Relevance assignation feature selection method based on mutual information for machine learning

With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of dimension reduction. However, existing feature selection methods are deficient in striking a balance between the relevance evaluation accura...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 209; p. 106439
Main Authors Gao, Liyang, Wu, Weiguo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 17.12.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2020.106439

Cover

Loading…
Abstract With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of dimension reduction. However, existing feature selection methods are deficient in striking a balance between the relevance evaluation accuracy with the searching efficiency. In this regard, the characteristics of the relevance between the feature set and the classification result are analyzed. Then, we propose our Relevance Assignation Feature Selection (RAFS) method based on the mutual information theory, which assigns the relevance evaluation according to the redundancy. With this method, we can estimate the contribution of each feature in a feature set, which is regarded as value of the feature and is used as the heuristic index in searching of the relevant features. A special dataset (“Grid World”) with strong interactive features is designed. Using the Grid World and six other natural datasets, the proposed method is compared with six other feature selection methods. Results show that in the Grid World dataset, the RAFS method can find correct relevant features with the probability above 90%, much higher than the others. In six other datasets, the RAFS method also has the best performance in the classification accuracy.
AbstractList With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of dimension reduction. However, existing feature selection methods are deficient in striking a balance between the relevance evaluation accuracy with the searching efficiency. In this regard, the characteristics of the relevance between the feature set and the classification result are analyzed. Then, we propose our Relevance Assignation Feature Selection (RAFS) method based on the mutual information theory, which assigns the relevance evaluation according to the redundancy. With this method, we can estimate the contribution of each feature in a feature set, which is regarded as value of the feature and is used as the heuristic index in searching of the relevant features. A special dataset ("Grid World") with strong interactive features is designed. Using the Grid World and six other natural datasets, the proposed method is compared with six other feature selection methods. Results show that in the Grid World dataset, the RAFS method can find correct relevant features with the probability above 90%, much higher than the others. In six other datasets, the RAFS method also has the best performance in the classification accuracy.
ArticleNumber 106439
Author Wu, Weiguo
Gao, Liyang
Author_xml – sequence: 1
  givenname: Liyang
  surname: Gao
  fullname: Gao, Liyang
  email: gaoly2010@126.com
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, Room 1046, Jixie Building, 92 West Dazhi Street, Nan Gang District, Harbin 150001, Heilongjiang Province, China
– sequence: 2
  givenname: Weiguo
  surname: Wu
  fullname: Wu, Weiguo
  email: wuwg@hit.edu.cn
  organization: School of Mechatronics Engineering, Harbin Institute of Technology, 424 Mailbox, 92 West Dazhi Street, Nan Gang District, Harbin 150001, Heilongjiang Province, China
BookMark eNqFkF1LwzAUhoNMcJv-Ay8KXnfmo20aLwQZfsFAEL0OaXq6pXbJTNrB_r3tuisv9Crk5H3OOXlmaGKdBYSuCV4QTLLbevFlXTiEBcV0KGUJE2doSnJOY55gMUFTLFIcc5ySCzQLocYYU0ryKZLv0MBeWQ2RCsGsrWqNs1EFqu08RKF_1cfKFtqNK6NCBSij4d61nWoiYyvntyfI-Wir9MZYiBpQ3hq7vkTnlWoCXJ3OOfp8evxYvsSrt-fX5cMq1gnGbSxwWgAXmGeJygrFGK8YoQmFihU55ylnRIiKJyVLacVLTVjOtWYgyiIrMpayOboZ--68--4gtLJ2nbf9SEmTTJA8zynvU3djSnsXgodKatMel2-9Mo0kWA5CZS1HoXIQKkehPZz8gnfebJU__Ifdjxj0398b8DJoA73w0vjerSyd-bvBD5sylQ0
CitedBy_id crossref_primary_10_3390_math11133010
crossref_primary_10_18359_rcin_5644
crossref_primary_10_1016_j_psep_2021_08_040
crossref_primary_10_3233_IDA_216447
crossref_primary_10_1177_21582440211071102
crossref_primary_10_3390_mi13091436
crossref_primary_10_1007_s00382_021_06104_0
crossref_primary_10_1016_j_knosys_2021_106933
crossref_primary_10_1016_j_compbiomed_2024_109413
crossref_primary_10_1016_j_jwpe_2021_102033
crossref_primary_10_1016_j_envpol_2023_122456
crossref_primary_10_1016_j_scs_2023_104570
crossref_primary_10_1016_j_knosys_2021_107167
crossref_primary_10_1016_j_ptlrs_2024_04_002
crossref_primary_10_1007_s11063_023_11256_7
crossref_primary_10_1007_s13369_021_06484_9
crossref_primary_10_1016_j_ijar_2022_11_020
crossref_primary_10_1007_s00253_023_12633_x
crossref_primary_10_1109_ACCESS_2025_3525475
crossref_primary_10_1016_j_eswa_2023_122324
crossref_primary_10_3390_s22197121
crossref_primary_10_1007_s00477_024_02746_8
crossref_primary_10_1080_10255842_2024_2429012
crossref_primary_10_1007_s13762_024_05496_w
crossref_primary_10_1016_j_fss_2023_108658
crossref_primary_10_1016_j_jwpe_2023_104304
crossref_primary_10_1016_j_jwpe_2025_107352
crossref_primary_10_1007_s11042_023_16065_7
crossref_primary_10_1016_j_knosys_2022_109874
crossref_primary_10_1016_j_comnet_2023_110093
crossref_primary_10_1016_j_eswa_2022_117923
crossref_primary_10_1038_s41598_024_82062_x
crossref_primary_10_1186_s40537_023_00748_x
crossref_primary_10_1109_TAI_2022_3145333
crossref_primary_10_1016_j_jclepro_2022_135671
crossref_primary_10_1049_cit2_12122
Cites_doi 10.1016/j.patcog.2018.03.012
10.1109/ACCESS.2018.2879848
10.1016/j.patcog.2007.10.009
10.3390/e19040157
10.1093/gigascience/giy032
10.1145/3136625
10.1109/TNN.2008.2005601
10.1016/j.artint.2014.07.003
10.1016/j.neucom.2014.12.123
10.1109/TNNLS.2016.2562670
10.1016/j.eswa.2011.09.031
10.7551/mitpress/3118.003.0039
10.1016/j.cmpb.2019.06.001
10.1109/IBCAST.2017.7868071
10.1093/biomet/28.3-4.321
10.1214/009053607000000505
10.1016/j.eswa.2017.08.026
10.1007/s11042-014-2333-3
10.1109/ICIS46139.2019.8940171
10.1109/TPAMI.2005.159
10.1016/j.knosys.2017.02.013
10.1109/ICICI.2017.8365253
10.1109/IMCCC.2018.00307
10.1126/science.1205438
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 17, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 17, 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2020.106439
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2020_106439
S0950705120305682
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-905be790764a6ba337f31242ef3b877573199f74d352f7dc1387cc3e9db6b6353
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Mon Jul 14 07:27:45 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 04:37:59 EDT 2025
Fri Feb 23 02:47:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Redundancy evaluation
Kernel function
Relevance assignation
Feature selection
Mutual information
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-905be790764a6ba337f31242ef3b877573199f74d352f7dc1387cc3e9db6b6353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2469188827
PQPubID 2035257
ParticipantIDs proquest_journals_2469188827
crossref_citationtrail_10_1016_j_knosys_2020_106439
crossref_primary_10_1016_j_knosys_2020_106439
elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-17
PublicationDateYYYYMMDD 2020-12-17
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-17
  day: 17
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Siddiqi, Ali, Idris, Khan, Kim, Whang, Lee (b20) 2016; 75
A.K. Mccallum, Learning to use selective attention and short-term memory in sequential tasks, in: Proc. 4th Int. Conf. Simulation of Adaptive Behavior: From Animals to Animats 4, 1996, pp. 315–324.
Sakar, Kursun, Gurgen (b9) 2012; 39
Cobo, Subramanian, Isbell, Lanterman, Thomaz (b16) 2014; 216
Xu, Tang, He, Man (b22) 2017; 28
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b30) 2018; 50
Singh, Arvind, Mahapatra (b17) 2012; 43
Marouf, Hasan, Mahmud (b18) 2020
Zhu, Miao, Zhang (b6) 2012
I.F. Nizami, M. Majid, K. Khurshid, Efficient feature selection for Blind Image Quality Assessment based on natural scene statistics, in: 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 10–14 Jan. 2017, pp. 318–322.
X. Wang, Y. Tao, K. Zheng, Feature selection methods in the framework of mRMR, in: 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 2018, pp. 1490–1495.
Peng, Long, Ding (b11) 2005; 27
Wang, Cang, Yu (b26) 2019; 4
M.A. Hall, Correlation-based feature selection of discrete and numeric class machine learning, in: Proc. 17th Int. Conf. Machine Learning, 2000, pp. 359–366.
Mohamed, Zainudin, Othman (b1) 2017; 90
Kuncheva, Rodríguez (b32) 2018; 81
Fleuret (b12) 2004; 5
P. Singh, A. Shukla, M. Vardhan, Hybrid approach for gene selection and classification using filter and genetic algorithm, in: 2017 International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India, 23–24 Nov. 2017, pp. 832–837.
Reshef, Reshef, Finucane, Grossman, McVean, Turnbaugh, Lander, Mitzenmacher, Sabeti (b10) 2011; 334
Cueto-López, García-Ordás, Dávila-Batista, Moreno, Aragonés, Alaiz-Rodríguez (b31) 2019; 177
Zou, Zeng, Cao, Ji (b23) 2016; 173
Estevez, Tesmer, Perez, Zurada (b19) 2009; 20
Albanese, Riccadonna, Donati, Franceschi (b14) 2018; 7
.
Székely, Rizzo, Bakirov (b7) 2007; 35
Das, Das, Ghosh (b28) 2017; 123
H. Dong, X. Wang, X. Wang, J. Sun, T. Li, A feature selection method based on adaptive differential evolution, in: IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), June 17–19, 2019, China, pp. 208–213
Murphy, Aha (b29) 1996
Zhang, Chen, Zhou (b5) 2008; 41
Hotelling (b8) 1936; 28
Zheng, Li, Wang, Chen, Xu, Fan, Cui (b21) 2019; 7
Davor, Uros (b25) 2017; 19
Principe (b27) 2010
Cueto-López (10.1016/j.knosys.2020.106439_b31) 2019; 177
Davor (10.1016/j.knosys.2020.106439_b25) 2017; 19
Wang (10.1016/j.knosys.2020.106439_b26) 2019; 4
Marouf (10.1016/j.knosys.2020.106439_b18) 2020
Estevez (10.1016/j.knosys.2020.106439_b19) 2009; 20
10.1016/j.knosys.2020.106439_b24
Székely (10.1016/j.knosys.2020.106439_b7) 2007; 35
Reshef (10.1016/j.knosys.2020.106439_b10) 2011; 334
Cobo (10.1016/j.knosys.2020.106439_b16) 2014; 216
Albanese (10.1016/j.knosys.2020.106439_b14) 2018; 7
Zheng (10.1016/j.knosys.2020.106439_b21) 2019; 7
Hotelling (10.1016/j.knosys.2020.106439_b8) 1936; 28
10.1016/j.knosys.2020.106439_b2
Siddiqi (10.1016/j.knosys.2020.106439_b20) 2016; 75
Kuncheva (10.1016/j.knosys.2020.106439_b32) 2018; 81
Xu (10.1016/j.knosys.2020.106439_b22) 2017; 28
10.1016/j.knosys.2020.106439_b3
10.1016/j.knosys.2020.106439_b4
Das (10.1016/j.knosys.2020.106439_b28) 2017; 123
Zhang (10.1016/j.knosys.2020.106439_b5) 2008; 41
Peng (10.1016/j.knosys.2020.106439_b11) 2005; 27
Zou (10.1016/j.knosys.2020.106439_b23) 2016; 173
Fleuret (10.1016/j.knosys.2020.106439_b12) 2004; 5
Zhu (10.1016/j.knosys.2020.106439_b6) 2012
10.1016/j.knosys.2020.106439_b15
Murphy (10.1016/j.knosys.2020.106439_b29) 1996
10.1016/j.knosys.2020.106439_b13
Li (10.1016/j.knosys.2020.106439_b30) 2018; 50
Principe (10.1016/j.knosys.2020.106439_b27) 2010
Singh (10.1016/j.knosys.2020.106439_b17) 2012; 43
Mohamed (10.1016/j.knosys.2020.106439_b1) 2017; 90
Sakar (10.1016/j.knosys.2020.106439_b9) 2012; 39
References_xml – volume: 50
  start-page: 94
  year: 2018
  ident: b30
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput. Surv.
– start-page: 80
  year: 2012
  end-page: 87
  ident: b6
  article-title: Iterative Laplacian score for feature selection
  publication-title: Proc. Chinese Conf. Pattern Recognition
– volume: 123
  start-page: 116
  year: 2017
  end-page: 127
  ident: b28
  article-title: Ensemble feature selection using bi-objective genetic algorithm
  publication-title: Knowl.-Based Syst.
– volume: 41
  start-page: 1440
  year: 2008
  end-page: 1451
  ident: b5
  article-title: Constraint score: A new filter method for feature selection with pairwise constraints
  publication-title: Pattern Recognit.
– volume: 4
  year: 2019
  ident: b26
  article-title: Mutual information inspired feature selection using kernel canonical correlation analysis
  publication-title: Expert Syst. Appl.: X
– year: 1996
  ident: b29
  article-title: UCI repository of machine learning databases
– reference: H. Dong, X. Wang, X. Wang, J. Sun, T. Li, A feature selection method based on adaptive differential evolution, in: IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), June 17–19, 2019, China, pp. 208–213,
– volume: 19
  start-page: 157
  year: 2017
  ident: b25
  article-title: Quadratic mutual information feature selection
  publication-title: Entropy
– reference: I.F. Nizami, M. Majid, K. Khurshid, Efficient feature selection for Blind Image Quality Assessment based on natural scene statistics, in: 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 10–14 Jan. 2017, pp. 318–322.
– reference: X. Wang, Y. Tao, K. Zheng, Feature selection methods in the framework of mRMR, in: 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 2018, pp. 1490–1495.
– volume: 28
  start-page: 1974
  year: 2017
  end-page: 1984
  ident: b22
  article-title: Semisupervised feature selection based on relevance and redundancy criteria
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 321
  year: 1936
  end-page: 377
  ident: b8
  article-title: Relations between two sets of variates
  publication-title: Biometrika
– volume: 5
  start-page: 1531
  year: 2004
  end-page: 1555
  ident: b12
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 3432
  year: 2012
  end-page: 3437
  ident: b9
  article-title: A feature selection method based on kernel canonical correlation analysis and the minimum redundancy-maximum relevance filter method
  publication-title: Expert Syst. Appl.
– year: 2010
  ident: b27
  article-title: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives
– volume: 35
  start-page: 2769
  year: 2007
  end-page: 2794
  ident: b7
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: Ann. Statist.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b11
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 173
  start-page: 346
  year: 2016
  end-page: 354
  ident: b23
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
– start-page: 1
  year: 2020
  end-page: 13
  ident: b18
  article-title: Comparative analysis of feature selection algorithms for computational personality prediction from social media
  publication-title: IEEE Trans. Comput. Soc. Syst. (Early Access)
– volume: 216
  start-page: 103
  year: 2014
  end-page: 128
  ident: b16
  article-title: Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains
  publication-title: Artificial Intelligence
– volume: 177
  start-page: 219
  year: 2019
  end-page: 229
  ident: b31
  article-title: A comparative study on feature selection for a risk prediction model for colorectal cancer
  publication-title: Comput. Methods Programs Biomed.
– volume: 334
  start-page: 1518
  year: 2011
  end-page: 1524
  ident: b10
  article-title: Detecting novel associations in large data sets
  publication-title: Science
– volume: 75
  start-page: 935
  year: 2016
  end-page: 959
  ident: b20
  article-title: Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection
  publication-title: Multimedia Tools Appl.
– reference: P. Singh, A. Shukla, M. Vardhan, Hybrid approach for gene selection and classification using filter and genetic algorithm, in: 2017 International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India, 23–24 Nov. 2017, pp. 832–837.
– volume: 7
  start-page: 1
  year: 2018
  end-page: 8
  ident: b14
  article-title: A practical tool for maximal information coefficient analysis
  publication-title: Gigascience
– reference: .
– volume: 20
  start-page: 189
  year: 2009
  end-page: 201
  ident: b19
  article-title: Normalized mutual information feature selection
  publication-title: IEEE Trans. Neural Netw.
– volume: 90
  start-page: 224
  year: 2017
  end-page: 231
  ident: b1
  article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data
  publication-title: Expert Syst. Appl.
– volume: 81
  start-page: 660
  year: 2018
  end-page: 673
  ident: b32
  article-title: On feature selection protocols for very low-sample-size data
  publication-title: Pattern Recognit.
– reference: M.A. Hall, Correlation-based feature selection of discrete and numeric class machine learning, in: Proc. 17th Int. Conf. Machine Learning, 2000, pp. 359–366.
– volume: 43
  start-page: 13
  year: 2012
  end-page: 18
  ident: b17
  article-title: Hybrid correlation based gene selection for accurate cancer classification of gene expression data
  publication-title: Int. J. Comput. Appl.
– reference: A.K. Mccallum, Learning to use selective attention and short-term memory in sequential tasks, in: Proc. 4th Int. Conf. Simulation of Adaptive Behavior: From Animals to Animats 4, 1996, pp. 315–324.
– volume: 7
  start-page: 14908
  year: 2019
  end-page: 14923
  ident: b21
  article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2020.106439_b18
  article-title: Comparative analysis of feature selection algorithms for computational personality prediction from social media
  publication-title: IEEE Trans. Comput. Soc. Syst. (Early Access)
– volume: 81
  start-page: 660
  year: 2018
  ident: 10.1016/j.knosys.2020.106439_b32
  article-title: On feature selection protocols for very low-sample-size data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.03.012
– volume: 7
  start-page: 14908
  year: 2019
  ident: 10.1016/j.knosys.2020.106439_b21
  article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879848
– volume: 41
  start-page: 1440
  issue: 5
  year: 2008
  ident: 10.1016/j.knosys.2020.106439_b5
  article-title: Constraint score: A new filter method for feature selection with pairwise constraints
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.10.009
– volume: 19
  start-page: 157
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2020.106439_b25
  article-title: Quadratic mutual information feature selection
  publication-title: Entropy
  doi: 10.3390/e19040157
– volume: 7
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2020.106439_b14
  article-title: A practical tool for maximal information coefficient analysis
  publication-title: Gigascience
  doi: 10.1093/gigascience/giy032
– volume: 5
  start-page: 1531
  year: 2004
  ident: 10.1016/j.knosys.2020.106439_b12
  article-title: Fast binary feature selection with conditional mutual information
  publication-title: J. Mach. Learn. Res.
– start-page: 80
  year: 2012
  ident: 10.1016/j.knosys.2020.106439_b6
  article-title: Iterative Laplacian score for feature selection
– volume: 50
  start-page: 94
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2020.106439_b30
  article-title: Feature selection: A data perspective
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3136625
– volume: 20
  start-page: 189
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2020.106439_b19
  article-title: Normalized mutual information feature selection
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005601
– volume: 216
  start-page: 103
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2020.106439_b16
  article-title: Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2014.07.003
– volume: 4
  year: 2019
  ident: 10.1016/j.knosys.2020.106439_b26
  article-title: Mutual information inspired feature selection using kernel canonical correlation analysis
  publication-title: Expert Syst. Appl.: X
– year: 1996
  ident: 10.1016/j.knosys.2020.106439_b29
– ident: 10.1016/j.knosys.2020.106439_b15
– volume: 173
  start-page: 346
  issue: Part 2
  year: 2016
  ident: 10.1016/j.knosys.2020.106439_b23
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.123
– volume: 28
  start-page: 1974
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2020.106439_b22
  article-title: Semisupervised feature selection based on relevance and redundancy criteria
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2562670
– volume: 39
  start-page: 3432
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2020.106439_b9
  article-title: A feature selection method based on kernel canonical correlation analysis and the minimum redundancy-maximum relevance filter method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.031
– ident: 10.1016/j.knosys.2020.106439_b4
  doi: 10.7551/mitpress/3118.003.0039
– volume: 177
  start-page: 219
  year: 2019
  ident: 10.1016/j.knosys.2020.106439_b31
  article-title: A comparative study on feature selection for a risk prediction model for colorectal cancer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.001
– ident: 10.1016/j.knosys.2020.106439_b3
  doi: 10.1109/IBCAST.2017.7868071
– volume: 28
  start-page: 321
  issue: 3–4
  year: 1936
  ident: 10.1016/j.knosys.2020.106439_b8
  article-title: Relations between two sets of variates
  publication-title: Biometrika
  doi: 10.1093/biomet/28.3-4.321
– volume: 35
  start-page: 2769
  issue: 6
  year: 2007
  ident: 10.1016/j.knosys.2020.106439_b7
  article-title: Measuring and testing dependence by correlation of distances
  publication-title: Ann. Statist.
  doi: 10.1214/009053607000000505
– volume: 90
  start-page: 224
  year: 2017
  ident: 10.1016/j.knosys.2020.106439_b1
  article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.08.026
– volume: 75
  start-page: 935
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2020.106439_b20
  article-title: Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-014-2333-3
– ident: 10.1016/j.knosys.2020.106439_b13
  doi: 10.1109/ICIS46139.2019.8940171
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.knosys.2020.106439_b11
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– year: 2010
  ident: 10.1016/j.knosys.2020.106439_b27
– volume: 43
  start-page: 13
  issue: 14
  year: 2012
  ident: 10.1016/j.knosys.2020.106439_b17
  article-title: Hybrid correlation based gene selection for accurate cancer classification of gene expression data
  publication-title: Int. J. Comput. Appl.
– volume: 123
  start-page: 116
  year: 2017
  ident: 10.1016/j.knosys.2020.106439_b28
  article-title: Ensemble feature selection using bi-objective genetic algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.02.013
– ident: 10.1016/j.knosys.2020.106439_b2
  doi: 10.1109/ICICI.2017.8365253
– ident: 10.1016/j.knosys.2020.106439_b24
  doi: 10.1109/IMCCC.2018.00307
– volume: 334
  start-page: 1518
  issue: 6062
  year: 2011
  ident: 10.1016/j.knosys.2020.106439_b10
  article-title: Detecting novel associations in large data sets
  publication-title: Science
  doi: 10.1126/science.1205438
SSID ssj0002218
Score 2.4837985
Snippet With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106439
SubjectTerms Classification
Datasets
Feature selection
Information theory
Kernel function
Machine learning
Mutual information
Redundancy
Redundancy evaluation
Relevance assignation
Searching
Title Relevance assignation feature selection method based on mutual information for machine learning
URI https://dx.doi.org/10.1016/j.knosys.2020.106439
https://www.proquest.com/docview/2469188827
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YE1NLXd2BmriqqA1AGo1M2KE6cqj7TqY2Dht3PnOCCQUCVGO3YUne_xXfT5jpArFSJRR5mgIzJIUOIwCRIDQ8GFhBQ7D411bItRNByLu0l3UiP96i4M0iq97y99uvPWfqbtpdlezGbtRwAHoK8QsBwMVuiHsXod6PT1xzfNgzH3jw8XB7i6uj7nOF4vxXz1jkW7GU5hcP4rPP1y1C76DA7InoeNtFd-2SGp2eKI7FctGai30GOiH_C-OJ4kBVQ8m5b_-mhuXf1OunJdb3Cm7BxNMYhlFMcbvEhCfR3VctN8Sd8c19JS31xiekLGg5un_jDwPRSCFKxzHcRh11gJGXAkksgknMucQ0hnNudGSdmVYIJxLkUGQCyXWdrhSqYpt3FmIgNghJ-SejEv7BmhIouZSpjhJkwAdoWGMZUmigPEMJmJTYPwSnQ69QXGsc_Fq66YZM-6FLhGgetS4A0SfO1alAU2tqyX1anoH4qiIQZs2dmsDlF7Q4XnIoo7CtIMef7vF1-QXRwhyaUjm6S-Xm7sJUCVtWk5XWyRnd7t_XD0Cc0N6OY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHPTi24ii9uB1w7It2-6REAkIclBIuDXb3S7BBxAeB_-9M90uiSaGxGMfs9lMOzPfNPMg5EH6GKgjtdfgKTgokR97sYYhZ1yAi5352thoi2HYHfOnSXNSIu0iFwbDKp3uz3W61dZupu64WV_OZvVXAAdwX8FgWRgsQQ9XsDoVL5NKq9fvDncKOQjsMx_u95CgyKCzYV7v88X6C-t2BziF9vkvC_VLV1sD1DkhRw450lb-c6ekZOZn5LjoykCdkJ4T9YIp43iYFIDxbJo_99HM2BKedG0b3-BM3jyaoh1LKY63mEtCXSnVnGixop823NJQ119iekHGncdRu-u5NgpeAgK68SK_qY0AJzjkcahjxkTGwKoHJmNaCtEUIIVRJngKWCwTadJgUiQJM1GqQw14hF2S8nwxN1eE8jQKZBxopv0YkJevg0AmsWSAMnSqI10lrGCdSlyNcWx18aGKYLI3lTNcIcNVzvAq8XZUy7zGxp79ojgV9eOuKDADeyhrxSEqJ6uwzsOoIcHTENf__vA9OeiOngdq0Bv2b8ghrmDMS0PUSHmz2ppbQC4bfedu5jfKoOuX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relevance+assignation+feature+selection+method+based+on+mutual+information+for+machine+learning&rft.jtitle=Knowledge-based+systems&rft.au=Gao%2C+Liyang&rft.au=Wu%2C+Weiguo&rft.date=2020-12-17&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=209&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106439&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon