoaOGxf3PQN2U0kq8vPHoN-j-ZDE7N-fT-dkxetDkM8Cj0Ct0uN9eh9cJJu3dSS2cGP247dvwF4BYJiE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVKq4IN5dCsUHuCCZbLzr1wGhkDZqKI0i1Eq9mbXXPlTJJiSpED-Nf4dnHxEXeut5bWs1M56Zz_MCeMdzl3kfLOWFK2kedEq1YoGW0dTy4KUsGBY4X0zF2VX-9Zpf78GfrhYG0yo7nVgr6nLp8I28zxBYCJ7l_dBmRcxOxp9XPykOkMJAazdNo5GQc__7V0Rvm0-Tk8jq94yNTy9HZ7QdMEBdFN0t1c5Kxwqb6dxHP8lzlkoXHMsKxaQSwiknSq50cGnhrBiEQZBWeZ-KwCOsKbN47gPYlwiKerD_5XQ6-74zA0LVQy_RpaIIA5qQKtNC9m-qqHdK7OT0MRVaYUvKf41i16j4_05vbfzGj-FR67WSYSNmT2DPV0_h4KKNyz8DPyRTbIyME4DoZZ1c7ktSF_culmXcGZV4ROfNdjJZ1KORyAxLkUj0mkm0mA7f7MkIhXBNRn4-35A6nYEUFRmutsXCr5_D1b3Q9wX0qmXlD4HojNfeiy2jPc1DsJn0uU3zYIMshC4TSDsKGtd2N8chG3MTUQ4S3TREx4i7aYiewIfdllXT2uOuxccdW0yFBC3WuOCmWvCBGRitEjjqmGVaNbAxO6FNgOy-xvuLQZmi8svbjZFZzljE2CyBlw2Ldz-DVVRKK_HqzqPfwkG8CebbZHp-BA-b5AZ8IXoNve361r-JPtPWHrfSSeDHfV-Iv_mrK7M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nucleolin-targeted+multimodal+nanoparticle+imaging+probe+for+tracking+cancer+cells+using+an+aptamer&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Hwang%2C+Do+Won&rft.au=Ko%2C+Hae+Young&rft.au=Lee%2C+Jung+Hwan&rft.au=Kang%2C+Hyungu&rft.date=2010-01-01&rft.eissn=1535-5667&rft.volume=51&rft.issue=1&rft.spage=98&rft_id=info:doi/10.2967%2Fjnumed.109.069880&rft_id=info%3Apmid%2F20008986&rft.externalDocID=20008986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon |