Simulation of the Asphaltene Deposition Rate in Oil Wells under Different Multiphase Flow Condition
As the wellbore pressure falls below the bubble point pressure, the light components in the oil phase are liberated, forming additional vapor, and the single-phase flow becomes a gas–liquid two-phase flow. However, most studies simplify the multiphase flow to a single-phase flow to study asphaltene...
Saved in:
Published in | Energies (Basel) Vol. 17; no. 1; p. 121 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the wellbore pressure falls below the bubble point pressure, the light components in the oil phase are liberated, forming additional vapor, and the single-phase flow becomes a gas–liquid two-phase flow. However, most studies simplify the multiphase flow to a single-phase flow to study asphaltene deposition in wellbores. This assumption under multiphase conditions may lead to inaccurate prediction results and a substantial economic and operational burden for the oil and gas industry. Therefore, it is crucial to predict the deposition rate of asphaltene in a multiphase flow to assist in minimizing this issue. To do so, the volume of fluid coupling level-set (VOSET) model was used to obtain the flow pattern (bubble, slug, churn, and annular) in the current work. In the next step, the VOSET + k-ε turbulent + DPM models were used to simulate asphaltene deposition in a multiphase flow. Finally, the effects of different parameters, such as the gas superficial velocity, liquid superficial velocity, particle diameter, interfacial tension, viscosity, and average deposition rate, were investigated. The findings revealed that the maximum average deposition rate of asphaltene particles in a bubble flow is 1.35, 1.62, and 2 times that of a slug flow, churning flow, and annular mist flow, respectively. As the apparent velocity of the gas phase escalates from 0.5 m/s to 4 m/s, the average deposition rate experiences an increase of 82%. Similarly, when the apparent velocity of the liquid phase rises from 1 m/s to 5 m/s, the average deposition rate is amplified by a factor of 2.1. An increase in particle diameter from 50 μm to 400 μm results in a 27% increase in the average deposition rate. When the oil–gas interfacial tension is augmented from 0.02 n/m to 0.1 n/m, the average deposition rate witnesses an 18% increase. Furthermore, an increase in crude oil viscosity from 0.012 mPa·s to 0.06 mPa·s leads to a 34% increase in the average deposition rate. These research outcomes contribute to a deeper understanding of the asphaltene deposition problem under multiphase flow conditions and offer fresh perspectives on the asphaltene deposition issue in the oil and gas industry. |
---|---|
AbstractList | As the wellbore pressure falls below the bubble point pressure, the light components in the oil phase are liberated, forming additional vapor, and the single-phase flow becomes a gas–liquid two-phase flow. However, most studies simplify the multiphase flow to a single-phase flow to study asphaltene deposition in wellbores. This assumption under multiphase conditions may lead to inaccurate prediction results and a substantial economic and operational burden for the oil and gas industry. Therefore, it is crucial to predict the deposition rate of asphaltene in a multiphase flow to assist in minimizing this issue. To do so, the volume of fluid coupling level-set (VOSET) model was used to obtain the flow pattern (bubble, slug, churn, and annular) in the current work. In the next step, the VOSET + k-ε turbulent + DPM models were used to simulate asphaltene deposition in a multiphase flow. Finally, the effects of different parameters, such as the gas superficial velocity, liquid superficial velocity, particle diameter, interfacial tension, viscosity, and average deposition rate, were investigated. The findings revealed that the maximum average deposition rate of asphaltene particles in a bubble flow is 1.35, 1.62, and 2 times that of a slug flow, churning flow, and annular mist flow, respectively. As the apparent velocity of the gas phase escalates from 0.5 m/s to 4 m/s, the average deposition rate experiences an increase of 82%. Similarly, when the apparent velocity of the liquid phase rises from 1 m/s to 5 m/s, the average deposition rate is amplified by a factor of 2.1. An increase in particle diameter from 50 μm to 400 μm results in a 27% increase in the average deposition rate. When the oil–gas interfacial tension is augmented from 0.02 n/m to 0.1 n/m, the average deposition rate witnesses an 18% increase. Furthermore, an increase in crude oil viscosity from 0.012 mPa·s to 0.06 mPa·s leads to a 34% increase in the average deposition rate. These research outcomes contribute to a deeper understanding of the asphaltene deposition problem under multiphase flow conditions and offer fresh perspectives on the asphaltene deposition issue in the oil and gas industry. |
Audience | Academic |
Author | Zhang, Youheng Gao, Xiaodong Chen, Shun Dong, Pingchuan Wang, Xiaoming Tian, Ming Cui, Yongxing |
Author_xml | – sequence: 1 givenname: Xiaoming surname: Wang fullname: Wang, Xiaoming – sequence: 2 givenname: Pingchuan orcidid: 0000-0001-7987-2036 surname: Dong fullname: Dong, Pingchuan – sequence: 3 givenname: Youheng orcidid: 0009-0004-9894-7442 surname: Zhang fullname: Zhang, Youheng – sequence: 4 givenname: Xiaodong surname: Gao fullname: Gao, Xiaodong – sequence: 5 givenname: Shun surname: Chen fullname: Chen, Shun – sequence: 6 givenname: Ming surname: Tian fullname: Tian, Ming – sequence: 7 givenname: Yongxing surname: Cui fullname: Cui, Yongxing |
BookMark | eNptUV1rVDEUDFLBuvbFXxDwTdiaL2-Sx2VrtVAp-IGPITc5abNkkzXJRfz3xl1REZOHHCYzcw5nnqKzXDIg9JySS841eQWZSkIJZfQROqdaT2tKJD_7q36CLlrbkXE4p5zzc-Q-xv2SbI8l4xJwfwC8aYcHmzpkwFdwKC0ePz_YDjhmfBcT_gIpNbxkDxVfxRCgQu74_ZJ6HNIG-DqVb3hbsj9qn6HHwaYGF7_eFfp8_ebT9t369u7tzXZzu3aCkL7WgikxSSUZiBkcZzMH6q31igFY7pXgWssBqgDMSwI0CPDSaTVry-nEV-jm5OuL3ZlDjXtbv5tiozkCpd4bW3t0CYz12hI2jx1MQqhptBBE-FnBRC1MMgyvFyevQy1fF2jd7MpS8xjfME3ZpAmXrwfr8sS6t8M05lB6tW5cD_voRjohDnwjpaacqbHwFXp5ErhaWqsQfo9JifkZovkT4iCTf8gu9mNUo0tM_5P8AODcn28 |
CitedBy_id | crossref_primary_10_1063_5_0251349 |
Cites_doi | 10.1007/s12182-012-0242-5 10.1016/j.applthermaleng.2018.12.008 10.1017/S0022112065000824 10.1007/BF02008202 10.1016/j.petrol.2021.108833 10.1016/j.fuel.2013.09.069 10.2118/84609-PA 10.2118/994-PA 10.1021/ef0340460 10.1016/0301-9322(87)90002-4 10.1016/0032-5910(89)80008-7 10.1016/j.petrol.2015.01.037 10.1080/10916466.2021.2008972 10.18599/grs.2020.4.86-92 10.1016/j.wear.2016.12.021 10.1006/jcis.2002.8122 10.1021/ef990104z 10.1021/acsomega.1c05144 10.1021/ef010300h 10.2118/92-01-02 10.1021/acs.energyfuels.6b01289 10.1016/j.petrol.2016.12.017 10.1021/acs.energyfuels.7b01327 10.1021/ef049778m 10.1006/jcph.2001.6810 10.1016/0016-2361(90)90282-U 10.1016/j.jngse.2015.09.003 10.1021/ef049672r |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en17010121 |
DatabaseName | CrossRef ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_ad9a02b13364486d82404db8e61ae67f A779132833 10_3390_en17010121 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c400t-9428467872e4bec32b3e1daad82eea3d843997b3e8fe2d70e1f4ed7c98b9a3163 |
IEDL.DBID | BENPR |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:25:15 EDT 2025 Mon Jun 30 14:53:20 EDT 2025 Tue Jun 10 21:17:32 EDT 2025 Tue Jul 01 01:59:25 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-9428467872e4bec32b3e1daad82eea3d843997b3e8fe2d70e1f4ed7c98b9a3163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-9894-7442 0000-0001-7987-2036 |
OpenAccessLink | https://www.proquest.com/docview/2912690375?pq-origsite=%requestingapplication% |
PQID | 2912690375 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad9a02b13364486d82404db8e61ae67f proquest_journals_2912690375 gale_infotracacademiconefile_A779132833 crossref_primary_10_3390_en17010121 crossref_citationtrail_10_3390_en17010121 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Haskett (ref_14) 1965; 17 Martyushev (ref_27) 2020; 22 Tavakkoli (ref_1) 2014; 117 Zhang (ref_7) 2017; 31 Sato (ref_5) 2005; 19 Emani (ref_26) 2019; 149 PSaffman (ref_35) 1965; 22 Syuzev (ref_28) 2018; 329 Ekholm (ref_20) 2002; 247 Alkafeef (ref_15) 2005; 20 Schucker (ref_8) 1980; 25 ref_19 Amiri (ref_6) 2021; 205 ref_17 Haghshenasfard (ref_24) 2015; 128 Alhosano (ref_37) 2021; 206 Ancheyta (ref_4) 2002; 16 Barnea (ref_36) 1987; 13 Creek (ref_16) 2005; 19 Hammami (ref_12) 2000; 14 Elghobashi (ref_33) 1991; 48 Parsi (ref_30) 2017; 15 Ibrahim (ref_9) 2004; 18 ref_23 ref_21 Hanpan (ref_22) 2016; 30 Seyyedbagheri (ref_25) 2017; 150 Haider (ref_34) 1989; 58 ref_2 Thomas (ref_11) 1992; 31 Gao (ref_18) 2022; 40 Cerne (ref_32) 2001; 171 Chen (ref_10) 2021; 9 Parsi (ref_29) 2015; 27 Andersen (ref_13) 1994; 12 Decanio (ref_3) 1990; 69 Rao (ref_31) 2022; 7 |
References_xml | – volume: 9 start-page: 551 year: 2021 ident: ref_10 article-title: Study of asphaltene dispersion and removal for high-asphaltene oil wells publication-title: Pet. Sci. doi: 10.1007/s12182-012-0242-5 – volume: 149 start-page: 105 year: 2019 ident: ref_26 article-title: Discrete phase-CFD simulations of asphaltenes particles deposition from crude oil in shell and tube heat exchangers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.12.008 – volume: 22 start-page: 385 year: 1965 ident: ref_35 article-title: The lift on a small sphere in a slow shear flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112065000824 – volume: 206 start-page: 1 year: 2021 ident: ref_37 article-title: Effect of multi-phase flow on asphaltene deposition: Field case application of integrated simulator publication-title: J. Pet. Sci. Eng. – volume: 48 start-page: 301 year: 1991 ident: ref_33 article-title: Particle-laden turbulent flows: Direct simulation and closure models publication-title: Appl. Sci. Res. doi: 10.1007/BF02008202 – volume: 205 start-page: 108833 year: 2021 ident: ref_6 article-title: Static and dynamic evaluation of a novel solution path on asphaltene deposition and drag reduction in flowlines: An experimental study publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108833 – volume: 117 start-page: 206 year: 2014 ident: ref_1 article-title: Understanding the polydisperse behavior of asphaltenes during precipitation publication-title: Fuel doi: 10.1016/j.fuel.2013.09.069 – volume: 20 start-page: 126 year: 2005 ident: ref_15 article-title: A Simplified Method to Predict and Prevent Asphaltene Deposition in Oilwell Tubings: Field Case publication-title: SPE Prod. Oper. doi: 10.2118/84609-PA – volume: 17 start-page: 387 year: 1965 ident: ref_14 article-title: A Practical Solution to the Problem of Asphaltene Deposits Hassi Messaoud Field, Algeria publication-title: J. Pet. Technol. doi: 10.2118/994-PA – volume: 18 start-page: 1038 year: 2004 ident: ref_9 article-title: Interrelationships between asphaltene precipitation inhibitor effectiveness, asphaltenes characteristics, and precipitation behavior during n-heptane (light paraffin hydrocarbon)-induced asphaltene precipitation publication-title: Energy Fuels doi: 10.1021/ef0340460 – ident: ref_23 – volume: 13 start-page: 1 year: 1987 ident: ref_36 article-title: A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(87)90002-4 – ident: ref_21 – volume: 58 start-page: 63 year: 1989 ident: ref_34 article-title: Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles publication-title: Powder Technol. doi: 10.1016/0032-5910(89)80008-7 – volume: 128 start-page: 24 year: 2015 ident: ref_24 article-title: CFD modeling of asphaltene deposition rate from crude oil publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2015.01.037 – volume: 40 start-page: 995 year: 2022 ident: ref_18 article-title: CFD modeling of virtual mass force and pressure gradient force on deposition rate of asphaltene aggregates in oil wells publication-title: Pet. Sci. Technol. doi: 10.1080/10916466.2021.2008972 – volume: 22 start-page: 86 year: 2020 ident: ref_27 article-title: Modeling and prediction of asphaltene-resin-paraffinic substances deposits in oil production wells publication-title: Georesursy doi: 10.18599/grs.2020.4.86-92 – volume: 15 start-page: 1176 year: 2017 ident: ref_30 article-title: CFD simulation of sand particle erosion under multiphase flow conditions publication-title: Wear doi: 10.1016/j.wear.2016.12.021 – volume: 247 start-page: 342 year: 2002 ident: ref_20 article-title: A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2002.8122 – volume: 14 start-page: 14 year: 2000 ident: ref_12 article-title: Asphaltene precipitation from live oils: An experimental investigation of onset conditions and reversibility publication-title: Energy Fuels doi: 10.1021/ef990104z – volume: 12 start-page: 51 year: 1994 ident: ref_13 article-title: Effect of precipitation temperature on the composition of n-heptane asphaltenes publication-title: Fuel Sci. Technol. Int. – volume: 7 start-page: 2679 year: 2022 ident: ref_31 article-title: Numerical Simulation on the Flow Pattern of a Gas-Liquid Two-Phase Swirl Flow publication-title: ACS Omega doi: 10.1021/acsomega.1c05144 – volume: 16 start-page: 1121 year: 2002 ident: ref_4 article-title: Extraction and characterization of asphaltenes from different crude oils and solvents publication-title: Energy Fuels doi: 10.1021/ef010300h – volume: 31 start-page: 11 year: 1992 ident: ref_11 article-title: Experimental and theoretical studies of solids precipitation from reservoir fluid publication-title: J. Can. Petrol. Technol. doi: 10.2118/92-01-02 – volume: 25 start-page: 327 year: 1980 ident: ref_8 article-title: Reactivity of Cold Lake asphaltenes publication-title: Am. Chem. Soc. Div. Fuel Chem. – volume: 329 start-page: 15 year: 2018 ident: ref_28 article-title: Complex method of selecting reagents to delete asphaltenosmolaparinine deposits in mechanized oil-producing wells publication-title: Bull. Tomsk. Polytech. Univ. Geo Assets Eng. – ident: ref_2 – volume: 30 start-page: 8915 year: 2016 ident: ref_22 article-title: Mechanistic investigation of asphaltene deposition publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b01289 – volume: 150 start-page: 257 year: 2017 ident: ref_25 article-title: CFD modeling of high inertia asphaltene aggregates deposition in 3D turbulent oil production wells publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.12.017 – volume: 31 start-page: 8072 year: 2017 ident: ref_7 article-title: Structure and Reactivity of Iranian Vacuum Residue and Its Eight Group-Fractions publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.7b01327 – volume: 19 start-page: 1212 year: 2005 ident: ref_16 article-title: Freedom of Action in the State of Asphaltenes: Escape from Conventional Wisdom publication-title: Energy Fuels doi: 10.1021/ef049778m – volume: 171 start-page: 776 year: 2001 ident: ref_32 article-title: Coupling of the interface tracking and the two-fluid models for the simulation of incompressible two-phase flow publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6810 – volume: 69 start-page: 1233 year: 1990 ident: ref_3 article-title: Determination of the molecular weights of the Ratawi vacuum residue fractions- a comparison of mass spectrometric and vapour phase osmometry techniques publication-title: Fuel doi: 10.1016/0016-2361(90)90282-U – volume: 27 start-page: 706 year: 2015 ident: ref_29 article-title: CFD simulation of sand particle erosion in gas-dominant multiphase flow publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.09.003 – ident: ref_17 – ident: ref_19 – volume: 19 start-page: 1991 year: 2005 ident: ref_5 article-title: Molecular weight calibration of asphaltenes using gel permeation chromatography/mass spectrometry publication-title: Energy Fuels doi: 10.1021/ef049672r |
SSID | ssj0000331333 |
Score | 2.35025 |
Snippet | As the wellbore pressure falls below the bubble point pressure, the light components in the oil phase are liberated, forming additional vapor, and the... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 121 |
SubjectTerms | Analysis asphaltene deposition average deposition rate computational methods in fluid dynamics Crude oil Energy flow pattern Flow velocity Fluid dynamics multiphase flow Natural gas Numerical analysis Petroleum industry Reynolds number Turbulence models Viscosity VOSET model |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE1dXCSiIh2KbdPM4rrsuIqjgA72FNJnCQu2KXfHvO2m76wqKF68lgWRmMjNfk_mGkGOwQmtvdZRo24vQ-_koy5M8yjxISHXMXF1Ie30jLh_Tq-fe80Krr_AmrKEHbgR3Zr22McsQSgUkIbzCEJT6TIFILAiZB--LMW8BTNU-mHOcwRs-Uo64_gzKwDweGMy-RaCaqP83d1zHmNE6WWuTQ9pvFrVBlqDcJKsLlIFbxN2PX9qOW3SSU0zfaL96rS-9S6BDmD3ConeYRNJxSW_HBX2CoqhoKBd7o8O2I8qU1rW3OLUCOiomH3QwCdfXOHebPI4uHgaXUdsoIXJ4BKeRRgyBDk9JBinqhLOMQ-KtRWEBWO5VAB0SP6ocmJcxJHkKXjqtMm05ZmQ7ZLmclLBLqM_SJPdSau9YCk6qXANzXgnME4UTcYeczoRnXMsiHppZFAbRRBC0-RJ0hxzNx7423Bk_jjoPOpiPCHzX9Qe0AtNagfnLCjrkJGjQhFOJy3G2LS7ATQV-K9PHHSHuVpx3SHemZNMe18ownTChQzvgvf9YzT5ZYZj7NH9qumR5-vYOB5i7TLPD2kw_AcjC7Cw priority: 102 providerName: Directory of Open Access Journals |
Title | Simulation of the Asphaltene Deposition Rate in Oil Wells under Different Multiphase Flow Condition |
URI | https://www.proquest.com/docview/2912690375 https://doaj.org/article/ad9a02b13364486d82404db8e61ae67f |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_t4wUeEAwQhVFZGhLiIVpip7H9hLqPbprEQIOJvlmOfZkqhaQ0Rfv3d07dDiS2lzw4thT7fJf7nX2_A_iAttDaW51k2o4Ssn4-KausSkqPEnOdctcn0n65LM6v84vpaBoDbl28Vrm2ib2h9q0LMfJDrjNOSE7I0ef57yRUjQqnq7GExjbskglWBL52j04vv11toiypEATCxIqXVBC-P8QmMJAHJrN__kQ9Yf9DZrn_10yew7PoJLLxSqovYAubPXj6F3XgS3DfZ79i5S3WVozcODbu5v3hd4PsBNeXsdgVOZNs1rCvs5r9xLruWEgbW7CTWBllyfocXBraIZvU7S07bsMxNo19BdeT0x_H50ksmJA4UsVloglLkOFTkmNOshG8FJh5a73iiFZ4FcCHpEZVIfcyxazK0UunVamtIM_sNew0bYNvgPkyzyovpfaO5-ikqjRy51VB_mLhinQAn9aLZ1xkEw9FLWpDqCIstLlf6AEcbPrOVxwa_-11FGSw6RF4r_uGdnFjohoZ67VNeUkyDbiyoInlae5LhUVmsZDVAD4GCZqgnfQ5zsYkA5pU4LkyY5oR4W8lxAD210I2UW07c7_J3j7--h084eTdrGIx-7CzXPzB9-SdLMshbKvJ2TBuxGGP8el5Ns3uAN896C8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsASIMQhamJnY_uA0NJl2dIHErSiN-PYE7TSNlk2iyr-FL-RcR5bkIBbr35EmYfH39ieGYBnaDOtvdVRou0wIuvno7xIiij3KDHVMXdNIO3hUTY9Sd-fDk834GcfCxOeVfY2sTHUvnLhjHyH64STJyfk8PXiWxSqRoXb1b6ERqsW-_jjnFy2-tXemOT7nPPJ2-PdadRVFYgc6esq0gS4yTooyTElAgTPBSbeWq84ohVeBYQuqVEVyL2MMSlS9NJplWsrCL7Qd6_A1VQIHVaUmrxbn-nEQpDLJ9osqNQf72AZ8p2HvGl_7HtNeYB_bQLNzja5BTc7SMpGrQ7dhg0s78CN3xIV3gX3aXbW1fliVcEINLJRvWiu2ktkY-yffrGPBF3ZrGQfZnP2GefzmoUgtSUbd3VYVqyJ-KWpNbLJvDpnu1W4NKe59-DkUhh5HzbLqsQHwHyeJoWXUnvHU3RSFRq58yojdJq5LB7Ay555xnW5y0MJjbkhHyYw2lwwegBP12MXbcaOv456E2SwHhGybDcN1fKr6RatsV7bmOck0-DFZkRYGqc-V5glFjNZDOBFkKAJtoB-x9kupIGIClm1zIgoIm9fCTGA7V7IpjMStblQ6a3_dz-Ba9PjwwNzsHe0_xCuc8JV7SnQNmyult_xEeGiVf64UUYGXy5b-38B82Ahmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgPgpCgMsAUI8RE3sNI4fEOrWVRuDMg0m9hYc-4IqhaQ0RRP_Gn8d58TpQALe9prYUXx3Pn9n-74DeIY6UcpqFURKjwPyfjbIi6gIcosSYxVy0ybSvpsnB6fxm7Px2Rb87HNh3LXK3ie2jtrWxu2Rj7iKOEVyQo5Hhb8WcTydvV5-C1wFKXfS2pfT6EzkCH-cU_jWvDqckq6fcz7b_7h3EPgKA4Eh210HisA3eYpUcoxpMILnAiOrtU05ohY2dWhd0sO0QG5liFERo5VGpbnSgqAMffcKbEuKisIBbO_uz49PNjs8oRAUAIqOE1UIFY6wcuznjkXtj1WwLRbwryWhXedmN-GGB6hs0lnULdjC6jZc_4228A6YD4uvvuoXqwtGEJJNmmV78F4hm2J_EYydEJBli4q9X5TsE5Zlw1zK2opNfVWWNWvzf6lrg2xW1udsr3ZH6NT3LpxeiijvwaCqK7wPzOZxVFgplTU8RiPTQiE3Nk0IqyYmCYfwshdeZjyTuSuoUWYU0ThBZxeCHsLTTdtlx9_x11a7TgebFo5zu31Qr75kfgpn2iod8px06mLahAYWh7HNU0wijYkshvDCaTBznoF-x2if4ECDchxb2YRGRLF_KsQQdnolZ95lNNmFgT_4_-sncJUsP3t7OD96CNc4gaxuS2gHBuvVd3xEIGmdP_bWyODzZU-AXxSoJyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+the+Asphaltene+Deposition+Rate+in+Oil+Wells+under+Different+Multiphase+Flow+Condition&rft.jtitle=Energies+%28Basel%29&rft.au=Wang%2C+Xiaoming&rft.au=Dong%2C+Pingchuan&rft.au=Zhang%2C+Youheng&rft.au=Gao%2C+Xiaodong&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=17&rft.issue=1&rft.spage=121&rft_id=info:doi/10.3390%2Fen17010121&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |