Relevance assignation feature selection method based on mutual information for machine learning
With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of dimension reduction. However, existing feature selection methods are deficient in striking a balance between the relevance evaluation accura...
Saved in:
Published in | Knowledge-based systems Vol. 209; p. 106439 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
17.12.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0950-7051 1872-7409 |
DOI | 10.1016/j.knosys.2020.106439 |
Cover
Loading…
Abstract | With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of dimension reduction. However, existing feature selection methods are deficient in striking a balance between the relevance evaluation accuracy with the searching efficiency. In this regard, the characteristics of the relevance between the feature set and the classification result are analyzed. Then, we propose our Relevance Assignation Feature Selection (RAFS) method based on the mutual information theory, which assigns the relevance evaluation according to the redundancy. With this method, we can estimate the contribution of each feature in a feature set, which is regarded as value of the feature and is used as the heuristic index in searching of the relevant features. A special dataset (“Grid World”) with strong interactive features is designed. Using the Grid World and six other natural datasets, the proposed method is compared with six other feature selection methods. Results show that in the Grid World dataset, the RAFS method can find correct relevant features with the probability above 90%, much higher than the others. In six other datasets, the RAFS method also has the best performance in the classification accuracy. |
---|---|
AbstractList | With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of dimension reduction. However, existing feature selection methods are deficient in striking a balance between the relevance evaluation accuracy with the searching efficiency. In this regard, the characteristics of the relevance between the feature set and the classification result are analyzed. Then, we propose our Relevance Assignation Feature Selection (RAFS) method based on the mutual information theory, which assigns the relevance evaluation according to the redundancy. With this method, we can estimate the contribution of each feature in a feature set, which is regarded as value of the feature and is used as the heuristic index in searching of the relevant features. A special dataset ("Grid World") with strong interactive features is designed. Using the Grid World and six other natural datasets, the proposed method is compared with six other feature selection methods. Results show that in the Grid World dataset, the RAFS method can find correct relevant features with the probability above 90%, much higher than the others. In six other datasets, the RAFS method also has the best performance in the classification accuracy. |
ArticleNumber | 106439 |
Author | Wu, Weiguo Gao, Liyang |
Author_xml | – sequence: 1 givenname: Liyang surname: Gao fullname: Gao, Liyang email: gaoly2010@126.com organization: School of Mechatronics Engineering, Harbin Institute of Technology, Room 1046, Jixie Building, 92 West Dazhi Street, Nan Gang District, Harbin 150001, Heilongjiang Province, China – sequence: 2 givenname: Weiguo surname: Wu fullname: Wu, Weiguo email: wuwg@hit.edu.cn organization: School of Mechatronics Engineering, Harbin Institute of Technology, 424 Mailbox, 92 West Dazhi Street, Nan Gang District, Harbin 150001, Heilongjiang Province, China |
BookMark | eNqFkF1LwzAUhoNMcJv-Ay8KXnfmo20aLwQZfsFAEL0OaXq6pXbJTNrB_r3tuisv9Crk5H3OOXlmaGKdBYSuCV4QTLLbevFlXTiEBcV0KGUJE2doSnJOY55gMUFTLFIcc5ySCzQLocYYU0ryKZLv0MBeWQ2RCsGsrWqNs1EFqu08RKF_1cfKFtqNK6NCBSij4d61nWoiYyvntyfI-Wir9MZYiBpQ3hq7vkTnlWoCXJ3OOfp8evxYvsSrt-fX5cMq1gnGbSxwWgAXmGeJygrFGK8YoQmFihU55ylnRIiKJyVLacVLTVjOtWYgyiIrMpayOboZ--68--4gtLJ2nbf9SEmTTJA8zynvU3djSnsXgodKatMel2-9Mo0kWA5CZS1HoXIQKkehPZz8gnfebJU__Ifdjxj0398b8DJoA73w0vjerSyd-bvBD5sylQ0 |
CitedBy_id | crossref_primary_10_3390_math11133010 crossref_primary_10_18359_rcin_5644 crossref_primary_10_1016_j_psep_2021_08_040 crossref_primary_10_3233_IDA_216447 crossref_primary_10_1177_21582440211071102 crossref_primary_10_3390_mi13091436 crossref_primary_10_1007_s00382_021_06104_0 crossref_primary_10_1016_j_knosys_2021_106933 crossref_primary_10_1016_j_compbiomed_2024_109413 crossref_primary_10_1016_j_jwpe_2021_102033 crossref_primary_10_1016_j_envpol_2023_122456 crossref_primary_10_1016_j_scs_2023_104570 crossref_primary_10_1016_j_knosys_2021_107167 crossref_primary_10_1016_j_ptlrs_2024_04_002 crossref_primary_10_1007_s11063_023_11256_7 crossref_primary_10_1007_s13369_021_06484_9 crossref_primary_10_1016_j_ijar_2022_11_020 crossref_primary_10_1007_s00253_023_12633_x crossref_primary_10_1109_ACCESS_2025_3525475 crossref_primary_10_1016_j_eswa_2023_122324 crossref_primary_10_3390_s22197121 crossref_primary_10_1007_s00477_024_02746_8 crossref_primary_10_1080_10255842_2024_2429012 crossref_primary_10_1007_s13762_024_05496_w crossref_primary_10_1016_j_fss_2023_108658 crossref_primary_10_1016_j_jwpe_2023_104304 crossref_primary_10_1016_j_jwpe_2025_107352 crossref_primary_10_1007_s11042_023_16065_7 crossref_primary_10_1016_j_knosys_2022_109874 crossref_primary_10_1016_j_comnet_2023_110093 crossref_primary_10_1016_j_eswa_2022_117923 crossref_primary_10_1038_s41598_024_82062_x crossref_primary_10_1186_s40537_023_00748_x crossref_primary_10_1109_TAI_2022_3145333 crossref_primary_10_1016_j_jclepro_2022_135671 crossref_primary_10_1049_cit2_12122 |
Cites_doi | 10.1016/j.patcog.2018.03.012 10.1109/ACCESS.2018.2879848 10.1016/j.patcog.2007.10.009 10.3390/e19040157 10.1093/gigascience/giy032 10.1145/3136625 10.1109/TNN.2008.2005601 10.1016/j.artint.2014.07.003 10.1016/j.neucom.2014.12.123 10.1109/TNNLS.2016.2562670 10.1016/j.eswa.2011.09.031 10.7551/mitpress/3118.003.0039 10.1016/j.cmpb.2019.06.001 10.1109/IBCAST.2017.7868071 10.1093/biomet/28.3-4.321 10.1214/009053607000000505 10.1016/j.eswa.2017.08.026 10.1007/s11042-014-2333-3 10.1109/ICIS46139.2019.8940171 10.1109/TPAMI.2005.159 10.1016/j.knosys.2017.02.013 10.1109/ICICI.2017.8365253 10.1109/IMCCC.2018.00307 10.1126/science.1205438 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 17, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 17, 2020 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2020.106439 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2020_106439 S0950705120305682 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-905be790764a6ba337f31242ef3b877573199f74d352f7dc1387cc3e9db6b6353 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Mon Jul 14 07:27:45 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 04:37:59 EDT 2025 Fri Feb 23 02:47:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Redundancy evaluation Kernel function Relevance assignation Feature selection Mutual information |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-905be790764a6ba337f31242ef3b877573199f74d352f7dc1387cc3e9db6b6353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2469188827 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2469188827 crossref_citationtrail_10_1016_j_knosys_2020_106439 crossref_primary_10_1016_j_knosys_2020_106439 elsevier_sciencedirect_doi_10_1016_j_knosys_2020_106439 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-17 |
PublicationDateYYYYMMDD | 2020-12-17 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Siddiqi, Ali, Idris, Khan, Kim, Whang, Lee (b20) 2016; 75 A.K. Mccallum, Learning to use selective attention and short-term memory in sequential tasks, in: Proc. 4th Int. Conf. Simulation of Adaptive Behavior: From Animals to Animats 4, 1996, pp. 315–324. Sakar, Kursun, Gurgen (b9) 2012; 39 Cobo, Subramanian, Isbell, Lanterman, Thomaz (b16) 2014; 216 Xu, Tang, He, Man (b22) 2017; 28 Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b30) 2018; 50 Singh, Arvind, Mahapatra (b17) 2012; 43 Marouf, Hasan, Mahmud (b18) 2020 Zhu, Miao, Zhang (b6) 2012 I.F. Nizami, M. Majid, K. Khurshid, Efficient feature selection for Blind Image Quality Assessment based on natural scene statistics, in: 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 10–14 Jan. 2017, pp. 318–322. X. Wang, Y. Tao, K. Zheng, Feature selection methods in the framework of mRMR, in: 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 2018, pp. 1490–1495. Peng, Long, Ding (b11) 2005; 27 Wang, Cang, Yu (b26) 2019; 4 M.A. Hall, Correlation-based feature selection of discrete and numeric class machine learning, in: Proc. 17th Int. Conf. Machine Learning, 2000, pp. 359–366. Mohamed, Zainudin, Othman (b1) 2017; 90 Kuncheva, Rodríguez (b32) 2018; 81 Fleuret (b12) 2004; 5 P. Singh, A. Shukla, M. Vardhan, Hybrid approach for gene selection and classification using filter and genetic algorithm, in: 2017 International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India, 23–24 Nov. 2017, pp. 832–837. Reshef, Reshef, Finucane, Grossman, McVean, Turnbaugh, Lander, Mitzenmacher, Sabeti (b10) 2011; 334 Cueto-López, García-Ordás, Dávila-Batista, Moreno, Aragonés, Alaiz-Rodríguez (b31) 2019; 177 Zou, Zeng, Cao, Ji (b23) 2016; 173 Estevez, Tesmer, Perez, Zurada (b19) 2009; 20 Albanese, Riccadonna, Donati, Franceschi (b14) 2018; 7 . Székely, Rizzo, Bakirov (b7) 2007; 35 Das, Das, Ghosh (b28) 2017; 123 H. Dong, X. Wang, X. Wang, J. Sun, T. Li, A feature selection method based on adaptive differential evolution, in: IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), June 17–19, 2019, China, pp. 208–213 Murphy, Aha (b29) 1996 Zhang, Chen, Zhou (b5) 2008; 41 Hotelling (b8) 1936; 28 Zheng, Li, Wang, Chen, Xu, Fan, Cui (b21) 2019; 7 Davor, Uros (b25) 2017; 19 Principe (b27) 2010 Cueto-López (10.1016/j.knosys.2020.106439_b31) 2019; 177 Davor (10.1016/j.knosys.2020.106439_b25) 2017; 19 Wang (10.1016/j.knosys.2020.106439_b26) 2019; 4 Marouf (10.1016/j.knosys.2020.106439_b18) 2020 Estevez (10.1016/j.knosys.2020.106439_b19) 2009; 20 10.1016/j.knosys.2020.106439_b24 Székely (10.1016/j.knosys.2020.106439_b7) 2007; 35 Reshef (10.1016/j.knosys.2020.106439_b10) 2011; 334 Cobo (10.1016/j.knosys.2020.106439_b16) 2014; 216 Albanese (10.1016/j.knosys.2020.106439_b14) 2018; 7 Zheng (10.1016/j.knosys.2020.106439_b21) 2019; 7 Hotelling (10.1016/j.knosys.2020.106439_b8) 1936; 28 10.1016/j.knosys.2020.106439_b2 Siddiqi (10.1016/j.knosys.2020.106439_b20) 2016; 75 Kuncheva (10.1016/j.knosys.2020.106439_b32) 2018; 81 Xu (10.1016/j.knosys.2020.106439_b22) 2017; 28 10.1016/j.knosys.2020.106439_b3 10.1016/j.knosys.2020.106439_b4 Das (10.1016/j.knosys.2020.106439_b28) 2017; 123 Zhang (10.1016/j.knosys.2020.106439_b5) 2008; 41 Peng (10.1016/j.knosys.2020.106439_b11) 2005; 27 Zou (10.1016/j.knosys.2020.106439_b23) 2016; 173 Fleuret (10.1016/j.knosys.2020.106439_b12) 2004; 5 Zhu (10.1016/j.knosys.2020.106439_b6) 2012 10.1016/j.knosys.2020.106439_b15 Murphy (10.1016/j.knosys.2020.106439_b29) 1996 10.1016/j.knosys.2020.106439_b13 Li (10.1016/j.knosys.2020.106439_b30) 2018; 50 Principe (10.1016/j.knosys.2020.106439_b27) 2010 Singh (10.1016/j.knosys.2020.106439_b17) 2012; 43 Mohamed (10.1016/j.knosys.2020.106439_b1) 2017; 90 Sakar (10.1016/j.knosys.2020.106439_b9) 2012; 39 |
References_xml | – volume: 50 start-page: 94 year: 2018 ident: b30 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. – start-page: 80 year: 2012 end-page: 87 ident: b6 article-title: Iterative Laplacian score for feature selection publication-title: Proc. Chinese Conf. Pattern Recognition – volume: 123 start-page: 116 year: 2017 end-page: 127 ident: b28 article-title: Ensemble feature selection using bi-objective genetic algorithm publication-title: Knowl.-Based Syst. – volume: 41 start-page: 1440 year: 2008 end-page: 1451 ident: b5 article-title: Constraint score: A new filter method for feature selection with pairwise constraints publication-title: Pattern Recognit. – volume: 4 year: 2019 ident: b26 article-title: Mutual information inspired feature selection using kernel canonical correlation analysis publication-title: Expert Syst. Appl.: X – year: 1996 ident: b29 article-title: UCI repository of machine learning databases – reference: H. Dong, X. Wang, X. Wang, J. Sun, T. Li, A feature selection method based on adaptive differential evolution, in: IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), June 17–19, 2019, China, pp. 208–213, – volume: 19 start-page: 157 year: 2017 ident: b25 article-title: Quadratic mutual information feature selection publication-title: Entropy – reference: I.F. Nizami, M. Majid, K. Khurshid, Efficient feature selection for Blind Image Quality Assessment based on natural scene statistics, in: 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 10–14 Jan. 2017, pp. 318–322. – reference: X. Wang, Y. Tao, K. Zheng, Feature selection methods in the framework of mRMR, in: 2018 Eighth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 2018, pp. 1490–1495. – volume: 28 start-page: 1974 year: 2017 end-page: 1984 ident: b22 article-title: Semisupervised feature selection based on relevance and redundancy criteria publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 28 start-page: 321 year: 1936 end-page: 377 ident: b8 article-title: Relations between two sets of variates publication-title: Biometrika – volume: 5 start-page: 1531 year: 2004 end-page: 1555 ident: b12 article-title: Fast binary feature selection with conditional mutual information publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 3432 year: 2012 end-page: 3437 ident: b9 article-title: A feature selection method based on kernel canonical correlation analysis and the minimum redundancy-maximum relevance filter method publication-title: Expert Syst. Appl. – year: 2010 ident: b27 article-title: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives – volume: 35 start-page: 2769 year: 2007 end-page: 2794 ident: b7 article-title: Measuring and testing dependence by correlation of distances publication-title: Ann. Statist. – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b11 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 173 start-page: 346 year: 2016 end-page: 354 ident: b23 article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification publication-title: Neurocomputing – start-page: 1 year: 2020 end-page: 13 ident: b18 article-title: Comparative analysis of feature selection algorithms for computational personality prediction from social media publication-title: IEEE Trans. Comput. Soc. Syst. (Early Access) – volume: 216 start-page: 103 year: 2014 end-page: 128 ident: b16 article-title: Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains publication-title: Artificial Intelligence – volume: 177 start-page: 219 year: 2019 end-page: 229 ident: b31 article-title: A comparative study on feature selection for a risk prediction model for colorectal cancer publication-title: Comput. Methods Programs Biomed. – volume: 334 start-page: 1518 year: 2011 end-page: 1524 ident: b10 article-title: Detecting novel associations in large data sets publication-title: Science – volume: 75 start-page: 935 year: 2016 end-page: 959 ident: b20 article-title: Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection publication-title: Multimedia Tools Appl. – reference: P. Singh, A. Shukla, M. Vardhan, Hybrid approach for gene selection and classification using filter and genetic algorithm, in: 2017 International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India, 23–24 Nov. 2017, pp. 832–837. – volume: 7 start-page: 1 year: 2018 end-page: 8 ident: b14 article-title: A practical tool for maximal information coefficient analysis publication-title: Gigascience – reference: . – volume: 20 start-page: 189 year: 2009 end-page: 201 ident: b19 article-title: Normalized mutual information feature selection publication-title: IEEE Trans. Neural Netw. – volume: 90 start-page: 224 year: 2017 end-page: 231 ident: b1 article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data publication-title: Expert Syst. Appl. – volume: 81 start-page: 660 year: 2018 end-page: 673 ident: b32 article-title: On feature selection protocols for very low-sample-size data publication-title: Pattern Recognit. – reference: M.A. Hall, Correlation-based feature selection of discrete and numeric class machine learning, in: Proc. 17th Int. Conf. Machine Learning, 2000, pp. 359–366. – volume: 43 start-page: 13 year: 2012 end-page: 18 ident: b17 article-title: Hybrid correlation based gene selection for accurate cancer classification of gene expression data publication-title: Int. J. Comput. Appl. – reference: A.K. Mccallum, Learning to use selective attention and short-term memory in sequential tasks, in: Proc. 4th Int. Conf. Simulation of Adaptive Behavior: From Animals to Animats 4, 1996, pp. 315–324. – volume: 7 start-page: 14908 year: 2019 end-page: 14923 ident: b21 article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm publication-title: IEEE Access – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2020.106439_b18 article-title: Comparative analysis of feature selection algorithms for computational personality prediction from social media publication-title: IEEE Trans. Comput. Soc. Syst. (Early Access) – volume: 81 start-page: 660 year: 2018 ident: 10.1016/j.knosys.2020.106439_b32 article-title: On feature selection protocols for very low-sample-size data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.03.012 – volume: 7 start-page: 14908 year: 2019 ident: 10.1016/j.knosys.2020.106439_b21 article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879848 – volume: 41 start-page: 1440 issue: 5 year: 2008 ident: 10.1016/j.knosys.2020.106439_b5 article-title: Constraint score: A new filter method for feature selection with pairwise constraints publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.10.009 – volume: 19 start-page: 157 issue: 4 year: 2017 ident: 10.1016/j.knosys.2020.106439_b25 article-title: Quadratic mutual information feature selection publication-title: Entropy doi: 10.3390/e19040157 – volume: 7 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.knosys.2020.106439_b14 article-title: A practical tool for maximal information coefficient analysis publication-title: Gigascience doi: 10.1093/gigascience/giy032 – volume: 5 start-page: 1531 year: 2004 ident: 10.1016/j.knosys.2020.106439_b12 article-title: Fast binary feature selection with conditional mutual information publication-title: J. Mach. Learn. Res. – start-page: 80 year: 2012 ident: 10.1016/j.knosys.2020.106439_b6 article-title: Iterative Laplacian score for feature selection – volume: 50 start-page: 94 issue: 6 year: 2018 ident: 10.1016/j.knosys.2020.106439_b30 article-title: Feature selection: A data perspective publication-title: ACM Comput. Surv. doi: 10.1145/3136625 – volume: 20 start-page: 189 issue: 2 year: 2009 ident: 10.1016/j.knosys.2020.106439_b19 article-title: Normalized mutual information feature selection publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005601 – volume: 216 start-page: 103 issue: 1 year: 2014 ident: 10.1016/j.knosys.2020.106439_b16 article-title: Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains publication-title: Artificial Intelligence doi: 10.1016/j.artint.2014.07.003 – volume: 4 year: 2019 ident: 10.1016/j.knosys.2020.106439_b26 article-title: Mutual information inspired feature selection using kernel canonical correlation analysis publication-title: Expert Syst. Appl.: X – year: 1996 ident: 10.1016/j.knosys.2020.106439_b29 – ident: 10.1016/j.knosys.2020.106439_b15 – volume: 173 start-page: 346 issue: Part 2 year: 2016 ident: 10.1016/j.knosys.2020.106439_b23 article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.123 – volume: 28 start-page: 1974 issue: 9 year: 2017 ident: 10.1016/j.knosys.2020.106439_b22 article-title: Semisupervised feature selection based on relevance and redundancy criteria publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2562670 – volume: 39 start-page: 3432 issue: 3 year: 2012 ident: 10.1016/j.knosys.2020.106439_b9 article-title: A feature selection method based on kernel canonical correlation analysis and the minimum redundancy-maximum relevance filter method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.031 – ident: 10.1016/j.knosys.2020.106439_b4 doi: 10.7551/mitpress/3118.003.0039 – volume: 177 start-page: 219 year: 2019 ident: 10.1016/j.knosys.2020.106439_b31 article-title: A comparative study on feature selection for a risk prediction model for colorectal cancer publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.06.001 – ident: 10.1016/j.knosys.2020.106439_b3 doi: 10.1109/IBCAST.2017.7868071 – volume: 28 start-page: 321 issue: 3–4 year: 1936 ident: 10.1016/j.knosys.2020.106439_b8 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – volume: 35 start-page: 2769 issue: 6 year: 2007 ident: 10.1016/j.knosys.2020.106439_b7 article-title: Measuring and testing dependence by correlation of distances publication-title: Ann. Statist. doi: 10.1214/009053607000000505 – volume: 90 start-page: 224 year: 2017 ident: 10.1016/j.knosys.2020.106439_b1 article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.026 – volume: 75 start-page: 935 issue: 2 year: 2016 ident: 10.1016/j.knosys.2020.106439_b20 article-title: Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-014-2333-3 – ident: 10.1016/j.knosys.2020.106439_b13 doi: 10.1109/ICIS46139.2019.8940171 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.knosys.2020.106439_b11 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – year: 2010 ident: 10.1016/j.knosys.2020.106439_b27 – volume: 43 start-page: 13 issue: 14 year: 2012 ident: 10.1016/j.knosys.2020.106439_b17 article-title: Hybrid correlation based gene selection for accurate cancer classification of gene expression data publication-title: Int. J. Comput. Appl. – volume: 123 start-page: 116 year: 2017 ident: 10.1016/j.knosys.2020.106439_b28 article-title: Ensemble feature selection using bi-objective genetic algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.02.013 – ident: 10.1016/j.knosys.2020.106439_b2 doi: 10.1109/ICICI.2017.8365253 – ident: 10.1016/j.knosys.2020.106439_b24 doi: 10.1109/IMCCC.2018.00307 – volume: 334 start-page: 1518 issue: 6062 year: 2011 ident: 10.1016/j.knosys.2020.106439_b10 article-title: Detecting novel associations in large data sets publication-title: Science doi: 10.1126/science.1205438 |
SSID | ssj0002218 |
Score | 2.4837985 |
Snippet | With the complication of the subjects and environment of the machine learning, feature selection methods have been used more frequently as an effective mean of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106439 |
SubjectTerms | Classification Datasets Feature selection Information theory Kernel function Machine learning Mutual information Redundancy Redundancy evaluation Relevance assignation Searching |
Title | Relevance assignation feature selection method based on mutual information for machine learning |
URI | https://dx.doi.org/10.1016/j.knosys.2020.106439 https://www.proquest.com/docview/2469188827 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YE1NLXd2BmriqqA1AGo1M2KE6cqj7TqY2Dht3PnOCCQUCVGO3YUne_xXfT5jpArFSJRR5mgIzJIUOIwCRIDQ8GFhBQ7D411bItRNByLu0l3UiP96i4M0iq97y99uvPWfqbtpdlezGbtRwAHoK8QsBwMVuiHsXod6PT1xzfNgzH3jw8XB7i6uj7nOF4vxXz1jkW7GU5hcP4rPP1y1C76DA7InoeNtFd-2SGp2eKI7FctGai30GOiH_C-OJ4kBVQ8m5b_-mhuXf1OunJdb3Cm7BxNMYhlFMcbvEhCfR3VctN8Sd8c19JS31xiekLGg5un_jDwPRSCFKxzHcRh11gJGXAkksgknMucQ0hnNudGSdmVYIJxLkUGQCyXWdrhSqYpt3FmIgNghJ-SejEv7BmhIouZSpjhJkwAdoWGMZUmigPEMJmJTYPwSnQ69QXGsc_Fq66YZM-6FLhGgetS4A0SfO1alAU2tqyX1anoH4qiIQZs2dmsDlF7Q4XnIoo7CtIMef7vF1-QXRwhyaUjm6S-Xm7sJUCVtWk5XWyRnd7t_XD0Cc0N6OY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHPTi24ii9uB1w7It2-6REAkIclBIuDXb3S7BBxAeB_-9M90uiSaGxGMfs9lMOzPfNPMg5EH6GKgjtdfgKTgokR97sYYhZ1yAi5352thoi2HYHfOnSXNSIu0iFwbDKp3uz3W61dZupu64WV_OZvVXAAdwX8FgWRgsQQ9XsDoVL5NKq9fvDncKOQjsMx_u95CgyKCzYV7v88X6C-t2BziF9vkvC_VLV1sD1DkhRw450lb-c6ekZOZn5LjoykCdkJ4T9YIp43iYFIDxbJo_99HM2BKedG0b3-BM3jyaoh1LKY63mEtCXSnVnGixop823NJQ119iekHGncdRu-u5NgpeAgK68SK_qY0AJzjkcahjxkTGwKoHJmNaCtEUIIVRJngKWCwTadJgUiQJM1GqQw14hF2S8nwxN1eE8jQKZBxopv0YkJevg0AmsWSAMnSqI10lrGCdSlyNcWx18aGKYLI3lTNcIcNVzvAq8XZUy7zGxp79ojgV9eOuKDADeyhrxSEqJ6uwzsOoIcHTENf__vA9OeiOngdq0Bv2b8ghrmDMS0PUSHmz2ppbQC4bfedu5jfKoOuX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relevance+assignation+feature+selection+method+based+on+mutual+information+for+machine+learning&rft.jtitle=Knowledge-based+systems&rft.au=Gao%2C+Liyang&rft.au=Wu%2C+Weiguo&rft.date=2020-12-17&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=209&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2020.106439&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |