A study of graph-based system for multi-view clustering
This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a...
Saved in:
Published in | Knowledge-based systems Vol. 163; pp. 1009 - 1019 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a) the generalization of the approach or (b) the impact of different graph metrics on the clustering results. This paper extends this important approach by first proposing a general Graph-Based System (GBS) for multi-view clustering, and then discussing and evaluating the impact of different graph metrics on the multi-view clustering performance within the proposed framework. GBS works by extracting data feature matrix of each view, constructing graph matrices of all views, and fusing the constructed graph matrices to generate a unified graph matrix, which gives the final clusters. A novel multi-view clustering method that works in the GBS framework is also proposed, which can (1) construct data graph matrices effectively, (2) weight each graph matrix automatically, and (3) produce clustering results directly. Experimental results on benchmark datasets show that the proposed method outperforms state-of-the-art baselines significantly. |
---|---|
AbstractList | This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of methods is the graph-based approach. Despite its elegant and simple formulation, the graph-based approach has not been studied in terms of (a) the generalization of the approach or (b) the impact of different graph metrics on the clustering results. This paper extends this important approach by first proposing a general Graph-Based System (GBS) for multi-view clustering, and then discussing and evaluating the impact of different graph metrics on the multi-view clustering performance within the proposed framework. GBS works by extracting data feature matrix of each view, constructing graph matrices of all views, and fusing the constructed graph matrices to generate a unified graph matrix, which gives the final clusters. A novel multi-view clustering method that works in the GBS framework is also proposed, which can (1) construct data graph matrices effectively, (2) weight each graph matrix automatically, and (3) produce clustering results directly. Experimental results on benchmark datasets show that the proposed method outperforms state-of-the-art baselines significantly. |
Author | Yang, Yan Liu, Bing Fujita, Hamido Wang, Hao |
Author_xml | – sequence: 1 givenname: Hao surname: Wang fullname: Wang, Hao organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China – sequence: 2 givenname: Yan surname: Yang fullname: Yang, Yan email: yyang@swjtu.edu.cn organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China – sequence: 3 givenname: Bing surname: Liu fullname: Liu, Bing organization: Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA – sequence: 4 givenname: Hamido surname: Fujita fullname: Fujita, Hamido organization: Faculty of Software and Information Science, Iwate Prefectural University, Takizawa 020-0693, Japan |
BookMark | eNqFkM1OwzAQhC1UJNrCG3CIxDll7SS2wwGpqviTKnGBs-U4TnFI42I7oL49jsKJA5wsjWdmd78FmvW21whdYlhhwPS6Xb331h_9igDmUVoBISdojjkjKcuhnKE5lAWkDAp8hhbetwDRgvkcsXXiw1AfE9skOycPb2klva6T2Bb0PmmsS_ZDF0z6afRXorohys70u3N02sjO64ufd4le7-9eNo_p9vnhabPepioHCGnJZdMozoosw5rXjFccoKhpnWlKIR__SFxFVXFNXTRMapoRylSV5UQCpdkSXU29B2c_Bu2DaO3g-jhSEEwLoIRBGV03k0s5673TjVAmyGBsH5w0ncAgRlCiFRMoMYIa1UghhvNf4YMze-mO_8Vup5iO50c6TnhldK90bZxWQdTW_F3wDeR7hd0 |
CitedBy_id | crossref_primary_10_1007_s10489_020_02138_9 crossref_primary_10_1016_j_knosys_2019_104870 crossref_primary_10_1080_21642583_2024_2437159 crossref_primary_10_1007_s13042_023_01969_5 crossref_primary_10_1109_ACCESS_2019_2955971 crossref_primary_10_1016_j_knosys_2020_105978 crossref_primary_10_1007_s10489_020_01812_2 crossref_primary_10_1016_j_knosys_2019_105040 crossref_primary_10_1007_s10489_020_01629_z crossref_primary_10_1016_j_ins_2022_04_044 crossref_primary_10_1117_1_JEI_31_4_043024 crossref_primary_10_1016_j_neucom_2024_128266 crossref_primary_10_1016_j_patcog_2025_111582 crossref_primary_10_1145_3532612 crossref_primary_10_1007_s10489_023_04580_x crossref_primary_10_1016_j_ins_2020_08_056 crossref_primary_10_1016_j_knosys_2019_04_007 crossref_primary_10_1016_j_patcog_2024_110420 crossref_primary_10_1109_TGRS_2021_3132683 crossref_primary_10_1007_s10489_022_04267_9 crossref_primary_10_1007_s13042_021_01421_6 crossref_primary_10_1016_j_knosys_2020_106028 crossref_primary_10_3233_JIFS_212316 crossref_primary_10_1016_j_neucom_2021_01_080 crossref_primary_10_1007_s12559_021_09906_w crossref_primary_10_1109_TKDE_2023_3325461 crossref_primary_10_1007_s44243_024_00047_w crossref_primary_10_1016_j_neucom_2024_127742 crossref_primary_10_1007_s10489_022_03541_0 crossref_primary_10_1016_j_sigpro_2023_109286 crossref_primary_10_1016_j_knosys_2019_04_002 crossref_primary_10_1007_s10489_020_01677_5 crossref_primary_10_1007_s41019_022_00190_8 crossref_primary_10_1007_s10489_022_03816_6 crossref_primary_10_1109_TMM_2020_2977478 crossref_primary_10_1016_j_eswa_2025_126868 crossref_primary_10_1016_j_ins_2023_119622 crossref_primary_10_1109_TNNLS_2022_3224058 crossref_primary_10_3390_info13100477 crossref_primary_10_1007_s10489_021_02860_y crossref_primary_10_1016_j_knosys_2019_07_003 crossref_primary_10_1016_j_ins_2022_12_063 crossref_primary_10_1007_s00521_023_08915_0 crossref_primary_10_1016_j_knosys_2020_105514 crossref_primary_10_1016_j_eswa_2023_121013 crossref_primary_10_1109_ACCESS_2024_3412950 crossref_primary_10_1016_j_ins_2020_03_029 crossref_primary_10_1016_j_knosys_2020_105997 crossref_primary_10_1038_s41598_022_20358_6 crossref_primary_10_1016_j_knosys_2020_105990 crossref_primary_10_1016_j_knosys_2020_105508 crossref_primary_10_1016_j_dsp_2022_103607 crossref_primary_10_1016_j_eswa_2022_118911 crossref_primary_10_1016_j_ins_2021_05_025 crossref_primary_10_1016_j_knosys_2019_105151 crossref_primary_10_1007_s10489_021_02784_7 crossref_primary_10_1007_s11063_023_11260_x crossref_primary_10_1109_TII_2020_3010357 crossref_primary_10_1016_j_ins_2022_10_089 crossref_primary_10_3390_app12105094 crossref_primary_10_1007_s11063_022_10789_7 crossref_primary_10_1016_j_knosys_2020_106350 crossref_primary_10_1109_ACCESS_2022_3221150 crossref_primary_10_1007_s10489_023_04868_y crossref_primary_10_1016_j_neucom_2022_12_023 crossref_primary_10_3390_electronics14040817 crossref_primary_10_1016_j_engappai_2023_106209 crossref_primary_10_3390_electronics11152375 crossref_primary_10_1016_j_engappai_2025_110387 crossref_primary_10_1016_j_knosys_2019_105086 crossref_primary_10_1109_ACCESS_2022_3232285 crossref_primary_10_1109_TBDATA_2022_3163584 crossref_primary_10_1007_s00500_023_07919_1 crossref_primary_10_1109_TKDE_2020_3025759 crossref_primary_10_1016_j_neunet_2021_07_020 crossref_primary_10_1016_j_inffus_2024_102821 crossref_primary_10_1016_j_neunet_2023_07_022 crossref_primary_10_1016_j_patcog_2024_111140 crossref_primary_10_1016_j_knosys_2019_105080 crossref_primary_10_1007_s10489_023_05237_5 crossref_primary_10_1109_TKDE_2023_3266595 crossref_primary_10_1140_epjds_s13688_022_00338_6 crossref_primary_10_1007_s12559_021_09889_8 crossref_primary_10_1007_s13042_025_02589_x crossref_primary_10_1016_j_knosys_2021_107295 crossref_primary_10_1016_j_neucom_2023_127119 crossref_primary_10_1007_s10044_024_01364_y crossref_primary_10_1007_s10489_021_02569_y crossref_primary_10_1016_j_jmatprotec_2025_118788 crossref_primary_10_1145_3645108 crossref_primary_10_1007_s10489_021_02606_w crossref_primary_10_1016_j_knosys_2023_111020 crossref_primary_10_1016_j_ins_2021_05_070 crossref_primary_10_1007_s11063_024_11589_x crossref_primary_10_1007_s10489_021_03146_z crossref_primary_10_1007_s10489_022_04385_4 crossref_primary_10_1007_s10489_021_02895_1 crossref_primary_10_1016_j_patcog_2024_110716 crossref_primary_10_1109_TNNLS_2022_3201498 crossref_primary_10_1016_j_knosys_2019_105185 crossref_primary_10_1145_3532191 crossref_primary_10_1007_s10044_022_01125_9 crossref_primary_10_1007_s10489_020_01813_1 crossref_primary_10_1109_LSP_2020_2970811 crossref_primary_10_1109_ACCESS_2021_3107673 crossref_primary_10_1016_j_eswa_2023_121298 crossref_primary_10_1007_s10489_022_03176_1 crossref_primary_10_1016_j_knosys_2019_06_006 crossref_primary_10_1016_j_neucom_2021_08_113 crossref_primary_10_2478_amns_2025_0056 crossref_primary_10_3390_sym17020161 crossref_primary_10_1007_s10489_021_02522_z crossref_primary_10_1007_s10489_022_03530_3 crossref_primary_10_1016_j_dsp_2024_104815 crossref_primary_10_1016_j_knosys_2020_106126 crossref_primary_10_1016_j_knosys_2020_106489 crossref_primary_10_1016_j_asoc_2023_110272 crossref_primary_10_1007_s10489_022_03406_6 crossref_primary_10_1016_j_eswa_2024_124191 crossref_primary_10_1360_SSI_2023_0217 crossref_primary_10_1007_s12559_023_10123_w crossref_primary_10_1016_j_knosys_2019_02_036 crossref_primary_10_1016_j_knosys_2020_105582 crossref_primary_10_1002_int_22950 crossref_primary_10_1016_j_knosys_2023_110899 crossref_primary_10_3390_info15070421 crossref_primary_10_1016_j_engappai_2022_104986 crossref_primary_10_1016_j_eswa_2020_114299 crossref_primary_10_1134_S1064230722010129 crossref_primary_10_1177_1088467X251315633 crossref_primary_10_1109_TBDATA_2021_3128906 crossref_primary_10_1016_j_knosys_2023_111071 crossref_primary_10_4108_eetsis_v9i4_2581 crossref_primary_10_1016_j_neucom_2023_126887 crossref_primary_10_1016_j_ins_2024_120088 crossref_primary_10_1016_j_neucom_2023_126521 crossref_primary_10_1007_s00521_024_09560_x crossref_primary_10_1007_s10489_021_02770_z crossref_primary_10_1016_j_knosys_2019_06_029 crossref_primary_10_1016_j_knosys_2022_110141 crossref_primary_10_1016_j_ins_2023_03_016 crossref_primary_10_1016_j_knosys_2019_105458 crossref_primary_10_1016_j_physa_2023_129405 crossref_primary_10_1016_j_knosys_2020_105698 crossref_primary_10_1016_j_knosys_2020_106666 crossref_primary_10_1016_j_knosys_2021_106841 crossref_primary_10_1007_s00521_020_05479_1 crossref_primary_10_1109_TCE_2023_3330824 crossref_primary_10_3390_e24040568 crossref_primary_10_1109_TKDE_2020_3021649 crossref_primary_10_1109_TNNLS_2021_3093297 crossref_primary_10_1007_s00521_019_04243_4 crossref_primary_10_1016_j_knosys_2019_02_018 crossref_primary_10_1016_j_neucom_2025_129466 crossref_primary_10_1016_j_engappai_2021_104480 crossref_primary_10_1016_j_ins_2022_10_026 crossref_primary_10_1371_journal_pone_0279780 crossref_primary_10_1007_s10462_024_10785_4 crossref_primary_10_1016_j_knosys_2020_105482 crossref_primary_10_1109_TNNLS_2023_3262590 crossref_primary_10_1109_TNNLS_2022_3201699 crossref_primary_10_1007_s10489_020_01864_4 crossref_primary_10_1016_j_knosys_2024_111448 crossref_primary_10_1109_TNNLS_2020_2991366 crossref_primary_10_1109_TBDATA_2024_3433525 crossref_primary_10_1109_TIP_2021_3062692 crossref_primary_10_1016_j_ins_2024_121396 crossref_primary_10_1016_j_knosys_2020_105910 crossref_primary_10_1016_j_ins_2024_121276 crossref_primary_10_1007_s10489_024_05616_6 crossref_primary_10_1007_s00500_021_06526_2 crossref_primary_10_1109_TMM_2023_3304454 crossref_primary_10_1007_s11042_023_15018_4 crossref_primary_10_1016_j_neunet_2024_106598 crossref_primary_10_1016_j_patcog_2024_110366 crossref_primary_10_1016_j_knosys_2022_109479 crossref_primary_10_1016_j_sigpro_2024_109729 crossref_primary_10_1007_s10489_021_02986_z crossref_primary_10_1007_s10489_021_02840_2 crossref_primary_10_1109_TAI_2023_3271964 crossref_primary_10_1016_j_patcog_2021_108108 crossref_primary_10_1007_s10489_021_02322_5 crossref_primary_10_1109_TNNLS_2020_3045932 crossref_primary_10_1109_TMM_2023_3235526 crossref_primary_10_1109_JAS_2023_123600 crossref_primary_10_1016_j_ins_2023_03_119 crossref_primary_10_1109_TCSS_2023_3234181 crossref_primary_10_1007_s11063_021_10634_3 crossref_primary_10_1016_j_knosys_2020_105907 crossref_primary_10_1016_j_neunet_2023_03_013 crossref_primary_10_1016_j_asoc_2022_109806 crossref_primary_10_1145_3340268 crossref_primary_10_1016_j_inffus_2023_102155 crossref_primary_10_1007_s10489_020_01905_y crossref_primary_10_1016_j_knosys_2019_05_021 crossref_primary_10_1007_s10489_020_01821_1 crossref_primary_10_1016_j_ins_2023_02_089 crossref_primary_10_1007_s10489_022_03600_6 crossref_primary_10_1016_j_knosys_2019_104953 crossref_primary_10_1109_TII_2024_3385066 crossref_primary_10_1007_s10489_020_01797_y crossref_primary_10_1016_j_knosys_2019_105126 crossref_primary_10_1016_j_knosys_2020_105540 crossref_primary_10_1145_3568684 crossref_primary_10_1016_j_neunet_2023_05_019 crossref_primary_10_1109_JSAC_2020_3041396 crossref_primary_10_1109_TNNLS_2021_3121246 crossref_primary_10_1016_j_knosys_2022_109736 crossref_primary_10_1007_s10489_020_02042_2 crossref_primary_10_1016_j_eij_2022_09_002 crossref_primary_10_1016_j_knosys_2019_105137 crossref_primary_10_1109_TKDE_2024_3487534 crossref_primary_10_1007_s10489_021_02624_8 crossref_primary_10_1109_TCYB_2019_2955388 crossref_primary_10_1007_s10489_021_02365_8 crossref_primary_10_1007_s10489_021_03141_4 crossref_primary_10_1016_j_neunet_2021_11_015 crossref_primary_10_1007_s10489_018_1379_8 crossref_primary_10_1016_j_ins_2021_03_059 crossref_primary_10_1016_j_ins_2024_120458 crossref_primary_10_1007_s10489_019_01526_0 crossref_primary_10_1007_s10489_022_04074_2 crossref_primary_10_1016_j_inffus_2023_102012 crossref_primary_10_1016_j_knosys_2020_105567 crossref_primary_10_61186_jsdp_20_1_99 crossref_primary_10_1016_j_knosys_2019_105222 crossref_primary_10_1016_j_knosys_2020_105684 crossref_primary_10_1016_j_knosys_2019_105102 crossref_primary_10_1016_j_knosys_2020_105682 crossref_primary_10_1109_ACCESS_2023_3271730 crossref_primary_10_1007_s10489_022_04343_0 crossref_primary_10_1016_j_patrec_2023_11_015 crossref_primary_10_1109_TCSS_2022_3187342 crossref_primary_10_1016_j_knosys_2021_106807 crossref_primary_10_1016_j_inffus_2023_101832 crossref_primary_10_1016_j_neucom_2022_10_007 crossref_primary_10_1109_TNNLS_2024_3381223 crossref_primary_10_1007_s10489_022_03551_y crossref_primary_10_3390_math11061509 crossref_primary_10_3233_IDA_195075 crossref_primary_10_1007_s10489_021_03092_w crossref_primary_10_1016_j_inffus_2023_102123 crossref_primary_10_1016_j_knosys_2023_110424 crossref_primary_10_1016_j_knosys_2024_112902 crossref_primary_10_32604_cmc_2023_039923 crossref_primary_10_1016_j_neucom_2023_01_028 crossref_primary_10_1016_j_inffus_2023_101947 crossref_primary_10_1016_j_neunet_2023_10_001 crossref_primary_10_1016_j_eswa_2023_119949 crossref_primary_10_1007_s10489_021_02389_0 crossref_primary_10_1016_j_knosys_2020_106518 crossref_primary_10_1016_j_neucom_2024_128138 crossref_primary_10_1016_j_knosys_2020_105548 crossref_primary_10_1007_s11063_020_10257_0 crossref_primary_10_1016_j_knosys_2019_04_024 crossref_primary_10_1007_s10489_020_02130_3 crossref_primary_10_1007_s41019_021_00159_z crossref_primary_10_1016_j_ins_2022_07_119 crossref_primary_10_1109_ACCESS_2023_3260971 crossref_primary_10_1016_j_neunet_2024_106842 |
Cites_doi | 10.1109/34.868688 10.1109/TKDE.2017.2725263 10.1109/TKDE.2016.2603983 10.1016/j.knosys.2017.06.020 10.1007/s10115-012-0577-7 10.1016/j.knosys.2017.01.022 10.1109/TPAMI.2008.79 10.1109/TNNLS.2017.2777489 10.1016/j.neunet.2017.02.003 10.1016/j.patcog.2014.05.005 10.26599/BDMA.2018.9020003 10.1016/j.inffus.2016.09.008 10.1109/TPAMI.2010.231 10.1109/TKDE.2005.198 10.1016/j.neucom.2018.05.072 10.1016/j.patrec.2016.08.002 10.1016/j.patcog.2017.01.035 10.1073/pnas.35.11.652 10.1109/TIP.2016.2553459 10.1016/j.knosys.2013.09.010 10.1109/TIP.2015.2490539 10.1007/s00500-016-2120-3 10.1109/TKDE.2017.2681670 10.1109/TIP.2017.2754939 10.1109/TCYB.2017.2751646 10.1016/j.knosys.2018.05.017 10.1016/j.inffus.2017.02.007 10.1109/TSMCB.2009.2039566 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 1, 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 1, 2019 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2018.10.022 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
EndPage | 1019 |
ExternalDocumentID | 10_1016_j_knosys_2018_10_022 S0950705118305082 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-98affc875331e8d78b8005d6d3e6604ffc82002cb740e5f7ae63267cb342a0663 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 08:03:17 EDT 2025 Tue Jul 01 04:37:56 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Fri Feb 23 02:18:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph-based technology Data fusion Multi-view clustering Laplacian matrix Rank constraint |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-98affc875331e8d78b8005d6d3e6604ffc82002cb740e5f7ae63267cb342a0663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2165062709 |
PQPubID | 2035257 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2165062709 crossref_citationtrail_10_1016_j_knosys_2018_10_022 crossref_primary_10_1016_j_knosys_2018_10_022 elsevier_sciencedirect_doi_10_1016_j_knosys_2018_10_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Son, Jeon, Lee, Kim (b25) 2017 Huang, Ren, Xu (b40) 2018 Nie, Wang, Jordan, Huang (b47) 2016 Tao, Hou, Zhu, Yi (b9) 2017 Zhao, Ding, Fu (b38) 2017 Eaton, Desjardins, Jacob (b29) 2014; 38 Sun, Shawe-Taylor, Mao (b28) 2017; 35 Fan (b46) 1949; 35 Wang, Yang, Li (b16) 2016 Zhan, Zhang, Guan, Wang (b13) 2018; 48 Saha (b5) 2013 Dhillon (b45) 2001 Feng, Cai, Liu, Liu (b24) 2017; 21 Li, Nie, Huang, Huang (b49) 2015 Zhang, Zong, Liu, Yu (b31) 2015 Lu, Wang, Lu, Yang, Shen (b30) 2014; 47 Tian (b43) 2013; 8 Hussain, Bisson, Grimal (b55) 2010 Lartillot, Toiviainen (b44) 2007 Mallah, Cope, Orwell (b57) 2013 C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, CoRR Nie, Cai, Li (b11) 2017 Qian, Chen, Zhou (b59) 2013; 54 . Wright, Yang, Ganesh, Sastry, Ma (b17) 2009; 31 Zhao, Xie, Xu, Sun (b2) 2017; 38 Liu (b42) 2007 Huang, Kang, Xu (b39) 2018 Yin, Wu, Wang (b61) 2017; 67 Nie, Huang, Cai, Ding (b51) 2010 Mohar, Alavi, Chartrand, Oellermann (b19) 1991; 2 Lu, Yan, Lin (b23) 2016; 25 Nie, Li, Li (b8) 2017 Shi, Malik (b18) 2000; 22 Cai, He, Han, Huang (b15) 2011; 33 Kumar, Rai, III (b21) 2011 Cai, He, Han (b52) 2005; 17 Liu, Li, Wang, Dou, Yin, Zhu (b34) 2017 Zhan, Chang, Guan, Chen, Ma, Yang (b14) 2018; PP Greene, Cunningham (b54) 2006 Wang, Wu, Lin, Gao (b26) 2018; 29 Zhang, Zong, You, Yong (b50) 2016; 11 Xia, Pan, Du, Yin (b22) 2014 Wang, Wang, Li, Ye, Lau, Du (b37) 2017; 121 Zong, Zhang, Yu, Zhao, Ding (b33) 2016; 84 Nie, Cai, Li, Li (b12) 2018; 27 Yang, Wang (b4) 2018; 1 G. Chao, S. Sun, J. Bi, A survey on multi-view clustering, 2017, CoRR Hu, Li, Luo, Fujita, Yang (b53) 2017; 132 Bertsekas (b48) 2014 Zong, Zhang, Zhao, Yu, Zhao (b35) 2017; 88 Zhang, Zhang, Liu, Liu (b32) 2016; 18 Lu, Getoor (b56) 2003 Liu, Jiang, Li, Zhou (b62) 2014; 26 Zong, Zhang, Liu, Yu (b27) 2018 Nie, Li, Li (b6) 2016 Hou, Nie, Tao, Yi (b7) 2017; 29 Zhuge, Nie, Hou, Yi (b10) 2017; 29 Xu, Tao, Xu (b60) 2015; 24 Xia, Tao, Mei, Zhang (b20) 2010; 40 Zhang, Hu, Fu, Zhu, Cao (b36) 2017 Nie, Tian, Li (b41) 2018 van Breukelen, Duin, Tax, den Hartog (b58) 1998; 34 Feng (10.1016/j.knosys.2018.10.022_b24) 2017; 21 Zhang (10.1016/j.knosys.2018.10.022_b32) 2016; 18 Fan (10.1016/j.knosys.2018.10.022_b46) 1949; 35 Xia (10.1016/j.knosys.2018.10.022_b22) 2014 Qian (10.1016/j.knosys.2018.10.022_b59) 2013; 54 Zong (10.1016/j.knosys.2018.10.022_b33) 2016; 84 Tian (10.1016/j.knosys.2018.10.022_b43) 2013; 8 Hussain (10.1016/j.knosys.2018.10.022_b55) 2010 Xia (10.1016/j.knosys.2018.10.022_b20) 2010; 40 Eaton (10.1016/j.knosys.2018.10.022_b29) 2014; 38 Nie (10.1016/j.knosys.2018.10.022_b41) 2018 Zhao (10.1016/j.knosys.2018.10.022_b2) 2017; 38 Zong (10.1016/j.knosys.2018.10.022_b27) 2018 Zong (10.1016/j.knosys.2018.10.022_b35) 2017; 88 Wright (10.1016/j.knosys.2018.10.022_b17) 2009; 31 Liu (10.1016/j.knosys.2018.10.022_b62) 2014; 26 Zhuge (10.1016/j.knosys.2018.10.022_b10) 2017; 29 Mallah (10.1016/j.knosys.2018.10.022_b57) 2013 Zhan (10.1016/j.knosys.2018.10.022_b14) 2018; PP Liu (10.1016/j.knosys.2018.10.022_b42) 2007 Li (10.1016/j.knosys.2018.10.022_b49) 2015 Zhang (10.1016/j.knosys.2018.10.022_b36) 2017 Shi (10.1016/j.knosys.2018.10.022_b18) 2000; 22 Dhillon (10.1016/j.knosys.2018.10.022_b45) 2001 Kumar (10.1016/j.knosys.2018.10.022_b21) 2011 Tao (10.1016/j.knosys.2018.10.022_b9) 2017 Nie (10.1016/j.knosys.2018.10.022_b47) 2016 Sun (10.1016/j.knosys.2018.10.022_b28) 2017; 35 Zhan (10.1016/j.knosys.2018.10.022_b13) 2018; 48 Huang (10.1016/j.knosys.2018.10.022_b39) 2018 Liu (10.1016/j.knosys.2018.10.022_b34) 2017 van Breukelen (10.1016/j.knosys.2018.10.022_b58) 1998; 34 Lu (10.1016/j.knosys.2018.10.022_b23) 2016; 25 Nie (10.1016/j.knosys.2018.10.022_b6) 2016 Hou (10.1016/j.knosys.2018.10.022_b7) 2017; 29 Greene (10.1016/j.knosys.2018.10.022_b54) 2006 Bertsekas (10.1016/j.knosys.2018.10.022_b48) 2014 Hu (10.1016/j.knosys.2018.10.022_b53) 2017; 132 Wang (10.1016/j.knosys.2018.10.022_b16) 2016 Son (10.1016/j.knosys.2018.10.022_b25) 2017 10.1016/j.knosys.2018.10.022_b1 Yang (10.1016/j.knosys.2018.10.022_b4) 2018; 1 Nie (10.1016/j.knosys.2018.10.022_b12) 2018; 27 10.1016/j.knosys.2018.10.022_b3 Yin (10.1016/j.knosys.2018.10.022_b61) 2017; 67 Zhang (10.1016/j.knosys.2018.10.022_b31) 2015 Nie (10.1016/j.knosys.2018.10.022_b11) 2017 Lu (10.1016/j.knosys.2018.10.022_b30) 2014; 47 Nie (10.1016/j.knosys.2018.10.022_b51) 2010 Zhao (10.1016/j.knosys.2018.10.022_b38) 2017 Wang (10.1016/j.knosys.2018.10.022_b37) 2017; 121 Lu (10.1016/j.knosys.2018.10.022_b56) 2003 Mohar (10.1016/j.knosys.2018.10.022_b19) 1991; 2 Wang (10.1016/j.knosys.2018.10.022_b26) 2018; 29 Huang (10.1016/j.knosys.2018.10.022_b40) 2018 Saha (10.1016/j.knosys.2018.10.022_b5) 2013 Zhang (10.1016/j.knosys.2018.10.022_b50) 2016; 11 Nie (10.1016/j.knosys.2018.10.022_b8) 2017 Xu (10.1016/j.knosys.2018.10.022_b60) 2015; 24 Lartillot (10.1016/j.knosys.2018.10.022_b44) 2007 Cai (10.1016/j.knosys.2018.10.022_b15) 2011; 33 Cai (10.1016/j.knosys.2018.10.022_b52) 2005; 17 |
References_xml | – volume: 84 start-page: 56 year: 2016 end-page: 62 ident: b33 article-title: Local linear neighbor reconstruction for multi-view data publication-title: Pattern Recognit. Lett. – volume: 54 start-page: 137 year: 2013 end-page: 146 ident: b59 article-title: Multi-view classification with cross-view must-link and cannot-link side information publication-title: Knowl.-Based Syst. – volume: 24 start-page: 5812 year: 2015 end-page: 5825 ident: b60 article-title: Multi-view learning with incomplete views publication-title: IEEE Trans. Image Process. – volume: 88 start-page: 74 year: 2017 end-page: 89 ident: b35 article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization publication-title: Neural Netw. – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: b18 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 21 start-page: 1937 year: 2017 end-page: 1948 ident: b24 article-title: Multi-view spectral clustering via robust local subspace learning publication-title: Soft Comput. – volume: 38 start-page: 231 year: 2014 end-page: 257 ident: b29 article-title: Multi-view constrained clustering with an incomplete mapping between views publication-title: Knowl. Inf. Syst. – start-page: 237 year: 2007 end-page: 244 ident: b44 article-title: A matlab toolbox for musical feature extraction from audio publication-title: Proceedings of the International Conference on Digital Audio Effects – volume: PP start-page: 1 year: 2018 end-page: 9 ident: b14 article-title: Adaptive structure discovery for multimedia analysis using multiple features publication-title: IEEE Trans. Cybern. – start-page: 2921 year: 2017 end-page: 2927 ident: b38 article-title: Multi-view clustering via deep matrix factorization publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence – start-page: 4621 year: 2018 end-page: 4628 ident: b27 article-title: Weighted multi-view spectral clustering based on spectral perturbation publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 40 start-page: 1438 year: 2010 end-page: 1446 ident: b20 article-title: Multiview spectral embedding publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 48 start-page: 2887 year: 2018 end-page: 2895 ident: b13 article-title: Graph learning for multiview clustering publication-title: IEEE Trans. Cybern. – reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, CoRR – start-page: 1881 year: 2016 end-page: 1887 ident: b6 article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – volume: 8 start-page: 385 year: 2013 end-page: 396 ident: b43 article-title: A review on image feature extraction and representation techniques publication-title: Int. J. Multimedia Ubiquitous Eng. – start-page: 1 year: 2018 end-page: 8 ident: b39 article-title: Self-weighted multi-view clustering with soft capped norm publication-title: Knowl.-Based Syst. – volume: 33 start-page: 1548 year: 2011 end-page: 1560 ident: b15 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 7:1 year: 2016 end-page: 7:25 ident: b50 article-title: Sampling for nyström extension-based spectral clustering: Incremental perspective and novel analysis publication-title: ACM Trans. Knowl. Discovery Data – volume: 25 start-page: 2833 year: 2016 end-page: 2843 ident: b23 article-title: Convex sparse spectral clustering: Single-view to multi-view publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 4833 year: 2018 end-page: 4843, ident: b26 article-title: Multiview spectral clustering via structured low-rank matrix factorization publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 2149 year: 2014 end-page: 2155 ident: b22 article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence – reference: G. Chao, S. Sun, J. Bi, A survey on multi-view clustering, 2017, CoRR – volume: 26 start-page: 1233 year: 2014 end-page: 1246 ident: b62 article-title: Partially shared latent factor learning with multiview data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 113 year: 2017 end-page: 128 ident: b9 article-title: Multi-view Clustering with adaptively learned graph publication-title: Proceedings of the Asian Conference on Machine Learning – start-page: 4333 year: 2017 end-page: 4341 ident: b36 article-title: Latent multi-view subspace clustering publication-title: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition – volume: 132 start-page: 144 year: 2017 end-page: 155 ident: b53 article-title: Incremental fuzzy cluster ensemble learning based on rough set theory publication-title: Knowl.-Based Syst. – volume: 35 start-page: 117 year: 2017 end-page: 131 ident: b28 article-title: PAC-Bayes analysis of multi-view learning publication-title: Inf. Fusion – volume: 67 start-page: 313 year: 2017 end-page: 327 ident: b61 article-title: Unified subspace learning for incomplete and unlabeled multi-view data publication-title: Pattern Recognit. – start-page: 190 year: 2010 end-page: 197 ident: b55 article-title: An improved co-similarity measure for document clustering publication-title: Proceedings of the International Conference on Machine Learning and Applications – volume: 2 start-page: 871 year: 1991 end-page: 898 ident: b19 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory Combin. Appl. – volume: 1 start-page: 83 year: 2018 end-page: 107 ident: b4 article-title: Multi-view clustering: A survey publication-title: Big Data Min. Anal. – start-page: 2564 year: 2017 end-page: 2570 ident: b8 article-title: Self-weighted multiview clustering with multiple graphs publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – volume: 38 start-page: 43 year: 2017 end-page: 54 ident: b2 article-title: Multi-view learning overview: Recent progress and new challenges publication-title: Inf. Fusion – volume: 27 start-page: 1501 year: 2018 end-page: 1511 ident: b12 article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification publication-title: IEEE Trans. Image Process. – start-page: 1969 year: 2016 end-page: 1976 ident: b47 article-title: The constrained Laplacian rank algorithm for graph-based clustering publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 2408 year: 2017 end-page: 2414 ident: b11 article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 2750 year: 2015 end-page: 2756 ident: b49 article-title: Large-scale multi-view spectral clustering via bipartite graph publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence – start-page: 279 year: 2013 end-page: 286 ident: b57 article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features publication-title: Proceedings of the IASTED International Conference Signal Processing, Pattern Recognition and Applications – volume: 18 start-page: 3324 year: 2016 end-page: 3338 ident: b32 article-title: Multi-task multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1413 year: 2011 end-page: 1421 ident: b21 article-title: Co-regularized multi-view spectral clustering publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – start-page: 1813 year: 2010 end-page: 1821 ident: b51 article-title: Efficient and robust feature selection via joint l2,1-norms minimization publication-title: Proceedings of the Annual Conference on Neural Information Processing Systems – year: 2014 ident: b48 article-title: Constrained Optimization and Lagrange Multiplier Methods – volume: 34 start-page: 381 year: 1998 end-page: 386 ident: b58 article-title: Handwritten digit recognition by combined classifiers publication-title: Kybernetika – start-page: 2548 year: 2017 end-page: 2554 ident: b25 article-title: Spectral clustering with brainstorming process for multi-view data publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence – start-page: 2259 year: 2017 end-page: 2265 ident: b34 article-title: Multiple kernel K-means with incomplete kernels publication-title: Proceedings of the AAAI International Conference on Artificial Intelligence – volume: 35 start-page: 652 year: 1949 end-page: 655 ident: b46 article-title: On a theorem of Weyl concerning eigenvalues of linear transformations I publication-title: Proc. Natl. Acad. Sci. USA – volume: 121 start-page: 153 year: 2017 end-page: 162 ident: b37 article-title: Multi-view learning via multiple graph regularized generative model publication-title: Knowl.-Based Syst. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: b17 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 377 year: 2006 end-page: 384 ident: b54 article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering publication-title: Proceedings of the International Conference on Machine Learning – start-page: 1245 year: 2016 end-page: 1250 ident: b16 article-title: Multi-view clustering via concept factorization with local manifold regularization publication-title: Proceedings of the IEEE International Conference on Data Mining – start-page: 2022 year: 2018 end-page: 2030 ident: b41 article-title: Multiview clustering via adaptively weighted procrustes publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 269 year: 2001 end-page: 274 ident: b45 article-title: Co-clustering documents and words using bipartite spectral graph partitioning publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 128 year: 2013 end-page: 133 ident: b5 article-title: A graph based approach to multiview clustering publication-title: Proceedings of the International Conference on Pattern Recognition and Machine Intelligence – volume: 29 start-page: 2347 year: 2017 end-page: 2359 ident: b10 article-title: Unsupervised single and multiple views feature extraction with structured graph publication-title: IEEE Trans. Knowl. Data Eng. – year: 2007 ident: b42 article-title: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data – volume: 29 start-page: 1998 year: 2017 end-page: 2011 ident: b7 article-title: Multi-view unsupervised feature selection with adaptive similarity and view weight publication-title: IEEE Trans. Knowl. Data Eng. – reference: . – start-page: 496 year: 2003 end-page: 503 ident: b56 article-title: Link-based classification publication-title: Proceedings of the International Conference on Machine Learning – volume: 17 start-page: 1624 year: 2005 end-page: 1637 ident: b52 article-title: Document clustering using locality preserving indexing publication-title: IEEE Trans. Knowl. Data Eng. – volume: 47 start-page: 3656 year: 2014 end-page: 3664 ident: b30 article-title: Multiple kernel clustering based on centered kernel alignment publication-title: Pattern Recognit. – start-page: 197 year: 2018 end-page: 208 ident: b40 article-title: Robust multi-view data clustering with multi-view capped-norm k-means publication-title: Neurocomputing – start-page: 3174 year: 2015 end-page: 3180 ident: b31 article-title: Constrained NMF-based multi-View clustering on unmapped data publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 269 year: 2001 ident: 10.1016/j.knosys.2018.10.022_b45 article-title: Co-clustering documents and words using bipartite spectral graph partitioning – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 10.1016/j.knosys.2018.10.022_b18 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – volume: 29 start-page: 2347 issue: 10 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b10 article-title: Unsupervised single and multiple views feature extraction with structured graph publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2725263 – start-page: 496 year: 2003 ident: 10.1016/j.knosys.2018.10.022_b56 article-title: Link-based classification – volume: 18 start-page: 3324 issue: 12 year: 2016 ident: 10.1016/j.knosys.2018.10.022_b32 article-title: Multi-task multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2603983 – volume: 132 start-page: 144 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b53 article-title: Incremental fuzzy cluster ensemble learning based on rough set theory publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.020 – volume: 38 start-page: 231 issue: 1 year: 2014 ident: 10.1016/j.knosys.2018.10.022_b29 article-title: Multi-view constrained clustering with an incomplete mapping between views publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0577-7 – volume: 121 start-page: 153 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b37 article-title: Multi-view learning via multiple graph regularized generative model publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.01.022 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.knosys.2018.10.022_b17 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 29 start-page: 4833 issue: 10 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b26 article-title: Multiview spectral clustering via structured low-rank matrix factorization publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2777489 – volume: 88 start-page: 74 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b35 article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.02.003 – start-page: 279 year: 2013 ident: 10.1016/j.knosys.2018.10.022_b57 article-title: Plant leaf classification using probabilistic integration of shape, texture and margin features – volume: 47 start-page: 3656 issue: 11 year: 2014 ident: 10.1016/j.knosys.2018.10.022_b30 article-title: Multiple kernel clustering based on centered kernel alignment publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.05.005 – volume: 8 start-page: 385 issue: 4 year: 2013 ident: 10.1016/j.knosys.2018.10.022_b43 article-title: A review on image feature extraction and representation techniques publication-title: Int. J. Multimedia Ubiquitous Eng. – volume: 1 start-page: 83 issue: 2 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b4 article-title: Multi-view clustering: A survey publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2018.9020003 – volume: 35 start-page: 117 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b28 article-title: PAC-Bayes analysis of multi-view learning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.09.008 – volume: 33 start-page: 1548 issue: 8 year: 2011 ident: 10.1016/j.knosys.2018.10.022_b15 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.231 – volume: 17 start-page: 1624 issue: 12 year: 2005 ident: 10.1016/j.knosys.2018.10.022_b52 article-title: Document clustering using locality preserving indexing publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.198 – start-page: 197 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b40 article-title: Robust multi-view data clustering with multi-view capped-norm k-means publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.072 – start-page: 2548 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b25 article-title: Spectral clustering with brainstorming process for multi-view data – start-page: 190 year: 2010 ident: 10.1016/j.knosys.2018.10.022_b55 article-title: An improved co-similarity measure for document clustering – start-page: 113 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b9 article-title: Multi-view Clustering with adaptively learned graph – start-page: 2750 year: 2015 ident: 10.1016/j.knosys.2018.10.022_b49 article-title: Large-scale multi-view spectral clustering via bipartite graph – start-page: 377 year: 2006 ident: 10.1016/j.knosys.2018.10.022_b54 article-title: Practical solutions to the problem of diagonal dominance in kernel document clustering – volume: 84 start-page: 56 year: 2016 ident: 10.1016/j.knosys.2018.10.022_b33 article-title: Local linear neighbor reconstruction for multi-view data publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2016.08.002 – volume: PP start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b14 article-title: Adaptive structure discovery for multimedia analysis using multiple features publication-title: IEEE Trans. Cybern. – start-page: 2022 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b41 article-title: Multiview clustering via adaptively weighted procrustes – ident: 10.1016/j.knosys.2018.10.022_b1 – volume: 67 start-page: 313 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b61 article-title: Unified subspace learning for incomplete and unlabeled multi-view data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.01.035 – start-page: 2149 year: 2014 ident: 10.1016/j.knosys.2018.10.022_b22 article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition – start-page: 2259 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b34 article-title: Multiple kernel K-means with incomplete kernels – volume: 35 start-page: 652 issue: 11 year: 1949 ident: 10.1016/j.knosys.2018.10.022_b46 article-title: On a theorem of Weyl concerning eigenvalues of linear transformations I publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.35.11.652 – start-page: 4621 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b27 article-title: Weighted multi-view spectral clustering based on spectral perturbation – volume: 25 start-page: 2833 issue: 6 year: 2016 ident: 10.1016/j.knosys.2018.10.022_b23 article-title: Convex sparse spectral clustering: Single-view to multi-view publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2553459 – volume: 54 start-page: 137 year: 2013 ident: 10.1016/j.knosys.2018.10.022_b59 article-title: Multi-view classification with cross-view must-link and cannot-link side information publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.09.010 – volume: 24 start-page: 5812 issue: 12 year: 2015 ident: 10.1016/j.knosys.2018.10.022_b60 article-title: Multi-view learning with incomplete views publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2490539 – start-page: 3174 year: 2015 ident: 10.1016/j.knosys.2018.10.022_b31 article-title: Constrained NMF-based multi-View clustering on unmapped data – volume: 21 start-page: 1937 issue: 8 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b24 article-title: Multi-view spectral clustering via robust local subspace learning publication-title: Soft Comput. doi: 10.1007/s00500-016-2120-3 – volume: 11 start-page: 7:1 issue: 1 year: 2016 ident: 10.1016/j.knosys.2018.10.022_b50 article-title: Sampling for nyström extension-based spectral clustering: Incremental perspective and novel analysis publication-title: ACM Trans. Knowl. Discovery Data – start-page: 237 year: 2007 ident: 10.1016/j.knosys.2018.10.022_b44 article-title: A matlab toolbox for musical feature extraction from audio – volume: 29 start-page: 1998 issue: 9 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b7 article-title: Multi-view unsupervised feature selection with adaptive similarity and view weight publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2681670 – start-page: 2564 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b8 article-title: Self-weighted multiview clustering with multiple graphs – volume: 27 start-page: 1501 issue: 3 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b12 article-title: Auto-weighted multi-view learning for image clustering and semi-supervised classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2754939 – start-page: 1245 year: 2016 ident: 10.1016/j.knosys.2018.10.022_b16 article-title: Multi-view clustering via concept factorization with local manifold regularization – year: 2014 ident: 10.1016/j.knosys.2018.10.022_b48 – start-page: 1813 year: 2010 ident: 10.1016/j.knosys.2018.10.022_b51 article-title: Efficient and robust feature selection via joint l2,1-norms minimization – volume: 2 start-page: 871 issue: 12 year: 1991 ident: 10.1016/j.knosys.2018.10.022_b19 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory Combin. Appl. – volume: 34 start-page: 381 issue: 4 year: 1998 ident: 10.1016/j.knosys.2018.10.022_b58 article-title: Handwritten digit recognition by combined classifiers publication-title: Kybernetika – volume: 48 start-page: 2887 issue: 10 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b13 article-title: Graph learning for multiview clustering publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2751646 – start-page: 1413 year: 2011 ident: 10.1016/j.knosys.2018.10.022_b21 article-title: Co-regularized multi-view spectral clustering – start-page: 1881 year: 2016 ident: 10.1016/j.knosys.2018.10.022_b6 article-title: Parameter-free auto-weighted multiple graph learning: A framework for multiview clustering and semi-supervised classification – start-page: 2408 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b11 article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours – start-page: 2921 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b38 article-title: Multi-view clustering via deep matrix factorization – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2018.10.022_b39 article-title: Self-weighted multi-view clustering with soft capped norm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.017 – volume: 38 start-page: 43 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b2 article-title: Multi-view learning overview: Recent progress and new challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.02.007 – start-page: 4333 year: 2017 ident: 10.1016/j.knosys.2018.10.022_b36 article-title: Latent multi-view subspace clustering – volume: 26 start-page: 1233 issue: 6 year: 2014 ident: 10.1016/j.knosys.2018.10.022_b62 article-title: Partially shared latent factor learning with multiview data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 128 year: 2013 ident: 10.1016/j.knosys.2018.10.022_b5 article-title: A graph based approach to multiview clustering – start-page: 1969 year: 2016 ident: 10.1016/j.knosys.2018.10.022_b47 article-title: The constrained Laplacian rank algorithm for graph-based clustering – year: 2007 ident: 10.1016/j.knosys.2018.10.022_b42 – ident: 10.1016/j.knosys.2018.10.022_b3 – volume: 40 start-page: 1438 issue: 6 year: 2010 ident: 10.1016/j.knosys.2018.10.022_b20 article-title: Multiview spectral embedding publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2009.2039566 |
SSID | ssj0002218 |
Score | 2.6413264 |
Snippet | This paper studies clustering of multi-view data, known as multi-view clustering. Among existing multi-view clustering methods, one representative category of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1009 |
SubjectTerms | Clustering Data fusion Feature extraction Graph theory Graph-based technology Knowledge Laplacian matrix Matrix Multi-view clustering Rank constraint State of the art Weight |
Title | A study of graph-based system for multi-view clustering |
URI | https://dx.doi.org/10.1016/j.knosys.2018.10.022 https://www.proquest.com/docview/2165062709 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYPXbG2atslxDMdU2EUHu5U0P2A6uqHbwYt_u3lpqijIwGOTl1JeX977mn75gtCNKLVQxnJiXTgRplREOJcZ0VQbXVotmPUs32k2mbH7eTpvoVGzFwZolSH31zndZ-vQMgjeHKwXi8GjAwcuXgEhu5h1lQx2sLMcorz_8U3zoNSv8YExAetm-5zneL1Uq7d3EO2OeR84XpT-VZ5-JWpffcZH6CDARjysn-wYtUx1gg6bIxlwmKGnKB9iLxiLVxZ7LWoCZUrjWrAZO4SKPYWQwB8BrJZb0Elw1esMzca3T6MJCWcjEOVm3YYILq1V8LGRxIbrnJcO-aU604nJsohBH9AvVJmzyKQ2lyZzQC1XZcKoBJhxjtrVqjIXCDNZplYKEwluWBwn3KTcCGaskWlCU9lBSeOSQgXhcDi_Ylk0DLHnonZkAY6EVufIDiJfo9a1cMYO-7zxdvEjAAqX23eM7DYvpwgT0PXHDnpmNI_E5b9vfIX23ZWoF1y6qL153ZprB0E2Zc_HWA_tDe8eJtNP3QHb2A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8JAFJ4gHvTibkRR5-B1oMu0nTkSIkFFLkLCrWlnSVACROHgxd_ue9NWo4kh8TpL07y-5Wv7zfcIuZG5lspYwSy4E-NKeUyILGY60EbnVktuHct3GPfH_H4STWqkW52FQVplmfuLnO6ydTnSLq3ZXk6n7ScAB-CviJDBZ6GSbZFtDuGLbQxaH988jyBwH_lwNcPl1fk5R_J6mS_e3lG12xctJHkFwV_16VemduWnd0D2StxIO8WtHZKamR-R_aonAy1D9JgkHeoUY-nCUidGzbBOaVooNlOAqNRxCBn-EqBqtkahBChfJ2Tcux11-6xsjsAUhN2KSZFZq_BtI_SN0InIAfpFOtahiWOP4xzyL1SecM9ENslMDEgtUXnIgwxxximpzxdzc0Yoz_LIZtJ4Uhju-6EwkTCSG2uyKAyirEHCyiSpKpXDsYHFLK0oYs9pYcgUDYmjYMgGYV-7loVyxob1SWXt9IcHpJDcN-xsVg8nLSMQ5n3AnnGQePL83xe-Jjv90eMgHdwNHy7ILszI4utLk9RXr2tzCXhklV85f_sEAl3dZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+graph-based+system+for+multi-view+clustering&rft.jtitle=Knowledge-based+systems&rft.au=Wang%2C+Hao&rft.au=Yang%2C+Yan&rft.au=Liu%2C+Bing&rft.au=Fujita%2C+Hamido&rft.date=2019-01-01&rft.issn=0950-7051&rft.volume=163&rft.spage=1009&rft.epage=1019&rft_id=info:doi/10.1016%2Fj.knosys.2018.10.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2018_10_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |