A study of graph-based system for multi-view clustering

This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 163; pp. 1009 - 1019
Main Authors Wang, Hao, Yang, Yan, Liu, Bing, Fujita, Hamido
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a) the generalization of the approach or (b) the impact of different graph metrics on the clustering results. This paper extends this important approach by first proposing a general Graph-Based System (GBS) for multi-view clustering, and then discussing and evaluating the impact of different graph metrics on the multi-view clustering performance within the proposed framework. GBS works by extracting data feature matrix of each view, constructing graph matrices of all views, and fusing the constructed graph matrices to generate a unified graph matrix, which gives the final clusters. A novel multi-view clustering method that works in the GBS framework is also proposed, which can (1) construct data graph matrices effectively, (2) weight each graph matrix automatically, and (3) produce clustering results directly. Experimental results on benchmark datasets show that the proposed method outperforms state-of-the-art baselines significantly.
AbstractList This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a) the generalization of the approach or (b) the impact of different graph metrics on the clustering results. This paper extends this important approach by first proposing a general Graph-Based System (GBS) for multi-view clustering, and then discussing and evaluating the impact of different graph metrics on the multi-view clustering performance within the proposed framework. GBS works by extracting data feature matrix of each view, constructing graph matrices of all views, and fusing the constructed graph matrices to generate a unified graph matrix, which gives the final clusters. A novel multi-view clustering method that works in the GBS framework is also proposed, which can (1) construct data graph matrices effectively, (2) weight each graph matrix automatically, and (3) produce clustering results directly. Experimental results on benchmark datasets show that the proposed method outperforms state-of-the-art baselines significantly.
Author Yang, Yan
Liu, Bing
Fujita, Hamido
Wang, Hao
Author_xml – sequence: 1
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 2
  givenname: Yan
  surname: Yang
  fullname: Yang, Yan
  email: yyang@swjtu.edu.cn
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 3
  givenname: Bing
  surname: Liu
  fullname: Liu, Bing
  organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
– sequence: 4
  givenname: Hamido
  surname: Fujita
  fullname: Fujita, Hamido
  organization: Faculty of Software and Information Science, Iwate Prefectural University, Takizawa 020-0693, Japan
BookMark eNqFkM1OwzAQhC1UJNrCG3CIxDll7SS2wwGpqviTKnGBs-U4TnFI42I7oL49jsKJA5wsjWdmd78FmvW21whdYlhhwPS6Xb331h_9igDmUVoBISdojjkjKcuhnKE5lAWkDAp8hhbetwDRgvkcsXXiw1AfE9skOycPb2klva6T2Bb0PmmsS_ZDF0z6afRXorohys70u3N02sjO64ufd4le7-9eNo_p9vnhabPepioHCGnJZdMozoosw5rXjFccoKhpnWlKIR__SFxFVXFNXTRMapoRylSV5UQCpdkSXU29B2c_Bu2DaO3g-jhSEEwLoIRBGV03k0s5673TjVAmyGBsH5w0ncAgRlCiFRMoMYIa1UghhvNf4YMze-mO_8Vup5iO50c6TnhldK90bZxWQdTW_F3wDeR7hd0
CitedBy_id crossref_primary_10_1007_s10489_020_02138_9
crossref_primary_10_1016_j_knosys_2019_104870
crossref_primary_10_1080_21642583_2024_2437159
crossref_primary_10_1007_s13042_023_01969_5
crossref_primary_10_1109_ACCESS_2019_2955971
crossref_primary_10_1016_j_knosys_2020_105978
crossref_primary_10_1007_s10489_020_01812_2
crossref_primary_10_1016_j_knosys_2019_105040
crossref_primary_10_1007_s10489_020_01629_z
crossref_primary_10_1016_j_ins_2022_04_044
crossref_primary_10_1117_1_JEI_31_4_043024
crossref_primary_10_1016_j_neucom_2024_128266
crossref_primary_10_1016_j_patcog_2025_111582
crossref_primary_10_1145_3532612
crossref_primary_10_1007_s10489_023_04580_x
crossref_primary_10_1016_j_ins_2020_08_056
crossref_primary_10_1016_j_knosys_2019_04_007
crossref_primary_10_1016_j_patcog_2024_110420
crossref_primary_10_1109_TGRS_2021_3132683
crossref_primary_10_1007_s10489_022_04267_9
crossref_primary_10_1007_s13042_021_01421_6
crossref_primary_10_1016_j_knosys_2020_106028
crossref_primary_10_3233_JIFS_212316
crossref_primary_10_1016_j_neucom_2021_01_080
crossref_primary_10_1007_s12559_021_09906_w
crossref_primary_10_1109_TKDE_2023_3325461
crossref_primary_10_1007_s44243_024_00047_w
crossref_primary_10_1016_j_neucom_2024_127742
crossref_primary_10_1007_s10489_022_03541_0
crossref_primary_10_1016_j_sigpro_2023_109286
crossref_primary_10_1016_j_knosys_2019_04_002
crossref_primary_10_1007_s10489_020_01677_5
crossref_primary_10_1007_s41019_022_00190_8
crossref_primary_10_1007_s10489_022_03816_6
crossref_primary_10_1109_TMM_2020_2977478
crossref_primary_10_1016_j_eswa_2025_126868
crossref_primary_10_1016_j_ins_2023_119622
crossref_primary_10_1109_TNNLS_2022_3224058
crossref_primary_10_3390_info13100477
crossref_primary_10_1007_s10489_021_02860_y
crossref_primary_10_1016_j_knosys_2019_07_003
crossref_primary_10_1016_j_ins_2022_12_063
crossref_primary_10_1007_s00521_023_08915_0
crossref_primary_10_1016_j_knosys_2020_105514
crossref_primary_10_1016_j_eswa_2023_121013
crossref_primary_10_1109_ACCESS_2024_3412950
crossref_primary_10_1016_j_ins_2020_03_029
crossref_primary_10_1016_j_knosys_2020_105997
crossref_primary_10_1038_s41598_022_20358_6
crossref_primary_10_1016_j_knosys_2020_105990
crossref_primary_10_1016_j_knosys_2020_105508
crossref_primary_10_1016_j_dsp_2022_103607
crossref_primary_10_1016_j_eswa_2022_118911
crossref_primary_10_1016_j_ins_2021_05_025
crossref_primary_10_1016_j_knosys_2019_105151
crossref_primary_10_1007_s10489_021_02784_7
crossref_primary_10_1007_s11063_023_11260_x
crossref_primary_10_1109_TII_2020_3010357
crossref_primary_10_1016_j_ins_2022_10_089
crossref_primary_10_3390_app12105094
crossref_primary_10_1007_s11063_022_10789_7
crossref_primary_10_1016_j_knosys_2020_106350
crossref_primary_10_1109_ACCESS_2022_3221150
crossref_primary_10_1007_s10489_023_04868_y
crossref_primary_10_1016_j_neucom_2022_12_023
crossref_primary_10_3390_electronics14040817
crossref_primary_10_1016_j_engappai_2023_106209
crossref_primary_10_3390_electronics11152375
crossref_primary_10_1016_j_engappai_2025_110387
crossref_primary_10_1016_j_knosys_2019_105086
crossref_primary_10_1109_ACCESS_2022_3232285
crossref_primary_10_1109_TBDATA_2022_3163584
crossref_primary_10_1007_s00500_023_07919_1
crossref_primary_10_1109_TKDE_2020_3025759
crossref_primary_10_1016_j_neunet_2021_07_020
crossref_primary_10_1016_j_inffus_2024_102821
crossref_primary_10_1016_j_neunet_2023_07_022
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1016_j_knosys_2019_105080
crossref_primary_10_1007_s10489_023_05237_5
crossref_primary_10_1109_TKDE_2023_3266595
crossref_primary_10_1140_epjds_s13688_022_00338_6
crossref_primary_10_1007_s12559_021_09889_8
crossref_primary_10_1007_s13042_025_02589_x
crossref_primary_10_1016_j_knosys_2021_107295
crossref_primary_10_1016_j_neucom_2023_127119
crossref_primary_10_1007_s10044_024_01364_y
crossref_primary_10_1007_s10489_021_02569_y
crossref_primary_10_1016_j_jmatprotec_2025_118788
crossref_primary_10_1145_3645108
crossref_primary_10_1007_s10489_021_02606_w
crossref_primary_10_1016_j_knosys_2023_111020
crossref_primary_10_1016_j_ins_2021_05_070
crossref_primary_10_1007_s11063_024_11589_x
crossref_primary_10_1007_s10489_021_03146_z
crossref_primary_10_1007_s10489_022_04385_4
crossref_primary_10_1007_s10489_021_02895_1
crossref_primary_10_1016_j_patcog_2024_110716
crossref_primary_10_1109_TNNLS_2022_3201498
crossref_primary_10_1016_j_knosys_2019_105185
crossref_primary_10_1145_3532191
crossref_primary_10_1007_s10044_022_01125_9
crossref_primary_10_1007_s10489_020_01813_1
crossref_primary_10_1109_LSP_2020_2970811
crossref_primary_10_1109_ACCESS_2021_3107673
crossref_primary_10_1016_j_eswa_2023_121298
crossref_primary_10_1007_s10489_022_03176_1
crossref_primary_10_1016_j_knosys_2019_06_006
crossref_primary_10_1016_j_neucom_2021_08_113
crossref_primary_10_2478_amns_2025_0056
crossref_primary_10_3390_sym17020161
crossref_primary_10_1007_s10489_021_02522_z
crossref_primary_10_1007_s10489_022_03530_3
crossref_primary_10_1016_j_dsp_2024_104815
crossref_primary_10_1016_j_knosys_2020_106126
crossref_primary_10_1016_j_knosys_2020_106489
crossref_primary_10_1016_j_asoc_2023_110272
crossref_primary_10_1007_s10489_022_03406_6
crossref_primary_10_1016_j_eswa_2024_124191
crossref_primary_10_1360_SSI_2023_0217
crossref_primary_10_1007_s12559_023_10123_w
crossref_primary_10_1016_j_knosys_2019_02_036
crossref_primary_10_1016_j_knosys_2020_105582
crossref_primary_10_1002_int_22950
crossref_primary_10_1016_j_knosys_2023_110899
crossref_primary_10_3390_info15070421
crossref_primary_10_1016_j_engappai_2022_104986
crossref_primary_10_1016_j_eswa_2020_114299
crossref_primary_10_1134_S1064230722010129
crossref_primary_10_1177_1088467X251315633
crossref_primary_10_1109_TBDATA_2021_3128906
crossref_primary_10_1016_j_knosys_2023_111071
crossref_primary_10_4108_eetsis_v9i4_2581
crossref_primary_10_1016_j_neucom_2023_126887
crossref_primary_10_1016_j_ins_2024_120088
crossref_primary_10_1016_j_neucom_2023_126521
crossref_primary_10_1007_s00521_024_09560_x
crossref_primary_10_1007_s10489_021_02770_z
crossref_primary_10_1016_j_knosys_2019_06_029
crossref_primary_10_1016_j_knosys_2022_110141
crossref_primary_10_1016_j_ins_2023_03_016
crossref_primary_10_1016_j_knosys_2019_105458
crossref_primary_10_1016_j_physa_2023_129405
crossref_primary_10_1016_j_knosys_2020_105698
crossref_primary_10_1016_j_knosys_2020_106666
crossref_primary_10_1016_j_knosys_2021_106841
crossref_primary_10_1007_s00521_020_05479_1
crossref_primary_10_1109_TCE_2023_3330824
crossref_primary_10_3390_e24040568
crossref_primary_10_1109_TKDE_2020_3021649
crossref_primary_10_1109_TNNLS_2021_3093297
crossref_primary_10_1007_s00521_019_04243_4
crossref_primary_10_1016_j_knosys_2019_02_018
crossref_primary_10_1016_j_neucom_2025_129466
crossref_primary_10_1016_j_engappai_2021_104480
crossref_primary_10_1016_j_ins_2022_10_026
crossref_primary_10_1371_journal_pone_0279780
crossref_primary_10_1007_s10462_024_10785_4
crossref_primary_10_1016_j_knosys_2020_105482
crossref_primary_10_1109_TNNLS_2023_3262590
crossref_primary_10_1109_TNNLS_2022_3201699
crossref_primary_10_1007_s10489_020_01864_4
crossref_primary_10_1016_j_knosys_2024_111448
crossref_primary_10_1109_TNNLS_2020_2991366
crossref_primary_10_1109_TBDATA_2024_3433525
crossref_primary_10_1109_TIP_2021_3062692
crossref_primary_10_1016_j_ins_2024_121396
crossref_primary_10_1016_j_knosys_2020_105910
crossref_primary_10_1016_j_ins_2024_121276
crossref_primary_10_1007_s10489_024_05616_6
crossref_primary_10_1007_s00500_021_06526_2
crossref_primary_10_1109_TMM_2023_3304454
crossref_primary_10_1007_s11042_023_15018_4
crossref_primary_10_1016_j_neunet_2024_106598
crossref_primary_10_1016_j_patcog_2024_110366
crossref_primary_10_1016_j_knosys_2022_109479
crossref_primary_10_1016_j_sigpro_2024_109729
crossref_primary_10_1007_s10489_021_02986_z
crossref_primary_10_1007_s10489_021_02840_2
crossref_primary_10_1109_TAI_2023_3271964
crossref_primary_10_1016_j_patcog_2021_108108
crossref_primary_10_1007_s10489_021_02322_5
crossref_primary_10_1109_TNNLS_2020_3045932
crossref_primary_10_1109_TMM_2023_3235526
crossref_primary_10_1109_JAS_2023_123600
crossref_primary_10_1016_j_ins_2023_03_119
crossref_primary_10_1109_TCSS_2023_3234181
crossref_primary_10_1007_s11063_021_10634_3
crossref_primary_10_1016_j_knosys_2020_105907
crossref_primary_10_1016_j_neunet_2023_03_013
crossref_primary_10_1016_j_asoc_2022_109806
crossref_primary_10_1145_3340268
crossref_primary_10_1016_j_inffus_2023_102155
crossref_primary_10_1007_s10489_020_01905_y
crossref_primary_10_1016_j_knosys_2019_05_021
crossref_primary_10_1007_s10489_020_01821_1
crossref_primary_10_1016_j_ins_2023_02_089
crossref_primary_10_1007_s10489_022_03600_6
crossref_primary_10_1016_j_knosys_2019_104953
crossref_primary_10_1109_TII_2024_3385066
crossref_primary_10_1007_s10489_020_01797_y
crossref_primary_10_1016_j_knosys_2019_105126
crossref_primary_10_1016_j_knosys_2020_105540
crossref_primary_10_1145_3568684
crossref_primary_10_1016_j_neunet_2023_05_019
crossref_primary_10_1109_JSAC_2020_3041396
crossref_primary_10_1109_TNNLS_2021_3121246
crossref_primary_10_1016_j_knosys_2022_109736
crossref_primary_10_1007_s10489_020_02042_2
crossref_primary_10_1016_j_eij_2022_09_002
crossref_primary_10_1016_j_knosys_2019_105137
crossref_primary_10_1109_TKDE_2024_3487534
crossref_primary_10_1007_s10489_021_02624_8
crossref_primary_10_1109_TCYB_2019_2955388
crossref_primary_10_1007_s10489_021_02365_8
crossref_primary_10_1007_s10489_021_03141_4
crossref_primary_10_1016_j_neunet_2021_11_015
crossref_primary_10_1007_s10489_018_1379_8
crossref_primary_10_1016_j_ins_2021_03_059
crossref_primary_10_1016_j_ins_2024_120458
crossref_primary_10_1007_s10489_019_01526_0
crossref_primary_10_1007_s10489_022_04074_2
crossref_primary_10_1016_j_inffus_2023_102012
crossref_primary_10_1016_j_knosys_2020_105567
crossref_primary_10_61186_jsdp_20_1_99
crossref_primary_10_1016_j_knosys_2019_105222
crossref_primary_10_1016_j_knosys_2020_105684
crossref_primary_10_1016_j_knosys_2019_105102
crossref_primary_10_1016_j_knosys_2020_105682
crossref_primary_10_1109_ACCESS_2023_3271730
crossref_primary_10_1007_s10489_022_04343_0
crossref_primary_10_1016_j_patrec_2023_11_015
crossref_primary_10_1109_TCSS_2022_3187342
crossref_primary_10_1016_j_knosys_2021_106807
crossref_primary_10_1016_j_inffus_2023_101832
crossref_primary_10_1016_j_neucom_2022_10_007
crossref_primary_10_1109_TNNLS_2024_3381223
crossref_primary_10_1007_s10489_022_03551_y
crossref_primary_10_3390_math11061509
crossref_primary_10_3233_IDA_195075
crossref_primary_10_1007_s10489_021_03092_w
crossref_primary_10_1016_j_inffus_2023_102123
crossref_primary_10_1016_j_knosys_2023_110424
crossref_primary_10_1016_j_knosys_2024_112902
crossref_primary_10_32604_cmc_2023_039923
crossref_primary_10_1016_j_neucom_2023_01_028
crossref_primary_10_1016_j_inffus_2023_101947
crossref_primary_10_1016_j_neunet_2023_10_001
crossref_primary_10_1016_j_eswa_2023_119949
crossref_primary_10_1007_s10489_021_02389_0
crossref_primary_10_1016_j_knosys_2020_106518
crossref_primary_10_1016_j_neucom_2024_128138
crossref_primary_10_1016_j_knosys_2020_105548
crossref_primary_10_1007_s11063_020_10257_0
crossref_primary_10_1016_j_knosys_2019_04_024
crossref_primary_10_1007_s10489_020_02130_3
crossref_primary_10_1007_s41019_021_00159_z
crossref_primary_10_1016_j_ins_2022_07_119
crossref_primary_10_1109_ACCESS_2023_3260971
crossref_primary_10_1016_j_neunet_2024_106842
Cites_doi 10.1109/34.868688
10.1109/TKDE.2017.2725263
10.1109/TKDE.2016.2603983
10.1016/j.knosys.2017.06.020
10.1007/s10115-012-0577-7
10.1016/j.knosys.2017.01.022
10.1109/TPAMI.2008.79
10.1109/TNNLS.2017.2777489
10.1016/j.neunet.2017.02.003
10.1016/j.patcog.2014.05.005
10.26599/BDMA.2018.9020003
10.1016/j.inffus.2016.09.008
10.1109/TPAMI.2010.231
10.1109/TKDE.2005.198
10.1016/j.neucom.2018.05.072
10.1016/j.patrec.2016.08.002
10.1016/j.patcog.2017.01.035
10.1073/pnas.35.11.652
10.1109/TIP.2016.2553459
10.1016/j.knosys.2013.09.010
10.1109/TIP.2015.2490539
10.1007/s00500-016-2120-3
10.1109/TKDE.2017.2681670
10.1109/TIP.2017.2754939
10.1109/TCYB.2017.2751646
10.1016/j.knosys.2018.05.017
10.1016/j.inffus.2017.02.007
10.1109/TSMCB.2009.2039566
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 1, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 1, 2019
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2018.10.022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 1019
ExternalDocumentID 10_1016_j_knosys_2018_10_022
S0950705118305082
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-98affc875331e8d78b8005d6d3e6604ffc82002cb740e5f7ae63267cb342a0663
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 08:03:17 EDT 2025
Tue Jul 01 04:37:56 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Fri Feb 23 02:18:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graph-based technology
Data fusion
Multi-view clustering
Laplacian matrix
Rank constraint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-98affc875331e8d78b8005d6d3e6604ffc82002cb740e5f7ae63267cb342a0663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2165062709
PQPubID 2035257
PageCount 11
ParticipantIDs proquest_journals_2165062709
crossref_citationtrail_10_1016_j_knosys_2018_10_022
crossref_primary_10_1016_j_knosys_2018_10_022
elsevier_sciencedirect_doi_10_1016_j_knosys_2018_10_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2019
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Son, Jeon, Lee, Kim (b25) 2017
Huang, Ren, Xu (b40) 2018
Nie, Wang, Jordan, Huang (b47) 2016
Tao, Hou, Zhu, Yi (b9) 2017
Zhao, Ding, Fu (b38) 2017
Eaton, Desjardins, Jacob (b29) 2014; 38
Sun, Shawe-Taylor, Mao (b28) 2017; 35
Fan (b46) 1949; 35
Wang, Yang, Li (b16) 2016
Zhan, Zhang, Guan, Wang (b13) 2018; 48
Saha (b5) 2013
Dhillon (b45) 2001
Feng, Cai, Liu, Liu (b24) 2017; 21
Li, Nie, Huang, Huang (b49) 2015
Zhang, Zong, Liu, Yu (b31) 2015
Lu, Wang, Lu, Yang, Shen (b30) 2014; 47
Tian (b43) 2013; 8
Hussain, Bisson, Grimal (b55) 2010
Lartillot, Toiviainen (b44) 2007
Mallah, Cope, Orwell (b57) 2013
C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, CoRR
Nie, Cai, Li (b11) 2017
Qian, Chen, Zhou (b59) 2013; 54
.
Wright, Yang, Ganesh, Sastry, Ma (b17) 2009; 31
Zhao, Xie, Xu, Sun (b2) 2017; 38
Liu (b42) 2007
Huang, Kang, Xu (b39) 2018
Yin, Wu, Wang (b61) 2017; 67
Nie, Huang, Cai, Ding (b51) 2010
Mohar, Alavi, Chartrand, Oellermann (b19) 1991; 2
Lu, Yan, Lin (b23) 2016; 25
Nie, Li, Li (b8) 2017
Shi, Malik (b18) 2000; 22
Cai, He, Han, Huang (b15) 2011; 33
Kumar, Rai, III (b21) 2011
Cai, He, Han (b52) 2005; 17
Liu, Li, Wang, Dou, Yin, Zhu (b34) 2017
Zhan, Chang, Guan, Chen, Ma, Yang (b14) 2018; PP
Greene, Cunningham (b54) 2006
Wang, Wu, Lin, Gao (b26) 2018; 29
Zhang, Zong, You, Yong (b50) 2016; 11
Xia, Pan, Du, Yin (b22) 2014
Wang, Wang, Li, Ye, Lau, Du (b37) 2017; 121
Zong, Zhang, Yu, Zhao, Ding (b33) 2016; 84
Nie, Cai, Li, Li (b12) 2018; 27
Yang, Wang (b4) 2018; 1
G. Chao, S. Sun, J. Bi, A survey on multi-view clustering, 2017, CoRR
Hu, Li, Luo, Fujita, Yang (b53) 2017; 132
Bertsekas (b48) 2014
Zong, Zhang, Zhao, Yu, Zhao (b35) 2017; 88
Zhang, Zhang, Liu, Liu (b32) 2016; 18
Lu, Getoor (b56) 2003
Liu, Jiang, Li, Zhou (b62) 2014; 26
Zong, Zhang, Liu, Yu (b27) 2018
Nie, Li, Li (b6) 2016
Hou, Nie, Tao, Yi (b7) 2017; 29
Zhuge, Nie, Hou, Yi (b10) 2017; 29
Xu, Tao, Xu (b60) 2015; 24
Xia, Tao, Mei, Zhang (b20) 2010; 40
Zhang, Hu, Fu, Zhu, Cao (b36) 2017
Nie, Tian, Li (b41) 2018
van Breukelen, Duin, Tax, den Hartog (b58) 1998; 34
Feng (10.1016/j.knosys.2018.10.022_b24) 2017; 21
Zhang (10.1016/j.knosys.2018.10.022_b32) 2016; 18
Fan (10.1016/j.knosys.2018.10.022_b46) 1949; 35
Xia (10.1016/j.knosys.2018.10.022_b22) 2014
Qian (10.1016/j.knosys.2018.10.022_b59) 2013; 54
Zong (10.1016/j.knosys.2018.10.022_b33) 2016; 84
Tian (10.1016/j.knosys.2018.10.022_b43) 2013; 8
Hussain (10.1016/j.knosys.2018.10.022_b55) 2010
Xia (10.1016/j.knosys.2018.10.022_b20) 2010; 40
Eaton (10.1016/j.knosys.2018.10.022_b29) 2014; 38
Nie (10.1016/j.knosys.2018.10.022_b41) 2018
Zhao (10.1016/j.knosys.2018.10.022_b2) 2017; 38
Zong (10.1016/j.knosys.2018.10.022_b27) 2018
Zong (10.1016/j.knosys.2018.10.022_b35) 2017; 88
Wright (10.1016/j.knosys.2018.10.022_b17) 2009; 31
Liu (10.1016/j.knosys.2018.10.022_b62) 2014; 26
Zhuge (10.1016/j.knosys.2018.10.022_b10) 2017; 29
Mallah (10.1016/j.knosys.2018.10.022_b57) 2013
Zhan (10.1016/j.knosys.2018.10.022_b14) 2018; PP
Liu (10.1016/j.knosys.2018.10.022_b42) 2007
Li (10.1016/j.knosys.2018.10.022_b49) 2015
Zhang (10.1016/j.knosys.2018.10.022_b36) 2017
Shi (10.1016/j.knosys.2018.10.022_b18) 2000; 22
Dhillon (10.1016/j.knosys.2018.10.022_b45) 2001
Kumar (10.1016/j.knosys.2018.10.022_b21) 2011
Tao (10.1016/j.knosys.2018.10.022_b9) 2017
Nie (10.1016/j.knosys.2018.10.022_b47) 2016
Sun (10.1016/j.knosys.2018.10.022_b28) 2017; 35
Zhan (10.1016/j.knosys.2018.10.022_b13) 2018; 48
Huang (10.1016/j.knosys.2018.10.022_b39) 2018
Liu (10.1016/j.knosys.2018.10.022_b34) 2017
van Breukelen (10.1016/j.knosys.2018.10.022_b58) 1998; 34
Lu (10.1016/j.knosys.2018.10.022_b23) 2016; 25
Nie (10.1016/j.knosys.2018.10.022_b6) 2016
Hou (10.1016/j.knosys.2018.10.022_b7) 2017; 29
Greene (10.1016/j.knosys.2018.10.022_b54) 2006
Bertsekas (10.1016/j.knosys.2018.10.022_b48) 2014
Hu (10.1016/j.knosys.2018.10.022_b53) 2017; 132
Wang (10.1016/j.knosys.2018.10.022_b16) 2016
Son (10.1016/j.knosys.2018.10.022_b25) 2017
10.1016/j.knosys.2018.10.022_b1
Yang (10.1016/j.knosys.2018.10.022_b4) 2018; 1
Nie (10.1016/j.knosys.2018.10.022_b12) 2018; 27
10.1016/j.knosys.2018.10.022_b3
Yin (10.1016/j.knosys.2018.10.022_b61) 2017; 67
Zhang (10.1016/j.knosys.2018.10.022_b31) 2015
Nie (10.1016/j.knosys.2018.10.022_b11) 2017
Lu (10.1016/j.knosys.2018.10.022_b30) 2014; 47
Nie (10.1016/j.knosys.2018.10.022_b51) 2010
Zhao (10.1016/j.knosys.2018.10.022_b38) 2017
Wang (10.1016/j.knosys.2018.10.022_b37) 2017; 121
Lu (10.1016/j.knosys.2018.10.022_b56) 2003
Mohar (10.1016/j.knosys.2018.10.022_b19) 1991; 2
Wang (10.1016/j.knosys.2018.10.022_b26) 2018; 29
Huang (10.1016/j.knosys.2018.10.022_b40) 2018
Saha (10.1016/j.knosys.2018.10.022_b5) 2013
Zhang (10.1016/j.knosys.2018.10.022_b50) 2016; 11
Nie (10.1016/j.knosys.2018.10.022_b8) 2017
Xu (10.1016/j.knosys.2018.10.022_b60) 2015; 24
Lartillot (10.1016/j.knosys.2018.10.022_b44) 2007
Cai (10.1016/j.knosys.2018.10.022_b15) 2011; 33
Cai (10.1016/j.knosys.2018.10.022_b52) 2005; 17
References_xml – volume: 84
  start-page: 56
  year: 2016
  end-page: 62
  ident: b33
  article-title: Local linear neighbor reconstruction for multi-view data
  publication-title: Pattern Recognit. Lett.
– volume: 54
  start-page: 137
  year: 2013
  end-page: 146
  ident: b59
  article-title: Multi-view classification with cross-view must-link and cannot-link side information
  publication-title: Knowl.-Based Syst.
– volume: 24
  start-page: 5812
  year: 2015
  end-page: 5825
  ident: b60
  article-title: Multi-view learning with incomplete views
  publication-title: IEEE Trans. Image Process.
– volume: 88
  start-page: 74
  year: 2017
  end-page: 89
  ident: b35
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: b18
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 1937
  year: 2017
  end-page: 1948
  ident: b24
  article-title: Multi-view spectral clustering via robust local subspace learning
  publication-title: Soft Comput.
– volume: 38
  start-page: 231
  year: 2014
  end-page: 257
  ident: b29
  article-title: Multi-view constrained clustering with an incomplete mapping between views
  publication-title: Knowl. Inf. Syst.
– start-page: 237
  year: 2007
  end-page: 244
  ident: b44
  article-title: A matlab toolbox for musical feature extraction from audio
  publication-title: Proceedings of the International Conference on Digital Audio Effects
– volume: PP
  start-page: 1
  year: 2018
  end-page: 9
  ident: b14
  article-title: Adaptive structure discovery for multimedia analysis using multiple features
  publication-title: IEEE Trans. Cybern.
– start-page: 2921
  year: 2017
  end-page: 2927
  ident: b38
  article-title: Multi-view clustering via deep matrix factorization
  publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence
– start-page: 4621
  year: 2018
  end-page: 4628
  ident: b27
  article-title: Weighted multi-view spectral clustering based on spectral perturbation
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 40
  start-page: 1438
  year: 2010
  end-page: 1446
  ident: b20
  article-title: Multiview spectral embedding
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 48
  start-page: 2887
  year: 2018
  end-page: 2895
  ident: b13
  article-title: Graph learning for multiview clustering
  publication-title: IEEE Trans. Cybern.
– reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, CoRR
– start-page: 1881
  year: 2016
  end-page: 1887
  ident: b6
  article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– volume: 8
  start-page: 385
  year: 2013
  end-page: 396
  ident: b43
  article-title: A review on image feature extraction and representation techniques
  publication-title: Int. J. Multimedia Ubiquitous Eng.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b39
  article-title: Self-weighted multi-view clustering with soft capped norm
  publication-title: Knowl.-Based Syst.
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  ident: b15
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 7:1
  year: 2016
  end-page: 7:25
  ident: b50
  article-title: Sampling for nyström extension-based spectral clustering: Incremental perspective and novel analysis
  publication-title: ACM Trans. Knowl. Discovery Data
– volume: 25
  start-page: 2833
  year: 2016
  end-page: 2843
  ident: b23
  article-title: Convex sparse spectral clustering: Single-view to multi-view
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 4833
  year: 2018
  end-page: 4843,
  ident: b26
  article-title: Multiview spectral clustering via structured low-rank matrix factorization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 2149
  year: 2014
  end-page: 2155
  ident: b22
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
  publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence
– reference: G. Chao, S. Sun, J. Bi, A survey on multi-view clustering, 2017, CoRR
– volume: 26
  start-page: 1233
  year: 2014
  end-page: 1246
  ident: b62
  article-title: Partially shared latent factor learning with multiview data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 113
  year: 2017
  end-page: 128
  ident: b9
  article-title: Multi-view Clustering with adaptively learned graph
  publication-title: Proceedings of the Asian Conference on Machine Learning
– start-page: 4333
  year: 2017
  end-page: 4341
  ident: b36
  article-title: Latent multi-view subspace clustering
  publication-title: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
– volume: 132
  start-page: 144
  year: 2017
  end-page: 155
  ident: b53
  article-title: Incremental fuzzy cluster ensemble learning based on rough set theory
  publication-title: Knowl.-Based Syst.
– volume: 35
  start-page: 117
  year: 2017
  end-page: 131
  ident: b28
  article-title: PAC-Bayes analysis of multi-view learning
  publication-title: Inf. Fusion
– volume: 67
  start-page: 313
  year: 2017
  end-page: 327
  ident: b61
  article-title: Unified subspace learning for incomplete and unlabeled multi-view data
  publication-title: Pattern Recognit.
– start-page: 190
  year: 2010
  end-page: 197
  ident: b55
  article-title: An improved co-similarity measure for document clustering
  publication-title: Proceedings of the International Conference on Machine Learning and Applications
– volume: 2
  start-page: 871
  year: 1991
  end-page: 898
  ident: b19
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory Combin. Appl.
– volume: 1
  start-page: 83
  year: 2018
  end-page: 107
  ident: b4
  article-title: Multi-view clustering: A survey
  publication-title: Big Data Min. Anal.
– start-page: 2564
  year: 2017
  end-page: 2570
  ident: b8
  article-title: Self-weighted multiview clustering with multiple graphs
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– volume: 38
  start-page: 43
  year: 2017
  end-page: 54
  ident: b2
  article-title: Multi-view learning overview: Recent progress and new challenges
  publication-title: Inf. Fusion
– volume: 27
  start-page: 1501
  year: 2018
  end-page: 1511
  ident: b12
  article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification
  publication-title: IEEE Trans. Image Process.
– start-page: 1969
  year: 2016
  end-page: 1976
  ident: b47
  article-title: The constrained Laplacian rank algorithm for graph-based clustering
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 2408
  year: 2017
  end-page: 2414
  ident: b11
  article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 2750
  year: 2015
  end-page: 2756
  ident: b49
  article-title: Large-scale multi-view spectral clustering via bipartite graph
  publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence
– start-page: 279
  year: 2013
  end-page: 286
  ident: b57
  article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features
  publication-title: Proceedings of the IASTED International Conference Signal Processing, Pattern Recognition and Applications
– volume: 18
  start-page: 3324
  year: 2016
  end-page: 3338
  ident: b32
  article-title: Multi-task multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1413
  year: 2011
  end-page: 1421
  ident: b21
  article-title: Co-regularized multi-view spectral clustering
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– start-page: 1813
  year: 2010
  end-page: 1821
  ident: b51
  article-title: Efficient and robust feature selection via joint l2,1-norms minimization
  publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems
– year: 2014
  ident: b48
  article-title: Constrained Optimization and Lagrange Multiplier Methods
– volume: 34
  start-page: 381
  year: 1998
  end-page: 386
  ident: b58
  article-title: Handwritten digit recognition by combined classifiers
  publication-title: Kybernetika
– start-page: 2548
  year: 2017
  end-page: 2554
  ident: b25
  article-title: Spectral clustering with brainstorming process for multi-view data
  publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence
– start-page: 2259
  year: 2017
  end-page: 2265
  ident: b34
  article-title: Multiple kernel K-means with incomplete kernels
  publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence
– volume: 35
  start-page: 652
  year: 1949
  end-page: 655
  ident: b46
  article-title: On a theorem of Weyl concerning eigenvalues of linear transformations I
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 121
  start-page: 153
  year: 2017
  end-page: 162
  ident: b37
  article-title: Multi-view learning via multiple graph regularized generative model
  publication-title: Knowl.-Based Syst.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: b17
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 377
  year: 2006
  end-page: 384
  ident: b54
  article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1245
  year: 2016
  end-page: 1250
  ident: b16
  article-title: Multi-view clustering via concept factorization with local manifold regularization
  publication-title: Proceedings of the IEEE International Conference on Data Mining
– start-page: 2022
  year: 2018
  end-page: 2030
  ident: b41
  article-title: Multiview clustering via adaptively weighted procrustes
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 269
  year: 2001
  end-page: 274
  ident: b45
  article-title: Co-clustering documents and words using bipartite spectral graph partitioning
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 128
  year: 2013
  end-page: 133
  ident: b5
  article-title: A graph based approach to multiview clustering
  publication-title: Proceedings of the International Conference on Pattern Recognition and Machine Intelligence
– volume: 29
  start-page: 2347
  year: 2017
  end-page: 2359
  ident: b10
  article-title: Unsupervised single and multiple views feature extraction with structured graph
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2007
  ident: b42
  article-title: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data
– volume: 29
  start-page: 1998
  year: 2017
  end-page: 2011
  ident: b7
  article-title: Multi-view unsupervised feature selection with adaptive similarity and view weight
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: .
– start-page: 496
  year: 2003
  end-page: 503
  ident: b56
  article-title: Link-based classification
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 17
  start-page: 1624
  year: 2005
  end-page: 1637
  ident: b52
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 47
  start-page: 3656
  year: 2014
  end-page: 3664
  ident: b30
  article-title: Multiple kernel clustering based on centered kernel alignment
  publication-title: Pattern Recognit.
– start-page: 197
  year: 2018
  end-page: 208
  ident: b40
  article-title: Robust multi-view data clustering with multi-view capped-norm k-means
  publication-title: Neurocomputing
– start-page: 3174
  year: 2015
  end-page: 3180
  ident: b31
  article-title: Constrained NMF-based multi-View clustering on unmapped data
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 269
  year: 2001
  ident: 10.1016/j.knosys.2018.10.022_b45
  article-title: Co-clustering documents and words using bipartite spectral graph partitioning
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 10.1016/j.knosys.2018.10.022_b18
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 29
  start-page: 2347
  issue: 10
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b10
  article-title: Unsupervised single and multiple views feature extraction with structured graph
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2725263
– start-page: 496
  year: 2003
  ident: 10.1016/j.knosys.2018.10.022_b56
  article-title: Link-based classification
– volume: 18
  start-page: 3324
  issue: 12
  year: 2016
  ident: 10.1016/j.knosys.2018.10.022_b32
  article-title: Multi-task multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2603983
– volume: 132
  start-page: 144
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b53
  article-title: Incremental fuzzy cluster ensemble learning based on rough set theory
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.020
– volume: 38
  start-page: 231
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2018.10.022_b29
  article-title: Multi-view constrained clustering with an incomplete mapping between views
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0577-7
– volume: 121
  start-page: 153
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b37
  article-title: Multi-view learning via multiple graph regularized generative model
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.01.022
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2018.10.022_b17
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 29
  start-page: 4833
  issue: 10
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b26
  article-title: Multiview spectral clustering via structured low-rank matrix factorization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2777489
– volume: 88
  start-page: 74
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b35
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.02.003
– start-page: 279
  year: 2013
  ident: 10.1016/j.knosys.2018.10.022_b57
  article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features
– volume: 47
  start-page: 3656
  issue: 11
  year: 2014
  ident: 10.1016/j.knosys.2018.10.022_b30
  article-title: Multiple kernel clustering based on centered kernel alignment
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.05.005
– volume: 8
  start-page: 385
  issue: 4
  year: 2013
  ident: 10.1016/j.knosys.2018.10.022_b43
  article-title: A review on image feature extraction and representation techniques
  publication-title: Int. J. Multimedia Ubiquitous Eng.
– volume: 1
  start-page: 83
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b4
  article-title: Multi-view clustering: A survey
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2018.9020003
– volume: 35
  start-page: 117
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b28
  article-title: PAC-Bayes analysis of multi-view learning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.09.008
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 10.1016/j.knosys.2018.10.022_b15
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.231
– volume: 17
  start-page: 1624
  issue: 12
  year: 2005
  ident: 10.1016/j.knosys.2018.10.022_b52
  article-title: Document clustering using locality preserving indexing
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.198
– start-page: 197
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b40
  article-title: Robust multi-view data clustering with multi-view capped-norm k-means
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.072
– start-page: 2548
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b25
  article-title: Spectral clustering with brainstorming process for multi-view data
– start-page: 190
  year: 2010
  ident: 10.1016/j.knosys.2018.10.022_b55
  article-title: An improved co-similarity measure for document clustering
– start-page: 113
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b9
  article-title: Multi-view Clustering with adaptively learned graph
– start-page: 2750
  year: 2015
  ident: 10.1016/j.knosys.2018.10.022_b49
  article-title: Large-scale multi-view spectral clustering via bipartite graph
– start-page: 377
  year: 2006
  ident: 10.1016/j.knosys.2018.10.022_b54
  article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering
– volume: 84
  start-page: 56
  year: 2016
  ident: 10.1016/j.knosys.2018.10.022_b33
  article-title: Local linear neighbor reconstruction for multi-view data
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2016.08.002
– volume: PP
  start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b14
  article-title: Adaptive structure discovery for multimedia analysis using multiple features
  publication-title: IEEE Trans. Cybern.
– start-page: 2022
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b41
  article-title: Multiview clustering via adaptively weighted procrustes
– ident: 10.1016/j.knosys.2018.10.022_b1
– volume: 67
  start-page: 313
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b61
  article-title: Unified subspace learning for incomplete and unlabeled multi-view data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.01.035
– start-page: 2149
  year: 2014
  ident: 10.1016/j.knosys.2018.10.022_b22
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
– start-page: 2259
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b34
  article-title: Multiple kernel K-means with incomplete kernels
– volume: 35
  start-page: 652
  issue: 11
  year: 1949
  ident: 10.1016/j.knosys.2018.10.022_b46
  article-title: On a theorem of Weyl concerning eigenvalues of linear transformations I
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.35.11.652
– start-page: 4621
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b27
  article-title: Weighted multi-view spectral clustering based on spectral perturbation
– volume: 25
  start-page: 2833
  issue: 6
  year: 2016
  ident: 10.1016/j.knosys.2018.10.022_b23
  article-title: Convex sparse spectral clustering: Single-view to multi-view
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2553459
– volume: 54
  start-page: 137
  year: 2013
  ident: 10.1016/j.knosys.2018.10.022_b59
  article-title: Multi-view classification with cross-view must-link and cannot-link side information
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.09.010
– volume: 24
  start-page: 5812
  issue: 12
  year: 2015
  ident: 10.1016/j.knosys.2018.10.022_b60
  article-title: Multi-view learning with incomplete views
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2490539
– start-page: 3174
  year: 2015
  ident: 10.1016/j.knosys.2018.10.022_b31
  article-title: Constrained NMF-based multi-View clustering on unmapped data
– volume: 21
  start-page: 1937
  issue: 8
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b24
  article-title: Multi-view spectral clustering via robust local subspace learning
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2120-3
– volume: 11
  start-page: 7:1
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2018.10.022_b50
  article-title: Sampling for nyström extension-based spectral clustering: Incremental perspective and novel analysis
  publication-title: ACM Trans. Knowl. Discovery Data
– start-page: 237
  year: 2007
  ident: 10.1016/j.knosys.2018.10.022_b44
  article-title: A matlab toolbox for musical feature extraction from audio
– volume: 29
  start-page: 1998
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b7
  article-title: Multi-view unsupervised feature selection with adaptive similarity and view weight
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2681670
– start-page: 2564
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b8
  article-title: Self-weighted multiview clustering with multiple graphs
– volume: 27
  start-page: 1501
  issue: 3
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b12
  article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2754939
– start-page: 1245
  year: 2016
  ident: 10.1016/j.knosys.2018.10.022_b16
  article-title: Multi-view clustering via concept factorization with local manifold regularization
– year: 2014
  ident: 10.1016/j.knosys.2018.10.022_b48
– start-page: 1813
  year: 2010
  ident: 10.1016/j.knosys.2018.10.022_b51
  article-title: Efficient and robust feature selection via joint l2,1-norms minimization
– volume: 2
  start-page: 871
  issue: 12
  year: 1991
  ident: 10.1016/j.knosys.2018.10.022_b19
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory Combin. Appl.
– volume: 34
  start-page: 381
  issue: 4
  year: 1998
  ident: 10.1016/j.knosys.2018.10.022_b58
  article-title: Handwritten digit recognition by combined classifiers
  publication-title: Kybernetika
– volume: 48
  start-page: 2887
  issue: 10
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b13
  article-title: Graph learning for multiview clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2751646
– start-page: 1413
  year: 2011
  ident: 10.1016/j.knosys.2018.10.022_b21
  article-title: Co-regularized multi-view spectral clustering
– start-page: 1881
  year: 2016
  ident: 10.1016/j.knosys.2018.10.022_b6
  article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification
– start-page: 2408
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b11
  article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours
– start-page: 2921
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b38
  article-title: Multi-view clustering via deep matrix factorization
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2018.10.022_b39
  article-title: Self-weighted multi-view clustering with soft capped norm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.017
– volume: 38
  start-page: 43
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b2
  article-title: Multi-view learning overview: Recent progress and new challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.02.007
– start-page: 4333
  year: 2017
  ident: 10.1016/j.knosys.2018.10.022_b36
  article-title: Latent multi-view subspace clustering
– volume: 26
  start-page: 1233
  issue: 6
  year: 2014
  ident: 10.1016/j.knosys.2018.10.022_b62
  article-title: Partially shared latent factor learning with multiview data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 128
  year: 2013
  ident: 10.1016/j.knosys.2018.10.022_b5
  article-title: A graph based approach to multiview clustering
– start-page: 1969
  year: 2016
  ident: 10.1016/j.knosys.2018.10.022_b47
  article-title: The constrained Laplacian rank algorithm for graph-based clustering
– year: 2007
  ident: 10.1016/j.knosys.2018.10.022_b42
– ident: 10.1016/j.knosys.2018.10.022_b3
– volume: 40
  start-page: 1438
  issue: 6
  year: 2010
  ident: 10.1016/j.knosys.2018.10.022_b20
  article-title: Multiview spectral embedding
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2009.2039566
SSID ssj0002218
Score 2.6413264
Snippet This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1009
SubjectTerms Clustering
Data fusion
Feature extraction
Graph theory
Graph-based technology
Knowledge
Laplacian matrix
Matrix
Multi-view clustering
Rank constraint
State of the art
Weight
Title A study of graph-based system for multi-view clustering
URI https://dx.doi.org/10.1016/j.knosys.2018.10.022
https://www.proquest.com/docview/2165062709
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYPXbG2atslxDMdU2EUHu5U0P2A6uqHbwYt_u3lpqijIwGOTl1JeX977mn75gtCNKLVQxnJiXTgRplREOJcZ0VQbXVotmPUs32k2mbH7eTpvoVGzFwZolSH31zndZ-vQMgjeHKwXi8GjAwcuXgEhu5h1lQx2sLMcorz_8U3zoNSv8YExAetm-5zneL1Uq7d3EO2OeR84XpT-VZ5-JWpffcZH6CDARjysn-wYtUx1gg6bIxlwmKGnKB9iLxiLVxZ7LWoCZUrjWrAZO4SKPYWQwB8BrJZb0Elw1esMzca3T6MJCWcjEOVm3YYILq1V8LGRxIbrnJcO-aU604nJsohBH9AvVJmzyKQ2lyZzQC1XZcKoBJhxjtrVqjIXCDNZplYKEwluWBwn3KTcCGaskWlCU9lBSeOSQgXhcDi_Ylk0DLHnonZkAY6EVufIDiJfo9a1cMYO-7zxdvEjAAqX23eM7DYvpwgT0PXHDnpmNI_E5b9vfIX23ZWoF1y6qL153ZprB0E2Zc_HWA_tDe8eJtNP3QHb2A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8JAFJ4gHvTibkRR5-B1oMu0nTkSIkFFLkLCrWlnSVACROHgxd_ue9NWo4kh8TpL07y-5Wv7zfcIuZG5lspYwSy4E-NKeUyILGY60EbnVktuHct3GPfH_H4STWqkW52FQVplmfuLnO6ydTnSLq3ZXk6n7ScAB-CviJDBZ6GSbZFtDuGLbQxaH988jyBwH_lwNcPl1fk5R_J6mS_e3lG12xctJHkFwV_16VemduWnd0D2StxIO8WtHZKamR-R_aonAy1D9JgkHeoUY-nCUidGzbBOaVooNlOAqNRxCBn-EqBqtkahBChfJ2Tcux11-6xsjsAUhN2KSZFZq_BtI_SN0InIAfpFOtahiWOP4xzyL1SecM9ENslMDEgtUXnIgwxxximpzxdzc0Yoz_LIZtJ4Uhju-6EwkTCSG2uyKAyirEHCyiSpKpXDsYHFLK0oYs9pYcgUDYmjYMgGYV-7loVyxob1SWXt9IcHpJDcN-xsVg8nLSMQ5n3AnnGQePL83xe-Jjv90eMgHdwNHy7ILszI4utLk9RXr2tzCXhklV85f_sEAl3dZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+graph-based+system+for+multi-view+clustering&rft.jtitle=Knowledge-based+systems&rft.au=Wang%2C+Hao&rft.au=Yang%2C+Yan&rft.au=Liu%2C+Bing&rft.au=Fujita%2C+Hamido&rft.date=2019-01-01&rft.issn=0950-7051&rft.volume=163&rft.spage=1009&rft.epage=1019&rft_id=info:doi/10.1016%2Fj.knosys.2018.10.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2018_10_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon