On the oxidation mechanism of refractory high entropy alloys

•The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth comparable to those of Cr2O3 and CrTaO4 forming Ni-based superalloys were found.•The oxygen inward diffusion was found to be rate determining in CrT...

Full description

Saved in:
Bibliographic Details
Published inCorrosion science Vol. 159; p. 108161
Main Authors Müller, Franz, Gorr, Bronislava, Christ, Hans-Jürgen, Müller, Julian, Butz, Benjamin, Chen, Hans, Kauffmann, Alexander, Heilmaier, Martin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.10.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth comparable to those of Cr2O3 and CrTaO4 forming Ni-based superalloys were found.•The oxygen inward diffusion was found to be rate determining in CrTaO4 forming alloys.•In Nb-containing alloys, the formation of Nb2O5 caused a porous oxide scale as well as severe oxide spallation.•Ti had a positive effect on the high-temperature oxidation behaviour because it supports the formation of protective CrTaO4. The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was studied. A complex protective oxide layer consisting of Al2O3, Cr2O3 and CrTaO4 oxides was observed for the quinary Ta-containing alloy. The formation of CrTaO4 in this alloy after a short incubation period decreased the oxidation kinetics from a parabolic to a quartic rate law. Ti was found to support the formation of CrTaO4. In the Nb-containing alloys, the formation of different Nb2O5 polytypes near the metal/oxide interface caused a highly porous oxide scale and severe oxide spallation.
AbstractList •The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth comparable to those of Cr2O3 and CrTaO4 forming Ni-based superalloys were found.•The oxygen inward diffusion was found to be rate determining in CrTaO4 forming alloys.•In Nb-containing alloys, the formation of Nb2O5 caused a porous oxide scale as well as severe oxide spallation.•Ti had a positive effect on the high-temperature oxidation behaviour because it supports the formation of protective CrTaO4. The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was studied. A complex protective oxide layer consisting of Al2O3, Cr2O3 and CrTaO4 oxides was observed for the quinary Ta-containing alloy. The formation of CrTaO4 in this alloy after a short incubation period decreased the oxidation kinetics from a parabolic to a quartic rate law. Ti was found to support the formation of CrTaO4. In the Nb-containing alloys, the formation of different Nb2O5 polytypes near the metal/oxide interface caused a highly porous oxide scale and severe oxide spallation.
The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was studied. A complex protective oxide layer consisting of Al2O3, Cr2O3 and CrTaO4 oxides was observed for the quinary Ta-containing alloy. The formation of CrTaO4 in this alloy after a short incubation period decreased the oxidation kinetics from a parabolic to a quartic rate law. Ti was found to support the formation of CrTaO4. In the Nb-containing alloys, the formation of different Nb2O5 polytypes near the metal/oxide interface caused a highly porous oxide scale and severe oxide spallation.
ArticleNumber 108161
Author Müller, Franz
Müller, Julian
Chen, Hans
Kauffmann, Alexander
Christ, Hans-Jürgen
Heilmaier, Martin
Butz, Benjamin
Gorr, Bronislava
Author_xml – sequence: 1
  givenname: Franz
  surname: Müller
  fullname: Müller, Franz
  email: franz.mueller@uni-siegen.de
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 2
  givenname: Bronislava
  surname: Gorr
  fullname: Gorr, Bronislava
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 3
  givenname: Hans-Jürgen
  surname: Christ
  fullname: Christ, Hans-Jürgen
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 4
  givenname: Julian
  surname: Müller
  fullname: Müller, Julian
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 5
  givenname: Benjamin
  surname: Butz
  fullname: Butz, Benjamin
  organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany
– sequence: 6
  givenname: Hans
  surname: Chen
  fullname: Chen, Hans
  organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
– sequence: 7
  givenname: Alexander
  surname: Kauffmann
  fullname: Kauffmann, Alexander
  organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
– sequence: 8
  givenname: Martin
  surname: Heilmaier
  fullname: Heilmaier, Martin
  organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
BookMark eNqFkMtKAzEUhoNUsK2-gYsB11NP5pJJRAQp3qDQjYK7kGZObIZ2UpNUnLd36rhyoasDh_87l29CRq1rkZBzCjMKlF02M-180HaWARV9i1NGj8iY8kqkUAg2ImMACqnI-esJmYTQAECfhTG5XrZJXGPiPm2tonVtskW9Vq0N28SZxKPxSkfnu2Rt39YJttG7XZeozcZ14ZQcG7UJePZTp-Tl_u55_pgulg9P89tFqguAmHJjQK9YxYzSQtegsWQKdclrxVktDM-ZqLJ8lZVVZgRWBRMrirmpKyO4wiKfkoth7s679z2GKBu3922_UmY5ZAUVXJR9qhhS2rsQ-svlztut8p2kIA-eZCMHT_LgSQ6eeuzqF6Zt_FYRvbKb_-CbAcb-_Q-LXvYJbDXW1qOOsnb27wFfd-mImw
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_109392
crossref_primary_10_1016_j_actamat_2020_07_004
crossref_primary_10_1016_j_corsci_2023_111287
crossref_primary_10_1016_j_jmst_2024_06_049
crossref_primary_10_1016_j_jallcom_2022_167675
crossref_primary_10_1007_s11665_021_06243_9
crossref_primary_10_3390_met13020283
crossref_primary_10_1002_maco_202213084
crossref_primary_10_1016_j_actamat_2021_117217
crossref_primary_10_1016_j_intermet_2024_108604
crossref_primary_10_1557_s43577_022_00441_z
crossref_primary_10_1002_adem_202401102
crossref_primary_10_1016_j_msea_2020_139409
crossref_primary_10_1016_j_actamat_2022_117970
crossref_primary_10_1016_j_jallcom_2020_156265
crossref_primary_10_1016_j_matchar_2024_113679
crossref_primary_10_1016_j_jmrt_2025_02_099
crossref_primary_10_1016_j_msea_2021_141168
crossref_primary_10_1039_D2MH00729K
crossref_primary_10_1016_j_matchemphys_2025_130616
crossref_primary_10_1016_j_corsci_2023_111690
crossref_primary_10_1016_j_jallcom_2022_167968
crossref_primary_10_1016_j_jeurceramsoc_2023_08_001
crossref_primary_10_1016_j_surfcoat_2021_126911
crossref_primary_10_1016_j_triboint_2022_107885
crossref_primary_10_1016_j_triboint_2024_109544
crossref_primary_10_1016_j_corsci_2023_111298
crossref_primary_10_1016_j_actamat_2024_120114
crossref_primary_10_1021_acs_jpcc_4c01612
crossref_primary_10_1016_j_ijrmhm_2023_106308
crossref_primary_10_1016_j_jallcom_2022_165384
crossref_primary_10_1007_s40843_023_2578_5
crossref_primary_10_1016_j_jallcom_2024_175737
crossref_primary_10_1016_j_corsci_2021_109861
crossref_primary_10_1016_j_jmrt_2023_07_003
crossref_primary_10_1002_adem_202001047
crossref_primary_10_1016_j_jallcom_2024_175613
crossref_primary_10_1016_j_corsci_2022_110464
crossref_primary_10_1016_j_corsci_2023_111455
crossref_primary_10_1016_j_corsci_2024_111951
crossref_primary_10_1016_j_optlastec_2021_107447
crossref_primary_10_3390_coatings10040415
crossref_primary_10_1016_j_mtla_2023_101764
crossref_primary_10_1007_s00170_023_12773_4
crossref_primary_10_1007_s11837_023_06135_4
crossref_primary_10_1016_j_corsci_2024_112193
crossref_primary_10_1016_j_intermet_2024_108549
crossref_primary_10_1016_j_surfcoat_2024_130953
crossref_primary_10_1007_s11666_020_01047_0
crossref_primary_10_1016_j_addma_2024_104171
crossref_primary_10_1016_j_apsusc_2024_160085
crossref_primary_10_1016_j_corsci_2022_110377
crossref_primary_10_1088_2515_7655_ac6f7e
crossref_primary_10_3390_met12010041
crossref_primary_10_1016_j_triboint_2024_109817
crossref_primary_10_1016_j_intermet_2024_108425
crossref_primary_10_1016_j_jmst_2025_02_017
crossref_primary_10_1111_jace_19390
crossref_primary_10_1007_s12034_023_03114_y
crossref_primary_10_1016_j_ijrmhm_2025_107137
crossref_primary_10_1016_j_jeurceramsoc_2024_116793
crossref_primary_10_1007_s11666_022_01324_0
crossref_primary_10_1016_j_scriptamat_2024_115997
crossref_primary_10_3390_ma17184579
crossref_primary_10_1016_j_wear_2024_205596
crossref_primary_10_1016_j_jallcom_2021_160455
crossref_primary_10_1016_j_jmrt_2023_05_037
crossref_primary_10_1016_j_ijrmhm_2022_105777
crossref_primary_10_1016_j_ijrmhm_2024_106820
crossref_primary_10_1016_j_ijrmhm_2021_105755
crossref_primary_10_1016_j_ijrmhm_2022_105812
crossref_primary_10_1007_s40843_020_1332_2
crossref_primary_10_1016_j_corsci_2022_110885
crossref_primary_10_1007_s11837_024_06419_3
crossref_primary_10_1002_pssa_202400650
crossref_primary_10_1016_j_vacuum_2023_112702
crossref_primary_10_1007_s12613_021_2257_7
crossref_primary_10_1016_j_intermet_2024_108497
crossref_primary_10_1016_j_wear_2021_204166
crossref_primary_10_1557_s43577_022_00454_8
crossref_primary_10_1016_j_cap_2024_11_001
crossref_primary_10_1007_s10853_020_05480_y
crossref_primary_10_1016_j_corsci_2024_112176
crossref_primary_10_1016_j_corsci_2023_111481
crossref_primary_10_1016_j_jallcom_2022_166946
crossref_primary_10_1016_j_jmrt_2024_11_250
crossref_primary_10_3390_ma15082931
crossref_primary_10_1016_j_corsci_2023_111365
crossref_primary_10_1016_j_ijrmhm_2023_106297
crossref_primary_10_1002_adem_202200161
crossref_primary_10_1016_j_jmrt_2023_12_212
crossref_primary_10_32339_0135_5910_2022_11_978_986
crossref_primary_10_1016_j_corsci_2022_110153
crossref_primary_10_1021_acs_langmuir_1c03191
crossref_primary_10_1016_j_commatsci_2021_110723
crossref_primary_10_1016_j_jallcom_2024_173803
crossref_primary_10_1016_j_jallcom_2024_177206
crossref_primary_10_1016_j_ijrmhm_2022_105918
crossref_primary_10_1016_j_intermet_2025_108643
crossref_primary_10_1007_s00170_024_13452_8
crossref_primary_10_1016_j_intermet_2023_108002
crossref_primary_10_1016_j_surfcoat_2021_127233
crossref_primary_10_53433_yyufbed_1497606
crossref_primary_10_1016_j_corsci_2023_111527
crossref_primary_10_1016_j_jallcom_2023_172397
crossref_primary_10_1016_j_surfcoat_2024_131108
crossref_primary_10_1016_j_ijrmhm_2024_106563
crossref_primary_10_1016_j_vacuum_2025_114020
crossref_primary_10_1007_s11085_022_10129_z
crossref_primary_10_1016_j_jallcom_2021_162733
crossref_primary_10_1016_j_matchemphys_2021_124256
crossref_primary_10_1016_j_matchar_2021_111196
crossref_primary_10_1016_j_matchemphys_2024_129769
crossref_primary_10_26599_JAC_2024_9220862
crossref_primary_10_3390_ma17122799
crossref_primary_10_1016_j_triboint_2024_110172
crossref_primary_10_1016_j_jmapro_2021_06_041
crossref_primary_10_1016_j_surfcoat_2021_127486
crossref_primary_10_3390_cryst11060612
crossref_primary_10_1016_j_corsci_2023_111537
crossref_primary_10_1016_j_intermet_2021_107323
crossref_primary_10_1016_j_matchar_2023_112956
crossref_primary_10_1016_j_scriptamat_2024_116031
crossref_primary_10_1016_j_scriptamat_2024_116394
crossref_primary_10_1016_j_corsci_2024_112672
crossref_primary_10_1063_5_0116605
crossref_primary_10_1007_s11085_020_09983_6
crossref_primary_10_1007_s11665_024_09451_1
crossref_primary_10_1016_j_jallcom_2020_153805
crossref_primary_10_1016_j_jallcom_2021_163373
crossref_primary_10_1016_j_mtadv_2020_100104
crossref_primary_10_1007_s11837_023_06080_2
crossref_primary_10_1016_j_matdes_2024_113370
crossref_primary_10_1002_adem_202402330
crossref_primary_10_1016_j_jmst_2023_02_016
crossref_primary_10_3390_ma14102595
crossref_primary_10_1016_j_jallcom_2022_164180
crossref_primary_10_1007_s11085_023_10218_7
crossref_primary_10_1016_j_surfcoat_2025_131882
crossref_primary_10_1016_j_mtcomm_2024_108156
crossref_primary_10_3390_e24101342
crossref_primary_10_1002_adem_202302124
crossref_primary_10_1016_j_actamat_2024_120558
crossref_primary_10_1016_j_corsci_2023_111667
crossref_primary_10_1016_j_matdes_2025_113652
crossref_primary_10_3389_ftmal_2023_1135826
crossref_primary_10_1002_maco_202112770
crossref_primary_10_1080_00084433_2021_2001298
crossref_primary_10_1016_j_matchemphys_2024_129304
crossref_primary_10_1038_s41529_021_00163_8
crossref_primary_10_3390_app13169336
crossref_primary_10_3390_met13030579
crossref_primary_10_1016_j_matchemphys_2024_129148
crossref_primary_10_1016_j_matdes_2024_112832
crossref_primary_10_3390_e24111553
crossref_primary_10_1063_5_0028977
crossref_primary_10_1007_s11085_021_10046_7
crossref_primary_10_1016_j_triboint_2021_107160
crossref_primary_10_1016_j_jallcom_2024_175957
crossref_primary_10_1016_j_jallcom_2024_176806
crossref_primary_10_1016_j_intermet_2020_106792
crossref_primary_10_1016_j_jallcom_2020_155726
crossref_primary_10_1016_j_jre_2023_02_015
crossref_primary_10_3390_met12030501
crossref_primary_10_1016_j_addma_2024_104126
crossref_primary_10_1016_j_mtcomm_2023_107056
crossref_primary_10_1016_j_jallcom_2024_174581
crossref_primary_10_1016_j_corsci_2023_110989
crossref_primary_10_1016_j_corsci_2025_112847
Cites_doi 10.1016/j.jallcom.2015.11.091
10.1007/BF00838593
10.1016/j.jallcom.2016.10.014
10.1016/j.actamat.2013.01.042
10.1016/j.intermet.2013.10.024
10.1007/s11085-016-9696-y
10.1016/j.matlet.2014.11.162
10.1016/j.jallcom.2016.07.219
10.1007/BF01166893
10.1007/s10853-012-6582-0
10.1016/j.jallcom.2015.11.050
10.1007/s11661-013-1944-z
10.1007/s11837-014-1066-0
10.1016/j.jallcom.2011.02.174
10.1016/j.actamat.2016.08.081
10.1016/j.corsci.2015.06.026
10.1007/s11085-013-9375-1
10.1179/1878641315Y.0000000012
10.4028/www.scientific.net/MSF.560.1
10.1080/09603409.2017.1389115
10.4028/www.scientific.net/MSF.546-549.1485
10.1016/j.jascer.2016.01.003
10.1002/pssb.19670190220
10.1016/0022-4596(72)90116-8
10.1007/s11661-004-0370-7
10.1016/j.jallcom.2015.08.224
10.1016/j.jallcom.2017.09.164
10.1016/j.actamat.2012.11.032
10.1149/1.2721463
10.1007/s10853-010-4458-8
10.1016/j.jallcom.2017.07.066
10.1007/BF00656571
10.1002/srin.193200332
10.1002/anie.196600401
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Oct 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2019
DBID AAYXX
CITATION
7SE
8BQ
8FD
F28
FR3
JG9
DOI 10.1016/j.corsci.2019.108161
DatabaseName CrossRef
Corrosion Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineering Research Database
Technology Research Database
Corrosion Abstracts
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0496
ExternalDocumentID 10_1016_j_corsci_2019_108161
S0010938X19304263
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AELAQ
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
TAE
VH1
WUQ
XPP
XSW
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SE
8BQ
8FD
EFKBS
F28
FR3
JG9
ID FETCH-LOGICAL-c400t-8ff0cb676fac9cd0ce56aec58da86d9f8369723b2572f9e7469b1e3fd7f98ae43
IEDL.DBID .~1
ISSN 0010-938X
IngestDate Sat Aug 23 13:14:58 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Tue Jul 01 01:02:08 EDT 2025
Fri Feb 23 02:30:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Compositionally complex alloy
Quartic rate law
Refractory high entropy alloy
High temperature corrosion
CrTaO4 formation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-8ff0cb676fac9cd0ce56aec58da86d9f8369723b2572f9e7469b1e3fd7f98ae43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2302419895
PQPubID 2045264
ParticipantIDs proquest_journals_2302419895
crossref_primary_10_1016_j_corsci_2019_108161
crossref_citationtrail_10_1016_j_corsci_2019_108161
elsevier_sciencedirect_doi_10_1016_j_corsci_2019_108161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Corrosion science
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Müller, Gorr, Christ, Chen, Kauffmann, Heilmaier (bib0055) 2018; 35
Ercit (bib0175) 1991; 43
Li (bib0195) 2004
Schliephake, Azim, Von Klinski-Wetzel, Gorr, Christ, Bei, George, Heilmaier (bib0075) 2014; 45
Yeh, Chen, Lin (bib0005) 2007; 560
Vazquez, Varma (bib0085) 2011; 509
Stepanov, Yurchenko, Skibin, Tikhonovsky, Salishchev (bib0100) 2015; 652
Wu, Bei, Otto, Pharr, George (bib0015) 2014; 46
Varma, Parga, Amato, Hernandez (bib0165) 2010; 45
Pham, Maruoka, Nanko (bib0200) 2016; 4
Young (bib0060) 2016
Spyrdelis, Delavignette, Amelinckx (bib0155) 1967; 19
Senkov, Senkova, Dimiduk, Woodward, Miracle (bib0025) 2012; 47
Esparza, Rangel, Gutierrez, Arellano, Varma (bib0140) 2016; 33
Ren, Ouyang, Ding, Zhong, Yu, Ren, Zhou (bib0190) 2017; 724
Miracle, Senkov (bib0020) 2017; 122
Scheil, Schulz (bib0070) 1932; 6
Senkov, Woodward, Miracle (bib0035) 2014; 66
Qu, Han, Song, Kang (bib0150) 2007; 546–549
Senkov, Miracle, Chaput, Couzinie (bib0040) 2018
Pilling, Bedworth (bib0180) 1923; 29
Arbuzov, Chupria (bib0170) 1965; 8
Thomas, Varma (bib0135) 2015; 99
Bürgel (bib0065) 1998
Hindam, Whittle (bib0205) 1982; 18
Liu, Zhang, Zhang, Wang, Chen, Zhang, Li (bib0105) 2017; 694
Guo, Wang, Luo, Li, Chen, Su, Guo, Fu (bib0110) 2016; 660
Schäfer, Gruehn, Schulte (bib0160) 1966; 5
Stepanov, Shaysultanov, Salishchev, Tikhonovsky (bib0095) 2015; 142
Massard, Bernier, Michel (bib0120) 1972; 4
Chan (bib0145) 2004; 35
Otto, Yang, Bei, George (bib0010) 2013; 61
Butler, Chaput, Dietrich, Senkov (bib0090) 2017; 729
Chen, Kauffmann, Gorr, Schliephake, Seemüller, Wagner, Christ, Heilmaier (bib0115) 2016; 661
Gorr, Müller, Christ, Müller, Chen, Kauffmann, Heilmaier (bib0045) 2016; 688
Kofstad (bib0185) 1966
Gorr, Mueller, Azim, Christ, Mueller, Chen, Kauffmann, Heilmaier (bib0050) 2017; 88
Senkov, Senkova, Woodward, Miracle (bib0030) 2013; 61
Rioult, Sakidja, Perepezko (bib0125) 2007; 3
Zhou, Taylor, Melinte, Shahani, Dharmawardhana, Heinz, Voorhees, Perepezko, Bustillo, Ercius, Miao (bib0130) 2018; 8
Azim, Burk, Gorr, Christ, Schliephake, Heilmaier, Bornemann, Bolivar (bib0080) 2013; 80
Butler (10.1016/j.corsci.2019.108161_bib0090) 2017; 729
Chen (10.1016/j.corsci.2019.108161_bib0115) 2016; 661
Senkov (10.1016/j.corsci.2019.108161_bib0025) 2012; 47
Massard (10.1016/j.corsci.2019.108161_bib0120) 1972; 4
Hindam (10.1016/j.corsci.2019.108161_bib0205) 1982; 18
Senkov (10.1016/j.corsci.2019.108161_bib0030) 2013; 61
Yeh (10.1016/j.corsci.2019.108161_bib0005) 2007; 560
Scheil (10.1016/j.corsci.2019.108161_bib0070) 1932; 6
Müller (10.1016/j.corsci.2019.108161_bib0055) 2018; 35
Senkov (10.1016/j.corsci.2019.108161_bib0035) 2014; 66
Bürgel (10.1016/j.corsci.2019.108161_bib0065) 1998
Guo (10.1016/j.corsci.2019.108161_bib0110) 2016; 660
Pham (10.1016/j.corsci.2019.108161_bib0200) 2016; 4
Gorr (10.1016/j.corsci.2019.108161_bib0050) 2017; 88
Miracle (10.1016/j.corsci.2019.108161_bib0020) 2017; 122
Esparza (10.1016/j.corsci.2019.108161_bib0140) 2016; 33
Young (10.1016/j.corsci.2019.108161_bib0060) 2016
Liu (10.1016/j.corsci.2019.108161_bib0105) 2017; 694
Schäfer (10.1016/j.corsci.2019.108161_bib0160) 1966; 5
Kofstad (10.1016/j.corsci.2019.108161_bib0185) 1966
Vazquez (10.1016/j.corsci.2019.108161_bib0085) 2011; 509
Azim (10.1016/j.corsci.2019.108161_bib0080) 2013; 80
Rioult (10.1016/j.corsci.2019.108161_bib0125) 2007; 3
Zhou (10.1016/j.corsci.2019.108161_bib0130) 2018; 8
Wu (10.1016/j.corsci.2019.108161_bib0015) 2014; 46
Stepanov (10.1016/j.corsci.2019.108161_bib0095) 2015; 142
Pilling (10.1016/j.corsci.2019.108161_bib0180) 1923; 29
Schliephake (10.1016/j.corsci.2019.108161_bib0075) 2014; 45
Stepanov (10.1016/j.corsci.2019.108161_bib0100) 2015; 652
Arbuzov (10.1016/j.corsci.2019.108161_bib0170) 1965; 8
Chan (10.1016/j.corsci.2019.108161_bib0145) 2004; 35
Varma (10.1016/j.corsci.2019.108161_bib0165) 2010; 45
Ren (10.1016/j.corsci.2019.108161_bib0190) 2017; 724
Thomas (10.1016/j.corsci.2019.108161_bib0135) 2015; 99
Spyrdelis (10.1016/j.corsci.2019.108161_bib0155) 1967; 19
Otto (10.1016/j.corsci.2019.108161_bib0010) 2013; 61
Senkov (10.1016/j.corsci.2019.108161_bib0040) 2018
Qu (10.1016/j.corsci.2019.108161_bib0150) 2007; 546–549
Ercit (10.1016/j.corsci.2019.108161_bib0175) 1991; 43
Li (10.1016/j.corsci.2019.108161_bib0195) 2004
Gorr (10.1016/j.corsci.2019.108161_bib0045) 2016; 688
References_xml – volume: 43
  start-page: 217
  year: 1991
  end-page: 223
  ident: bib0175
  article-title: Refinement of the structure of z-Nb
  publication-title: Mineral. Petrol.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib0020
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 546–549
  start-page: 1485
  year: 2007
  end-page: 1488
  ident: bib0150
  article-title: Effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics
  publication-title: Mater. Sci. Forum
– start-page: 35
  year: 2004
  end-page: 38
  ident: bib0195
  article-title: High-temperature Oxidation, Hot Corrosion of Five Ni-base Superalloys and Their Protection
– volume: 652
  start-page: 266
  year: 2015
  end-page: 280
  ident: bib0100
  article-title: Structure and mechanical properties of the AlCrxNbTiV (x 5 0, 0.5, 1, 1.5) high entropy alloys
  publication-title: J. Alloys. Compd.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0130
  article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy
  publication-title: Sci. Rep.
– volume: 66
  start-page: 2030
  year: 2014
  end-page: 2042
  ident: bib0035
  article-title: Microstructure and properties of aluminium-containing refractory high entropy alloys
  publication-title: JOM
– volume: 6
  start-page: 155
  year: 1932
  end-page: 160
  ident: bib0070
  article-title: Hitzebeständige Chrom-Aluminium-Stähle
  publication-title: Arch. Eisenhüttenwes
– volume: 4
  start-page: 269
  year: 1972
  end-page: 274
  ident: bib0120
  article-title: Effet Jahn-Teller dans le système Ta2CrO6-TaCrO4
  publication-title: J. Solid State Chem.
– volume: 29
  start-page: 529
  year: 1923
  end-page: 591
  ident: bib0180
  article-title: The oxidation of metals at high temperatures
  publication-title: J. Inst. Met.
– volume: 724
  start-page: 565
  year: 2017
  end-page: 574
  ident: bib0190
  article-title: The influence of CrTaO 4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C
  publication-title: J. Alloys. Compd.
– volume: 45
  start-page: 1102
  year: 2014
  end-page: 1111
  ident: bib0075
  article-title: High-temperature creep and oxidation behavior of Mo-Si-B alloys with high Ti contents
  publication-title: Metall. Mater. Trans. A
– volume: 35
  start-page: 589
  year: 2004
  end-page: 597
  ident: bib0145
  article-title: Cyclic oxidation response of multiphase niobium-based alloys
  publication-title: Metall. Mater. Trans. A
– volume: 8
  start-page: 87
  year: 1965
  end-page: 89
  ident: bib0170
  article-title: The oxidation of niobium and the structure of niobium oxides
  publication-title: Sov. Phys. J.
– volume: 33
  start-page: 105
  year: 2016
  end-page: 114
  ident: bib0140
  article-title: A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb–Cr–Si system
  publication-title: Mater. High Temp.
– volume: 560
  start-page: 1
  year: 2007
  end-page: 9
  ident: bib0005
  article-title: High-entropy alloys – a new era of exploitation
  publication-title: Mater. Sci. Forum
– volume: 660
  start-page: 197
  year: 2016
  end-page: 203
  ident: bib0110
  article-title: Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound
  publication-title: J. Alloys. Compd.
– volume: 661
  start-page: 206
  year: 2016
  end-page: 215
  ident: bib0115
  article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al
  publication-title: J. Alloys. Compd.
– year: 1998
  ident: bib0065
  article-title: Handbuch Hochtemperatur-Werkstofftechnik
– volume: 46
  start-page: 131
  year: 2014
  end-page: 140
  ident: bib0015
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
– volume: 729
  start-page: 1004
  year: 2017
  end-page: 1019
  ident: bib0090
  article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)
  publication-title: J. Alloys. Compd.
– volume: 3
  start-page: 113
  year: 2007
  end-page: 127
  ident: bib0125
  article-title: Coating strategies for oxidation resistant high temperature Mo-Si-B alloys
  publication-title: ECS Trans.
– volume: 80
  start-page: 231
  year: 2013
  end-page: 242
  ident: bib0080
  article-title: Effect of Ti (Macro-) alloying on the high-temperature oxidation behavior of ternary Mo-Si-B alloys at 820–1300°C
  publication-title: Oxid. Met.
– volume: 61
  start-page: 1545
  year: 2013
  end-page: 1557
  ident: bib0030
  article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis
  publication-title: Acta Mater.
– volume: 5
  start-page: 40
  year: 1966
  end-page: 52
  ident: bib0160
  article-title: The modifications of niobium pentoxide
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 4
  start-page: 120
  year: 2016
  end-page: 123
  ident: bib0200
  article-title: Influences of Al
  publication-title: J. Asian Ceram. Soc.
– volume: 142
  start-page: 153
  year: 2015
  end-page: 155
  ident: bib0095
  article-title: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy
  publication-title: Mater. Lett.
– year: 2016
  ident: bib0060
  article-title: High Temperature Oxidation and Corrosion of Metals
– year: 1966
  ident: bib0185
  article-title: High-temperature Oxidation of Metals
– volume: 694
  start-page: 869
  year: 2017
  end-page: 877
  ident: bib0105
  article-title: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites
  publication-title: J. Alloys. Compd.
– volume: 45
  start-page: 3931
  year: 2010
  end-page: 3937
  ident: bib0165
  article-title: Microstructures and high temperature oxidation resistance of alloys from Nb–Cr–Si system
  publication-title: J. Mater. Sci.
– volume: 18
  start-page: 245
  year: 1982
  end-page: 284
  ident: bib0205
  article-title: Microstructure, Adhesion and Growth Kinetics of Protective Scales on Metals and Alloys
  publication-title: Oxid. Met.
– volume: 19
  start-page: 683
  year: 1967
  end-page: 704
  ident: bib0155
  article-title: on the superstructures of Ta2O5 and Nb2O5
  publication-title: Phys. Stat. Sol.
– start-page: 1
  year: 2018
  end-page: 37
  ident: bib0040
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J. Mater. Res.
– volume: 688
  start-page: 468
  year: 2016
  end-page: 477
  ident: bib0045
  article-title: High temperature oxidation behaviour of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition
  publication-title: J. Alloys. Compd.
– volume: 99
  start-page: 145
  year: 2015
  end-page: 153
  ident: bib0135
  article-title: Oxidation response of three Nb–Cr–Mo–Si–B alloys in air
  publication-title: Corr. Sci.
– volume: 88
  start-page: 339
  year: 2017
  end-page: 349
  ident: bib0050
  article-title: High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition
  publication-title: Oxid. Met.
– volume: 509
  start-page: 7027
  year: 2011
  end-page: 7033
  ident: bib0085
  article-title: High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions
  publication-title: J. Alloys. Compd.
– volume: 35
  start-page: 168
  year: 2018
  end-page: 176
  ident: bib0055
  article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al
  publication-title: Mater. High Temp.
– volume: 47
  start-page: 6522
  year: 2012
  end-page: 6534
  ident: bib0025
  article-title: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy
  publication-title: J. Mater. Sci.
– volume: 61
  start-page: 2628
  year: 2013
  end-page: 2638
  ident: bib0010
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatmoic high-entropy alloys
  publication-title: Acta Mater.
– volume: 660
  start-page: 197
  year: 2016
  ident: 10.1016/j.corsci.2019.108161_bib0110
  article-title: Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2015.11.091
– volume: 8
  start-page: 87
  year: 1965
  ident: 10.1016/j.corsci.2019.108161_bib0170
  article-title: The oxidation of niobium and the structure of niobium oxides
  publication-title: Sov. Phys. J.
  doi: 10.1007/BF00838593
– year: 1966
  ident: 10.1016/j.corsci.2019.108161_bib0185
– volume: 694
  start-page: 869
  year: 2017
  ident: 10.1016/j.corsci.2019.108161_bib0105
  article-title: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2016.10.014
– volume: 61
  start-page: 2628
  year: 2013
  ident: 10.1016/j.corsci.2019.108161_bib0010
  article-title: Relative effects of enthalpy and entropy on the phase stability of equiatmoic high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.01.042
– volume: 46
  start-page: 131
  year: 2014
  ident: 10.1016/j.corsci.2019.108161_bib0015
  article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.10.024
– volume: 88
  start-page: 339
  year: 2017
  ident: 10.1016/j.corsci.2019.108161_bib0050
  article-title: High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition
  publication-title: Oxid. Met.
  doi: 10.1007/s11085-016-9696-y
– volume: 142
  start-page: 153
  year: 2015
  ident: 10.1016/j.corsci.2019.108161_bib0095
  article-title: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.11.162
– volume: 688
  start-page: 468
  year: 2016
  ident: 10.1016/j.corsci.2019.108161_bib0045
  article-title: High temperature oxidation behaviour of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2016.07.219
– volume: 43
  start-page: 217
  year: 1991
  ident: 10.1016/j.corsci.2019.108161_bib0175
  article-title: Refinement of the structure of z-Nb2O5 and its relationship to the rutile and thoreaulite structures
  publication-title: Mineral. Petrol.
  doi: 10.1007/BF01166893
– volume: 47
  start-page: 6522
  year: 2012
  ident: 10.1016/j.corsci.2019.108161_bib0025
  article-title: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6582-0
– start-page: 1
  year: 2018
  ident: 10.1016/j.corsci.2019.108161_bib0040
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J. Mater. Res.
– volume: 661
  start-page: 206
  year: 2016
  ident: 10.1016/j.corsci.2019.108161_bib0115
  article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2015.11.050
– volume: 45
  start-page: 1102
  year: 2014
  ident: 10.1016/j.corsci.2019.108161_bib0075
  article-title: High-temperature creep and oxidation behavior of Mo-Si-B alloys with high Ti contents
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-013-1944-z
– volume: 66
  start-page: 2030
  year: 2014
  ident: 10.1016/j.corsci.2019.108161_bib0035
  article-title: Microstructure and properties of aluminium-containing refractory high entropy alloys
  publication-title: JOM
  doi: 10.1007/s11837-014-1066-0
– volume: 509
  start-page: 7027
  year: 2011
  ident: 10.1016/j.corsci.2019.108161_bib0085
  article-title: High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2011.02.174
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.corsci.2019.108161_bib0020
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.corsci.2019.108161_bib0130
  article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy
  publication-title: Sci. Rep.
– volume: 99
  start-page: 145
  year: 2015
  ident: 10.1016/j.corsci.2019.108161_bib0135
  article-title: Oxidation response of three Nb–Cr–Mo–Si–B alloys in air
  publication-title: Corr. Sci.
  doi: 10.1016/j.corsci.2015.06.026
– year: 1998
  ident: 10.1016/j.corsci.2019.108161_bib0065
– volume: 80
  start-page: 231
  year: 2013
  ident: 10.1016/j.corsci.2019.108161_bib0080
  article-title: Effect of Ti (Macro-) alloying on the high-temperature oxidation behavior of ternary Mo-Si-B alloys at 820–1300°C
  publication-title: Oxid. Met.
  doi: 10.1007/s11085-013-9375-1
– volume: 33
  start-page: 105
  year: 2016
  ident: 10.1016/j.corsci.2019.108161_bib0140
  article-title: A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb–Cr–Si system
  publication-title: Mater. High Temp.
  doi: 10.1179/1878641315Y.0000000012
– volume: 560
  start-page: 1
  year: 2007
  ident: 10.1016/j.corsci.2019.108161_bib0005
  article-title: High-entropy alloys – a new era of exploitation
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.560.1
– volume: 35
  start-page: 168
  year: 2018
  ident: 10.1016/j.corsci.2019.108161_bib0055
  article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al
  publication-title: Mater. High Temp.
  doi: 10.1080/09603409.2017.1389115
– start-page: 35
  year: 2004
  ident: 10.1016/j.corsci.2019.108161_bib0195
– volume: 546–549
  start-page: 1485
  year: 2007
  ident: 10.1016/j.corsci.2019.108161_bib0150
  article-title: Effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.546-549.1485
– volume: 4
  start-page: 120
  year: 2016
  ident: 10.1016/j.corsci.2019.108161_bib0200
  article-title: Influences of Al2O3 grain size on high-temperature oxidation of nano-Ni/Al2O3 composites
  publication-title: J. Asian Ceram. Soc.
  doi: 10.1016/j.jascer.2016.01.003
– volume: 19
  start-page: 683
  year: 1967
  ident: 10.1016/j.corsci.2019.108161_bib0155
  article-title: on the superstructures of Ta2O5 and Nb2O5
  publication-title: Phys. Stat. Sol.
  doi: 10.1002/pssb.19670190220
– volume: 4
  start-page: 269
  year: 1972
  ident: 10.1016/j.corsci.2019.108161_bib0120
  article-title: Effet Jahn-Teller dans le système Ta2CrO6-TaCrO4
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(72)90116-8
– volume: 35
  start-page: 589
  year: 2004
  ident: 10.1016/j.corsci.2019.108161_bib0145
  article-title: Cyclic oxidation response of multiphase niobium-based alloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-004-0370-7
– year: 2016
  ident: 10.1016/j.corsci.2019.108161_bib0060
– volume: 652
  start-page: 266
  year: 2015
  ident: 10.1016/j.corsci.2019.108161_bib0100
  article-title: Structure and mechanical properties of the AlCrxNbTiV (x 5 0, 0.5, 1, 1.5) high entropy alloys
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2015.08.224
– volume: 29
  start-page: 529
  year: 1923
  ident: 10.1016/j.corsci.2019.108161_bib0180
  article-title: The oxidation of metals at high temperatures
  publication-title: J. Inst. Met.
– volume: 729
  start-page: 1004
  year: 2017
  ident: 10.1016/j.corsci.2019.108161_bib0090
  article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs)
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2017.09.164
– volume: 61
  start-page: 1545
  year: 2013
  ident: 10.1016/j.corsci.2019.108161_bib0030
  article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.11.032
– volume: 3
  start-page: 113
  year: 2007
  ident: 10.1016/j.corsci.2019.108161_bib0125
  article-title: Coating strategies for oxidation resistant high temperature Mo-Si-B alloys
  publication-title: ECS Trans.
  doi: 10.1149/1.2721463
– volume: 45
  start-page: 3931
  year: 2010
  ident: 10.1016/j.corsci.2019.108161_bib0165
  article-title: Microstructures and high temperature oxidation resistance of alloys from Nb–Cr–Si system
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-4458-8
– volume: 724
  start-page: 565
  year: 2017
  ident: 10.1016/j.corsci.2019.108161_bib0190
  article-title: The influence of CrTaO 4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2017.07.066
– volume: 18
  start-page: 245
  year: 1982
  ident: 10.1016/j.corsci.2019.108161_bib0205
  article-title: Microstructure, Adhesion and Growth Kinetics of Protective Scales on Metals and Alloys
  publication-title: Oxid. Met.
  doi: 10.1007/BF00656571
– volume: 6
  start-page: 155
  year: 1932
  ident: 10.1016/j.corsci.2019.108161_bib0070
  article-title: Hitzebeständige Chrom-Aluminium-Stähle
  publication-title: Arch. Eisenhüttenwes
  doi: 10.1002/srin.193200332
– volume: 5
  start-page: 40
  year: 1966
  ident: 10.1016/j.corsci.2019.108161_bib0160
  article-title: The modifications of niobium pentoxide
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.196600401
SSID ssj0002010
Score 2.639681
Snippet •The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth...
The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108161
SubjectTerms Alloys
Aluminum oxide
Compositionally complex alloy
CrTaO4 formation
Heat resistant alloys
High entropy alloys
High temperature
High temperature corrosion
Niobium oxides
Oxidation
Polytypes
Quartic rate law
Reaction kinetics
Refractory alloys
Refractory high entropy alloy
Refractory materials
Scale (corrosion)
Spallation
Tantalum
Titanium
Title On the oxidation mechanism of refractory high entropy alloys
URI https://dx.doi.org/10.1016/j.corsci.2019.108161
https://www.proquest.com/docview/2302419895
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaJQevsbub3TzASymWqlgvFnoLm2wCK_ZBW8Fe_O1m9uELpOBxd5PsMplMZjbffIPQpZaa0dBEhOooIeDwklRbSyKudUCNkC6B3OGHIRuM4rtxMm6gXp0LA7DKyvaXNr2w1tWdTiXNzjzPIccXqJDE2LsgEAgA42ccc9Dyq_cvmAec9pbWOCDQuk6fKzBePsDzQwPASwLYLmThX9vTL0Nd7D79PbRbuY24W37ZPmrY6QHa-UYmeIiuH6fYe3N49paXdZLwxEJab76c4JnD_lWLorbOGgNFMYa_urP5GsPB-3p5hEb9m6fegFS1EYjxq25FhHOB0YwzlxppssDYhKXWJCJLBcukE5RBPTE_ATxy0nIfBevQUpdxJ0VqY3qMmtPZ1J4gnMXcicw_CaI0zngmDWUitjzSjgaSyxaitUiUqYjDoX7Fi6oRYs-qFKQCQapSkC1EPnvNS-KMDe15LW31QwGUt-0berbryVHVAlwqH1l530QKmZz-e-AztA1XJXSvjZqrxas99y7ISl8UOnaBtrq394PhB6xs27A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPagH8YmPqjl4Dd1udvMALyJKfdVLC72FTTaBim6LrWD_vZnublFBBK-bnewySb58k8wD4Nwow1nHxpSZOKVIeGlmnKOxMCZiViqfYuzwY493B8ndMB024KqOhUG3ygr7S0xfoHX1pF1psz0ZjTDGF1MhyWGgIGgIsBVYxexUaRNWL2_vu70lIOOFbwnIEUWBOoJu4eYVbLzQO_p4KfS36_DObzvUD6xebEA3W7BZMUdyWf7cNjRcsQMbX_IJ7sLFU0ECoSPjj1FZKom8OozsHU1fydiT8Km3RXmdOcEsxQQPdseTOcG79_l0DwY31_2rLq3KI1AbFt6MSu8ja7jgPrPK5pF1Kc-cTWWeSZ4rLxnHkmJhDETslRPBEDYdx3wuvJKZS9g-NItx4Q6A5InwMg8tUZwluciVZVwmTsTGs0gJdQisVom2Ve5wLGHxomsnsWddKlKjInWpyEOgS6lJmTvjj_dFrW39bQ7oAO9_SLbqwdHVGpzqYFwFeqKkSo_-3fEZrHX7jw_64bZ3fwzr2FJ68rWgOXt7dyeBkczMaTXjPgE--N5h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+oxidation+mechanism+of+refractory+high+entropy+alloys&rft.jtitle=Corrosion+science&rft.au=M%C3%BCller%2C+Franz&rft.au=Gorr%2C+Bronislava&rft.au=Christ%2C+Hans-J%C3%BCrgen&rft.au=M%C3%BCller%2C+Julian&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-938X&rft.eissn=1879-0496&rft.volume=159&rft_id=info:doi/10.1016%2Fj.corsci.2019.108161&rft.externalDocID=S0010938X19304263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-938X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-938X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-938X&client=summon