Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light
[Display omitted] •Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in 60 min.•The photocatalytic activity of ZnFe2O4 is dependent on its morphology.•ZnFe2O4 rods own good stability, recyclability and magnetic sep...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 267; p. 118688 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in 60 min.•The photocatalytic activity of ZnFe2O4 is dependent on its morphology.•ZnFe2O4 rods own good stability, recyclability and magnetic separability.
Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable catalysts are extremely limited. Herein, we report a first study of visible-light-driven photocatalytic reduction of uranium(VI) using visible light responsive ZnFe2O4. The ZnFe2O4 catalysts with different morphologies were successfully obtained and well characterized. The photoreduction of uranium(VI) under visible light was achieved over these ZnFe2O4 samples with the activity order of rods > microspheres > nanoparticles. Using ZnFe2O4 rods, for example, the 50 ppm of uranium(VI) was almost completely removed in 60 min, representing one of the most effective visible-light-driven photocatalytic removal. The effects of catalyst dosage, hole scavenger (CH3OH) dosage and solution pH on the photocatalytic reactions, as well as the photoreduction mechanisms were investigated in detail. In addition, ZnFe2O4 rods own good stability, recyclability and magnetic separability. All these features make ZnFe2O4 a promising photocatalyst for radioactive environmental remediation. |
---|---|
AbstractList | Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable catalysts are extremely limited. Herein, we report a first study of visible-light-driven photocatalytic reduction of uranium(VI) using visible light responsive ZnFe2O4. The ZnFe2O4 catalysts with different morphologies were successfully obtained and well characterized. The photoreduction of uranium(VI) under visible light was achieved over these ZnFe2O4 samples with the activity order of rods > microspheres > nanoparticles. Using ZnFe2O4 rods, for example, the 50 ppm of uranium(VI) was almost completely removed in 60 min, representing one of the most effective visible-light-driven photocatalytic removal. The effects of catalyst dosage, hole scavenger (CH3OH) dosage and solution pH on the photocatalytic reactions, as well as the photoreduction mechanisms were investigated in detail. In addition, ZnFe2O4 rods own good stability, recyclability and magnetic separability. All these features make ZnFe2O4 a promising photocatalyst for radioactive environmental remediation. [Display omitted] •Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in 60 min.•The photocatalytic activity of ZnFe2O4 is dependent on its morphology.•ZnFe2O4 rods own good stability, recyclability and magnetic separability. Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable catalysts are extremely limited. Herein, we report a first study of visible-light-driven photocatalytic reduction of uranium(VI) using visible light responsive ZnFe2O4. The ZnFe2O4 catalysts with different morphologies were successfully obtained and well characterized. The photoreduction of uranium(VI) under visible light was achieved over these ZnFe2O4 samples with the activity order of rods > microspheres > nanoparticles. Using ZnFe2O4 rods, for example, the 50 ppm of uranium(VI) was almost completely removed in 60 min, representing one of the most effective visible-light-driven photocatalytic removal. The effects of catalyst dosage, hole scavenger (CH3OH) dosage and solution pH on the photocatalytic reactions, as well as the photoreduction mechanisms were investigated in detail. In addition, ZnFe2O4 rods own good stability, recyclability and magnetic separability. All these features make ZnFe2O4 a promising photocatalyst for radioactive environmental remediation. |
ArticleNumber | 118688 |
Author | Liang, Peng-liang Yuan, Li-yong Li, Zi-jie Deng, Hao Wang, Lin Wang, Xu-cong Shi, Wei-qun Luo, Shi-zhong |
Author_xml | – sequence: 1 givenname: Peng-liang surname: Liang fullname: Liang, Peng-liang organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 2 givenname: Li-yong surname: Yuan fullname: Yuan, Li-yong email: yuanly@ihep.ac.cn organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 3 givenname: Hao surname: Deng fullname: Deng, Hao organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 4 givenname: Xu-cong surname: Wang fullname: Wang, Xu-cong organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 5 givenname: Lin surname: Wang fullname: Wang, Lin organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 6 givenname: Zi-jie surname: Li fullname: Li, Zi-jie organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China – sequence: 7 givenname: Shi-zhong surname: Luo fullname: Luo, Shi-zhong email: luosz@mail.buct.edu.cn organization: Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 8 givenname: Wei-qun orcidid: 0000-0002-2175-9572 surname: Shi fullname: Shi, Wei-qun email: shiwq@ihep.ac.cn organization: Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
BookMark | eNqFkE9LwzAYxoNMcJt-Aw8FL3rozJ82zTwIMpwKg3lQD15CmqRbSpfMJB3s29tSTx6U9_DCy_N7Xp5nAkbWWQ3AJYIzBBG9rWdiL0UsZxji7oQYZewEjBErSEoYIyMwhnNMU0IKcgYmIdQQQkwwG4P169ZF18GiOUYjE69VK6NxNnFV0nphTbu7_ni5ScpjshMbq3vRp11qvM6S1irtk4MJpmx00pjNNp6D00o0QV_87Cl4Xz6-LZ7T1frpZfGwSmUGYUzneY4VpFDJbvKSIlqSohBKMpXhMstJSRQhilFYYVQooRnOMk0LWkk0r-YVmYKrwXfv3VerQ-S1a73tXnKc4SLvLDDqVHeDSnoXgtcVlyaKPl70wjQcQd4XyGs-FMj7AvlQYAdnv-C9Nzvhj_9h9wOmu_gHoz0P0mgrtTJey8iVM38bfANTjo2h |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106690 crossref_primary_10_1016_j_talanta_2020_121974 crossref_primary_10_1016_j_jwpe_2024_106210 crossref_primary_10_1016_j_jhazmat_2022_129182 crossref_primary_10_1016_j_solidstatesciences_2022_106913 crossref_primary_10_1007_s11356_022_23236_w crossref_primary_10_1016_j_cjche_2021_11_026 crossref_primary_10_1016_j_cej_2024_152768 crossref_primary_10_1016_j_apcatb_2024_124721 crossref_primary_10_1016_j_partic_2022_03_004 crossref_primary_10_1039_D3EN00269A crossref_primary_10_1007_s10967_022_08508_6 crossref_primary_10_1021_acs_inorgchem_4c00597 crossref_primary_10_1016_j_cej_2023_146908 crossref_primary_10_1002_pen_26577 crossref_primary_10_1007_s10967_022_08523_7 crossref_primary_10_1016_j_envres_2025_121417 crossref_primary_10_1007_s10854_022_08355_x crossref_primary_10_1016_j_mtphys_2023_101140 crossref_primary_10_1016_j_cej_2021_131773 crossref_primary_10_1016_j_chemosphere_2022_134182 crossref_primary_10_1016_j_jphotochem_2024_115851 crossref_primary_10_1016_j_jhazmat_2021_127823 crossref_primary_10_1016_j_jssc_2021_122305 crossref_primary_10_1007_s10967_023_08772_0 crossref_primary_10_1016_j_cej_2021_131552 crossref_primary_10_1016_j_jclepro_2021_129821 crossref_primary_10_3390_w15203638 crossref_primary_10_1007_s12274_021_3916_8 crossref_primary_10_1016_j_jece_2023_110894 crossref_primary_10_1016_j_molstruc_2021_130734 crossref_primary_10_1016_j_cej_2024_156785 crossref_primary_10_1039_D4EN00163J crossref_primary_10_1016_j_molliq_2024_125440 crossref_primary_10_1016_j_susmat_2024_e00994 crossref_primary_10_1016_j_seppur_2024_129331 crossref_primary_10_1016_j_ceramint_2020_08_219 crossref_primary_10_1016_j_inoche_2022_110134 crossref_primary_10_1016_j_seppur_2024_127955 crossref_primary_10_1016_j_jcis_2024_04_106 crossref_primary_10_1016_j_cej_2023_144275 crossref_primary_10_1016_j_hazadv_2021_100017 crossref_primary_10_1039_D1EN00217A crossref_primary_10_1016_j_apcatb_2021_119978 crossref_primary_10_1016_j_jhazmat_2022_129734 crossref_primary_10_1016_j_jallcom_2022_164954 crossref_primary_10_1016_j_cej_2023_144705 crossref_primary_10_1016_j_seppur_2022_122292 crossref_primary_10_1016_j_seppur_2024_130437 crossref_primary_10_1016_j_cej_2024_152053 crossref_primary_10_1016_j_apcatb_2023_123460 crossref_primary_10_1016_j_cej_2021_129002 crossref_primary_10_1016_j_seppur_2023_123442 crossref_primary_10_1016_j_jallcom_2024_174422 crossref_primary_10_1007_s11164_021_04434_6 crossref_primary_10_1016_j_apsusc_2023_157842 crossref_primary_10_1016_j_cej_2023_144930 crossref_primary_10_1016_j_cej_2023_146315 crossref_primary_10_1039_D0NJ04519E crossref_primary_10_1039_D4TA00793J crossref_primary_10_1007_s11814_022_1140_1 crossref_primary_10_1016_j_cej_2021_133766 crossref_primary_10_1021_acs_inorgchem_4c03567 crossref_primary_10_1016_j_mtcomm_2024_110227 crossref_primary_10_1016_j_chemosphere_2023_139022 crossref_primary_10_4236_jamp_2021_97118 crossref_primary_10_1016_j_anucene_2020_107876 crossref_primary_10_1016_j_seppur_2021_120195 crossref_primary_10_1021_acsestengg_4c00415 crossref_primary_10_1016_j_molliq_2023_122295 crossref_primary_10_1016_j_cej_2021_130255 crossref_primary_10_1016_j_ccr_2021_214148 crossref_primary_10_1039_D4NJ03870C crossref_primary_10_1016_j_ceramint_2022_12_107 crossref_primary_10_1016_j_jece_2022_107170 crossref_primary_10_1007_s10967_023_09060_7 crossref_primary_10_1016_j_cej_2025_160199 crossref_primary_10_1016_j_jhazmat_2022_130018 crossref_primary_10_1016_j_colsurfa_2022_130127 crossref_primary_10_1016_j_cej_2021_129831 crossref_primary_10_1007_s11356_025_35897_4 crossref_primary_10_1016_j_jssc_2024_124689 crossref_primary_10_1016_j_jhazmat_2025_137878 crossref_primary_10_1016_j_colsurfa_2020_125685 crossref_primary_10_1016_j_jhazmat_2022_129005 crossref_primary_10_1016_j_colsurfa_2024_133799 crossref_primary_10_1016_j_envpol_2020_114797 crossref_primary_10_1016_j_desal_2024_118159 crossref_primary_10_1016_j_jssc_2025_125290 crossref_primary_10_1016_j_jhazmat_2024_136708 crossref_primary_10_1016_j_seppur_2022_122667 crossref_primary_10_1016_j_jssc_2022_123440 crossref_primary_10_1002_smll_202404417 crossref_primary_10_1016_j_cej_2023_141756 crossref_primary_10_1016_j_cej_2022_138044 crossref_primary_10_1016_j_chemosphere_2020_126671 crossref_primary_10_1016_j_seppur_2021_119627 crossref_primary_10_1016_j_ijhydene_2023_07_109 crossref_primary_10_1016_j_jhazmat_2023_131189 crossref_primary_10_1016_j_seppur_2023_123121 crossref_primary_10_3390_nano13132005 crossref_primary_10_1016_j_colsurfa_2022_129151 crossref_primary_10_1016_j_jallcom_2021_161616 crossref_primary_10_1016_j_jallcom_2025_179657 crossref_primary_10_1016_j_cej_2024_154319 crossref_primary_10_1016_j_cej_2021_129164 crossref_primary_10_1016_j_colsurfa_2022_129032 crossref_primary_10_1016_j_matlet_2024_137793 crossref_primary_10_1016_j_jhazmat_2020_123000 crossref_primary_10_1016_j_seppur_2022_122684 crossref_primary_10_1016_j_cej_2023_141742 crossref_primary_10_1016_j_jhazmat_2021_126912 crossref_primary_10_1016_j_jece_2024_112974 crossref_primary_10_1007_s00339_022_05763_y crossref_primary_10_1016_j_apcatb_2020_119523 crossref_primary_10_1007_s11426_022_1284_x crossref_primary_10_1016_j_chemosphere_2022_137041 crossref_primary_10_1016_j_jcis_2021_05_043 crossref_primary_10_1016_j_seppur_2022_122205 crossref_primary_10_1021_acsami_0c22800 crossref_primary_10_1016_j_cej_2022_138182 crossref_primary_10_1016_j_seppur_2022_122794 crossref_primary_10_1016_j_seppur_2022_122670 crossref_primary_10_1016_j_susmat_2025_e01251 crossref_primary_10_1016_j_jhazmat_2021_125812 crossref_primary_10_1016_j_jenvman_2025_124419 crossref_primary_10_1016_j_apcatb_2021_120250 crossref_primary_10_1039_D4QI02393E crossref_primary_10_1007_s11164_023_04993_w crossref_primary_10_1016_j_apcatb_2023_123525 crossref_primary_10_1016_j_apt_2022_103725 crossref_primary_10_1016_j_cej_2024_153322 crossref_primary_10_3390_sym13081325 crossref_primary_10_1016_j_jes_2024_06_008 crossref_primary_10_1016_j_jhazmat_2022_130211 crossref_primary_10_1007_s13762_020_03023_1 crossref_primary_10_1016_j_ceramint_2021_03_277 crossref_primary_10_1016_j_jclepro_2022_135494 crossref_primary_10_1016_j_ceramint_2023_11_071 crossref_primary_10_1016_j_jenvrad_2023_107168 crossref_primary_10_1016_j_ceramint_2020_04_234 crossref_primary_10_1016_j_cej_2024_151007 crossref_primary_10_1016_j_cej_2024_152341 crossref_primary_10_1016_j_cej_2021_133222 crossref_primary_10_1016_j_seppur_2024_131250 crossref_primary_10_1038_s41598_022_10036_y crossref_primary_10_1007_s10854_023_10640_2 crossref_primary_10_1021_acsanm_1c01077 crossref_primary_10_2139_ssrn_4171681 crossref_primary_10_1016_j_jssc_2023_123940 crossref_primary_10_1002_sus2_199 crossref_primary_10_1016_j_cej_2021_130756 crossref_primary_10_1016_j_apcatb_2022_121815 crossref_primary_10_1002_smll_202207378 crossref_primary_10_1016_j_jssc_2021_122499 crossref_primary_10_1016_j_jhazmat_2021_126209 crossref_primary_10_1016_j_envpol_2021_117490 crossref_primary_10_1039_D2NR01000C crossref_primary_10_1002_adfm_202410778 crossref_primary_10_1002_cssc_202400254 crossref_primary_10_1016_j_cej_2021_128553 crossref_primary_10_1016_j_seppur_2021_120418 crossref_primary_10_1016_j_jallcom_2024_176684 crossref_primary_10_1016_j_materresbull_2020_111125 crossref_primary_10_1016_j_optmat_2021_111396 crossref_primary_10_1016_j_apsusc_2022_153486 crossref_primary_10_3390_molecules27196330 crossref_primary_10_1007_s12274_024_6545_1 crossref_primary_10_1007_s41365_023_01180_9 crossref_primary_10_1016_j_jclepro_2023_139093 crossref_primary_10_1039_D1TA00386K crossref_primary_10_1002_adfm_202421623 crossref_primary_10_1002_ejic_202101005 crossref_primary_10_1016_j_apsusc_2020_147754 crossref_primary_10_2139_ssrn_4045410 crossref_primary_10_1016_j_arabjc_2021_103261 crossref_primary_10_1007_s10854_025_14387_w crossref_primary_10_1007_s10967_023_08942_0 crossref_primary_10_1016_j_cej_2021_133121 crossref_primary_10_1039_D4NJ04930F crossref_primary_10_1016_j_isci_2021_103230 crossref_primary_10_1016_j_seppur_2022_120987 crossref_primary_10_1080_10934529_2020_1835389 crossref_primary_10_1016_j_materresbull_2023_112508 crossref_primary_10_1016_j_jhazmat_2020_124147 crossref_primary_10_1038_s41893_021_00709_3 crossref_primary_10_1039_D4SC00011K crossref_primary_10_1002_smll_202407177 crossref_primary_10_1016_j_jssc_2021_122236 crossref_primary_10_1016_j_apcatb_2020_119578 crossref_primary_10_1016_j_seppur_2022_121707 crossref_primary_10_1016_j_cej_2021_134449 crossref_primary_10_1007_s11783_024_1859_5 crossref_primary_10_1016_j_psep_2022_04_005 crossref_primary_10_2139_ssrn_4048706 crossref_primary_10_1016_j_materresbull_2024_112839 crossref_primary_10_1016_j_jcis_2022_07_191 crossref_primary_10_1016_j_seppur_2022_121296 crossref_primary_10_1007_s11664_024_11111_y crossref_primary_10_1016_j_cjche_2022_04_008 crossref_primary_10_1016_j_seppur_2024_130926 crossref_primary_10_1016_j_cej_2022_138317 crossref_primary_10_1016_j_seppur_2024_130004 crossref_primary_10_1016_j_apcatb_2023_122965 crossref_primary_10_1016_j_seppur_2024_128606 crossref_primary_10_1002_adfm_202302913 crossref_primary_10_1016_j_apcatb_2022_122202 crossref_primary_10_1016_j_ceramint_2021_03_020 crossref_primary_10_1021_acsaem_2c02169 crossref_primary_10_3390_su162411023 crossref_primary_10_2139_ssrn_3967984 crossref_primary_10_1002_advs_202406535 crossref_primary_10_1016_j_apcatb_2021_120625 crossref_primary_10_1021_acs_inorgchem_4c01423 crossref_primary_10_1007_s10967_024_09512_8 crossref_primary_10_3390_polym15020279 crossref_primary_10_1016_j_jhazmat_2023_131581 crossref_primary_10_2139_ssrn_4138200 crossref_primary_10_1016_j_apcatb_2022_121581 crossref_primary_10_1016_j_ccr_2022_214615 crossref_primary_10_1016_j_cej_2021_132962 crossref_primary_10_1016_j_cej_2021_133139 crossref_primary_10_1016_j_seppur_2022_122816 crossref_primary_10_1016_j_jssc_2022_123160 crossref_primary_10_1021_jacs_3c07047 crossref_primary_10_1016_j_seppur_2024_126537 |
Cites_doi | 10.1021/acsami.5b04118 10.1016/j.envpol.2019.02.025 10.1016/j.ultsonch.2017.11.025 10.1021/acs.est.6b04460 10.1016/j.jhazmat.2019.02.074 10.1039/c4ra02697g 10.1002/cphc.201500949 10.1007/s11426-014-5194-8 10.1016/j.cej.2009.08.008 10.1021/acs.inorgchem.8b02803 10.1016/j.matlet.2011.06.101 10.1021/acs.est.6b05313 10.1016/j.apcatb.2015.09.056 10.1016/j.apsusc.2015.11.112 10.1002/adfm.201502970 10.1016/j.jhazmat.2010.05.069 10.1016/j.molliq.2016.01.062 10.1039/C5TA00737B 10.1039/C5CC08373G 10.1021/acsami.5b03537 10.1039/C7TA02048A 10.1021/cm0401802 10.1016/j.ceramint.2016.04.115 10.1016/j.cej.2018.11.008 10.1016/j.electacta.2007.09.059 10.1016/j.apcatb.2018.04.039 10.1039/C8TA12168K 10.1016/j.cej.2018.11.092 10.1021/ja308028n 10.1016/j.apcatb.2018.01.045 10.1039/C7CC06740B 10.1021/acs.est.8b03711 10.1039/c2jm31766d 10.1016/j.jhazmat.2015.02.028 10.1016/S0927-7757(98)00506-8 10.1016/j.jallcom.2012.10.105 10.1016/j.apcatb.2018.02.062 10.1016/j.matlet.2016.05.094 10.1016/S1010-6030(03)00171-0 10.1016/j.jechem.2016.10.015 10.1016/j.apcatb.2018.01.062 10.1016/j.jcat.2019.01.009 10.1007/s10967-017-5278-y 10.1016/j.jeurceramsoc.2007.02.165 10.1021/jp0732763 10.1039/C4TA04878D 10.1016/j.jhazmat.2015.02.042 10.1016/j.chemosphere.2018.08.070 10.1016/j.apcatb.2016.07.036 10.1039/C4NJ02106A 10.1016/j.ceramint.2013.03.101 10.1016/j.apsusc.2017.06.065 10.1039/C7DT02639K 10.1021/acsanm.9b00205 10.1039/b919897k 10.1016/j.seppur.2016.12.043 10.1016/j.cej.2019.02.013 10.1016/j.apcatb.2016.12.043 10.1038/419134a 10.1039/C7CC07527H 10.1021/es9036308 10.1039/B313356G |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Jun 15, 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jun 15, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.118688 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_118688 S092633732030103X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-9552d060dcdcd5b616b377adc8d42b453b3d33d860f217dae8244e676fc19f9f3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 10:35:40 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Tue Jul 01 04:35:03 EDT 2025 Sat Mar 02 16:00:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Visible light ZnFe2O4 Magnetic separation Uranium(VI) photoreduction Morphology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-9552d060dcdcd5b616b377adc8d42b453b3d33d860f217dae8244e676fc19f9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2175-9572 |
PQID | 2427545321 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2427545321 crossref_citationtrail_10_1016_j_apcatb_2020_118688 crossref_primary_10_1016_j_apcatb_2020_118688 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_118688 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Deng, Li, Wang, Yuan, Lan, Chang, Chai, Shi (bib0115) 2019; 2 Yuan, Liu, Shi, Li, Lan, Feng, Zhao, Yuan, Chai (bib0025) 2012; 22 Vadiyar, Bhise, Patil, Kolekar, Shelke, Deshpande, Chang, Ghule, Ghule (bib0180) 2016; 52 Jia, Ren, Liang, Zhu (bib0235) 2011; 65 Talebian, Jafarinezhad (bib0305) 2013; 39 Zinatloo-Ajabshir, Salavati-Niasari, Zinatloo-Ajabshir (bib0280) 2016; 180 Yan, Hua, Bao, Yang, Liu, Deng (bib0060) 2010; 44 Zinatloo-Ajabshir, Salavati-Niasari (bib0270) 2015; 39 Zhu, Cai, Liu, Fang, Tan, Liu, Kong, Xu, Mei, Hayat (bib0120) 2019; 248 Li, Wang, Guo, Sun, Liu, Liang, Lu (bib0175) 2015; 7 Chen, Chen, Ren, Alsaedi, Hayat (bib0095) 2019; 359 Lakaniemi, Douglas, Kaksonen (bib0085) 2019; 371 Lu, Chen, Wu, Fan, Liu, Le, Jiang, Song (bib0135) 2016; 360 Zhu, Guijarro, Liu, Schouwink, Wells, Le Formal, Sun, Gao, Sivula (bib0190) 2018; 30 Guo, Niu, Liang, Niu, Huang, Zhang, Tang, Yang, Feng, Zeng (bib0195) 2019; 370 Sprynskyy, Kovalchuk, Buszewski (bib0325) 2010; 181 Huang, Zhu, Zhang, Zhang, Cao, Shen, Ho, Lee (bib0210) 2018; 234 Bai, Yuan, Zhu, Liu, Chu, Zheng, Zhang, Chai, Shi (bib0030) 2015; 3 Wu, Jiang, Song, Sun (bib0150) 2018; 430 Wang, Song, Yuan, Li, Zhang, Gibson, Zheng, Chai, Shi (bib0070) 2018; 52 He, Zong, Dong, Yang, Ke, Liu, Nie, Ren, Bian (bib0055) 2017; 313 Skliri, Miao, Xie, Liu, Salim, Liu, Zhang, Armatas (bib0225) 2018; 227 Ke, Li, Wu, Jiang, Luo, Liu, Le, Sun, Song (bib0140) 2017; 205 Sharma, Sharma, Rao, Chowdari (bib0185) 2008; 53 Wang, Tao, Yuan, Liu, Huang, Chai, Gibson, Shi (bib0040) 2017; 53 Yuan, Sun, Liao, Zhao, Chai, Shi (bib0015) 2014; 57 Fan, Gu, Yang, Li (bib0250) 2009; 155 Huang, Li, Wu, Zheng, Zhou, Chai, Wang, Shi (bib0020) 2018; 5 Chen, Ollis, Rulkens, Bruning (bib0045) 1999; 151 Dhiman, Sharma, Kumar, Singhal (bib0285) 2016; 42 Manos, Kanatzidis (bib0005) 2012; 134 Tan, Beydoun, Amal (bib0320) 2003; 159 Yang, Feng, Jiang, Wu, Sheng, Jiang, Wei, Fan (bib0200) 2015; 25 Li, Huang, Guo, Wang, Zheng, Cha, Shi (bib0110) 2017; 51 Lu, Zhang, Jiang, Wu, Song, Zhu, Lou, Li, Liu, Liu, Wang, Le (bib0145) 2017; 200 Yao, Zeng, Goya, Torres, Liu, Wu, Ge, Zeng, Wang, Jiang (bib0165) 2007; 111 Lv, Ma, Zeng, Ke, Peng (bib0215) 2010; 20 Wu, Xu, Li, Tong, Chen, Han, Wu, Zhang (bib0170) 2018; 57 Cai, Zhang, Liu, Shan, Zhang, Dionysiou (bib0290) 2016; 182 Huang, Liang, Rao, Zhu, Cao, Shen, Ho, Lee (bib0205) 2017; 51 Li, Wang, Yuan, Xiao, Mei, Zheng, Zhang, Yang, Zhao, Zhu, Chai (bib0065) 2015; 290 Duan, Ji, Liu, Zhao, Han, Tian, Zhao (bib0075) 2019; 359 Veith, Haas, Huch (bib0240) 2005; 17 Song, Zhu, Li, Lou, Xiao, Ye (bib0220) 2015; 3 Jiang, Xing, Luo, Li, Zou, Liu, Li, Wang (bib0050) 2018; 228 Motahari, Mozdianfard, Soofivand, Salavati-Niasari (bib0275) 2014; 4 Yao, Qin, Chen, Wei, Liu, Wang, Wang (bib0315) 2015; 291 Evans, Nicholson, Faith, Kan (bib0080) 2004; 6 Mortazavi-Derazkola, Salavati-Niasari, Amiri, Abbasi (bib0160) 2017; 26 Meichtry, Levy, Mohamed, Dillert, Bahnemann, Litter (bib0105) 2016; 17 Liu, Li, Zhao, Hou, Chen (bib0255) 2017; 5 Li, Luo, Liu, Gao, Duan (bib0260) 2019; 7 Zinatloo-Ajabshir, Salavati-Niasari, Zinatloo-Ajabshir (bib0310) 2017; 177 Abbasi, Ghanbari, Salavati-Niasari, Hamadanian (bib0155) 2016; 27 Yuan, Tian, Lan, Cao, Wang, Chai, Gibson, Shi (bib0035) 2018; 54 Liu, Du, Pan, Dang, Qian, Liu, Liu, Zhao (bib0125) 2018; 231 Feng, Yang, He, Niu, Zhang, Ding, Liang, Feng (bib0130) 2018; 212 Maletin, Moshopoulou, Kontos, Devlin, Delimitis, Zaspalis, Nalbandian, Srdic (bib0295) 2007; 27 Monsef, Ghiyasiyan-Arani, Salavati-Niasari (bib0300) 2018; 42 Li, Wang, Wang, Liang, He, Pan, Fan, Wang (bib0100) 2019; 365 Chen, Fang, Zhang, Yang (bib0245) 2013; 550 Guo, Guo, Wang, Li, Kong, Wang, Li, Liu (bib0010) 2017; 46 Zhou, Li, Sun, Sun, Liang, Liu, Hu, Lu (bib0230) 2015; 7 Suzuki, Kelly, Kemner, Banfield (bib0090) 2002; 419 Zinatloo-Ajabshir, Salavati-Niasari (bib0265) 2016; 216 Zhu (10.1016/j.apcatb.2020.118688_bib0120) 2019; 248 Jia (10.1016/j.apcatb.2020.118688_bib0235) 2011; 65 Wang (10.1016/j.apcatb.2020.118688_bib0070) 2018; 52 Feng (10.1016/j.apcatb.2020.118688_bib0130) 2018; 212 Maletin (10.1016/j.apcatb.2020.118688_bib0295) 2007; 27 Lu (10.1016/j.apcatb.2020.118688_bib0135) 2016; 360 Fan (10.1016/j.apcatb.2020.118688_bib0250) 2009; 155 Abbasi (10.1016/j.apcatb.2020.118688_bib0155) 2016; 27 Wang (10.1016/j.apcatb.2020.118688_bib0040) 2017; 53 Jiang (10.1016/j.apcatb.2020.118688_bib0050) 2018; 228 Mortazavi-Derazkola (10.1016/j.apcatb.2020.118688_bib0160) 2017; 26 Guo (10.1016/j.apcatb.2020.118688_bib0195) 2019; 370 Li (10.1016/j.apcatb.2020.118688_bib0260) 2019; 7 Deng (10.1016/j.apcatb.2020.118688_bib0115) 2019; 2 Yao (10.1016/j.apcatb.2020.118688_bib0315) 2015; 291 Huang (10.1016/j.apcatb.2020.118688_bib0020) 2018; 5 Yuan (10.1016/j.apcatb.2020.118688_bib0025) 2012; 22 Yan (10.1016/j.apcatb.2020.118688_bib0060) 2010; 44 Chen (10.1016/j.apcatb.2020.118688_bib0245) 2013; 550 Monsef (10.1016/j.apcatb.2020.118688_bib0300) 2018; 42 Li (10.1016/j.apcatb.2020.118688_bib0065) 2015; 290 Yang (10.1016/j.apcatb.2020.118688_bib0200) 2015; 25 Lu (10.1016/j.apcatb.2020.118688_bib0145) 2017; 200 Talebian (10.1016/j.apcatb.2020.118688_bib0305) 2013; 39 Veith (10.1016/j.apcatb.2020.118688_bib0240) 2005; 17 Wu (10.1016/j.apcatb.2020.118688_bib0150) 2018; 430 Song (10.1016/j.apcatb.2020.118688_bib0220) 2015; 3 Bai (10.1016/j.apcatb.2020.118688_bib0030) 2015; 3 Duan (10.1016/j.apcatb.2020.118688_bib0075) 2019; 359 Cai (10.1016/j.apcatb.2020.118688_bib0290) 2016; 182 Yuan (10.1016/j.apcatb.2020.118688_bib0015) 2014; 57 Li (10.1016/j.apcatb.2020.118688_bib0175) 2015; 7 Tan (10.1016/j.apcatb.2020.118688_bib0320) 2003; 159 Huang (10.1016/j.apcatb.2020.118688_bib0205) 2017; 51 Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0265) 2016; 216 Dhiman (10.1016/j.apcatb.2020.118688_bib0285) 2016; 42 Zhu (10.1016/j.apcatb.2020.118688_bib0190) 2018; 30 Yao (10.1016/j.apcatb.2020.118688_bib0165) 2007; 111 Li (10.1016/j.apcatb.2020.118688_bib0110) 2017; 51 Guo (10.1016/j.apcatb.2020.118688_bib0010) 2017; 46 Yuan (10.1016/j.apcatb.2020.118688_bib0035) 2018; 54 He (10.1016/j.apcatb.2020.118688_bib0055) 2017; 313 Vadiyar (10.1016/j.apcatb.2020.118688_bib0180) 2016; 52 Motahari (10.1016/j.apcatb.2020.118688_bib0275) 2014; 4 Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0310) 2017; 177 Suzuki (10.1016/j.apcatb.2020.118688_bib0090) 2002; 419 Lakaniemi (10.1016/j.apcatb.2020.118688_bib0085) 2019; 371 Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0270) 2015; 39 Sprynskyy (10.1016/j.apcatb.2020.118688_bib0325) 2010; 181 Sharma (10.1016/j.apcatb.2020.118688_bib0185) 2008; 53 Lv (10.1016/j.apcatb.2020.118688_bib0215) 2010; 20 Zhou (10.1016/j.apcatb.2020.118688_bib0230) 2015; 7 Meichtry (10.1016/j.apcatb.2020.118688_bib0105) 2016; 17 Zinatloo-Ajabshir (10.1016/j.apcatb.2020.118688_bib0280) 2016; 180 Chen (10.1016/j.apcatb.2020.118688_bib0095) 2019; 359 Li (10.1016/j.apcatb.2020.118688_bib0100) 2019; 365 Huang (10.1016/j.apcatb.2020.118688_bib0210) 2018; 234 Manos (10.1016/j.apcatb.2020.118688_bib0005) 2012; 134 Chen (10.1016/j.apcatb.2020.118688_bib0045) 1999; 151 Liu (10.1016/j.apcatb.2020.118688_bib0255) 2017; 5 Liu (10.1016/j.apcatb.2020.118688_bib0125) 2018; 231 Evans (10.1016/j.apcatb.2020.118688_bib0080) 2004; 6 Wu (10.1016/j.apcatb.2020.118688_bib0170) 2018; 57 Skliri (10.1016/j.apcatb.2020.118688_bib0225) 2018; 227 Ke (10.1016/j.apcatb.2020.118688_bib0140) 2017; 205 |
References_xml | – volume: 227 start-page: 330 year: 2018 end-page: 339 ident: bib0225 publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 17811 year: 2015 end-page: 17818 ident: bib0175 publication-title: ACS Appl. Mater. Interfaces – volume: 181 start-page: 700 year: 2010 end-page: 707 ident: bib0325 publication-title: J. Hazard. Mater. – volume: 419 start-page: 134 year: 2002 ident: bib0090 publication-title: Nature – volume: 57 start-page: 15481 year: 2018 end-page: 15488 ident: bib0170 publication-title: Inorg. Chem. – volume: 359 start-page: 944 year: 2019 end-page: 954 ident: bib0095 publication-title: Chem. Eng. J. – volume: 248 start-page: 448 year: 2019 end-page: 455 ident: bib0120 publication-title: Environ. Pollut. – volume: 42 start-page: 12594 year: 2016 end-page: 12605 ident: bib0285 publication-title: Ceram. Int. – volume: 313 start-page: 59 year: 2017 end-page: 67 ident: bib0055 publication-title: J. Radioanal. Nucl. Chem. – volume: 228 start-page: 29 year: 2018 end-page: 38 ident: bib0050 publication-title: Appl. Catal. B: Environ. – volume: 52 start-page: 10748 year: 2018 end-page: 10756 ident: bib0070 publication-title: Environ. Sci. Technol. – volume: 360 start-page: 1016 year: 2016 end-page: 1022 ident: bib0135 publication-title: Appl. Surf. Sci. – volume: 2 start-page: 2283 year: 2019 end-page: 2294 ident: bib0115 publication-title: ACS Appl. Nano Mater. – volume: 51 start-page: 5666 year: 2017 end-page: 5674 ident: bib0110 publication-title: Environ. Sci. Technol. – volume: 26 start-page: 17 year: 2017 end-page: 23 ident: bib0160 publication-title: J. Energ. Chem. – volume: 25 start-page: 7080 year: 2015 end-page: 7087 ident: bib0200 publication-title: Adv. Funct. Mater. – volume: 134 start-page: 16441 year: 2012 end-page: 16446 ident: bib0005 publication-title: J. Am. Chem. Soc. – volume: 205 start-page: 319 year: 2017 end-page: 326 ident: bib0140 publication-title: Appl. Catal. B: Environ. – volume: 39 start-page: 8311 year: 2013 end-page: 8317 ident: bib0305 publication-title: Ceram. Int. – volume: 151 start-page: 339 year: 1999 end-page: 349 ident: bib0045 publication-title: Colloid. Surface. A – volume: 370 start-page: 289 year: 2019 end-page: 303 ident: bib0195 publication-title: J. Catal. – volume: 7 start-page: 5539 year: 2019 end-page: 5551 ident: bib0260 publication-title: J. Mater. Chem. A – volume: 3 start-page: 525 year: 2015 end-page: 534 ident: bib0030 publication-title: J. Mater. Chem. A – volume: 159 start-page: 273 year: 2003 end-page: 280 ident: bib0320 publication-title: J. Photochem. Photobiol. A – volume: 30 year: 2018 ident: bib0190 publication-title: Adv. Mater. – volume: 20 start-page: 3665 year: 2010 end-page: 3672 ident: bib0215 publication-title: J. Mater. Chem. – volume: 22 start-page: 17019 year: 2012 end-page: 17026 ident: bib0025 publication-title: J. Mater. Chem. – volume: 6 start-page: 196 year: 2004 end-page: 197 ident: bib0080 publication-title: Green Chem. – volume: 27 start-page: 4391 year: 2007 end-page: 4394 ident: bib0295 publication-title: J. Eur. Ceram. Soc. – volume: 550 start-page: 348 year: 2013 end-page: 352 ident: bib0245 publication-title: J. Alloys Compd. – volume: 53 start-page: 2380 year: 2008 end-page: 2385 ident: bib0185 publication-title: Electrochim. Acta – volume: 46 start-page: 14762 year: 2017 end-page: 14770 ident: bib0010 publication-title: Dalton Trans. – volume: 200 start-page: 378 year: 2017 end-page: 385 ident: bib0145 publication-title: Appl. Catal. B: Environ. – volume: 155 start-page: 534 year: 2009 end-page: 541 ident: bib0250 publication-title: Chem. Eng. J. – volume: 212 start-page: 114 year: 2018 end-page: 123 ident: bib0130 publication-title: Chemosphere – volume: 42 start-page: 201 year: 2018 end-page: 211 ident: bib0300 publication-title: Ultrason. Sonochem. – volume: 180 start-page: 27 year: 2016 end-page: 30 ident: bib0280 publication-title: Mater. Lett. – volume: 17 start-page: 885 year: 2016 end-page: 892 ident: bib0105 publication-title: Chemphyschem – volume: 3 start-page: 8353 year: 2015 end-page: 8360 ident: bib0220 publication-title: J. Mater. Chem. A – volume: 371 start-page: 198 year: 2019 end-page: 212 ident: bib0085 publication-title: J. Hazard. Mater. – volume: 216 start-page: 545 year: 2016 end-page: 551 ident: bib0265 publication-title: J. Mol. Liq. – volume: 65 start-page: 3116 year: 2011 end-page: 3119 ident: bib0235 publication-title: Mater. Lett. – volume: 231 start-page: 11 year: 2018 end-page: 22 ident: bib0125 publication-title: Appl. Catal. B: Environ. – volume: 52 start-page: 2557 year: 2016 end-page: 2560 ident: bib0180 publication-title: Chem. Commun. – volume: 54 start-page: 370 year: 2018 end-page: 373 ident: bib0035 publication-title: Chem. Commun. – volume: 234 start-page: 70 year: 2018 end-page: 78 ident: bib0210 publication-title: Appl. Catal. B: Environ. – volume: 39 start-page: 3948 year: 2015 end-page: 3955 ident: bib0270 publication-title: New J. Chem. – volume: 430 start-page: 371 year: 2018 end-page: 379 ident: bib0150 publication-title: Appl. Surf. Sci. – volume: 27 start-page: 4800 year: 2016 end-page: 4809 ident: bib0155 publication-title: J. Mater. Sci: Mater. Electron. – volume: 53 start-page: 12084 year: 2017 end-page: 12087 ident: bib0040 publication-title: Chem. Commun. – volume: 359 start-page: 1617 year: 2019 end-page: 1628 ident: bib0075 publication-title: Chem. Eng. J. – volume: 44 start-page: 7783 year: 2010 end-page: 7789 ident: bib0060 publication-title: Environ. Sci. Technol. – volume: 290 start-page: 26 year: 2015 end-page: 33 ident: bib0065 publication-title: W.-Q. Shi. J. Hazard. Mater. – volume: 5 start-page: 2077 year: 2018 end-page: 2087 ident: bib0020 publication-title: Environ. Sci.: Nano – volume: 7 start-page: 15414 year: 2015 end-page: 15421 ident: bib0230 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 1432 year: 2014 end-page: 1438 ident: bib0015 publication-title: Sci. China Chem. – volume: 51 start-page: 2924 year: 2017 end-page: 2933 ident: bib0205 publication-title: Environ. Sci. Technol. – volume: 17 start-page: 95 year: 2005 end-page: 101 ident: bib0240 publication-title: Chem. Mater. – volume: 291 start-page: 28 year: 2015 end-page: 37 ident: bib0315 publication-title: J. Hazard. Mater. – volume: 182 start-page: 456 year: 2016 end-page: 468 ident: bib0290 publication-title: Appl. Catal. B: Environ. – volume: 365 start-page: 231 year: 2019 end-page: 241 ident: bib0100 publication-title: Chem. Eng. J. – volume: 111 start-page: 12274 year: 2007 end-page: 12278 ident: bib0165 publication-title: J. Phys. Chem. C – volume: 5 start-page: 8909 year: 2017 end-page: 8915 ident: bib0255 publication-title: J. Mater. Chem. A – volume: 4 start-page: 27654 year: 2014 end-page: 27660 ident: bib0275 publication-title: RSC Adv. – volume: 177 start-page: 110 year: 2017 end-page: 120 ident: bib0310 publication-title: Sep. Purif. Technol. – volume: 7 start-page: 17811 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0175 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b04118 – volume: 248 start-page: 448 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0120 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.025 – volume: 42 start-page: 201 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0300 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2017.11.025 – volume: 51 start-page: 2924 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0205 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04460 – volume: 371 start-page: 198 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0085 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.02.074 – volume: 4 start-page: 27654 year: 2014 ident: 10.1016/j.apcatb.2020.118688_bib0275 publication-title: RSC Adv. doi: 10.1039/c4ra02697g – volume: 17 start-page: 885 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0105 publication-title: Chemphyschem doi: 10.1002/cphc.201500949 – volume: 57 start-page: 1432 year: 2014 ident: 10.1016/j.apcatb.2020.118688_bib0015 publication-title: Sci. China Chem. doi: 10.1007/s11426-014-5194-8 – volume: 155 start-page: 534 year: 2009 ident: 10.1016/j.apcatb.2020.118688_bib0250 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.08.008 – volume: 57 start-page: 15481 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0170 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02803 – volume: 65 start-page: 3116 year: 2011 ident: 10.1016/j.apcatb.2020.118688_bib0235 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.06.101 – volume: 51 start-page: 5666 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0110 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05313 – volume: 182 start-page: 456 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0290 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2015.09.056 – volume: 360 start-page: 1016 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0135 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.112 – volume: 25 start-page: 7080 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0200 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502970 – volume: 181 start-page: 700 year: 2010 ident: 10.1016/j.apcatb.2020.118688_bib0325 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.05.069 – volume: 216 start-page: 545 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0265 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.01.062 – volume: 3 start-page: 8353 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0220 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00737B – volume: 52 start-page: 2557 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0180 publication-title: Chem. Commun. doi: 10.1039/C5CC08373G – volume: 7 start-page: 15414 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0230 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03537 – volume: 5 start-page: 8909 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0255 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02048A – volume: 17 start-page: 95 year: 2005 ident: 10.1016/j.apcatb.2020.118688_bib0240 publication-title: Chem. Mater. doi: 10.1021/cm0401802 – volume: 42 start-page: 12594 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0285 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.04.115 – volume: 359 start-page: 1617 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0075 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.008 – volume: 53 start-page: 2380 year: 2008 ident: 10.1016/j.apcatb.2020.118688_bib0185 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.09.059 – volume: 234 start-page: 70 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0210 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.04.039 – volume: 7 start-page: 5539 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0260 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12168K – volume: 359 start-page: 944 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0095 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.092 – volume: 134 start-page: 16441 year: 2012 ident: 10.1016/j.apcatb.2020.118688_bib0005 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308028n – volume: 227 start-page: 330 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0225 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.01.045 – volume: 53 start-page: 12084 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0040 publication-title: Chem. Commun. doi: 10.1039/C7CC06740B – volume: 52 start-page: 10748 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0070 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03711 – volume: 22 start-page: 17019 year: 2012 ident: 10.1016/j.apcatb.2020.118688_bib0025 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31766d – volume: 290 start-page: 26 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0065 publication-title: W.-Q. Shi. J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.028 – volume: 151 start-page: 339 year: 1999 ident: 10.1016/j.apcatb.2020.118688_bib0045 publication-title: Colloid. Surface. A doi: 10.1016/S0927-7757(98)00506-8 – volume: 550 start-page: 348 year: 2013 ident: 10.1016/j.apcatb.2020.118688_bib0245 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.10.105 – volume: 231 start-page: 11 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0125 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.02.062 – volume: 180 start-page: 27 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0280 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.05.094 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0190 publication-title: Adv. Mater. – volume: 159 start-page: 273 year: 2003 ident: 10.1016/j.apcatb.2020.118688_bib0320 publication-title: J. Photochem. Photobiol. A doi: 10.1016/S1010-6030(03)00171-0 – volume: 26 start-page: 17 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0160 publication-title: J. Energ. Chem. doi: 10.1016/j.jechem.2016.10.015 – volume: 228 start-page: 29 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0050 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.01.062 – volume: 370 start-page: 289 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0195 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.01.009 – volume: 313 start-page: 59 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0055 publication-title: J. Radioanal. Nucl. Chem. doi: 10.1007/s10967-017-5278-y – volume: 27 start-page: 4391 year: 2007 ident: 10.1016/j.apcatb.2020.118688_bib0295 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2007.02.165 – volume: 111 start-page: 12274 year: 2007 ident: 10.1016/j.apcatb.2020.118688_bib0165 publication-title: J. Phys. Chem. C doi: 10.1021/jp0732763 – volume: 3 start-page: 525 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0030 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04878D – volume: 291 start-page: 28 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0315 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.042 – volume: 5 start-page: 2077 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0020 publication-title: Environ. Sci.: Nano – volume: 212 start-page: 114 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0130 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.070 – volume: 27 start-page: 4800 year: 2016 ident: 10.1016/j.apcatb.2020.118688_bib0155 publication-title: J. Mater. Sci: Mater. Electron. – volume: 200 start-page: 378 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0145 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.07.036 – volume: 39 start-page: 3948 year: 2015 ident: 10.1016/j.apcatb.2020.118688_bib0270 publication-title: New J. Chem. doi: 10.1039/C4NJ02106A – volume: 39 start-page: 8311 year: 2013 ident: 10.1016/j.apcatb.2020.118688_bib0305 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.03.101 – volume: 430 start-page: 371 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0150 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.06.065 – volume: 46 start-page: 14762 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0010 publication-title: Dalton Trans. doi: 10.1039/C7DT02639K – volume: 2 start-page: 2283 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0115 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00205 – volume: 20 start-page: 3665 year: 2010 ident: 10.1016/j.apcatb.2020.118688_bib0215 publication-title: J. Mater. Chem. doi: 10.1039/b919897k – volume: 177 start-page: 110 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0310 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.12.043 – volume: 365 start-page: 231 year: 2019 ident: 10.1016/j.apcatb.2020.118688_bib0100 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.013 – volume: 205 start-page: 319 year: 2017 ident: 10.1016/j.apcatb.2020.118688_bib0140 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.12.043 – volume: 419 start-page: 134 year: 2002 ident: 10.1016/j.apcatb.2020.118688_bib0090 publication-title: Nature doi: 10.1038/419134a – volume: 54 start-page: 370 year: 2018 ident: 10.1016/j.apcatb.2020.118688_bib0035 publication-title: Chem. Commun. doi: 10.1039/C7CC07527H – volume: 44 start-page: 7783 year: 2010 ident: 10.1016/j.apcatb.2020.118688_bib0060 publication-title: Environ. Sci. Technol. doi: 10.1021/es9036308 – volume: 6 start-page: 196 year: 2004 ident: 10.1016/j.apcatb.2020.118688_bib0080 publication-title: Green Chem. doi: 10.1039/B313356G |
SSID | ssj0002328 |
Score | 2.6748633 |
Snippet | [Display omitted]
•Visible-light-driven photoreduction of U(VI) is achieved using ZnFe2O4 as catalyst.•50 ppm of uranium(VI) was almost completely removed in... Visible-light-driven photocatalytic reduction of uranium(VI) is becoming an effective manner to remove uranium(VI) from waste water, whereas applicable... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118688 |
SubjectTerms | Catalysts Dosage Environmental cleanup Light Magnetic separation Microspheres Morphology Nanoparticles Photocatalysis Photochemical reactions Photoreduction Recyclability Reduction Rods Uranium Uranium(VI) photoreduction Visible light Wastewater Zinc ferrites ZnFe2O4 |
Title | Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.118688 https://www.proquest.com/docview/2427545321 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CPKgH0dVgNIY-eNBDuzP9nDmGJctGMRE0snhp-jW6spldNrOHXPLb0zUPoyIEZE4zdDVDV1fV1019VQCvU9DLWVZUlAvpqfBlRUsXOPVe61h6WZUZspE_nqrZuXg_l_MdmAxcGEyr7H1_59Nbb91_GferOV4vFuPPWckU55ozRPUZnyODXWjc5e-ub9M8EmJovXEaTHH0QJ9rc7zs2tvGpVMiQ99RdP1X_hme_nLUbfSZPoZHPWwkR92fPYGdWI_g_mTo1jaCh78VFhzB3vEtfy2J9QZ8-RTOPv1YNav2zuYqTUU2WLkVdUNWFdmmuLXYXrz5evKWuCtyYb_XSHEk3-ppZGeCIN9sQ5CN7paRLPFY_wzOp8dfJjPa91SgPllrQ0spWchUFnx6pFO5clxrG3wRBHNCcscD56FQWZUOK8HGIsX_qLSqfF5WZcX3YLde1fE5EGkT9tNCWhaiiHmCGtYqzX3IhdXeun3gw1Ia3xccx74XSzNklv00nQIMKsB0CtgH-ktq3RXcuGO8HrRk_tg4JsWEOyQPBqWa3nAvTUIsOoFKzvIX_z3xS3iAb5hQlssD2G022_gqQZfGHbZ78xDuHZ18mJ3eAPxF7UI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigcECxUFAr4ABIcwiZ2HCcHDqh0tUtfSLRoxcX4FVi0za52s0J74U_xBxknDgWEVAmpyi2xLWtmMvPZmm8G4CkGvYTGeRmxlJsoNUUZFdqyyBghXGF4WcSejXx0nA3P0rdjPt6AHx0XxqdVBt_f-vTGW4c3_SDN_nwy6b-PC5oxJhj1qD5m45BZeeDW3_Dctnw1eoNKfkbpYP90bxiF1gKRQaOto4JzauMstgYfrrMk00wIZU1uU6pTzjSzjNk8i0vE7Fa5HMOgy0RWmqQoi5LhutfgOg7MfduEl98v8koQojTuH3cX-e11fL0mqUzNjao1Hkupd1Z52_Dln_Hwr8jQhLvBbbgVcCp53YriDmy4qgdbe117uB7c_K2SYQ-29y8IczgteIzlXTh592VWz5pLojUuRRa-VKw3BjIryQoD5WR1_vzD6AXRa3KuPleeU0k-VgNHT1LiCW4L4unveurI1N8j3IOzK5H0NmxWs8rdB8IVgk2RckWtS12C2EapTDBjk1QJo_QOsE6U0oQK577RxlR2qWxfZasA6RUgWwXsQPRr1ryt8HHJeNFpSf5hqRKD0CUzdzulyuAplhIhkkAUy2jy4L8XfgJbw9OjQ3k4Oj54CDf8F5_NlvBd2KwXK_cIcVOtHzd2SuDTVf8YPwG5oCkX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+reduction+of+uranium%28VI%29+by+magnetic+ZnFe2O4+under+visible+light&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Liang%2C+Peng-liang&rft.au=Yuan%2C+Li-yong&rft.au=Deng%2C+Hao&rft.au=Wang%2C+Xu-cong&rft.date=2020-06-15&rft.issn=0926-3373&rft.volume=267&rft.spage=118688&rft_id=info:doi/10.1016%2Fj.apcatb.2020.118688&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_118688 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |