Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light

[Display omitted] •Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in 60 min.•The photocatalytic activity of ZnFe2O4 is dependent on its morphology.•ZnFe2O4 rods own good stability, recyclability and magnetic sep...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 267; p. 118688
Main Authors Liang, Peng-liang, Yuan, Li-yong, Deng, Hao, Wang, Xu-cong, Wang, Lin, Li, Zi-jie, Luo, Shi-zhong, Shi, Wei-qun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in 60 min.•The photocatalytic activity of ZnFe2O4 is dependent on its morphology.•ZnFe2O4 rods own good stability, recyclability and magnetic separability. Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable catalysts are extremely limited. Herein, we report a first study of visible-light-driven photocatalytic reduction of uranium(VI) using visible light responsive ZnFe2O4. The ZnFe2O4 catalysts with different morphologies were successfully obtained and well characterized. The photoreduction of uranium(VI) under visible light was achieved over these ZnFe2O4 samples with the activity order of rods > microspheres > nanoparticles. Using ZnFe2O4 rods, for example, the 50 ppm of uranium(VI) was almost completely removed in 60 min, representing one of the most effective visible-light-driven photocatalytic removal. The effects of catalyst dosage, hole scavenger (CH3OH) dosage and solution pH on the photocatalytic reactions, as well as the photoreduction mechanisms were investigated in detail. In addition, ZnFe2O4 rods own good stability, recyclability and magnetic separability. All these features make ZnFe2O4 a promising photocatalyst for radioactive environmental remediation.
AbstractList Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable catalysts are extremely limited. Herein, we report a first study of visible-light-driven photocatalytic reduction of uranium(VI) using visible light responsive ZnFe2O4. The ZnFe2O4 catalysts with different morphologies were successfully obtained and well characterized. The photoreduction of uranium(VI) under visible light was achieved over these ZnFe2O4 samples with the activity order of rods > microspheres > nanoparticles. Using ZnFe2O4 rods, for example, the 50 ppm of uranium(VI) was almost completely removed in 60 min, representing one of the most effective visible-light-driven photocatalytic removal. The effects of catalyst dosage, hole scavenger (CH3OH) dosage and solution pH on the photocatalytic reactions, as well as the photoreduction mechanisms were investigated in detail. In addition, ZnFe2O4 rods own good stability, recyclability and magnetic separability. All these features make ZnFe2O4 a promising photocatalyst for radioactive environmental remediation.
[Display omitted] •Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in 60 min.•The photocatalytic activity of ZnFe2O4 is dependent on its morphology.•ZnFe2O4 rods own good stability, recyclability and magnetic separability. Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable catalysts are extremely limited. Herein, we report a first study of visible-light-driven photocatalytic reduction of uranium(VI) using visible light responsive ZnFe2O4. The ZnFe2O4 catalysts with different morphologies were successfully obtained and well characterized. The photoreduction of uranium(VI) under visible light was achieved over these ZnFe2O4 samples with the activity order of rods > microspheres > nanoparticles. Using ZnFe2O4 rods, for example, the 50 ppm of uranium(VI) was almost completely removed in 60 min, representing one of the most effective visible-light-driven photocatalytic removal. The effects of catalyst dosage, hole scavenger (CH3OH) dosage and solution pH on the photocatalytic reactions, as well as the photoreduction mechanisms were investigated in detail. In addition, ZnFe2O4 rods own good stability, recyclability and magnetic separability. All these features make ZnFe2O4 a promising photocatalyst for radioactive environmental remediation.
ArticleNumber 118688
Author Liang, Peng-liang
Yuan, Li-yong
Li, Zi-jie
Deng, Hao
Wang, Lin
Wang, Xu-cong
Shi, Wei-qun
Luo, Shi-zhong
Author_xml – sequence: 1
  givenname: Peng-liang
  surname: Liang
  fullname: Liang, Peng-liang
  organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 2
  givenname: Li-yong
  surname: Yuan
  fullname: Yuan, Li-yong
  email: yuanly@ihep.ac.cn
  organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 3
  givenname: Hao
  surname: Deng
  fullname: Deng, Hao
  organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 4
  givenname: Xu-cong
  surname: Wang
  fullname: Wang, Xu-cong
  organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 5
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 6
  givenname: Zi-jie
  surname: Li
  fullname: Li, Zi-jie
  organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
– sequence: 7
  givenname: Shi-zhong
  surname: Luo
  fullname: Luo, Shi-zhong
  email: luosz@mail.buct.edu.cn
  organization: Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 8
  givenname: Wei-qun
  orcidid: 0000-0002-2175-9572
  surname: Shi
  fullname: Shi, Wei-qun
  email: shiwq@ihep.ac.cn
  organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
BookMark eNqFkE9LwzAYxoNMcJt-Aw8FL3rozJ82zTwIMpwKg3lQD15CmqRbSpfMJB3s29tSTx6U9_DCy_N7Xp5nAkbWWQ3AJYIzBBG9rWdiL0UsZxji7oQYZewEjBErSEoYIyMwhnNMU0IKcgYmIdQQQkwwG4P169ZF18GiOUYjE69VK6NxNnFV0nphTbu7_ni5ScpjshMbq3vRp11qvM6S1irtk4MJpmx00pjNNp6D00o0QV_87Cl4Xz6-LZ7T1frpZfGwSmUGYUzneY4VpFDJbvKSIlqSohBKMpXhMstJSRQhilFYYVQooRnOMk0LWkk0r-YVmYKrwXfv3VerQ-S1a73tXnKc4SLvLDDqVHeDSnoXgtcVlyaKPl70wjQcQd4XyGs-FMj7AvlQYAdnv-C9Nzvhj_9h9wOmu_gHoz0P0mgrtTJey8iVM38bfANTjo2h
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_106690
crossref_primary_10_1016_j_talanta_2020_121974
crossref_primary_10_1016_j_jwpe_2024_106210
crossref_primary_10_1016_j_jhazmat_2022_129182
crossref_primary_10_1016_j_solidstatesciences_2022_106913
crossref_primary_10_1007_s11356_022_23236_w
crossref_primary_10_1016_j_cjche_2021_11_026
crossref_primary_10_1016_j_cej_2024_152768
crossref_primary_10_1016_j_apcatb_2024_124721
crossref_primary_10_1016_j_partic_2022_03_004
crossref_primary_10_1039_D3EN00269A
crossref_primary_10_1007_s10967_022_08508_6
crossref_primary_10_1021_acs_inorgchem_4c00597
crossref_primary_10_1016_j_cej_2023_146908
crossref_primary_10_1002_pen_26577
crossref_primary_10_1007_s10967_022_08523_7
crossref_primary_10_1016_j_envres_2025_121417
crossref_primary_10_1007_s10854_022_08355_x
crossref_primary_10_1016_j_mtphys_2023_101140
crossref_primary_10_1016_j_cej_2021_131773
crossref_primary_10_1016_j_chemosphere_2022_134182
crossref_primary_10_1016_j_jphotochem_2024_115851
crossref_primary_10_1016_j_jhazmat_2021_127823
crossref_primary_10_1016_j_jssc_2021_122305
crossref_primary_10_1007_s10967_023_08772_0
crossref_primary_10_1016_j_cej_2021_131552
crossref_primary_10_1016_j_jclepro_2021_129821
crossref_primary_10_3390_w15203638
crossref_primary_10_1007_s12274_021_3916_8
crossref_primary_10_1016_j_jece_2023_110894
crossref_primary_10_1016_j_molstruc_2021_130734
crossref_primary_10_1016_j_cej_2024_156785
crossref_primary_10_1039_D4EN00163J
crossref_primary_10_1016_j_molliq_2024_125440
crossref_primary_10_1016_j_susmat_2024_e00994
crossref_primary_10_1016_j_seppur_2024_129331
crossref_primary_10_1016_j_ceramint_2020_08_219
crossref_primary_10_1016_j_inoche_2022_110134
crossref_primary_10_1016_j_seppur_2024_127955
crossref_primary_10_1016_j_jcis_2024_04_106
crossref_primary_10_1016_j_cej_2023_144275
crossref_primary_10_1016_j_hazadv_2021_100017
crossref_primary_10_1039_D1EN00217A
crossref_primary_10_1016_j_apcatb_2021_119978
crossref_primary_10_1016_j_jhazmat_2022_129734
crossref_primary_10_1016_j_jallcom_2022_164954
crossref_primary_10_1016_j_cej_2023_144705
crossref_primary_10_1016_j_seppur_2022_122292
crossref_primary_10_1016_j_seppur_2024_130437
crossref_primary_10_1016_j_cej_2024_152053
crossref_primary_10_1016_j_apcatb_2023_123460
crossref_primary_10_1016_j_cej_2021_129002
crossref_primary_10_1016_j_seppur_2023_123442
crossref_primary_10_1016_j_jallcom_2024_174422
crossref_primary_10_1007_s11164_021_04434_6
crossref_primary_10_1016_j_apsusc_2023_157842
crossref_primary_10_1016_j_cej_2023_144930
crossref_primary_10_1016_j_cej_2023_146315
crossref_primary_10_1039_D0NJ04519E
crossref_primary_10_1039_D4TA00793J
crossref_primary_10_1007_s11814_022_1140_1
crossref_primary_10_1016_j_cej_2021_133766
crossref_primary_10_1021_acs_inorgchem_4c03567
crossref_primary_10_1016_j_mtcomm_2024_110227
crossref_primary_10_1016_j_chemosphere_2023_139022
crossref_primary_10_4236_jamp_2021_97118
crossref_primary_10_1016_j_anucene_2020_107876
crossref_primary_10_1016_j_seppur_2021_120195
crossref_primary_10_1021_acsestengg_4c00415
crossref_primary_10_1016_j_molliq_2023_122295
crossref_primary_10_1016_j_cej_2021_130255
crossref_primary_10_1016_j_ccr_2021_214148
crossref_primary_10_1039_D4NJ03870C
crossref_primary_10_1016_j_ceramint_2022_12_107
crossref_primary_10_1016_j_jece_2022_107170
crossref_primary_10_1007_s10967_023_09060_7
crossref_primary_10_1016_j_cej_2025_160199
crossref_primary_10_1016_j_jhazmat_2022_130018
crossref_primary_10_1016_j_colsurfa_2022_130127
crossref_primary_10_1016_j_cej_2021_129831
crossref_primary_10_1007_s11356_025_35897_4
crossref_primary_10_1016_j_jssc_2024_124689
crossref_primary_10_1016_j_jhazmat_2025_137878
crossref_primary_10_1016_j_colsurfa_2020_125685
crossref_primary_10_1016_j_jhazmat_2022_129005
crossref_primary_10_1016_j_colsurfa_2024_133799
crossref_primary_10_1016_j_envpol_2020_114797
crossref_primary_10_1016_j_desal_2024_118159
crossref_primary_10_1016_j_jssc_2025_125290
crossref_primary_10_1016_j_jhazmat_2024_136708
crossref_primary_10_1016_j_seppur_2022_122667
crossref_primary_10_1016_j_jssc_2022_123440
crossref_primary_10_1002_smll_202404417
crossref_primary_10_1016_j_cej_2023_141756
crossref_primary_10_1016_j_cej_2022_138044
crossref_primary_10_1016_j_chemosphere_2020_126671
crossref_primary_10_1016_j_seppur_2021_119627
crossref_primary_10_1016_j_ijhydene_2023_07_109
crossref_primary_10_1016_j_jhazmat_2023_131189
crossref_primary_10_1016_j_seppur_2023_123121
crossref_primary_10_3390_nano13132005
crossref_primary_10_1016_j_colsurfa_2022_129151
crossref_primary_10_1016_j_jallcom_2021_161616
crossref_primary_10_1016_j_jallcom_2025_179657
crossref_primary_10_1016_j_cej_2024_154319
crossref_primary_10_1016_j_cej_2021_129164
crossref_primary_10_1016_j_colsurfa_2022_129032
crossref_primary_10_1016_j_matlet_2024_137793
crossref_primary_10_1016_j_jhazmat_2020_123000
crossref_primary_10_1016_j_seppur_2022_122684
crossref_primary_10_1016_j_cej_2023_141742
crossref_primary_10_1016_j_jhazmat_2021_126912
crossref_primary_10_1016_j_jece_2024_112974
crossref_primary_10_1007_s00339_022_05763_y
crossref_primary_10_1016_j_apcatb_2020_119523
crossref_primary_10_1007_s11426_022_1284_x
crossref_primary_10_1016_j_chemosphere_2022_137041
crossref_primary_10_1016_j_jcis_2021_05_043
crossref_primary_10_1016_j_seppur_2022_122205
crossref_primary_10_1021_acsami_0c22800
crossref_primary_10_1016_j_cej_2022_138182
crossref_primary_10_1016_j_seppur_2022_122794
crossref_primary_10_1016_j_seppur_2022_122670
crossref_primary_10_1016_j_susmat_2025_e01251
crossref_primary_10_1016_j_jhazmat_2021_125812
crossref_primary_10_1016_j_jenvman_2025_124419
crossref_primary_10_1016_j_apcatb_2021_120250
crossref_primary_10_1039_D4QI02393E
crossref_primary_10_1007_s11164_023_04993_w
crossref_primary_10_1016_j_apcatb_2023_123525
crossref_primary_10_1016_j_apt_2022_103725
crossref_primary_10_1016_j_cej_2024_153322
crossref_primary_10_3390_sym13081325
crossref_primary_10_1016_j_jes_2024_06_008
crossref_primary_10_1016_j_jhazmat_2022_130211
crossref_primary_10_1007_s13762_020_03023_1
crossref_primary_10_1016_j_ceramint_2021_03_277
crossref_primary_10_1016_j_jclepro_2022_135494
crossref_primary_10_1016_j_ceramint_2023_11_071
crossref_primary_10_1016_j_jenvrad_2023_107168
crossref_primary_10_1016_j_ceramint_2020_04_234
crossref_primary_10_1016_j_cej_2024_151007
crossref_primary_10_1016_j_cej_2024_152341
crossref_primary_10_1016_j_cej_2021_133222
crossref_primary_10_1016_j_seppur_2024_131250
crossref_primary_10_1038_s41598_022_10036_y
crossref_primary_10_1007_s10854_023_10640_2
crossref_primary_10_1021_acsanm_1c01077
crossref_primary_10_2139_ssrn_4171681
crossref_primary_10_1016_j_jssc_2023_123940
crossref_primary_10_1002_sus2_199
crossref_primary_10_1016_j_cej_2021_130756
crossref_primary_10_1016_j_apcatb_2022_121815
crossref_primary_10_1002_smll_202207378
crossref_primary_10_1016_j_jssc_2021_122499
crossref_primary_10_1016_j_jhazmat_2021_126209
crossref_primary_10_1016_j_envpol_2021_117490
crossref_primary_10_1039_D2NR01000C
crossref_primary_10_1002_adfm_202410778
crossref_primary_10_1002_cssc_202400254
crossref_primary_10_1016_j_cej_2021_128553
crossref_primary_10_1016_j_seppur_2021_120418
crossref_primary_10_1016_j_jallcom_2024_176684
crossref_primary_10_1016_j_materresbull_2020_111125
crossref_primary_10_1016_j_optmat_2021_111396
crossref_primary_10_1016_j_apsusc_2022_153486
crossref_primary_10_3390_molecules27196330
crossref_primary_10_1007_s12274_024_6545_1
crossref_primary_10_1007_s41365_023_01180_9
crossref_primary_10_1016_j_jclepro_2023_139093
crossref_primary_10_1039_D1TA00386K
crossref_primary_10_1002_adfm_202421623
crossref_primary_10_1002_ejic_202101005
crossref_primary_10_1016_j_apsusc_2020_147754
crossref_primary_10_2139_ssrn_4045410
crossref_primary_10_1016_j_arabjc_2021_103261
crossref_primary_10_1007_s10854_025_14387_w
crossref_primary_10_1007_s10967_023_08942_0
crossref_primary_10_1016_j_cej_2021_133121
crossref_primary_10_1039_D4NJ04930F
crossref_primary_10_1016_j_isci_2021_103230
crossref_primary_10_1016_j_seppur_2022_120987
crossref_primary_10_1080_10934529_2020_1835389
crossref_primary_10_1016_j_materresbull_2023_112508
crossref_primary_10_1016_j_jhazmat_2020_124147
crossref_primary_10_1038_s41893_021_00709_3
crossref_primary_10_1039_D4SC00011K
crossref_primary_10_1002_smll_202407177
crossref_primary_10_1016_j_jssc_2021_122236
crossref_primary_10_1016_j_apcatb_2020_119578
crossref_primary_10_1016_j_seppur_2022_121707
crossref_primary_10_1016_j_cej_2021_134449
crossref_primary_10_1007_s11783_024_1859_5
crossref_primary_10_1016_j_psep_2022_04_005
crossref_primary_10_2139_ssrn_4048706
crossref_primary_10_1016_j_materresbull_2024_112839
crossref_primary_10_1016_j_jcis_2022_07_191
crossref_primary_10_1016_j_seppur_2022_121296
crossref_primary_10_1007_s11664_024_11111_y
crossref_primary_10_1016_j_cjche_2022_04_008
crossref_primary_10_1016_j_seppur_2024_130926
crossref_primary_10_1016_j_cej_2022_138317
crossref_primary_10_1016_j_seppur_2024_130004
crossref_primary_10_1016_j_apcatb_2023_122965
crossref_primary_10_1016_j_seppur_2024_128606
crossref_primary_10_1002_adfm_202302913
crossref_primary_10_1016_j_apcatb_2022_122202
crossref_primary_10_1016_j_ceramint_2021_03_020
crossref_primary_10_1021_acsaem_2c02169
crossref_primary_10_3390_su162411023
crossref_primary_10_2139_ssrn_3967984
crossref_primary_10_1002_advs_202406535
crossref_primary_10_1016_j_apcatb_2021_120625
crossref_primary_10_1021_acs_inorgchem_4c01423
crossref_primary_10_1007_s10967_024_09512_8
crossref_primary_10_3390_polym15020279
crossref_primary_10_1016_j_jhazmat_2023_131581
crossref_primary_10_2139_ssrn_4138200
crossref_primary_10_1016_j_apcatb_2022_121581
crossref_primary_10_1016_j_ccr_2022_214615
crossref_primary_10_1016_j_cej_2021_132962
crossref_primary_10_1016_j_cej_2021_133139
crossref_primary_10_1016_j_seppur_2022_122816
crossref_primary_10_1016_j_jssc_2022_123160
crossref_primary_10_1021_jacs_3c07047
crossref_primary_10_1016_j_seppur_2024_126537
Cites_doi 10.1021/acsami.5b04118
10.1016/j.envpol.2019.02.025
10.1016/j.ultsonch.2017.11.025
10.1021/acs.est.6b04460
10.1016/j.jhazmat.2019.02.074
10.1039/c4ra02697g
10.1002/cphc.201500949
10.1007/s11426-014-5194-8
10.1016/j.cej.2009.08.008
10.1021/acs.inorgchem.8b02803
10.1016/j.matlet.2011.06.101
10.1021/acs.est.6b05313
10.1016/j.apcatb.2015.09.056
10.1016/j.apsusc.2015.11.112
10.1002/adfm.201502970
10.1016/j.jhazmat.2010.05.069
10.1016/j.molliq.2016.01.062
10.1039/C5TA00737B
10.1039/C5CC08373G
10.1021/acsami.5b03537
10.1039/C7TA02048A
10.1021/cm0401802
10.1016/j.ceramint.2016.04.115
10.1016/j.cej.2018.11.008
10.1016/j.electacta.2007.09.059
10.1016/j.apcatb.2018.04.039
10.1039/C8TA12168K
10.1016/j.cej.2018.11.092
10.1021/ja308028n
10.1016/j.apcatb.2018.01.045
10.1039/C7CC06740B
10.1021/acs.est.8b03711
10.1039/c2jm31766d
10.1016/j.jhazmat.2015.02.028
10.1016/S0927-7757(98)00506-8
10.1016/j.jallcom.2012.10.105
10.1016/j.apcatb.2018.02.062
10.1016/j.matlet.2016.05.094
10.1016/S1010-6030(03)00171-0
10.1016/j.jechem.2016.10.015
10.1016/j.apcatb.2018.01.062
10.1016/j.jcat.2019.01.009
10.1007/s10967-017-5278-y
10.1016/j.jeurceramsoc.2007.02.165
10.1021/jp0732763
10.1039/C4TA04878D
10.1016/j.jhazmat.2015.02.042
10.1016/j.chemosphere.2018.08.070
10.1016/j.apcatb.2016.07.036
10.1039/C4NJ02106A
10.1016/j.ceramint.2013.03.101
10.1016/j.apsusc.2017.06.065
10.1039/C7DT02639K
10.1021/acsanm.9b00205
10.1039/b919897k
10.1016/j.seppur.2016.12.043
10.1016/j.cej.2019.02.013
10.1016/j.apcatb.2016.12.043
10.1038/419134a
10.1039/C7CC07527H
10.1021/es9036308
10.1039/B313356G
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jun 15, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jun 15, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.118688
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_118688
S092633732030103X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-9552d060dcdcd5b616b377adc8d42b453b3d33d860f217dae8244e676fc19f9f3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 10:35:40 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Tue Jul 01 04:35:03 EDT 2025
Sat Mar 02 16:00:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Visible light
ZnFe2O4
Magnetic separation
Uranium(VI) photoreduction
Morphology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-9552d060dcdcd5b616b377adc8d42b453b3d33d860f217dae8244e676fc19f9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2175-9572
PQID 2427545321
PQPubID 2045281
ParticipantIDs proquest_journals_2427545321
crossref_citationtrail_10_1016_j_apcatb_2020_118688
crossref_primary_10_1016_j_apcatb_2020_118688
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_118688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Deng, Li, Wang, Yuan, Lan, Chang, Chai, Shi (bib0115) 2019; 2
Yuan, Liu, Shi, Li, Lan, Feng, Zhao, Yuan, Chai (bib0025) 2012; 22
Vadiyar, Bhise, Patil, Kolekar, Shelke, Deshpande, Chang, Ghule, Ghule (bib0180) 2016; 52
Jia, Ren, Liang, Zhu (bib0235) 2011; 65
Talebian, Jafarinezhad (bib0305) 2013; 39
Zinatloo-Ajabshir, Salavati-Niasari, Zinatloo-Ajabshir (bib0280) 2016; 180
Yan, Hua, Bao, Yang, Liu, Deng (bib0060) 2010; 44
Zinatloo-Ajabshir, Salavati-Niasari (bib0270) 2015; 39
Zhu, Cai, Liu, Fang, Tan, Liu, Kong, Xu, Mei, Hayat (bib0120) 2019; 248
Li, Wang, Guo, Sun, Liu, Liang, Lu (bib0175) 2015; 7
Chen, Chen, Ren, Alsaedi, Hayat (bib0095) 2019; 359
Lakaniemi, Douglas, Kaksonen (bib0085) 2019; 371
Lu, Chen, Wu, Fan, Liu, Le, Jiang, Song (bib0135) 2016; 360
Zhu, Guijarro, Liu, Schouwink, Wells, Le Formal, Sun, Gao, Sivula (bib0190) 2018; 30
Guo, Niu, Liang, Niu, Huang, Zhang, Tang, Yang, Feng, Zeng (bib0195) 2019; 370
Sprynskyy, Kovalchuk, Buszewski (bib0325) 2010; 181
Huang, Zhu, Zhang, Zhang, Cao, Shen, Ho, Lee (bib0210) 2018; 234
Bai, Yuan, Zhu, Liu, Chu, Zheng, Zhang, Chai, Shi (bib0030) 2015; 3
Wu, Jiang, Song, Sun (bib0150) 2018; 430
Wang, Song, Yuan, Li, Zhang, Gibson, Zheng, Chai, Shi (bib0070) 2018; 52
He, Zong, Dong, Yang, Ke, Liu, Nie, Ren, Bian (bib0055) 2017; 313
Skliri, Miao, Xie, Liu, Salim, Liu, Zhang, Armatas (bib0225) 2018; 227
Ke, Li, Wu, Jiang, Luo, Liu, Le, Sun, Song (bib0140) 2017; 205
Sharma, Sharma, Rao, Chowdari (bib0185) 2008; 53
Wang, Tao, Yuan, Liu, Huang, Chai, Gibson, Shi (bib0040) 2017; 53
Yuan, Sun, Liao, Zhao, Chai, Shi (bib0015) 2014; 57
Fan, Gu, Yang, Li (bib0250) 2009; 155
Huang, Li, Wu, Zheng, Zhou, Chai, Wang, Shi (bib0020) 2018; 5
Chen, Ollis, Rulkens, Bruning (bib0045) 1999; 151
Dhiman, Sharma, Kumar, Singhal (bib0285) 2016; 42
Manos, Kanatzidis (bib0005) 2012; 134
Tan, Beydoun, Amal (bib0320) 2003; 159
Yang, Feng, Jiang, Wu, Sheng, Jiang, Wei, Fan (bib0200) 2015; 25
Li, Huang, Guo, Wang, Zheng, Cha, Shi (bib0110) 2017; 51
Lu, Zhang, Jiang, Wu, Song, Zhu, Lou, Li, Liu, Liu, Wang, Le (bib0145) 2017; 200
Yao, Zeng, Goya, Torres, Liu, Wu, Ge, Zeng, Wang, Jiang (bib0165) 2007; 111
Lv, Ma, Zeng, Ke, Peng (bib0215) 2010; 20
Wu, Xu, Li, Tong, Chen, Han, Wu, Zhang (bib0170) 2018; 57
Cai, Zhang, Liu, Shan, Zhang, Dionysiou (bib0290) 2016; 182
Huang, Liang, Rao, Zhu, Cao, Shen, Ho, Lee (bib0205) 2017; 51
Li, Wang, Yuan, Xiao, Mei, Zheng, Zhang, Yang, Zhao, Zhu, Chai (bib0065) 2015; 290
Duan, Ji, Liu, Zhao, Han, Tian, Zhao (bib0075) 2019; 359
Veith, Haas, Huch (bib0240) 2005; 17
Song, Zhu, Li, Lou, Xiao, Ye (bib0220) 2015; 3
Jiang, Xing, Luo, Li, Zou, Liu, Li, Wang (bib0050) 2018; 228
Motahari, Mozdianfard, Soofivand, Salavati-Niasari (bib0275) 2014; 4
Yao, Qin, Chen, Wei, Liu, Wang, Wang (bib0315) 2015; 291
Evans, Nicholson, Faith, Kan (bib0080) 2004; 6
Mortazavi-Derazkola, Salavati-Niasari, Amiri, Abbasi (bib0160) 2017; 26
Meichtry, Levy, Mohamed, Dillert, Bahnemann, Litter (bib0105) 2016; 17
Liu, Li, Zhao, Hou, Chen (bib0255) 2017; 5
Li, Luo, Liu, Gao, Duan (bib0260) 2019; 7
Zinatloo-Ajabshir, Salavati-Niasari, Zinatloo-Ajabshir (bib0310) 2017; 177
Abbasi, Ghanbari, Salavati-Niasari, Hamadanian (bib0155) 2016; 27
Yuan, Tian, Lan, Cao, Wang, Chai, Gibson, Shi (bib0035) 2018; 54
Liu, Du, Pan, Dang, Qian, Liu, Liu, Zhao (bib0125) 2018; 231
Feng, Yang, He, Niu, Zhang, Ding, Liang, Feng (bib0130) 2018; 212
Maletin, Moshopoulou, Kontos, Devlin, Delimitis, Zaspalis, Nalbandian, Srdic (bib0295) 2007; 27
Monsef, Ghiyasiyan-Arani, Salavati-Niasari (bib0300) 2018; 42
Li, Wang, Wang, Liang, He, Pan, Fan, Wang (bib0100) 2019; 365
Chen, Fang, Zhang, Yang (bib0245) 2013; 550
Guo, Guo, Wang, Li, Kong, Wang, Li, Liu (bib0010) 2017; 46
Zhou, Li, Sun, Sun, Liang, Liu, Hu, Lu (bib0230) 2015; 7
Suzuki, Kelly, Kemner, Banfield (bib0090) 2002; 419
Zinatloo-Ajabshir, Salavati-Niasari (bib0265) 2016; 216
Zhu (10.1016/j.apcatb.2020.118688_bib0120) 2019; 248
Jia (10.1016/j.apcatb.2020.118688_bib0235) 2011; 65
Wang (10.1016/j.apcatb.2020.118688_bib0070) 2018; 52
Feng (10.1016/j.apcatb.2020.118688_bib0130) 2018; 212
Maletin (10.1016/j.apcatb.2020.118688_bib0295) 2007; 27
Lu (10.1016/j.apcatb.2020.118688_bib0135) 2016; 360
Fan (10.1016/j.apcatb.2020.118688_bib0250) 2009; 155
Abbasi (10.1016/j.apcatb.2020.118688_bib0155) 2016; 27
Wang (10.1016/j.apcatb.2020.118688_bib0040) 2017; 53
Jiang (10.1016/j.apcatb.2020.118688_bib0050) 2018; 228
Mortazavi-Derazkola (10.1016/j.apcatb.2020.118688_bib0160) 2017; 26
Guo (10.1016/j.apcatb.2020.118688_bib0195) 2019; 370
Li (10.1016/j.apcatb.2020.118688_bib0260) 2019; 7
Deng (10.1016/j.apcatb.2020.118688_bib0115) 2019; 2
Yao (10.1016/j.apcatb.2020.118688_bib0315) 2015; 291
Huang (10.1016/j.apcatb.2020.118688_bib0020) 2018; 5
Yuan (10.1016/j.apcatb.2020.118688_bib0025) 2012; 22
Yan (10.1016/j.apcatb.2020.118688_bib0060) 2010; 44
Chen (10.1016/j.apcatb.2020.118688_bib0245) 2013; 550
Monsef (10.1016/j.apcatb.2020.118688_bib0300) 2018; 42
Li (10.1016/j.apcatb.2020.118688_bib0065) 2015; 290
Yang (10.1016/j.apcatb.2020.118688_bib0200) 2015; 25
Lu (10.1016/j.apcatb.2020.118688_bib0145) 2017; 200
Talebian (10.1016/j.apcatb.2020.118688_bib0305) 2013; 39
Veith (10.1016/j.apcatb.2020.118688_bib0240) 2005; 17
Wu (10.1016/j.apcatb.2020.118688_bib0150) 2018; 430
Song (10.1016/j.apcatb.2020.118688_bib0220) 2015; 3
Bai (10.1016/j.apcatb.2020.118688_bib0030) 2015; 3
Duan (10.1016/j.apcatb.2020.118688_bib0075) 2019; 359
Cai (10.1016/j.apcatb.2020.118688_bib0290) 2016; 182
Yuan (10.1016/j.apcatb.2020.118688_bib0015) 2014; 57
Li (10.1016/j.apcatb.2020.118688_bib0175) 2015; 7
Tan (10.1016/j.apcatb.2020.118688_bib0320) 2003; 159
Huang (10.1016/j.apcatb.2020.118688_bib0205) 2017; 51
Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0265) 2016; 216
Dhiman (10.1016/j.apcatb.2020.118688_bib0285) 2016; 42
Zhu (10.1016/j.apcatb.2020.118688_bib0190) 2018; 30
Yao (10.1016/j.apcatb.2020.118688_bib0165) 2007; 111
Li (10.1016/j.apcatb.2020.118688_bib0110) 2017; 51
Guo (10.1016/j.apcatb.2020.118688_bib0010) 2017; 46
Yuan (10.1016/j.apcatb.2020.118688_bib0035) 2018; 54
He (10.1016/j.apcatb.2020.118688_bib0055) 2017; 313
Vadiyar (10.1016/j.apcatb.2020.118688_bib0180) 2016; 52
Motahari (10.1016/j.apcatb.2020.118688_bib0275) 2014; 4
Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0310) 2017; 177
Suzuki (10.1016/j.apcatb.2020.118688_bib0090) 2002; 419
Lakaniemi (10.1016/j.apcatb.2020.118688_bib0085) 2019; 371
Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0270) 2015; 39
Sprynskyy (10.1016/j.apcatb.2020.118688_bib0325) 2010; 181
Sharma (10.1016/j.apcatb.2020.118688_bib0185) 2008; 53
Lv (10.1016/j.apcatb.2020.118688_bib0215) 2010; 20
Zhou (10.1016/j.apcatb.2020.118688_bib0230) 2015; 7
Meichtry (10.1016/j.apcatb.2020.118688_bib0105) 2016; 17
Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0280) 2016; 180
Chen (10.1016/j.apcatb.2020.118688_bib0095) 2019; 359
Li (10.1016/j.apcatb.2020.118688_bib0100) 2019; 365
Huang (10.1016/j.apcatb.2020.118688_bib0210) 2018; 234
Manos (10.1016/j.apcatb.2020.118688_bib0005) 2012; 134
Chen (10.1016/j.apcatb.2020.118688_bib0045) 1999; 151
Liu (10.1016/j.apcatb.2020.118688_bib0255) 2017; 5
Liu (10.1016/j.apcatb.2020.118688_bib0125) 2018; 231
Evans (10.1016/j.apcatb.2020.118688_bib0080) 2004; 6
Wu (10.1016/j.apcatb.2020.118688_bib0170) 2018; 57
Skliri (10.1016/j.apcatb.2020.118688_bib0225) 2018; 227
Ke (10.1016/j.apcatb.2020.118688_bib0140) 2017; 205
References_xml – volume: 227
  start-page: 330
  year: 2018
  end-page: 339
  ident: bib0225
  publication-title: Appl. Catal. B: Environ.
– volume: 7
  start-page: 17811
  year: 2015
  end-page: 17818
  ident: bib0175
  publication-title: ACS Appl. Mater. Interfaces
– volume: 181
  start-page: 700
  year: 2010
  end-page: 707
  ident: bib0325
  publication-title: J. Hazard. Mater.
– volume: 419
  start-page: 134
  year: 2002
  ident: bib0090
  publication-title: Nature
– volume: 57
  start-page: 15481
  year: 2018
  end-page: 15488
  ident: bib0170
  publication-title: Inorg. Chem.
– volume: 359
  start-page: 944
  year: 2019
  end-page: 954
  ident: bib0095
  publication-title: Chem. Eng. J.
– volume: 248
  start-page: 448
  year: 2019
  end-page: 455
  ident: bib0120
  publication-title: Environ. Pollut.
– volume: 42
  start-page: 12594
  year: 2016
  end-page: 12605
  ident: bib0285
  publication-title: Ceram. Int.
– volume: 313
  start-page: 59
  year: 2017
  end-page: 67
  ident: bib0055
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 228
  start-page: 29
  year: 2018
  end-page: 38
  ident: bib0050
  publication-title: Appl. Catal. B: Environ.
– volume: 52
  start-page: 10748
  year: 2018
  end-page: 10756
  ident: bib0070
  publication-title: Environ. Sci. Technol.
– volume: 360
  start-page: 1016
  year: 2016
  end-page: 1022
  ident: bib0135
  publication-title: Appl. Surf. Sci.
– volume: 2
  start-page: 2283
  year: 2019
  end-page: 2294
  ident: bib0115
  publication-title: ACS Appl. Nano Mater.
– volume: 51
  start-page: 5666
  year: 2017
  end-page: 5674
  ident: bib0110
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 17
  year: 2017
  end-page: 23
  ident: bib0160
  publication-title: J. Energ. Chem.
– volume: 25
  start-page: 7080
  year: 2015
  end-page: 7087
  ident: bib0200
  publication-title: Adv. Funct. Mater.
– volume: 134
  start-page: 16441
  year: 2012
  end-page: 16446
  ident: bib0005
  publication-title: J. Am. Chem. Soc.
– volume: 205
  start-page: 319
  year: 2017
  end-page: 326
  ident: bib0140
  publication-title: Appl. Catal. B: Environ.
– volume: 39
  start-page: 8311
  year: 2013
  end-page: 8317
  ident: bib0305
  publication-title: Ceram. Int.
– volume: 151
  start-page: 339
  year: 1999
  end-page: 349
  ident: bib0045
  publication-title: Colloid. Surface. A
– volume: 370
  start-page: 289
  year: 2019
  end-page: 303
  ident: bib0195
  publication-title: J. Catal.
– volume: 7
  start-page: 5539
  year: 2019
  end-page: 5551
  ident: bib0260
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 525
  year: 2015
  end-page: 534
  ident: bib0030
  publication-title: J. Mater. Chem. A
– volume: 159
  start-page: 273
  year: 2003
  end-page: 280
  ident: bib0320
  publication-title: J. Photochem. Photobiol. A
– volume: 30
  year: 2018
  ident: bib0190
  publication-title: Adv. Mater.
– volume: 20
  start-page: 3665
  year: 2010
  end-page: 3672
  ident: bib0215
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 17019
  year: 2012
  end-page: 17026
  ident: bib0025
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 196
  year: 2004
  end-page: 197
  ident: bib0080
  publication-title: Green Chem.
– volume: 27
  start-page: 4391
  year: 2007
  end-page: 4394
  ident: bib0295
  publication-title: J. Eur. Ceram. Soc.
– volume: 550
  start-page: 348
  year: 2013
  end-page: 352
  ident: bib0245
  publication-title: J. Alloys Compd.
– volume: 53
  start-page: 2380
  year: 2008
  end-page: 2385
  ident: bib0185
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 14762
  year: 2017
  end-page: 14770
  ident: bib0010
  publication-title: Dalton Trans.
– volume: 200
  start-page: 378
  year: 2017
  end-page: 385
  ident: bib0145
  publication-title: Appl. Catal. B: Environ.
– volume: 155
  start-page: 534
  year: 2009
  end-page: 541
  ident: bib0250
  publication-title: Chem. Eng. J.
– volume: 212
  start-page: 114
  year: 2018
  end-page: 123
  ident: bib0130
  publication-title: Chemosphere
– volume: 42
  start-page: 201
  year: 2018
  end-page: 211
  ident: bib0300
  publication-title: Ultrason. Sonochem.
– volume: 180
  start-page: 27
  year: 2016
  end-page: 30
  ident: bib0280
  publication-title: Mater. Lett.
– volume: 17
  start-page: 885
  year: 2016
  end-page: 892
  ident: bib0105
  publication-title: Chemphyschem
– volume: 3
  start-page: 8353
  year: 2015
  end-page: 8360
  ident: bib0220
  publication-title: J. Mater. Chem. A
– volume: 371
  start-page: 198
  year: 2019
  end-page: 212
  ident: bib0085
  publication-title: J. Hazard. Mater.
– volume: 216
  start-page: 545
  year: 2016
  end-page: 551
  ident: bib0265
  publication-title: J. Mol. Liq.
– volume: 65
  start-page: 3116
  year: 2011
  end-page: 3119
  ident: bib0235
  publication-title: Mater. Lett.
– volume: 231
  start-page: 11
  year: 2018
  end-page: 22
  ident: bib0125
  publication-title: Appl. Catal. B: Environ.
– volume: 52
  start-page: 2557
  year: 2016
  end-page: 2560
  ident: bib0180
  publication-title: Chem. Commun.
– volume: 54
  start-page: 370
  year: 2018
  end-page: 373
  ident: bib0035
  publication-title: Chem. Commun.
– volume: 234
  start-page: 70
  year: 2018
  end-page: 78
  ident: bib0210
  publication-title: Appl. Catal. B: Environ.
– volume: 39
  start-page: 3948
  year: 2015
  end-page: 3955
  ident: bib0270
  publication-title: New J. Chem.
– volume: 430
  start-page: 371
  year: 2018
  end-page: 379
  ident: bib0150
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 4800
  year: 2016
  end-page: 4809
  ident: bib0155
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 53
  start-page: 12084
  year: 2017
  end-page: 12087
  ident: bib0040
  publication-title: Chem. Commun.
– volume: 359
  start-page: 1617
  year: 2019
  end-page: 1628
  ident: bib0075
  publication-title: Chem. Eng. J.
– volume: 44
  start-page: 7783
  year: 2010
  end-page: 7789
  ident: bib0060
  publication-title: Environ. Sci. Technol.
– volume: 290
  start-page: 26
  year: 2015
  end-page: 33
  ident: bib0065
  publication-title: W.-Q. Shi. J. Hazard. Mater.
– volume: 5
  start-page: 2077
  year: 2018
  end-page: 2087
  ident: bib0020
  publication-title: Environ. Sci.: Nano
– volume: 7
  start-page: 15414
  year: 2015
  end-page: 15421
  ident: bib0230
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 1432
  year: 2014
  end-page: 1438
  ident: bib0015
  publication-title: Sci. China Chem.
– volume: 51
  start-page: 2924
  year: 2017
  end-page: 2933
  ident: bib0205
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 95
  year: 2005
  end-page: 101
  ident: bib0240
  publication-title: Chem. Mater.
– volume: 291
  start-page: 28
  year: 2015
  end-page: 37
  ident: bib0315
  publication-title: J. Hazard. Mater.
– volume: 182
  start-page: 456
  year: 2016
  end-page: 468
  ident: bib0290
  publication-title: Appl. Catal. B: Environ.
– volume: 365
  start-page: 231
  year: 2019
  end-page: 241
  ident: bib0100
  publication-title: Chem. Eng. J.
– volume: 111
  start-page: 12274
  year: 2007
  end-page: 12278
  ident: bib0165
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 8909
  year: 2017
  end-page: 8915
  ident: bib0255
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 27654
  year: 2014
  end-page: 27660
  ident: bib0275
  publication-title: RSC Adv.
– volume: 177
  start-page: 110
  year: 2017
  end-page: 120
  ident: bib0310
  publication-title: Sep. Purif. Technol.
– volume: 7
  start-page: 17811
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0175
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b04118
– volume: 248
  start-page: 448
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0120
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.02.025
– volume: 42
  start-page: 201
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0300
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2017.11.025
– volume: 51
  start-page: 2924
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0205
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04460
– volume: 371
  start-page: 198
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0085
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.02.074
– volume: 4
  start-page: 27654
  year: 2014
  ident: 10.1016/j.apcatb.2020.118688_bib0275
  publication-title: RSC Adv.
  doi: 10.1039/c4ra02697g
– volume: 17
  start-page: 885
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0105
  publication-title: Chemphyschem
  doi: 10.1002/cphc.201500949
– volume: 57
  start-page: 1432
  year: 2014
  ident: 10.1016/j.apcatb.2020.118688_bib0015
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-014-5194-8
– volume: 155
  start-page: 534
  year: 2009
  ident: 10.1016/j.apcatb.2020.118688_bib0250
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.08.008
– volume: 57
  start-page: 15481
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0170
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02803
– volume: 65
  start-page: 3116
  year: 2011
  ident: 10.1016/j.apcatb.2020.118688_bib0235
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.06.101
– volume: 51
  start-page: 5666
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0110
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b05313
– volume: 182
  start-page: 456
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0290
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2015.09.056
– volume: 360
  start-page: 1016
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0135
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.112
– volume: 25
  start-page: 7080
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0200
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502970
– volume: 181
  start-page: 700
  year: 2010
  ident: 10.1016/j.apcatb.2020.118688_bib0325
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.05.069
– volume: 216
  start-page: 545
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0265
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.01.062
– volume: 3
  start-page: 8353
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0220
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00737B
– volume: 52
  start-page: 2557
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0180
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08373G
– volume: 7
  start-page: 15414
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0230
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03537
– volume: 5
  start-page: 8909
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0255
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02048A
– volume: 17
  start-page: 95
  year: 2005
  ident: 10.1016/j.apcatb.2020.118688_bib0240
  publication-title: Chem. Mater.
  doi: 10.1021/cm0401802
– volume: 42
  start-page: 12594
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0285
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.04.115
– volume: 359
  start-page: 1617
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0075
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.008
– volume: 53
  start-page: 2380
  year: 2008
  ident: 10.1016/j.apcatb.2020.118688_bib0185
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.09.059
– volume: 234
  start-page: 70
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0210
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.04.039
– volume: 7
  start-page: 5539
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0260
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12168K
– volume: 359
  start-page: 944
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0095
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.092
– volume: 134
  start-page: 16441
  year: 2012
  ident: 10.1016/j.apcatb.2020.118688_bib0005
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308028n
– volume: 227
  start-page: 330
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0225
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.01.045
– volume: 53
  start-page: 12084
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0040
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06740B
– volume: 52
  start-page: 10748
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0070
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03711
– volume: 22
  start-page: 17019
  year: 2012
  ident: 10.1016/j.apcatb.2020.118688_bib0025
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31766d
– volume: 290
  start-page: 26
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0065
  publication-title: W.-Q. Shi. J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.028
– volume: 151
  start-page: 339
  year: 1999
  ident: 10.1016/j.apcatb.2020.118688_bib0045
  publication-title: Colloid. Surface. A
  doi: 10.1016/S0927-7757(98)00506-8
– volume: 550
  start-page: 348
  year: 2013
  ident: 10.1016/j.apcatb.2020.118688_bib0245
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.10.105
– volume: 231
  start-page: 11
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0125
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.02.062
– volume: 180
  start-page: 27
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0280
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.05.094
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0190
  publication-title: Adv. Mater.
– volume: 159
  start-page: 273
  year: 2003
  ident: 10.1016/j.apcatb.2020.118688_bib0320
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/S1010-6030(03)00171-0
– volume: 26
  start-page: 17
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0160
  publication-title: J. Energ. Chem.
  doi: 10.1016/j.jechem.2016.10.015
– volume: 228
  start-page: 29
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0050
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.01.062
– volume: 370
  start-page: 289
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0195
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.01.009
– volume: 313
  start-page: 59
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0055
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1007/s10967-017-5278-y
– volume: 27
  start-page: 4391
  year: 2007
  ident: 10.1016/j.apcatb.2020.118688_bib0295
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2007.02.165
– volume: 111
  start-page: 12274
  year: 2007
  ident: 10.1016/j.apcatb.2020.118688_bib0165
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0732763
– volume: 3
  start-page: 525
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0030
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04878D
– volume: 291
  start-page: 28
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0315
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.042
– volume: 5
  start-page: 2077
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0020
  publication-title: Environ. Sci.: Nano
– volume: 212
  start-page: 114
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0130
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.070
– volume: 27
  start-page: 4800
  year: 2016
  ident: 10.1016/j.apcatb.2020.118688_bib0155
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 200
  start-page: 378
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0145
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.07.036
– volume: 39
  start-page: 3948
  year: 2015
  ident: 10.1016/j.apcatb.2020.118688_bib0270
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ02106A
– volume: 39
  start-page: 8311
  year: 2013
  ident: 10.1016/j.apcatb.2020.118688_bib0305
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.03.101
– volume: 430
  start-page: 371
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0150
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.06.065
– volume: 46
  start-page: 14762
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0010
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT02639K
– volume: 2
  start-page: 2283
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0115
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00205
– volume: 20
  start-page: 3665
  year: 2010
  ident: 10.1016/j.apcatb.2020.118688_bib0215
  publication-title: J. Mater. Chem.
  doi: 10.1039/b919897k
– volume: 177
  start-page: 110
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0310
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.12.043
– volume: 365
  start-page: 231
  year: 2019
  ident: 10.1016/j.apcatb.2020.118688_bib0100
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.013
– volume: 205
  start-page: 319
  year: 2017
  ident: 10.1016/j.apcatb.2020.118688_bib0140
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2016.12.043
– volume: 419
  start-page: 134
  year: 2002
  ident: 10.1016/j.apcatb.2020.118688_bib0090
  publication-title: Nature
  doi: 10.1038/419134a
– volume: 54
  start-page: 370
  year: 2018
  ident: 10.1016/j.apcatb.2020.118688_bib0035
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07527H
– volume: 44
  start-page: 7783
  year: 2010
  ident: 10.1016/j.apcatb.2020.118688_bib0060
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9036308
– volume: 6
  start-page: 196
  year: 2004
  ident: 10.1016/j.apcatb.2020.118688_bib0080
  publication-title: Green Chem.
  doi: 10.1039/B313356G
SSID ssj0002328
Score 2.6748633
Snippet [Display omitted] •Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in...
Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118688
SubjectTerms Catalysts
Dosage
Environmental cleanup
Light
Magnetic separation
Microspheres
Morphology
Nanoparticles
Photocatalysis
Photochemical reactions
Photoreduction
Recyclability
Reduction
Rods
Uranium
Uranium(VI) photoreduction
Visible light
Wastewater
Zinc ferrites
ZnFe2O4
Title Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light
URI https://dx.doi.org/10.1016/j.apcatb.2020.118688
https://www.proquest.com/docview/2427545321
Volume 267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CPKgH0dVgNIY-eNBDuzP9nDmGJctGMRE0snhp-jW6spldNrOHXPLb0zUPoyIEZE4zdDVDV1fV1019VQCvU9DLWVZUlAvpqfBlRUsXOPVe61h6WZUZspE_nqrZuXg_l_MdmAxcGEyr7H1_59Nbb91_GferOV4vFuPPWckU55ozRPUZnyODXWjc5e-ub9M8EmJovXEaTHH0QJ9rc7zs2tvGpVMiQ99RdP1X_hme_nLUbfSZPoZHPWwkR92fPYGdWI_g_mTo1jaCh78VFhzB3vEtfy2J9QZ8-RTOPv1YNav2zuYqTUU2WLkVdUNWFdmmuLXYXrz5evKWuCtyYb_XSHEk3-ppZGeCIN9sQ5CN7paRLPFY_wzOp8dfJjPa91SgPllrQ0spWchUFnx6pFO5clxrG3wRBHNCcscD56FQWZUOK8HGIsX_qLSqfF5WZcX3YLde1fE5EGkT9tNCWhaiiHmCGtYqzX3IhdXeun3gw1Ia3xccx74XSzNklv00nQIMKsB0CtgH-ktq3RXcuGO8HrRk_tg4JsWEOyQPBqWa3nAvTUIsOoFKzvIX_z3xS3iAb5hQlssD2G022_gqQZfGHbZ78xDuHZ18mJ3eAPxF7UI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcECxUFAr4ABIcwiZ2HCcHDqh0tUtfSLRoxcX4FVi0za52s0J74U_xBxknDgWEVAmpyi2xLWtmMvPZmm8G4CkGvYTGeRmxlJsoNUUZFdqyyBghXGF4WcSejXx0nA3P0rdjPt6AHx0XxqdVBt_f-vTGW4c3_SDN_nwy6b-PC5oxJhj1qD5m45BZeeDW3_Dctnw1eoNKfkbpYP90bxiF1gKRQaOto4JzauMstgYfrrMk00wIZU1uU6pTzjSzjNk8i0vE7Fa5HMOgy0RWmqQoi5LhutfgOg7MfduEl98v8koQojTuH3cX-e11fL0mqUzNjao1Hkupd1Z52_Dln_Hwr8jQhLvBbbgVcCp53YriDmy4qgdbe117uB7c_K2SYQ-29y8IczgteIzlXTh592VWz5pLojUuRRa-VKw3BjIryQoD5WR1_vzD6AXRa3KuPleeU0k-VgNHT1LiCW4L4unveurI1N8j3IOzK5H0NmxWs8rdB8IVgk2RckWtS12C2EapTDBjk1QJo_QOsE6U0oQK577RxlR2qWxfZasA6RUgWwXsQPRr1ryt8HHJeNFpSf5hqRKD0CUzdzulyuAplhIhkkAUy2jy4L8XfgJbw9OjQ3k4Oj54CDf8F5_NlvBd2KwXK_cIcVOtHzd2SuDTVf8YPwG5oCkX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+reduction+of+uranium%28VI%29+by+magnetic+ZnFe2O4+under+visible+light&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Liang%2C+Peng-liang&rft.au=Yuan%2C+Li-yong&rft.au=Deng%2C+Hao&rft.au=Wang%2C+Xu-cong&rft.date=2020-06-15&rft.issn=0926-3373&rft.volume=267&rft.spage=118688&rft_id=info:doi/10.1016%2Fj.apcatb.2020.118688&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_118688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon