A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer

The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging,...

Full description

Saved in:
Bibliographic Details
Published inJournal of Nuclear Medicine Vol. 51; no. 1; pp. 98 - 105
Main Authors Hwang, Do Won, Ko, Hae Young, Lee, Jung Hwan, Kang, Hyungu, Ryu, Sung Ho, Song, In Chan, Lee, Dong Soo, Kim, Soonhag
Format Journal Article
LanguageEnglish
Published United States Soc Nuclear Med 01.01.2010
Society of Nuclear Medicine
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo. A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively. TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles. We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis.
AbstractList The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo. A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively. TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles. We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis.
The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo.UNLABELLEDThe recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo.A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively.METHODSA cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with (67)Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo (67)Ga radionuclide imaging and MRI were performed using a gamma-camera and a 1.5-T MR imager, respectively.TEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles.RESULTSTEM imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and (67)Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The (67)Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles.We developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis.CONCLUSIONWe developed a nanoparticle-based cancer-specific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis.
The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in living subjects. Here, we report a multimodal cancer-targeted imaging system capable of concurrent fluorescence imaging, radionuclide imaging, and MRI in vivo. Methods: A cobalt-ferrite nanoparticle surrounded by fluorescent rhodamine (designated MF) within a silica shell matrix was synthesized with the AS1411 aptamer (MF-AS1411) that targets nucleolin (a cellular membrane protein highly expressed in cancer) using N-(3-dimethylamlnopropyl)-Nethylcarbodlimide (EDC). This purified MF-AS1411 particle was bound with 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane1,4,7-triacetic acid (p-SCN-bn-NOTA) chelating agent and further labeled with ^sup 67^Ga-citrate (MFR-AS1411). The shape and size distribution of MFR-AS1411 were characterized by transmission electron microscope (TEM). The cellular distribution of the nucleolin protein using the MFR-AS1411 nanoparticle was detected by fluorescence confocal microscopy. Phantom MR images were obtained as the concentration of MFR-AS1411 increased, using a 1.5-T MRI scanner. In vivo ^sup 67^Ga radionuclide imaging and MRI were performed using a-γ-camera and a 1.5-T MR imager, respectively. Results: TEM Imaging revealed MF and MFR-AS1411 to be spheric and well dispersed. The purified MFR-AS1411 nanoparticle showed specific fluorescence signals in nucleolin-expressing C6 cells, compared with MFR-AS1411 mutant (MFR-AS1411mt)-treated C6 cells. The rhodamine fluorescence intensity and ^sup 67^Ga activity of MFR-AS1411 were enhanced in a dose-dependent manner as the concentration of MFR-AS1411 was increased. The ^sup 67^Ga radionuclide was detected in both thighs of the mice injected with MFR-AS1411, whereas the MFR-AS1411 mutant (MFR-AS1411mt) administration revealed rapid clearance via the bloodstream, demonstrating that MFR-AS1411 specifically targeted cancer cells. Bioluminescence images in the C6 cells, stably expressing the luciferase gene, illustrated the in vivo distribution. T2-weighted MR images of the same mice injected with MFR-AS1411 showed dark T2 signals inside the tumor region, compared with the MRI signal of the tumor region injected with MFR-AS1411mt particles. Conclusion: We developed a nanoparticle-based cancerspecific imaging probe using the AS1411 aptamer in vivo and in vitro. This multimodal targeting imaging strategy, using a cancer-specific AS1411 aptamer, can be used as a versatile imaging tool for specific cancer diagnosis. [PUBLICATION ABSTRACT]
Author Lee, Dong Soo
Kim, Soonhag
Ryu, Sung Ho
Kang, Hyungu
Lee, Jung Hwan
Hwang, Do Won
Ko, Hae Young
Song, In Chan
Author_xml – sequence: 1
  fullname: Hwang, Do Won
– sequence: 2
  fullname: Ko, Hae Young
– sequence: 3
  fullname: Lee, Jung Hwan
– sequence: 4
  fullname: Kang, Hyungu
– sequence: 5
  fullname: Ryu, Sung Ho
– sequence: 6
  fullname: Song, In Chan
– sequence: 7
  fullname: Lee, Dong Soo
– sequence: 8
  fullname: Kim, Soonhag
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20008986$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URKeFH8AGWUiIVQbbiV_L0YhHpVJYTNeW49xMPST2YCdC_Hscpd10weo-9J2ro3uu0EWIARB6S8mWaSE_ncI8QrelRG-J0EqRF2hDec0rLoS8QBtCBa04J_wSXeV8IoQIpdQrdMlKq7QSGwQ7fDe7AeLgQ3Ww6QgTdPj7PEx-jJ0d8J0N8WzT5AuEb0Z79OGIf6bYAu5jwodk3a9ltbfBQcJ7GIaM7_OysgHvzpMdIb1GL3s7ZHjzWK_R_ZfPh_236vbH15v97rZyDSFTpV0rHbNtrRvQmgJnRLresdoqJpUQTjnRcaV7R6xrBe1pL1sFQETPm0Z19TX6uN49p_h7hjyZ0WdXLNkAcc5G1g1jRDeskO-fkac4p1DMGUY1lYLXTYHePUJzWx5tzsmPNv01T-8rgFwBl2LOCXrj_GQnH8OUrB8MJWYJyqxBlVGbNaiipM-UT8f_p_mwah788eGPT2DCEp1NC3cKI6eGGq3qf211pLU
CODEN JNMEAQ
CitedBy_id crossref_primary_10_2217_nnm_2016_0035
crossref_primary_10_1016_j_apradiso_2017_06_043
crossref_primary_10_1016_j_matbio_2024_04_002
crossref_primary_10_1098_rsta_2017_0261
crossref_primary_10_1016_j_biomaterials_2011_01_011
crossref_primary_10_1016_j_cbpa_2012_03_016
crossref_primary_10_1039_C5CS00645G
crossref_primary_10_18632_oncotarget_24902
crossref_primary_10_1016_j_biochi_2017_11_019
crossref_primary_10_1016_j_biomaterials_2016_03_013
crossref_primary_10_1007_s13273_018_0040_2
crossref_primary_10_1016_j_heliyon_2024_e27692
crossref_primary_10_1016_j_chembiol_2011_12_008
crossref_primary_10_1021_acs_chemrev_5b00321
crossref_primary_10_1016_j_aca_2012_06_048
crossref_primary_10_2217_nnm_11_113
crossref_primary_10_1016_j_biomaterials_2015_02_040
crossref_primary_10_1016_j_omtn_2018_01_001
crossref_primary_10_29252_shefa_7_1_91
crossref_primary_10_3390_cells10061455
crossref_primary_10_1016_j_biomaterials_2011_09_023
crossref_primary_10_1039_C4CS00357H
crossref_primary_10_1016_j_ejps_2018_02_027
crossref_primary_10_1016_j_addr_2017_07_013
crossref_primary_10_1016_j_biomaterials_2014_11_033
crossref_primary_10_1002_wnan_133
crossref_primary_10_3390_life12111937
crossref_primary_10_1021_je5002285
crossref_primary_10_1016_j_jddst_2023_104255
crossref_primary_10_1158_0008_5472_CAN_12_4556
crossref_primary_10_1002_jps_23146
crossref_primary_10_1039_C0SM00534G
crossref_primary_10_1016_j_colsurfb_2015_09_004
crossref_primary_10_1016_j_critrevonc_2018_03_008
crossref_primary_10_2217_nnm_2017_0110
crossref_primary_10_1016_j_ijpharm_2012_03_047
crossref_primary_10_1021_acs_biomac_5b00250
crossref_primary_10_1039_C6NR04489A
crossref_primary_10_1073_pnas_1016197108
crossref_primary_10_1002_adma_202311437
crossref_primary_10_3390_ph11030086
crossref_primary_10_1016_j_addr_2018_08_004
crossref_primary_10_1111_j_1440_1681_2012_05700_x
crossref_primary_10_1016_j_biochi_2012_02_025
crossref_primary_10_1039_D0CP01660H
crossref_primary_10_1016_j_biotechadv_2013_04_007
crossref_primary_10_4137_BCBCR_S29420
crossref_primary_10_1002_anie_202005624
crossref_primary_10_1039_c3ra42645a
crossref_primary_10_3390_ph4081137
crossref_primary_10_1039_c4an00132j
crossref_primary_10_1016_j_crci_2013_08_006
crossref_primary_10_1038_srep15675
crossref_primary_10_1371_journal_pone_0087002
crossref_primary_10_1007_s00432_023_05215_x
crossref_primary_10_1007_s10895_010_0772_4
crossref_primary_10_2967_jnumed_113_126144
crossref_primary_10_1016_j_bios_2021_113040
crossref_primary_10_1039_C3CS60433K
crossref_primary_10_1016_j_biomaterials_2010_09_071
crossref_primary_10_1016_j_talanta_2016_04_008
crossref_primary_10_1039_C5AN01995H
crossref_primary_10_1021_acs_chemrev_8b00363
crossref_primary_10_1021_acsbiomaterials_1c00357
crossref_primary_10_1016_j_nano_2014_12_010
crossref_primary_10_1021_ac500173d
crossref_primary_10_1016_j_aca_2013_12_023
crossref_primary_10_1016_j_biomaterials_2013_05_077
crossref_primary_10_3390_ijms20215243
crossref_primary_10_1016_j_coche_2014_01_007
crossref_primary_10_2217_nnm_14_224
crossref_primary_10_3109_10409238_2011_614592
crossref_primary_10_1016_j_lfs_2017_07_025
crossref_primary_10_1016_j_cej_2023_147865
crossref_primary_10_1016_j_biomaterials_2012_07_011
crossref_primary_10_1517_17425247_2010_527942
crossref_primary_10_1039_C5AY02230D
crossref_primary_10_1016_S1872_2040_17_61052_1
crossref_primary_10_1016_j_snb_2017_03_079
crossref_primary_10_1111_cbdd_13135
crossref_primary_10_2217_nnm_10_47
crossref_primary_10_1016_j_bmcl_2020_127278
crossref_primary_10_1002_cyto_a_22715
crossref_primary_10_1146_annurev_anchem_062012_092621
crossref_primary_10_1016_j_actbio_2011_05_031
crossref_primary_10_1016_j_nucmedbio_2016_11_008
crossref_primary_10_3389_fphys_2015_00357
crossref_primary_10_1016_j_biomaterials_2010_10_034
crossref_primary_10_1002_ange_202005624
crossref_primary_10_1007_s00259_022_05782_0
crossref_primary_10_1021_acs_langmuir_5b03534
crossref_primary_10_1158_0008_5472_CAN_17_2880
crossref_primary_10_1016_j_ijbiomac_2017_01_078
crossref_primary_10_1039_C2CS35265F
crossref_primary_10_1016_j_biotechadv_2013_08_010
crossref_primary_10_3892_ol_2019_10282
crossref_primary_10_1016_j_addr_2011_10_002
crossref_primary_10_1016_j_talanta_2020_122037
crossref_primary_10_1142_S1793984413400047
crossref_primary_10_1109_TBME_2020_2990873
crossref_primary_10_1039_C5TB00211G
crossref_primary_10_3390_cancers10020047
crossref_primary_10_1016_j_ccr_2013_04_014
crossref_primary_10_2217_fon_10_67
crossref_primary_10_1016_j_talanta_2020_121571
crossref_primary_10_3390_nano12040582
crossref_primary_10_1021_ac5024149
crossref_primary_10_1039_C5NR08465B
crossref_primary_10_1080_17425247_2018_1547280
crossref_primary_10_1021_ac103261y
crossref_primary_10_1007_s00216_013_7086_8
crossref_primary_10_1155_2014_819324
crossref_primary_10_1016_j_jddst_2022_103624
crossref_primary_10_1146_annurev_pharmtox_010716_104558
crossref_primary_10_1016_j_bioelechem_2021_107807
crossref_primary_10_1186_1556_276X_9_104
crossref_primary_10_3390_ijms17122079
crossref_primary_10_1016_j_vibspec_2014_07_013
crossref_primary_10_1039_c0dt01398f
crossref_primary_10_1007_s00261_015_0418_8
crossref_primary_10_1016_j_bbagen_2016_12_015
crossref_primary_10_1007_s40846_022_00715_6
crossref_primary_10_1016_j_nano_2024_102778
crossref_primary_10_1039_C0CS00003E
crossref_primary_10_1016_j_nucmedbio_2015_09_005
crossref_primary_10_1016_j_msec_2019_110314
crossref_primary_10_1186_s12645_014_0001_y
crossref_primary_10_1002_smll_201100250
crossref_primary_10_1002_adma_202300943
crossref_primary_10_1016_j_tibtech_2010_07_005
crossref_primary_10_1007_s12038_016_9632_y
crossref_primary_10_1016_j_biopha_2017_07_017
crossref_primary_10_1002_adhm_201300141
crossref_primary_10_1186_s12951_023_01943_x
crossref_primary_10_1002_cmmi_1719
crossref_primary_10_1021_acs_molpharmaceut_8b01169
crossref_primary_10_1002_cmdc_201402163
crossref_primary_10_1007_s13238_012_2072_z
crossref_primary_10_1016_j_mser_2013_03_001
crossref_primary_10_1093_jac_dku538
crossref_primary_10_4062_biomolther_2013_085
crossref_primary_10_1002_jcb_24373
crossref_primary_10_1016_j_cis_2021_102457
crossref_primary_10_1039_C8TB01563E
crossref_primary_10_1002_cmmi_428
crossref_primary_10_1038_s41598_021_98828_6
crossref_primary_10_1007_s11010_013_1857_6
crossref_primary_10_1016_j_biomaterials_2014_04_112
crossref_primary_10_1021_bm5002203
crossref_primary_10_3390_ph13100294
crossref_primary_10_1517_17530059_2010_516248
crossref_primary_10_1016_j_biomaterials_2013_02_018
crossref_primary_10_1007_s10973_014_4177_5
crossref_primary_10_1039_C7TB01425B
crossref_primary_10_1039_c3nr03064d
crossref_primary_10_1016_j_bmc_2016_12_026
crossref_primary_10_1016_j_ccr_2022_214648
crossref_primary_10_1021_acs_analchem_8b02847
crossref_primary_10_1007_s00432_014_1767_3
crossref_primary_10_1021_acsnano_5b07253
crossref_primary_10_1088_1361_6528_ad06d5
crossref_primary_10_1016_j_biomaterials_2012_05_057
crossref_primary_10_37349_emed_2021_00039
crossref_primary_10_1093_neuonc_noad156
crossref_primary_10_1039_C8CC05831H
crossref_primary_10_1515_ntrev_2020_0095
crossref_primary_10_1007_s12274_014_0420_4
crossref_primary_10_1016_j_colsurfb_2015_09_034
crossref_primary_10_1002_mabi_201300165
crossref_primary_10_2967_jnumed_111_088443
crossref_primary_10_1002_fsn3_1677
crossref_primary_10_1016_j_mseb_2021_115344
crossref_primary_10_1016_j_msec_2019_02_086
crossref_primary_10_1021_nn402344v
crossref_primary_10_1021_cr300468w
crossref_primary_10_2217_nnm_11_94
crossref_primary_10_1002_mabi_201800407
crossref_primary_10_1016_j_bmc_2018_11_031
crossref_primary_10_1016_j_ijbiomac_2019_11_118
crossref_primary_10_3390_molecules24203781
crossref_primary_10_1016_j_actbio_2020_08_038
crossref_primary_10_1155_2022_9946357
crossref_primary_10_3390_biomedicines8030059
crossref_primary_10_1002_adma_201004714
crossref_primary_10_18632_oncotarget_4207
crossref_primary_10_2147_IJN_S471360
crossref_primary_10_1016_j_addr_2014_07_009
crossref_primary_10_1371_journal_pone_0062348
crossref_primary_10_3109_1061186X_2015_1009075
crossref_primary_10_1016_j_biomaterials_2011_07_004
crossref_primary_10_1007_s11426_011_4336_5
crossref_primary_10_1039_C6TB02773C
crossref_primary_10_3109_1061186X_2014_886038
crossref_primary_10_1002_adhm_201700306
crossref_primary_10_1016_j_nano_2016_02_019
crossref_primary_10_1016_j_biochi_2018_09_001
crossref_primary_10_1080_07357907_2018_1527930
crossref_primary_10_1371_journal_pone_0099964
Cites_doi 10.1038/nprot.2007.478
10.2967/jnumed.107.043166
10.1021/nl071546n
10.1158/0008-5472.CAN-07-5723
10.2967/jnumed.108.051243
10.1093/toxsci/kfj027
10.1186/1745-6673-2-16
10.1021/bc0498572
10.2967/jnumed.107.047423
10.1158/0008-5472.CAN-03-1816
10.1002/ijc.22709
10.1158/1535-7163.MCT-05-0361
10.1021/bc0602679
10.1006/excr.2000.5071
10.1002/smll.200500360
10.1007/s00259-006-0317-x
10.1242/jcs.112.6.761
10.1227/01.NEU.0000216793.45952.ED
10.1016/j.bios.2005.12.015
10.1038/nbt1188
10.1016/j.cis.2006.05.026
ContentType Journal Article
Copyright Copyright Society of Nuclear Medicine Jan 2010
Copyright_xml – notice: Copyright Society of Nuclear Medicine Jan 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7RV
7X7
7XB
88E
88I
8AF
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
DOI 10.2967/jnumed.109.069880
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (Proquest)
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-5667
2159-662X
EndPage 105
ExternalDocumentID 1942108481
20008986
10_2967_jnumed_109_069880
jnm51_1_98
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
1AW
29L
2WC
3V.
53G
55
5RE
7RV
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8WZ
A6W
ABFLS
ABSGY
ABUWG
ACGOD
ACIWK
ACPRK
ADACO
ADBIT
ADDZX
AENEX
AFKRA
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BBAFP
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EX3
F5P
FH7
FYUFA
GNUQQ
H13
HCIFZ
I-F
IL9
INIJC
KQ8
L7B
LK8
M1P
M2P
M2Q
M7P
OK1
P2P
P62
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
R0Z
RHF
RHI
RNS
RWL
S0X
SJN
SV3
TAE
TSM
VH1
WH7
WOQ
WOW
X
X7M
ZA5
123
18M
41~
5VS
96U
AAYXX
ACGFO
AEGXH
AIAGR
CITATION
GX1
N9A
U5U
W8F
---
-~X
.55
.GJ
3O-
ABEFU
ABSQV
ADMOG
AFFNX
AFOSN
AI.
ALIPV
CCPQU
CGR
CUY
CVF
EBD
ECM
EIF
EMOBN
F9R
HMCUK
J5H
N4W
NAPCQ
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TR2
TUS
UKHRP
YHG
YQJ
ZGI
ZXP
4T-
7XB
8FD
8FK
FR3
K9.
M7Z
P64
PKEHL
Q9U
7X8
ID FETCH-LOGICAL-c400t-9cb7c2ab394e991e5207cfc23a827866c8c6d589fc0acb61f1f7b8ee06f5448d3
IEDL.DBID 7X7
ISSN 0161-5505
1535-5667
IngestDate Fri Jul 11 03:42:48 EDT 2025
Fri Jul 25 10:54:52 EDT 2025
Mon Jul 21 05:52:22 EDT 2025
Tue Jul 01 01:45:02 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Mon Jan 18 12:02:58 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-9cb7c2ab394e991e5207cfc23a827866c8c6d589fc0acb61f1f7b8ee06f5448d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://jnm.snmjournals.org/content/51/1/98.full.pdf
PMID 20008986
PQID 219176534
PQPubID 40808
PageCount 8
ParticipantIDs proquest_miscellaneous_734220942
proquest_journals_219176534
pubmed_primary_20008986
crossref_citationtrail_10_2967_jnumed_109_069880
crossref_primary_10_2967_jnumed_109_069880
highwire_nuclearmed_jnm51_1_98
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100101
2010-01-00
2010-Jan
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 20100101
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of Nuclear Medicine
PublicationTitleAlternate J Nucl Med
PublicationYear 2010
Publisher Soc Nuclear Med
Society of Nuclear Medicine
Publisher_xml – name: Soc Nuclear Med
– name: Society of Nuclear Medicine
References 2021051711595618000_51.1.98.3
2021051711595618000_51.1.98.17
2021051711595618000_51.1.98.4
2021051711595618000_51.1.98.16
2021051711595618000_51.1.98.5
2021051711595618000_51.1.98.19
2021051711595618000_51.1.98.6
2021051711595618000_51.1.98.18
2021051711595618000_51.1.98.7
2021051711595618000_51.1.98.8
(2021051711595618000_51.1.98.15) 1999; 112
2021051711595618000_51.1.98.9
2021051711595618000_51.1.98.20
2021051711595618000_51.1.98.11
2021051711595618000_51.1.98.22
2021051711595618000_51.1.98.21
2021051711595618000_51.1.98.12
(2021051711595618000_51.1.98.13) 1995; 73
2021051711595618000_51.1.98.23
2021051711595618000_51.1.98.14
(2021051711595618000_51.1.98.10) 2006; 47
2021051711595618000_51.1.98.1
2021051711595618000_51.1.98.2
20662640 - Nanomedicine (Lond). 2010 Jul;5(5):687-91
References_xml – ident: 2021051711595618000_51.1.98.8
  doi: 10.1038/nprot.2007.478
– ident: 2021051711595618000_51.1.98.6
  doi: 10.2967/jnumed.107.043166
– ident: 2021051711595618000_51.1.98.11
  doi: 10.1021/nl071546n
– ident: 2021051711595618000_51.1.98.14
  doi: 10.1158/0008-5472.CAN-07-5723
– ident: 2021051711595618000_51.1.98.20
  doi: 10.2967/jnumed.108.051243
– volume: 47
  start-page: 668
  year: 2006
  ident: 2021051711595618000_51.1.98.10
  publication-title: J Nucl Med.
– ident: 2021051711595618000_51.1.98.23
  doi: 10.1093/toxsci/kfj027
– volume: 73
  start-page: 497
  year: 1995
  ident: 2021051711595618000_51.1.98.13
  publication-title: Lab Invest.
– ident: 2021051711595618000_51.1.98.2
  doi: 10.1186/1745-6673-2-16
– ident: 2021051711595618000_51.1.98.5
  doi: 10.1021/bc0498572
– ident: 2021051711595618000_51.1.98.19
  doi: 10.2967/jnumed.107.047423
– ident: 2021051711595618000_51.1.98.21
  doi: 10.1158/0008-5472.CAN-03-1816
– ident: 2021051711595618000_51.1.98.3
  doi: 10.1002/ijc.22709
– ident: 2021051711595618000_51.1.98.12
  doi: 10.1158/1535-7163.MCT-05-0361
– ident: 2021051711595618000_51.1.98.7
  doi: 10.1021/bc0602679
– ident: 2021051711595618000_51.1.98.16
  doi: 10.1006/excr.2000.5071
– ident: 2021051711595618000_51.1.98.17
  doi: 10.1002/smll.200500360
– ident: 2021051711595618000_51.1.98.22
  doi: 10.1007/s00259-006-0317-x
– volume: 112
  start-page: 761
  year: 1999
  ident: 2021051711595618000_51.1.98.15
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.112.6.761
– ident: 2021051711595618000_51.1.98.1
  doi: 10.1227/01.NEU.0000216793.45952.ED
– ident: 2021051711595618000_51.1.98.9
  doi: 10.1016/j.bios.2005.12.015
– ident: 2021051711595618000_51.1.98.18
  doi: 10.1038/nbt1188
– ident: 2021051711595618000_51.1.98.4
  doi: 10.1016/j.cis.2006.05.026
– reference: 20662640 - Nanomedicine (Lond). 2010 Jul;5(5):687-91
SSID ssj0006888
ssj0062072
Score 2.453057
Snippet The recent advances in molecular imaging techniques, using cancer-targeting nanoparticle probes, provide noninvasive tracking information on cancer cells in...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 98
SubjectTerms Animals
Aptamers, Nucleotide
Atoms & subatomic particles
Cancer
Cell Line, Tumor
Citrates
Drug Design
Electron microscopes
Fluorescent Dyes
Gallium
Glioma - diagnostic imaging
Glioma - metabolism
Magnetic Resonance Imaging
Mice
Mice, Nude
Microscopy, Confocal
Microscopy, Electron, Transmission
Nanoparticles
Neoplasms - diagnostic imaging
Nucleolin
Oligodeoxyribonucleotides
Phantoms, Imaging
Phosphoproteins - metabolism
Quantum dots
Radionuclide Imaging
Radiopharmaceuticals
Rats
Rhodamines
RNA-Binding Proteins - metabolism
Studies
Technological change
Title A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer
URI http://jnm.snmjournals.org/cgi/content/abstract/51/1/98
https://www.ncbi.nlm.nih.gov/pubmed/20008986
https://www.proquest.com/docview/219176534
https://www.proquest.com/docview/734220942
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEBZtAqWX0ne2SY0OPRXU7Gr1PBXHxEkKMaEk4JvQ8xDstWs7_7-afdFLc9nLSssyD82MZuYbhL5x5usYkyPc-kBY0iXRiiYSsqnlKUppKTQ43y7E9QP7teTLvjZn35dVDmdie1CHjYc78nMKgYXgNfu5_UNgaBQkV_sJGi_RMSCXgVDL5RhvwTgV1UF7VwQc8S6pSbWQ549N1vwAWEo_SqEVgEL-a5YGqOD_u52t-Zm_RW96vxFPO0a_Qy9i8x69uu0z4x9QnOIFQBPDDB5y35Z3x4Db9tr1JuSd-RjN8XG3Hd-s2-FE-A6agXD2W3G2WR5uzfEMxGCHZ3G12uO2oADbBk-3B7uOu4_oYX55P7sm_QgF4rNyHoj2TnpqXa1ZzJ5g5LSUPnlaW0WlEsIrLwJXOvnSeieqVCXpVIylSDwHbqH-hI6aTRNPENY1b_0HF7JFYym5WkbmSpZcklboUKByoKDxPb44jLlYmRxnANFNR3TIeZuO6AX6Pm7ZduAazy2eDGwxDRDU7mDBY7PmlamMVgU6HZhlekXcm1FsCoTHt1mDIC1im7h52htZM0pzlEsL9Llj8fgz0MektBJfnv30KXrd1RTAxcwZOjrsnuLX7Koc3KQVyPxU86sJOr64XNz9_gsdsusE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYAL4lmWQvEBLkimG6-fB4SiQEhoE3FIpd6M7bUPVbIJSSrEj-I_4tmXuNBbz2tbq5nxzDeeF0JvOfNFCNERbn1JWNQ50YpGUiZTy2OQ0lIocJ7NxeSCfbvklwfoT1cLA2mVnU6sFXW59vBGfkrBsRC8YJ82PwkMjYLgajdBo5GKs_D7V_LYdh-nnxN731E6_rIYTUg7VID4JK57or2TnlpXaBYSNgqc5tJHTwurqFRCeOVFyZWOPrfeiUEcROlUCLmIPLkyZZHOvYPusiIZcihMH3_tFb9Q9ZhLAFEEgH8TRKVayNOrKmmaEno3fciFVtCE8l8z2LUm_j_Mrc3d-BF62OJUPGwE6zE6CNUTdG_WRuKfojDEc2iFDDN_yKJOJw8lrst5V-sy7UxqO_njzXY8XdXDkPB3KD7CCSfjZCM9vNLjEYjdFo_CcrnDdQIDthUebvZ2FbbP0MWtUPc5OqzWVXiBsC54jVdcmSwoi9EVMjCXs-iitEKXGco7Chrf9jOHsRpLk_waILppiA4xdtMQPUPv-y2bppnHTYtPOraYCghqt7DgqlrxgRkYrTJ03DHLtBd_Z3oxzRDuv6YbC2EYW4X19c7IglGavGqaoaOGxf3PQN2U0kq8vPHoN-j-ZDE7N-fT-dkxetDkM8Cj0Ct0uN9eh9cJJu3dSS2cGP247dvwF4BYJiE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVKq4IN5dCsUHuCCZbLzr1wGhkDZqKI0i1Eq9mbXXPlTJJiSpED-Nf4dnHxEXeut5bWs1M56Zz_MCeMdzl3kfLOWFK2kedEq1YoGW0dTy4KUsGBY4X0zF2VX-9Zpf78GfrhYG0yo7nVgr6nLp8I28zxBYCJ7l_dBmRcxOxp9XPykOkMJAazdNo5GQc__7V0Rvm0-Tk8jq94yNTy9HZ7QdMEBdFN0t1c5Kxwqb6dxHP8lzlkoXHMsKxaQSwiknSq50cGnhrBiEQZBWeZ-KwCOsKbN47gPYlwiKerD_5XQ6-74zA0LVQy_RpaIIA5qQKtNC9m-qqHdK7OT0MRVaYUvKf41i16j4_05vbfzGj-FR67WSYSNmT2DPV0_h4KKNyz8DPyRTbIyME4DoZZ1c7ktSF_culmXcGZV4ROfNdjJZ1KORyAxLkUj0mkm0mA7f7MkIhXBNRn4-35A6nYEUFRmutsXCr5_D1b3Q9wX0qmXlD4HojNfeiy2jPc1DsJn0uU3zYIMshC4TSDsKGtd2N8chG3MTUQ4S3TREx4i7aYiewIfdllXT2uOuxccdW0yFBC3WuOCmWvCBGRitEjjqmGVaNbAxO6FNgOy-xvuLQZmi8svbjZFZzljE2CyBlw2Ldz-DVVRKK_HqzqPfwkG8CebbZHp-BA-b5AZ8IXoNve361r-JPtPWHrfSSeDHfV-Iv_mrK7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nucleolin-targeted+multimodal+nanoparticle+imaging+probe+for+tracking+cancer+cells+using+an+aptamer&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Hwang%2C+Do+Won&rft.au=Ko%2C+Hae+Young&rft.au=Lee%2C+Jung+Hwan&rft.au=Kang%2C+Hyungu&rft.date=2010-01-01&rft.eissn=1535-5667&rft.volume=51&rft.issue=1&rft.spage=98&rft_id=info:doi/10.2967%2Fjnumed.109.069880&rft_id=info%3Apmid%2F20008986&rft.externalDocID=20008986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon