Towards Collaborative Edge Intelligence: Blockchain-Based Data Valuation and Scheduling for Improved Quality of Service
Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform distributed machine learning (DML) tasks locally. Decentralized Internet of Things (IoT) devices share knowledge and resources to improve the qu...
Saved in:
Published in | Future internet Vol. 16; no. 8; p. 267 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform distributed machine learning (DML) tasks locally. Decentralized Internet of Things (IoT) devices share knowledge and resources to improve the quality of service (QoS) of the system with reduced reliance on centralized cloud infrastructure. However, the paradigm is vulnerable to free-riding attacks, where some devices benefit from the collective intelligence without contributing their fair share, potentially disincentivizing collaboration and undermining the system’s effectiveness. Moreover, data collected from heterogeneous IoT devices may contain biased information that decreases the prediction accuracy of DML models. To address these challenges, we propose a novel incentive mechanism that relies on time-dependent blockchain records and multi-access edge computing (MEC). We formulate the QoS problem as an unbounded multiple knapsack problem at the network edge. Furthermore, a decentralized valuation protocol is introduced atop blockchain to incentivize contributors and disincentivize free-riders. To improve model prediction accuracy within latency requirements, a data scheduling algorithm is given based on a curriculum learning framework. Based on our computer simulations using heterogeneous datasets, we identify two critical factors for enhancing the QoS in collaborative edge intelligence systems: (1) mitigating the impact of information loss and free-riders via decentralized data valuation and (2) optimizing the marginal utility of individual data samples by adaptive data scheduling. |
---|---|
AbstractList | Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform distributed machine learning (DML) tasks locally. Decentralized Internet of Things (IoT) devices share knowledge and resources to improve the quality of service (QoS) of the system with reduced reliance on centralized cloud infrastructure. However, the paradigm is vulnerable to free-riding attacks, where some devices benefit from the collective intelligence without contributing their fair share, potentially disincentivizing collaboration and undermining the system’s effectiveness. Moreover, data collected from heterogeneous IoT devices may contain biased information that decreases the prediction accuracy of DML models. To address these challenges, we propose a novel incentive mechanism that relies on time-dependent blockchain records and multi-access edge computing (MEC). We formulate the QoS problem as an unbounded multiple knapsack problem at the network edge. Furthermore, a decentralized valuation protocol is introduced atop blockchain to incentivize contributors and disincentivize free-riders. To improve model prediction accuracy within latency requirements, a data scheduling algorithm is given based on a curriculum learning framework. Based on our computer simulations using heterogeneous datasets, we identify two critical factors for enhancing the QoS in collaborative edge intelligence systems: (1) mitigating the impact of information loss and free-riders via decentralized data valuation and (2) optimizing the marginal utility of individual data samples by adaptive data scheduling. |
Audience | Academic |
Author | Du, Yao Leung, Victor C. M. Leung, Cyril Wang, Zehua |
Author_xml | – sequence: 1 givenname: Yao orcidid: 0000-0002-9086-5467 surname: Du fullname: Du, Yao – sequence: 2 givenname: Zehua orcidid: 0000-0001-9040-847X surname: Wang fullname: Wang, Zehua – sequence: 3 givenname: Cyril orcidid: 0000-0001-9911-2069 surname: Leung fullname: Leung, Cyril – sequence: 4 givenname: Victor C. M. orcidid: 0000-0003-3529-2640 surname: Leung fullname: Leung, Victor C. M. |
BookMark | eNptkV1rFDEUhgepYK298RcEvBOmnkxm8-Fdu1ZdKIi0ehvO5GOaNZvUzMyW_ntjV1HE5CLh8D5vzsn7vDlKObmmeUnhjDEFb3ygHCR0XDxpjqlSql0pYEd_3Z81p9O0hbqY6jgXx839Tb7HYieyzjHikAvOYe_IpR0d2aTZxRhGl4x7Sy5iNt_MLYbUXuDkLHmHM5KvGJeK5EQwWXJtbp1dYkgj8bmQze6u5H2Vfl4whvmBZE-uXdkH4140Tz3GyZ3-Ok-aL-8vb9Yf26tPHzbr86vW9ABzK4X1nVSd5Vb0yLwaVG2eIiovnEDqwAnPveW99MMAbmU7BE47ITnruO_ZSbM5-NqMW31Xwg7Lg84Y9GMhl1FjmYOJTq-GQXaDpNYD7aWQ9SVhuWDMICj0WL1eHbzqVN8XN816m5eSavuagRIKuOpUVZ0dVCNW05B8nguauq3bBVMT86HWzyWInqqeQwXgAJiSp6k4r02YH_-0giFqCvpnvPpPvBV5_Q_ye7L_iH8Af1Cmlg |
CitedBy_id | crossref_primary_10_3390_fi17010045 |
Cites_doi | 10.1109/MNET.021.1900617 10.1109/TWC.2021.3062708 10.1109/COMST.2020.2969706 10.1109/COMST.2020.2986024 10.1109/ACCESS.2018.2805837 10.1007/s11263-022-01611-x 10.1109/ICNC57223.2023.10074543 10.1109/JIOT.2021.3072611 10.1109/BigData47090.2019.9006327 10.1016/S0893-6080(05)80010-3 10.1109/MNET.001.1800526 10.1109/CVPR52688.2022.01170 10.1109/TNSE.2020.3014385 10.1109/TCE.2024.3371501 10.1109/ICCV51070.2023.00469 10.1145/3524059.3532364 10.1109/COMST.2022.3189962 10.1038/s42256-022-00516-1 10.1007/978-3-030-63076-8_9 10.1109/JIOT.2020.2967772 10.1177/1745691617693393 10.1109/TMC.2023.3290925 10.1007/978-3-030-63076-8_11 10.1109/TC.2020.2994391 10.1109/JIOT.2023.3298606 10.1016/j.compbiomed.2017.08.001 10.1109/TMC.2023.3325334 10.1162/neco_a_01094 10.1038/s41586-021-03583-3 10.1109/TIT.2014.2320500 10.1109/JSAC.2021.3126076 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/fi16080267 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1999-5903 |
ExternalDocumentID | oai_doaj_org_article_5bb82b81df0148789007d6733ca09afa A807419460 10_3390_fi16080267 |
GroupedDBID | -DT .4I 5VS 7WY 8FE 8FG 8FL AADQD AAFWJ AAKPC AAYXX ABDBF ABUWG ACIHN ADBBV ADMLS AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z EAP EBS EJD ESX FRNLG GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC K60 K6V K6~ K7- KQ8 M0C MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQBIZ PQBZA PQQKQ PROAC RNS TR2 PMFND 3V. 7SC 7XB 8AL 8FD 8FK ACUHS JQ2 L.- L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c400t-87df2892d6d74a3f9b90001aa9f7e7a1e0e7f6fd648fbb0e5d2a0612786326f43 |
IEDL.DBID | BENPR |
ISSN | 1999-5903 |
IngestDate | Wed Aug 27 01:22:04 EDT 2025 Sat Jul 26 02:23:05 EDT 2025 Tue Jun 10 21:07:23 EDT 2025 Thu Apr 24 22:49:15 EDT 2025 Tue Jul 01 01:25:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-87df2892d6d74a3f9b90001aa9f7e7a1e0e7f6fd648fbb0e5d2a0612786326f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9040-847X 0000-0002-9086-5467 0000-0003-3529-2640 0000-0001-9911-2069 |
OpenAccessLink | https://www.proquest.com/docview/3097906929?pq-origsite=%requestingapplication% |
PQID | 3097906929 |
PQPubID | 2032396 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5bb82b81df0148789007d6733ca09afa proquest_journals_3097906929 gale_infotracacademiconefile_A807419460 crossref_citationtrail_10_3390_fi16080267 crossref_primary_10_3390_fi16080267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Future internet |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Soviany (ref_40) 2022; 130 ref_14 ref_11 Lim (ref_4) 2020; 22 ref_53 ref_52 ref_51 Lopes (ref_36) 2017; 89 Li (ref_50) 2020; 2 Xu (ref_21) 2023; 23 Letaief (ref_2) 2021; 40 Abarbanel (ref_10) 2018; 30 Xiao (ref_13) 2020; 22 ref_25 Le (ref_29) 2021; 20 ref_24 ref_23 ref_28 ref_27 Qiu (ref_19) 2020; 34 Liang (ref_22) 2022; 4 ref_26 Yarkoni (ref_3) 2017; 12 Wang (ref_33) 2021; 8 ref_31 ref_30 Wu (ref_42) 2020; 70 Wang (ref_20) 2024; 70 ref_39 ref_37 Du (ref_17) 2023; 23 Blum (ref_35) 1992; 5 Wang (ref_15) 2022; 24 Zhan (ref_34) 2020; 7 Nguyen (ref_12) 2021; 8 Wang (ref_18) 2018; 6 ref_47 Li (ref_5) 2020; 37 ref_46 ref_45 ref_44 Zhang (ref_16) 2019; 33 ref_43 Strickland (ref_9) 2022; 59 ref_41 ref_1 Schultze (ref_32) 2021; 594 ref_49 ref_48 Wang (ref_6) 2023; 11 ref_8 Harremos (ref_38) 2014; 60 ref_7 |
References_xml | – ident: ref_49 – ident: ref_51 – volume: 34 start-page: 62 year: 2020 ident: ref_19 article-title: AI-chain: Blockchain energized edge intelligence for beyond 5G networks publication-title: IEEE Netw. doi: 10.1109/MNET.021.1900617 – volume: 20 start-page: 4874 year: 2021 ident: ref_29 article-title: An incentive mechanism for federated learning in wireless cellular networks: An auction approach publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3062708 – ident: ref_1 – ident: ref_23 – volume: 37 start-page: 50 year: 2020 ident: ref_5 article-title: Federated Learning: Challenges, Methods, and Future Directions publication-title: IEEE Signal Process. Mag. – volume: 22 start-page: 1432 year: 2020 ident: ref_13 article-title: A Survey of Distributed Consensus Protocols for Blockchain Networks publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2020.2969706 – volume: 22 start-page: 2031 year: 2020 ident: ref_4 article-title: Federated Learning in Mobile Edge Networks: A Comprehensive Survey publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2020.2986024 – ident: ref_8 – ident: ref_31 – ident: ref_52 – volume: 6 start-page: 17545 year: 2018 ident: ref_18 article-title: A blockchain based privacy-preserving incentive mechanism in crowdsensing applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2805837 – volume: 130 start-page: 1526 year: 2022 ident: ref_40 article-title: Curriculum learning: A survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-022-01611-x – ident: ref_39 doi: 10.1109/ICNC57223.2023.10074543 – volume: 8 start-page: 12806 year: 2021 ident: ref_12 article-title: Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3072611 – ident: ref_45 – ident: ref_26 doi: 10.1109/BigData47090.2019.9006327 – ident: ref_7 – volume: 2 start-page: 429 year: 2020 ident: ref_50 article-title: Federated optimization in heterogeneous networks publication-title: Proc. Mach. Learn. Syst. – ident: ref_53 – ident: ref_30 – volume: 5 start-page: 117 year: 1992 ident: ref_35 article-title: Training a 3-node neural network is NP-complete publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80010-3 – ident: ref_24 – volume: 33 start-page: 12 year: 2019 ident: ref_16 article-title: Edge intelligence and blockchain empowered 5G beyond for the industrial Internet of Things publication-title: IEEE Netw. doi: 10.1109/MNET.001.1800526 – volume: 59 start-page: 22 year: 2022 ident: ref_9 article-title: Andrew Ng, AI Minimalist: The Machine-Learning Pioneer Says Small is the New Big publication-title: IEEE Spectr. – ident: ref_47 – ident: ref_48 doi: 10.1109/CVPR52688.2022.01170 – volume: 8 start-page: 1055 year: 2021 ident: ref_33 article-title: Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.3014385 – volume: 70 start-page: 1214 year: 2024 ident: ref_20 article-title: Blockchain-Enabled Decentralized Edge Intelligence for Trustworthy 6G Consumer Electronics publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2024.3371501 – ident: ref_41 doi: 10.1109/ICCV51070.2023.00469 – ident: ref_37 – ident: ref_14 – ident: ref_11 doi: 10.1145/3524059.3532364 – volume: 24 start-page: 2193 year: 2022 ident: ref_15 article-title: Integrating edge intelligence and blockchain: What, why, and how publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2022.3189962 – volume: 4 start-page: 669 year: 2022 ident: ref_22 article-title: Advances, challenges and opportunities in creating data for trustworthy AI publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00516-1 – ident: ref_44 – ident: ref_28 doi: 10.1007/978-3-030-63076-8_9 – volume: 7 start-page: 6360 year: 2020 ident: ref_34 article-title: A Learning-Based Incentive Mechanism for Federated Learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2967772 – ident: ref_25 – volume: 12 start-page: 1100 year: 2017 ident: ref_3 article-title: Choosing prediction over explanation in psychology: Lessons from machine learning publication-title: Perspect. Psychol. Sci. doi: 10.1177/1745691617693393 – volume: 23 start-page: 4453 year: 2023 ident: ref_21 article-title: Scei: A smart-contract driven edge intelligence framework for IoT systems publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2023.3290925 – ident: ref_27 doi: 10.1007/978-3-030-63076-8_11 – volume: 70 start-page: 655 year: 2020 ident: ref_42 article-title: SAFA: A semi-asynchronous protocol for fast federated learning with low overhead publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2020.2994391 – ident: ref_46 – volume: 11 start-page: 4377 year: 2023 ident: ref_6 article-title: Frad: Free-rider attacks detection mechanism for federated learning in AIoT publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3298606 – volume: 89 start-page: 135 year: 2017 ident: ref_36 article-title: Pre-trained convolutional neural networks as feature extractors for tuberculosis detection publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.001 – volume: 23 start-page: 6712 year: 2023 ident: ref_17 article-title: Accelerating and Securing Blockchain-enabled Distributed Machine Learning publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2023.3325334 – volume: 30 start-page: 2025 year: 2018 ident: ref_10 article-title: Machine learning: Deepest learning as statistical data assimilation problems publication-title: Neural Comput. doi: 10.1162/neco_a_01094 – volume: 594 start-page: 265 year: 2021 ident: ref_32 article-title: Swarm, Learning, for, decentralized, a nd confidential clinical machine learning publication-title: Nature doi: 10.1038/s41586-021-03583-3 – volume: 60 start-page: 3797 year: 2014 ident: ref_38 article-title: Rényi Divergence and Kullback-Leibler Divergence publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2014.2320500 – ident: ref_43 – volume: 40 start-page: 5 year: 2021 ident: ref_2 article-title: Edge artificial intelligence for 6G: Vision, enabling technologies, and applications publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2021.3126076 |
SSID | ssj0000392667 |
Score | 2.2915406 |
Snippet | Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 267 |
SubjectTerms | Accuracy Adaptive sampling Algorithms Artificial intelligence Blockchain Cloud computing Collaboration Curricula curriculum learning Data integrity data valuation Datasets Devices distributed machine learning Distributed processing Edge computing edge intelligence Efficiency incentive mechanism Internet of Things Knapsack problem Machine learning Mobile computing Network latency Privacy Quality of service Quality of service architectures Scheduling Simulation methods Swarm intelligence Task scheduling Valuation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ1arLCiIh2Ceu1lvba2ooBdb8bbsU0VJxVbFf-9MkrY5KF68hiHszszOfJPMfkPIYSRUpqy2gQNwG6Te-0AYYQLtucqinLnc4m3k6xt2MUyv7rP7xqgv7Amr6IErxZ1kWuexBlTl8dsXXtsMuWU8SYwKhfIlNIKc1yimyhgMaZ8xXvGRJlDXn_iniOG90nKg_DwDlUT9v4XjMsecr5KVGhzSTrWoNbLginWy3KAM3CCfg7LPdUx7cwN-ONq3D45eNug1T2kX0tSzeYTKP-hCqrL0TE0UvZuSe1NVWHoLJrPYi_5AAbzS6gsDiFbMGl905GkdTDbJ8Lw_6F0E9fCEwMCxnECUsx6Kqdgyy1OVeKFxPGiklPDccRW50HHPvGVp7rUOXWZjhXCH5wwQnU-TLbJYjAq3Tag2ITciNi5HrhrrBP79S3ILdvECXtgix1OFSlMzi-OAixcJFQYqX86V3yIHM9nXik_jR6ku2mUmgRzY5QPwDFl7hvzLM1rkCK0q8aTCcoyqLxzAppDzSnaQBygSKQtbpD01vKyP8FgmoeCwU4CPO_-xml2yFAMeqnoH22Rx8vbu9gDPTPR-6brfHVDzog priority: 102 providerName: Directory of Open Access Journals |
Title | Towards Collaborative Edge Intelligence: Blockchain-Based Data Valuation and Scheduling for Improved Quality of Service |
URI | https://www.proquest.com/docview/3097906929 https://doaj.org/article/5bb82b81df0148789007d6733ca09afa |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoc4FDVV4ipUSWQEIcVvW-_OgFZduEgkSFoEW9WX6GimrTNgHEv2dm10l6AK67o5XX43l65htCXuXK1MZbnwVwbrMqxpgpp1xmozB1LnmQHruRP57yk_Pqw0V9kRJui1RWudKJnaL2c4c58oOSKaEYB2v-9vomw6lReLuaRmhskQGoYAnB16CZnH76vM6yMDD_nIsel7SE-P4gXuYc-0u7wfIbS9QB9v9LLXe2ZrpLdpKTSMc9Vx-Se6F9RB7cgQ58TH6ddfWuC3q0YeTPQCd-Fuj7OzCbh7QBc_XdfTOXbdaAyfL02CwN_boC-aam9fQLsM5jTfqMghNL-0wDkPYIG7_pPNKkVJ6Q8-nk7OgkS0MUMgfiuQRt5yMEVYXnXlSmjMrimNDcGBVFECYPLIjIo-eVjNayUPvCoNsjJAfPLlblU7LdztvwjFDrmHCqcEEiZo0PCm8BS-llYaOCDw7Jm9WGapcQxnHQxZWGSAM3X282f0hermmve1yNv1I1yJc1BWJhdw_mtzOdREvX1sIKwO-OmB3Fxl4mPBdl6QxTJpoheY1c1SixsBxnUuMB_BRiX-kx4gHlquJsSPZXjNdJlBd6c_D2_v_6OblfgMfTVwfuk-3l7Y_wAjyWpR2RLTl9NyKDcXPcTEfpkI66-P8PHBbwOA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb1MxEB6VcgAOiFUEClgChDg81W-zn5EQatqGhC4XUtSb8RoqUFKaQNU_xW9k5i1JD8Ct1-eR5WfP8nmZbwBepsqUxlufBAS3SRFjTJRTLrFRmjKtRKg8ZSMfHIrhUfHxuDxeg99dLgw9q-x8Yu2o_czRGflmzpVUXGA0f3_6I6GqUXS72pXQaNRiL1yc45Zt_m60g-v7KssGu-PtYdJWFUgc6usCzd9H3GVkXnhZmDwqS3UzU2NUlEGaNPAgo4heFFW0lofSZ4ZwgKwEQp1Y5NjvNbhe5Lkii6oGH5ZnOhzBhhCyYUHFdr4ZT1JB2ax1GftV3KvLA_wrCNSRbXAHbreQlG01OnQX1sL0Hty6RFR4H87H9evaOdteqc2vwHb9JLDRJVLPt6yPwfGb-2pOpkkfA6RnO2Zh2OeOUpyZqWefUFE8vYCfMITMrDnXQNGGz-OCzSJrXdgDOLqSyX0I69PZNDwCZh2XTmUuVMSQ44OiO8e88lVmo8IOe_Cmm1DtWj5zKqvxXeO-hiZfrya_By-WsqcNi8dfpfq0LksJYt6uP8zOJro1ZF1aiyNAlB_pLJbSiLn0Qua5M1yZaHrwmlZVk3_A4TjTpjngTxHTlt4i9qFUFYL3YKNbeN06jrleqfnj_zc_hxvD8cG-3h8d7j2BmxlireZd4gasL85-hqeIlRb2Wa2gDL5ctUX8AXuCKEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFoIAlQIjDKt6XvUZCqGkSNRSiClrUm-v1I1SgpDSBqn-NX8fMPpIegFuvuyNr1zOe-WzPfAPwIlYmN650kUdwG2UhhEhZZaMySJPHhfCFo2rkjxOxe5i9P8qPNuB3WwtDaZWtT6wctZtbOiPvpVxJxQVG815o0iL2B6N3pz8i6iBFN61tO43aRPb8xTlu3xZvxwPU9cskGQ0PdnajpsNAZNF2l-gKXMAdR-KEk5lJgyqph2ZsjArSSxN77mUQwYmsCGXJfe4SQ5hAFgJhT8hSHPcabErcFfEObPaHk_1PqxMejtBDCFlzoqap4r1wEguqba2a2q-jYNUs4F8hoYpzo9twqwGobLu2qDuw4Wd34eYl2sJ7cH5Q5dou2M7aiH55NnRTz8aXKD7fsD6Gym_2qzmZRX0Ml44NzNKwLy3BODMzxz6j2TjKh58yBNCsPuVA0Zrd44LNA2sc2n04vJLpfQCd2XzmHwIrLZdWJdYXxJfjvKIbyLRwRVIGhQN24XU7odo27ObUZOO7xl0OTb5eT34Xnq9kT2tOj79K9UkvKwni4a4ezM-mulnWOi9L_ALE_IFOZqmomEsnZJpaw5UJpguvSKuavAV-jjVN0QP-FPFu6W3iIopVJngXtlrF68aNLPTa6B_9__UzuI6rQX8YT_Yew40EgVedpLgFneXZT_8EgdOyfNpYKIPjq14UfwAUfC3e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Collaborative+Edge+Intelligence%3A+Blockchain-Based+Data+Valuation+and+Scheduling+for+Improved+Quality+of+Service&rft.jtitle=Future+internet&rft.au=Du%2C+Yao&rft.au=Wang%2C+Zehua&rft.au=Leung%2C+Cyril&rft.au=Leung%2C+Victor+C.+M.&rft.date=2024-08-01&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=16&rft.issue=8&rft.spage=267&rft_id=info:doi/10.3390%2Ffi16080267&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fi16080267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon |