On the oxidation mechanism of refractory high entropy alloys
•The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth comparable to those of Cr2O3 and CrTaO4 forming Ni-based superalloys were found.•The oxygen inward diffusion was found to be rate determining in CrT...
Saved in:
Published in | Corrosion science Vol. 159; p. 108161 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.10.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth comparable to those of Cr2O3 and CrTaO4 forming Ni-based superalloys were found.•The oxygen inward diffusion was found to be rate determining in CrTaO4 forming alloys.•In Nb-containing alloys, the formation of Nb2O5 caused a porous oxide scale as well as severe oxide spallation.•Ti had a positive effect on the high-temperature oxidation behaviour because it supports the formation of protective CrTaO4.
The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was studied. A complex protective oxide layer consisting of Al2O3, Cr2O3 and CrTaO4 oxides was observed for the quinary Ta-containing alloy. The formation of CrTaO4 in this alloy after a short incubation period decreased the oxidation kinetics from a parabolic to a quartic rate law. Ti was found to support the formation of CrTaO4. In the Nb-containing alloys, the formation of different Nb2O5 polytypes near the metal/oxide interface caused a highly porous oxide scale and severe oxide spallation. |
---|---|
AbstractList | •The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth comparable to those of Cr2O3 and CrTaO4 forming Ni-based superalloys were found.•The oxygen inward diffusion was found to be rate determining in CrTaO4 forming alloys.•In Nb-containing alloys, the formation of Nb2O5 caused a porous oxide scale as well as severe oxide spallation.•Ti had a positive effect on the high-temperature oxidation behaviour because it supports the formation of protective CrTaO4.
The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was studied. A complex protective oxide layer consisting of Al2O3, Cr2O3 and CrTaO4 oxides was observed for the quinary Ta-containing alloy. The formation of CrTaO4 in this alloy after a short incubation period decreased the oxidation kinetics from a parabolic to a quartic rate law. Ti was found to support the formation of CrTaO4. In the Nb-containing alloys, the formation of different Nb2O5 polytypes near the metal/oxide interface caused a highly porous oxide scale and severe oxide spallation. The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was studied. A complex protective oxide layer consisting of Al2O3, Cr2O3 and CrTaO4 oxides was observed for the quinary Ta-containing alloy. The formation of CrTaO4 in this alloy after a short incubation period decreased the oxidation kinetics from a parabolic to a quartic rate law. Ti was found to support the formation of CrTaO4. In the Nb-containing alloys, the formation of different Nb2O5 polytypes near the metal/oxide interface caused a highly porous oxide scale and severe oxide spallation. |
ArticleNumber | 108161 |
Author | Müller, Franz Müller, Julian Chen, Hans Kauffmann, Alexander Christ, Hans-Jürgen Heilmaier, Martin Butz, Benjamin Gorr, Bronislava |
Author_xml | – sequence: 1 givenname: Franz surname: Müller fullname: Müller, Franz email: franz.mueller@uni-siegen.de organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 2 givenname: Bronislava surname: Gorr fullname: Gorr, Bronislava organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 3 givenname: Hans-Jürgen surname: Christ fullname: Christ, Hans-Jürgen organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 4 givenname: Julian surname: Müller fullname: Müller, Julian organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 5 givenname: Benjamin surname: Butz fullname: Butz, Benjamin organization: Institut für Werkstofftechnik, Universität Siegen, Siegen, Germany – sequence: 6 givenname: Hans surname: Chen fullname: Chen, Hans organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany – sequence: 7 givenname: Alexander surname: Kauffmann fullname: Kauffmann, Alexander organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany – sequence: 8 givenname: Martin surname: Heilmaier fullname: Heilmaier, Martin organization: Institut für Angewandte Materialien, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany |
BookMark | eNqFkMtKAzEUhoNUsK2-gYsB11NP5pJJRAQp3qDQjYK7kGZObIZ2UpNUnLd36rhyoasDh_87l29CRq1rkZBzCjMKlF02M-180HaWARV9i1NGj8iY8kqkUAg2ImMACqnI-esJmYTQAECfhTG5XrZJXGPiPm2tonVtskW9Vq0N28SZxKPxSkfnu2Rt39YJttG7XZeozcZ14ZQcG7UJePZTp-Tl_u55_pgulg9P89tFqguAmHJjQK9YxYzSQtegsWQKdclrxVktDM-ZqLJ8lZVVZgRWBRMrirmpKyO4wiKfkoth7s679z2GKBu3922_UmY5ZAUVXJR9qhhS2rsQ-svlztut8p2kIA-eZCMHT_LgSQ6eeuzqF6Zt_FYRvbKb_-CbAcb-_Q-LXvYJbDXW1qOOsnb27wFfd-mImw |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_109392 crossref_primary_10_1016_j_actamat_2020_07_004 crossref_primary_10_1016_j_corsci_2023_111287 crossref_primary_10_1016_j_jmst_2024_06_049 crossref_primary_10_1016_j_jallcom_2022_167675 crossref_primary_10_1007_s11665_021_06243_9 crossref_primary_10_3390_met13020283 crossref_primary_10_1002_maco_202213084 crossref_primary_10_1016_j_actamat_2021_117217 crossref_primary_10_1016_j_intermet_2024_108604 crossref_primary_10_1557_s43577_022_00441_z crossref_primary_10_1002_adem_202401102 crossref_primary_10_1016_j_msea_2020_139409 crossref_primary_10_1016_j_actamat_2022_117970 crossref_primary_10_1016_j_jallcom_2020_156265 crossref_primary_10_1016_j_matchar_2024_113679 crossref_primary_10_1016_j_jmrt_2025_02_099 crossref_primary_10_1016_j_msea_2021_141168 crossref_primary_10_1039_D2MH00729K crossref_primary_10_1016_j_matchemphys_2025_130616 crossref_primary_10_1016_j_corsci_2023_111690 crossref_primary_10_1016_j_jallcom_2022_167968 crossref_primary_10_1016_j_jeurceramsoc_2023_08_001 crossref_primary_10_1016_j_surfcoat_2021_126911 crossref_primary_10_1016_j_triboint_2022_107885 crossref_primary_10_1016_j_triboint_2024_109544 crossref_primary_10_1016_j_corsci_2023_111298 crossref_primary_10_1016_j_actamat_2024_120114 crossref_primary_10_1021_acs_jpcc_4c01612 crossref_primary_10_1016_j_ijrmhm_2023_106308 crossref_primary_10_1016_j_jallcom_2022_165384 crossref_primary_10_1007_s40843_023_2578_5 crossref_primary_10_1016_j_jallcom_2024_175737 crossref_primary_10_1016_j_corsci_2021_109861 crossref_primary_10_1016_j_jmrt_2023_07_003 crossref_primary_10_1002_adem_202001047 crossref_primary_10_1016_j_jallcom_2024_175613 crossref_primary_10_1016_j_corsci_2022_110464 crossref_primary_10_1016_j_corsci_2023_111455 crossref_primary_10_1016_j_corsci_2024_111951 crossref_primary_10_1016_j_optlastec_2021_107447 crossref_primary_10_3390_coatings10040415 crossref_primary_10_1016_j_mtla_2023_101764 crossref_primary_10_1007_s00170_023_12773_4 crossref_primary_10_1007_s11837_023_06135_4 crossref_primary_10_1016_j_corsci_2024_112193 crossref_primary_10_1016_j_intermet_2024_108549 crossref_primary_10_1016_j_surfcoat_2024_130953 crossref_primary_10_1007_s11666_020_01047_0 crossref_primary_10_1016_j_addma_2024_104171 crossref_primary_10_1016_j_apsusc_2024_160085 crossref_primary_10_1016_j_corsci_2022_110377 crossref_primary_10_1088_2515_7655_ac6f7e crossref_primary_10_3390_met12010041 crossref_primary_10_1016_j_triboint_2024_109817 crossref_primary_10_1016_j_intermet_2024_108425 crossref_primary_10_1016_j_jmst_2025_02_017 crossref_primary_10_1111_jace_19390 crossref_primary_10_1007_s12034_023_03114_y crossref_primary_10_1016_j_ijrmhm_2025_107137 crossref_primary_10_1016_j_jeurceramsoc_2024_116793 crossref_primary_10_1007_s11666_022_01324_0 crossref_primary_10_1016_j_scriptamat_2024_115997 crossref_primary_10_3390_ma17184579 crossref_primary_10_1016_j_wear_2024_205596 crossref_primary_10_1016_j_jallcom_2021_160455 crossref_primary_10_1016_j_jmrt_2023_05_037 crossref_primary_10_1016_j_ijrmhm_2022_105777 crossref_primary_10_1016_j_ijrmhm_2024_106820 crossref_primary_10_1016_j_ijrmhm_2021_105755 crossref_primary_10_1016_j_ijrmhm_2022_105812 crossref_primary_10_1007_s40843_020_1332_2 crossref_primary_10_1016_j_corsci_2022_110885 crossref_primary_10_1007_s11837_024_06419_3 crossref_primary_10_1002_pssa_202400650 crossref_primary_10_1016_j_vacuum_2023_112702 crossref_primary_10_1007_s12613_021_2257_7 crossref_primary_10_1016_j_intermet_2024_108497 crossref_primary_10_1016_j_wear_2021_204166 crossref_primary_10_1557_s43577_022_00454_8 crossref_primary_10_1016_j_cap_2024_11_001 crossref_primary_10_1007_s10853_020_05480_y crossref_primary_10_1016_j_corsci_2024_112176 crossref_primary_10_1016_j_corsci_2023_111481 crossref_primary_10_1016_j_jallcom_2022_166946 crossref_primary_10_1016_j_jmrt_2024_11_250 crossref_primary_10_3390_ma15082931 crossref_primary_10_1016_j_corsci_2023_111365 crossref_primary_10_1016_j_ijrmhm_2023_106297 crossref_primary_10_1002_adem_202200161 crossref_primary_10_1016_j_jmrt_2023_12_212 crossref_primary_10_32339_0135_5910_2022_11_978_986 crossref_primary_10_1016_j_corsci_2022_110153 crossref_primary_10_1021_acs_langmuir_1c03191 crossref_primary_10_1016_j_commatsci_2021_110723 crossref_primary_10_1016_j_jallcom_2024_173803 crossref_primary_10_1016_j_jallcom_2024_177206 crossref_primary_10_1016_j_ijrmhm_2022_105918 crossref_primary_10_1016_j_intermet_2025_108643 crossref_primary_10_1007_s00170_024_13452_8 crossref_primary_10_1016_j_intermet_2023_108002 crossref_primary_10_1016_j_surfcoat_2021_127233 crossref_primary_10_53433_yyufbed_1497606 crossref_primary_10_1016_j_corsci_2023_111527 crossref_primary_10_1016_j_jallcom_2023_172397 crossref_primary_10_1016_j_surfcoat_2024_131108 crossref_primary_10_1016_j_ijrmhm_2024_106563 crossref_primary_10_1016_j_vacuum_2025_114020 crossref_primary_10_1007_s11085_022_10129_z crossref_primary_10_1016_j_jallcom_2021_162733 crossref_primary_10_1016_j_matchemphys_2021_124256 crossref_primary_10_1016_j_matchar_2021_111196 crossref_primary_10_1016_j_matchemphys_2024_129769 crossref_primary_10_26599_JAC_2024_9220862 crossref_primary_10_3390_ma17122799 crossref_primary_10_1016_j_triboint_2024_110172 crossref_primary_10_1016_j_jmapro_2021_06_041 crossref_primary_10_1016_j_surfcoat_2021_127486 crossref_primary_10_3390_cryst11060612 crossref_primary_10_1016_j_corsci_2023_111537 crossref_primary_10_1016_j_intermet_2021_107323 crossref_primary_10_1016_j_matchar_2023_112956 crossref_primary_10_1016_j_scriptamat_2024_116031 crossref_primary_10_1016_j_scriptamat_2024_116394 crossref_primary_10_1016_j_corsci_2024_112672 crossref_primary_10_1063_5_0116605 crossref_primary_10_1007_s11085_020_09983_6 crossref_primary_10_1007_s11665_024_09451_1 crossref_primary_10_1016_j_jallcom_2020_153805 crossref_primary_10_1016_j_jallcom_2021_163373 crossref_primary_10_1016_j_mtadv_2020_100104 crossref_primary_10_1007_s11837_023_06080_2 crossref_primary_10_1016_j_matdes_2024_113370 crossref_primary_10_1002_adem_202402330 crossref_primary_10_1016_j_jmst_2023_02_016 crossref_primary_10_3390_ma14102595 crossref_primary_10_1016_j_jallcom_2022_164180 crossref_primary_10_1007_s11085_023_10218_7 crossref_primary_10_1016_j_surfcoat_2025_131882 crossref_primary_10_1016_j_mtcomm_2024_108156 crossref_primary_10_3390_e24101342 crossref_primary_10_1002_adem_202302124 crossref_primary_10_1016_j_actamat_2024_120558 crossref_primary_10_1016_j_corsci_2023_111667 crossref_primary_10_1016_j_matdes_2025_113652 crossref_primary_10_3389_ftmal_2023_1135826 crossref_primary_10_1002_maco_202112770 crossref_primary_10_1080_00084433_2021_2001298 crossref_primary_10_1016_j_matchemphys_2024_129304 crossref_primary_10_1038_s41529_021_00163_8 crossref_primary_10_3390_app13169336 crossref_primary_10_3390_met13030579 crossref_primary_10_1016_j_matchemphys_2024_129148 crossref_primary_10_1016_j_matdes_2024_112832 crossref_primary_10_3390_e24111553 crossref_primary_10_1063_5_0028977 crossref_primary_10_1007_s11085_021_10046_7 crossref_primary_10_1016_j_triboint_2021_107160 crossref_primary_10_1016_j_jallcom_2024_175957 crossref_primary_10_1016_j_jallcom_2024_176806 crossref_primary_10_1016_j_intermet_2020_106792 crossref_primary_10_1016_j_jallcom_2020_155726 crossref_primary_10_1016_j_jre_2023_02_015 crossref_primary_10_3390_met12030501 crossref_primary_10_1016_j_addma_2024_104126 crossref_primary_10_1016_j_mtcomm_2023_107056 crossref_primary_10_1016_j_jallcom_2024_174581 crossref_primary_10_1016_j_corsci_2023_110989 crossref_primary_10_1016_j_corsci_2025_112847 |
Cites_doi | 10.1016/j.jallcom.2015.11.091 10.1007/BF00838593 10.1016/j.jallcom.2016.10.014 10.1016/j.actamat.2013.01.042 10.1016/j.intermet.2013.10.024 10.1007/s11085-016-9696-y 10.1016/j.matlet.2014.11.162 10.1016/j.jallcom.2016.07.219 10.1007/BF01166893 10.1007/s10853-012-6582-0 10.1016/j.jallcom.2015.11.050 10.1007/s11661-013-1944-z 10.1007/s11837-014-1066-0 10.1016/j.jallcom.2011.02.174 10.1016/j.actamat.2016.08.081 10.1016/j.corsci.2015.06.026 10.1007/s11085-013-9375-1 10.1179/1878641315Y.0000000012 10.4028/www.scientific.net/MSF.560.1 10.1080/09603409.2017.1389115 10.4028/www.scientific.net/MSF.546-549.1485 10.1016/j.jascer.2016.01.003 10.1002/pssb.19670190220 10.1016/0022-4596(72)90116-8 10.1007/s11661-004-0370-7 10.1016/j.jallcom.2015.08.224 10.1016/j.jallcom.2017.09.164 10.1016/j.actamat.2012.11.032 10.1149/1.2721463 10.1007/s10853-010-4458-8 10.1016/j.jallcom.2017.07.066 10.1007/BF00656571 10.1002/srin.193200332 10.1002/anie.196600401 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Oct 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Oct 2019 |
DBID | AAYXX CITATION 7SE 8BQ 8FD F28 FR3 JG9 |
DOI | 10.1016/j.corsci.2019.108161 |
DatabaseName | CrossRef Corrosion Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineering Research Database Technology Research Database Corrosion Abstracts ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0496 |
ExternalDocumentID | 10_1016_j_corsci_2019_108161 S0010938X19304263 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AELAQ AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSZ T5K TAE VH1 WUQ XPP XSW ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SE 8BQ 8FD EFKBS F28 FR3 JG9 |
ID | FETCH-LOGICAL-c400t-8ff0cb676fac9cd0ce56aec58da86d9f8369723b2572f9e7469b1e3fd7f98ae43 |
IEDL.DBID | .~1 |
ISSN | 0010-938X |
IngestDate | Sat Aug 23 13:14:58 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Tue Jul 01 01:02:08 EDT 2025 Fri Feb 23 02:30:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Compositionally complex alloy Quartic rate law Refractory high entropy alloy High temperature corrosion CrTaO4 formation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-8ff0cb676fac9cd0ce56aec58da86d9f8369723b2572f9e7469b1e3fd7f98ae43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2302419895 |
PQPubID | 2045264 |
ParticipantIDs | proquest_journals_2302419895 crossref_primary_10_1016_j_corsci_2019_108161 crossref_citationtrail_10_1016_j_corsci_2019_108161 elsevier_sciencedirect_doi_10_1016_j_corsci_2019_108161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Corrosion science |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Müller, Gorr, Christ, Chen, Kauffmann, Heilmaier (bib0055) 2018; 35 Ercit (bib0175) 1991; 43 Li (bib0195) 2004 Schliephake, Azim, Von Klinski-Wetzel, Gorr, Christ, Bei, George, Heilmaier (bib0075) 2014; 45 Yeh, Chen, Lin (bib0005) 2007; 560 Vazquez, Varma (bib0085) 2011; 509 Stepanov, Yurchenko, Skibin, Tikhonovsky, Salishchev (bib0100) 2015; 652 Wu, Bei, Otto, Pharr, George (bib0015) 2014; 46 Varma, Parga, Amato, Hernandez (bib0165) 2010; 45 Pham, Maruoka, Nanko (bib0200) 2016; 4 Young (bib0060) 2016 Spyrdelis, Delavignette, Amelinckx (bib0155) 1967; 19 Senkov, Senkova, Dimiduk, Woodward, Miracle (bib0025) 2012; 47 Esparza, Rangel, Gutierrez, Arellano, Varma (bib0140) 2016; 33 Ren, Ouyang, Ding, Zhong, Yu, Ren, Zhou (bib0190) 2017; 724 Miracle, Senkov (bib0020) 2017; 122 Scheil, Schulz (bib0070) 1932; 6 Senkov, Woodward, Miracle (bib0035) 2014; 66 Qu, Han, Song, Kang (bib0150) 2007; 546–549 Senkov, Miracle, Chaput, Couzinie (bib0040) 2018 Pilling, Bedworth (bib0180) 1923; 29 Arbuzov, Chupria (bib0170) 1965; 8 Thomas, Varma (bib0135) 2015; 99 Bürgel (bib0065) 1998 Hindam, Whittle (bib0205) 1982; 18 Liu, Zhang, Zhang, Wang, Chen, Zhang, Li (bib0105) 2017; 694 Guo, Wang, Luo, Li, Chen, Su, Guo, Fu (bib0110) 2016; 660 Schäfer, Gruehn, Schulte (bib0160) 1966; 5 Stepanov, Shaysultanov, Salishchev, Tikhonovsky (bib0095) 2015; 142 Massard, Bernier, Michel (bib0120) 1972; 4 Chan (bib0145) 2004; 35 Otto, Yang, Bei, George (bib0010) 2013; 61 Butler, Chaput, Dietrich, Senkov (bib0090) 2017; 729 Chen, Kauffmann, Gorr, Schliephake, Seemüller, Wagner, Christ, Heilmaier (bib0115) 2016; 661 Gorr, Müller, Christ, Müller, Chen, Kauffmann, Heilmaier (bib0045) 2016; 688 Kofstad (bib0185) 1966 Gorr, Mueller, Azim, Christ, Mueller, Chen, Kauffmann, Heilmaier (bib0050) 2017; 88 Senkov, Senkova, Woodward, Miracle (bib0030) 2013; 61 Rioult, Sakidja, Perepezko (bib0125) 2007; 3 Zhou, Taylor, Melinte, Shahani, Dharmawardhana, Heinz, Voorhees, Perepezko, Bustillo, Ercius, Miao (bib0130) 2018; 8 Azim, Burk, Gorr, Christ, Schliephake, Heilmaier, Bornemann, Bolivar (bib0080) 2013; 80 Butler (10.1016/j.corsci.2019.108161_bib0090) 2017; 729 Chen (10.1016/j.corsci.2019.108161_bib0115) 2016; 661 Senkov (10.1016/j.corsci.2019.108161_bib0025) 2012; 47 Massard (10.1016/j.corsci.2019.108161_bib0120) 1972; 4 Hindam (10.1016/j.corsci.2019.108161_bib0205) 1982; 18 Senkov (10.1016/j.corsci.2019.108161_bib0030) 2013; 61 Yeh (10.1016/j.corsci.2019.108161_bib0005) 2007; 560 Scheil (10.1016/j.corsci.2019.108161_bib0070) 1932; 6 Müller (10.1016/j.corsci.2019.108161_bib0055) 2018; 35 Senkov (10.1016/j.corsci.2019.108161_bib0035) 2014; 66 Bürgel (10.1016/j.corsci.2019.108161_bib0065) 1998 Guo (10.1016/j.corsci.2019.108161_bib0110) 2016; 660 Pham (10.1016/j.corsci.2019.108161_bib0200) 2016; 4 Gorr (10.1016/j.corsci.2019.108161_bib0050) 2017; 88 Miracle (10.1016/j.corsci.2019.108161_bib0020) 2017; 122 Esparza (10.1016/j.corsci.2019.108161_bib0140) 2016; 33 Young (10.1016/j.corsci.2019.108161_bib0060) 2016 Liu (10.1016/j.corsci.2019.108161_bib0105) 2017; 694 Schäfer (10.1016/j.corsci.2019.108161_bib0160) 1966; 5 Kofstad (10.1016/j.corsci.2019.108161_bib0185) 1966 Vazquez (10.1016/j.corsci.2019.108161_bib0085) 2011; 509 Azim (10.1016/j.corsci.2019.108161_bib0080) 2013; 80 Rioult (10.1016/j.corsci.2019.108161_bib0125) 2007; 3 Zhou (10.1016/j.corsci.2019.108161_bib0130) 2018; 8 Wu (10.1016/j.corsci.2019.108161_bib0015) 2014; 46 Stepanov (10.1016/j.corsci.2019.108161_bib0095) 2015; 142 Pilling (10.1016/j.corsci.2019.108161_bib0180) 1923; 29 Schliephake (10.1016/j.corsci.2019.108161_bib0075) 2014; 45 Stepanov (10.1016/j.corsci.2019.108161_bib0100) 2015; 652 Arbuzov (10.1016/j.corsci.2019.108161_bib0170) 1965; 8 Chan (10.1016/j.corsci.2019.108161_bib0145) 2004; 35 Varma (10.1016/j.corsci.2019.108161_bib0165) 2010; 45 Ren (10.1016/j.corsci.2019.108161_bib0190) 2017; 724 Thomas (10.1016/j.corsci.2019.108161_bib0135) 2015; 99 Spyrdelis (10.1016/j.corsci.2019.108161_bib0155) 1967; 19 Otto (10.1016/j.corsci.2019.108161_bib0010) 2013; 61 Senkov (10.1016/j.corsci.2019.108161_bib0040) 2018 Qu (10.1016/j.corsci.2019.108161_bib0150) 2007; 546–549 Ercit (10.1016/j.corsci.2019.108161_bib0175) 1991; 43 Li (10.1016/j.corsci.2019.108161_bib0195) 2004 Gorr (10.1016/j.corsci.2019.108161_bib0045) 2016; 688 |
References_xml | – volume: 43 start-page: 217 year: 1991 end-page: 223 ident: bib0175 article-title: Refinement of the structure of z-Nb publication-title: Mineral. Petrol. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib0020 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 546–549 start-page: 1485 year: 2007 end-page: 1488 ident: bib0150 article-title: Effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics publication-title: Mater. Sci. Forum – start-page: 35 year: 2004 end-page: 38 ident: bib0195 article-title: High-temperature Oxidation, Hot Corrosion of Five Ni-base Superalloys and Their Protection – volume: 652 start-page: 266 year: 2015 end-page: 280 ident: bib0100 article-title: Structure and mechanical properties of the AlCrxNbTiV (x 5 0, 0.5, 1, 1.5) high entropy alloys publication-title: J. Alloys. Compd. – volume: 8 start-page: 1 year: 2018 end-page: 8 ident: bib0130 article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy publication-title: Sci. Rep. – volume: 66 start-page: 2030 year: 2014 end-page: 2042 ident: bib0035 article-title: Microstructure and properties of aluminium-containing refractory high entropy alloys publication-title: JOM – volume: 6 start-page: 155 year: 1932 end-page: 160 ident: bib0070 article-title: Hitzebeständige Chrom-Aluminium-Stähle publication-title: Arch. Eisenhüttenwes – volume: 4 start-page: 269 year: 1972 end-page: 274 ident: bib0120 article-title: Effet Jahn-Teller dans le système Ta2CrO6-TaCrO4 publication-title: J. Solid State Chem. – volume: 29 start-page: 529 year: 1923 end-page: 591 ident: bib0180 article-title: The oxidation of metals at high temperatures publication-title: J. Inst. Met. – volume: 724 start-page: 565 year: 2017 end-page: 574 ident: bib0190 article-title: The influence of CrTaO 4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C publication-title: J. Alloys. Compd. – volume: 45 start-page: 1102 year: 2014 end-page: 1111 ident: bib0075 article-title: High-temperature creep and oxidation behavior of Mo-Si-B alloys with high Ti contents publication-title: Metall. Mater. Trans. A – volume: 35 start-page: 589 year: 2004 end-page: 597 ident: bib0145 article-title: Cyclic oxidation response of multiphase niobium-based alloys publication-title: Metall. Mater. Trans. A – volume: 8 start-page: 87 year: 1965 end-page: 89 ident: bib0170 article-title: The oxidation of niobium and the structure of niobium oxides publication-title: Sov. Phys. J. – volume: 33 start-page: 105 year: 2016 end-page: 114 ident: bib0140 article-title: A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb–Cr–Si system publication-title: Mater. High Temp. – volume: 560 start-page: 1 year: 2007 end-page: 9 ident: bib0005 article-title: High-entropy alloys – a new era of exploitation publication-title: Mater. Sci. Forum – volume: 660 start-page: 197 year: 2016 end-page: 203 ident: bib0110 article-title: Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound publication-title: J. Alloys. Compd. – volume: 661 start-page: 206 year: 2016 end-page: 215 ident: bib0115 article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al publication-title: J. Alloys. Compd. – year: 1998 ident: bib0065 article-title: Handbuch Hochtemperatur-Werkstofftechnik – volume: 46 start-page: 131 year: 2014 end-page: 140 ident: bib0015 article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics – volume: 729 start-page: 1004 year: 2017 end-page: 1019 ident: bib0090 article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) publication-title: J. Alloys. Compd. – volume: 3 start-page: 113 year: 2007 end-page: 127 ident: bib0125 article-title: Coating strategies for oxidation resistant high temperature Mo-Si-B alloys publication-title: ECS Trans. – volume: 80 start-page: 231 year: 2013 end-page: 242 ident: bib0080 article-title: Effect of Ti (Macro-) alloying on the high-temperature oxidation behavior of ternary Mo-Si-B alloys at 820–1300°C publication-title: Oxid. Met. – volume: 61 start-page: 1545 year: 2013 end-page: 1557 ident: bib0030 article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis publication-title: Acta Mater. – volume: 5 start-page: 40 year: 1966 end-page: 52 ident: bib0160 article-title: The modifications of niobium pentoxide publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 start-page: 120 year: 2016 end-page: 123 ident: bib0200 article-title: Influences of Al publication-title: J. Asian Ceram. Soc. – volume: 142 start-page: 153 year: 2015 end-page: 155 ident: bib0095 article-title: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy publication-title: Mater. Lett. – year: 2016 ident: bib0060 article-title: High Temperature Oxidation and Corrosion of Metals – year: 1966 ident: bib0185 article-title: High-temperature Oxidation of Metals – volume: 694 start-page: 869 year: 2017 end-page: 877 ident: bib0105 article-title: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites publication-title: J. Alloys. Compd. – volume: 45 start-page: 3931 year: 2010 end-page: 3937 ident: bib0165 article-title: Microstructures and high temperature oxidation resistance of alloys from Nb–Cr–Si system publication-title: J. Mater. Sci. – volume: 18 start-page: 245 year: 1982 end-page: 284 ident: bib0205 article-title: Microstructure, Adhesion and Growth Kinetics of Protective Scales on Metals and Alloys publication-title: Oxid. Met. – volume: 19 start-page: 683 year: 1967 end-page: 704 ident: bib0155 article-title: on the superstructures of Ta2O5 and Nb2O5 publication-title: Phys. Stat. Sol. – start-page: 1 year: 2018 end-page: 37 ident: bib0040 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. – volume: 688 start-page: 468 year: 2016 end-page: 477 ident: bib0045 article-title: High temperature oxidation behaviour of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition publication-title: J. Alloys. Compd. – volume: 99 start-page: 145 year: 2015 end-page: 153 ident: bib0135 article-title: Oxidation response of three Nb–Cr–Mo–Si–B alloys in air publication-title: Corr. Sci. – volume: 88 start-page: 339 year: 2017 end-page: 349 ident: bib0050 article-title: High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition publication-title: Oxid. Met. – volume: 509 start-page: 7027 year: 2011 end-page: 7033 ident: bib0085 article-title: High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions publication-title: J. Alloys. Compd. – volume: 35 start-page: 168 year: 2018 end-page: 176 ident: bib0055 article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al publication-title: Mater. High Temp. – volume: 47 start-page: 6522 year: 2012 end-page: 6534 ident: bib0025 article-title: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy publication-title: J. Mater. Sci. – volume: 61 start-page: 2628 year: 2013 end-page: 2638 ident: bib0010 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatmoic high-entropy alloys publication-title: Acta Mater. – volume: 660 start-page: 197 year: 2016 ident: 10.1016/j.corsci.2019.108161_bib0110 article-title: Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2015.11.091 – volume: 8 start-page: 87 year: 1965 ident: 10.1016/j.corsci.2019.108161_bib0170 article-title: The oxidation of niobium and the structure of niobium oxides publication-title: Sov. Phys. J. doi: 10.1007/BF00838593 – year: 1966 ident: 10.1016/j.corsci.2019.108161_bib0185 – volume: 694 start-page: 869 year: 2017 ident: 10.1016/j.corsci.2019.108161_bib0105 article-title: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2016.10.014 – volume: 61 start-page: 2628 year: 2013 ident: 10.1016/j.corsci.2019.108161_bib0010 article-title: Relative effects of enthalpy and entropy on the phase stability of equiatmoic high-entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.01.042 – volume: 46 start-page: 131 year: 2014 ident: 10.1016/j.corsci.2019.108161_bib0015 article-title: Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2013.10.024 – volume: 88 start-page: 339 year: 2017 ident: 10.1016/j.corsci.2019.108161_bib0050 article-title: High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition publication-title: Oxid. Met. doi: 10.1007/s11085-016-9696-y – volume: 142 start-page: 153 year: 2015 ident: 10.1016/j.corsci.2019.108161_bib0095 article-title: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.11.162 – volume: 688 start-page: 468 year: 2016 ident: 10.1016/j.corsci.2019.108161_bib0045 article-title: High temperature oxidation behaviour of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2016.07.219 – volume: 43 start-page: 217 year: 1991 ident: 10.1016/j.corsci.2019.108161_bib0175 article-title: Refinement of the structure of z-Nb2O5 and its relationship to the rutile and thoreaulite structures publication-title: Mineral. Petrol. doi: 10.1007/BF01166893 – volume: 47 start-page: 6522 year: 2012 ident: 10.1016/j.corsci.2019.108161_bib0025 article-title: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6582-0 – start-page: 1 year: 2018 ident: 10.1016/j.corsci.2019.108161_bib0040 article-title: Development and exploration of refractory high entropy alloys—a review publication-title: J. Mater. Res. – volume: 661 start-page: 206 year: 2016 ident: 10.1016/j.corsci.2019.108161_bib0115 article-title: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2015.11.050 – volume: 45 start-page: 1102 year: 2014 ident: 10.1016/j.corsci.2019.108161_bib0075 article-title: High-temperature creep and oxidation behavior of Mo-Si-B alloys with high Ti contents publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-013-1944-z – volume: 66 start-page: 2030 year: 2014 ident: 10.1016/j.corsci.2019.108161_bib0035 article-title: Microstructure and properties of aluminium-containing refractory high entropy alloys publication-title: JOM doi: 10.1007/s11837-014-1066-0 – volume: 509 start-page: 7027 year: 2011 ident: 10.1016/j.corsci.2019.108161_bib0085 article-title: High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2011.02.174 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.corsci.2019.108161_bib0020 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.corsci.2019.108161_bib0130 article-title: Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy publication-title: Sci. Rep. – volume: 99 start-page: 145 year: 2015 ident: 10.1016/j.corsci.2019.108161_bib0135 article-title: Oxidation response of three Nb–Cr–Mo–Si–B alloys in air publication-title: Corr. Sci. doi: 10.1016/j.corsci.2015.06.026 – year: 1998 ident: 10.1016/j.corsci.2019.108161_bib0065 – volume: 80 start-page: 231 year: 2013 ident: 10.1016/j.corsci.2019.108161_bib0080 article-title: Effect of Ti (Macro-) alloying on the high-temperature oxidation behavior of ternary Mo-Si-B alloys at 820–1300°C publication-title: Oxid. Met. doi: 10.1007/s11085-013-9375-1 – volume: 33 start-page: 105 year: 2016 ident: 10.1016/j.corsci.2019.108161_bib0140 article-title: A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb–Cr–Si system publication-title: Mater. High Temp. doi: 10.1179/1878641315Y.0000000012 – volume: 560 start-page: 1 year: 2007 ident: 10.1016/j.corsci.2019.108161_bib0005 article-title: High-entropy alloys – a new era of exploitation publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.560.1 – volume: 35 start-page: 168 year: 2018 ident: 10.1016/j.corsci.2019.108161_bib0055 article-title: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta-Mo-Cr-Ti-Al publication-title: Mater. High Temp. doi: 10.1080/09603409.2017.1389115 – start-page: 35 year: 2004 ident: 10.1016/j.corsci.2019.108161_bib0195 – volume: 546–549 start-page: 1485 year: 2007 ident: 10.1016/j.corsci.2019.108161_bib0150 article-title: Effects of Cr and Al on high temperature oxidation resistance of Nb-Si system intermetallics publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.546-549.1485 – volume: 4 start-page: 120 year: 2016 ident: 10.1016/j.corsci.2019.108161_bib0200 article-title: Influences of Al2O3 grain size on high-temperature oxidation of nano-Ni/Al2O3 composites publication-title: J. Asian Ceram. Soc. doi: 10.1016/j.jascer.2016.01.003 – volume: 19 start-page: 683 year: 1967 ident: 10.1016/j.corsci.2019.108161_bib0155 article-title: on the superstructures of Ta2O5 and Nb2O5 publication-title: Phys. Stat. Sol. doi: 10.1002/pssb.19670190220 – volume: 4 start-page: 269 year: 1972 ident: 10.1016/j.corsci.2019.108161_bib0120 article-title: Effet Jahn-Teller dans le système Ta2CrO6-TaCrO4 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(72)90116-8 – volume: 35 start-page: 589 year: 2004 ident: 10.1016/j.corsci.2019.108161_bib0145 article-title: Cyclic oxidation response of multiphase niobium-based alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-004-0370-7 – year: 2016 ident: 10.1016/j.corsci.2019.108161_bib0060 – volume: 652 start-page: 266 year: 2015 ident: 10.1016/j.corsci.2019.108161_bib0100 article-title: Structure and mechanical properties of the AlCrxNbTiV (x 5 0, 0.5, 1, 1.5) high entropy alloys publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2015.08.224 – volume: 29 start-page: 529 year: 1923 ident: 10.1016/j.corsci.2019.108161_bib0180 article-title: The oxidation of metals at high temperatures publication-title: J. Inst. Met. – volume: 729 start-page: 1004 year: 2017 ident: 10.1016/j.corsci.2019.108161_bib0090 article-title: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2017.09.164 – volume: 61 start-page: 1545 year: 2013 ident: 10.1016/j.corsci.2019.108161_bib0030 article-title: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.11.032 – volume: 3 start-page: 113 year: 2007 ident: 10.1016/j.corsci.2019.108161_bib0125 article-title: Coating strategies for oxidation resistant high temperature Mo-Si-B alloys publication-title: ECS Trans. doi: 10.1149/1.2721463 – volume: 45 start-page: 3931 year: 2010 ident: 10.1016/j.corsci.2019.108161_bib0165 article-title: Microstructures and high temperature oxidation resistance of alloys from Nb–Cr–Si system publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-4458-8 – volume: 724 start-page: 565 year: 2017 ident: 10.1016/j.corsci.2019.108161_bib0190 article-title: The influence of CrTaO 4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900 °C publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2017.07.066 – volume: 18 start-page: 245 year: 1982 ident: 10.1016/j.corsci.2019.108161_bib0205 article-title: Microstructure, Adhesion and Growth Kinetics of Protective Scales on Metals and Alloys publication-title: Oxid. Met. doi: 10.1007/BF00656571 – volume: 6 start-page: 155 year: 1932 ident: 10.1016/j.corsci.2019.108161_bib0070 article-title: Hitzebeständige Chrom-Aluminium-Stähle publication-title: Arch. Eisenhüttenwes doi: 10.1002/srin.193200332 – volume: 5 start-page: 40 year: 1966 ident: 10.1016/j.corsci.2019.108161_bib0160 article-title: The modifications of niobium pentoxide publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.196600401 |
SSID | ssj0002010 |
Score | 2.639681 |
Snippet | •The formation of CrTaO4 after a short incubation period decreased the oxidation kinetics of Ta-containing alloys.•Activation energies for scale growth... The high-temperature oxidation mechanism of a series of refractory high entropy alloys: TaMoCrTiAl, NbMoCrTiAl, NbMoCrAl and TaMoCrAl at 1000 °C in air was... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108161 |
SubjectTerms | Alloys Aluminum oxide Compositionally complex alloy CrTaO4 formation Heat resistant alloys High entropy alloys High temperature High temperature corrosion Niobium oxides Oxidation Polytypes Quartic rate law Reaction kinetics Refractory alloys Refractory high entropy alloy Refractory materials Scale (corrosion) Spallation Tantalum Titanium |
Title | On the oxidation mechanism of refractory high entropy alloys |
URI | https://dx.doi.org/10.1016/j.corsci.2019.108161 https://www.proquest.com/docview/2302419895 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrFaJQevsbub3TzASymWqlgvFnoLm2wCK_ZBW8Fe_O1m9uELpOBxd5PsMplMZjbffIPQpZaa0dBEhOooIeDwklRbSyKudUCNkC6B3OGHIRuM4rtxMm6gXp0LA7DKyvaXNr2w1tWdTiXNzjzPIccXqJDE2LsgEAgA42ccc9Dyq_cvmAec9pbWOCDQuk6fKzBePsDzQwPASwLYLmThX9vTL0Nd7D79PbRbuY24W37ZPmrY6QHa-UYmeIiuH6fYe3N49paXdZLwxEJab76c4JnD_lWLorbOGgNFMYa_urP5GsPB-3p5hEb9m6fegFS1EYjxq25FhHOB0YwzlxppssDYhKXWJCJLBcukE5RBPTE_ATxy0nIfBevQUpdxJ0VqY3qMmtPZ1J4gnMXcicw_CaI0zngmDWUitjzSjgaSyxaitUiUqYjDoX7Fi6oRYs-qFKQCQapSkC1EPnvNS-KMDe15LW31QwGUt-0berbryVHVAlwqH1l530QKmZz-e-AztA1XJXSvjZqrxas99y7ISl8UOnaBtrq394PhB6xs27A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qPagH8YmPqjl4Dd1udvMALyJKfdVLC72FTTaBim6LrWD_vZnublFBBK-bnewySb58k8wD4Nwow1nHxpSZOKVIeGlmnKOxMCZiViqfYuzwY493B8ndMB024KqOhUG3ygr7S0xfoHX1pF1psz0ZjTDGF1MhyWGgIGgIsBVYxexUaRNWL2_vu70lIOOFbwnIEUWBOoJu4eYVbLzQO_p4KfS36_DObzvUD6xebEA3W7BZMUdyWf7cNjRcsQMbX_IJ7sLFU0ECoSPjj1FZKom8OozsHU1fydiT8Km3RXmdOcEsxQQPdseTOcG79_l0DwY31_2rLq3KI1AbFt6MSu8ja7jgPrPK5pF1Kc-cTWWeSZ4rLxnHkmJhDETslRPBEDYdx3wuvJKZS9g-NItx4Q6A5InwMg8tUZwluciVZVwmTsTGs0gJdQisVom2Ve5wLGHxomsnsWddKlKjInWpyEOgS6lJmTvjj_dFrW39bQ7oAO9_SLbqwdHVGpzqYFwFeqKkSo_-3fEZrHX7jw_64bZ3fwzr2FJ68rWgOXt7dyeBkczMaTXjPgE--N5h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+oxidation+mechanism+of+refractory+high+entropy+alloys&rft.jtitle=Corrosion+science&rft.au=M%C3%BCller%2C+Franz&rft.au=Gorr%2C+Bronislava&rft.au=Christ%2C+Hans-J%C3%BCrgen&rft.au=M%C3%BCller%2C+Julian&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-938X&rft.eissn=1879-0496&rft.volume=159&rft_id=info:doi/10.1016%2Fj.corsci.2019.108161&rft.externalDocID=S0010938X19304263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-938X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-938X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-938X&client=summon |