Towards Collaborative Edge Intelligence: Blockchain-Based Data Valuation and Scheduling for Improved Quality of Service

Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform distributed machine learning (DML) tasks locally. Decentralized Internet of Things (IoT) devices share knowledge and resources to improve the qu...

Full description

Saved in:
Bibliographic Details
Published inFuture internet Vol. 16; no. 8; p. 267
Main Authors Du, Yao, Wang, Zehua, Leung, Cyril, Leung, Victor C. M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform distributed machine learning (DML) tasks locally. Decentralized Internet of Things (IoT) devices share knowledge and resources to improve the quality of service (QoS) of the system with reduced reliance on centralized cloud infrastructure. However, the paradigm is vulnerable to free-riding attacks, where some devices benefit from the collective intelligence without contributing their fair share, potentially disincentivizing collaboration and undermining the system’s effectiveness. Moreover, data collected from heterogeneous IoT devices may contain biased information that decreases the prediction accuracy of DML models. To address these challenges, we propose a novel incentive mechanism that relies on time-dependent blockchain records and multi-access edge computing (MEC). We formulate the QoS problem as an unbounded multiple knapsack problem at the network edge. Furthermore, a decentralized valuation protocol is introduced atop blockchain to incentivize contributors and disincentivize free-riders. To improve model prediction accuracy within latency requirements, a data scheduling algorithm is given based on a curriculum learning framework. Based on our computer simulations using heterogeneous datasets, we identify two critical factors for enhancing the QoS in collaborative edge intelligence systems: (1) mitigating the impact of information loss and free-riders via decentralized data valuation and (2) optimizing the marginal utility of individual data samples by adaptive data scheduling.
AbstractList Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform distributed machine learning (DML) tasks locally. Decentralized Internet of Things (IoT) devices share knowledge and resources to improve the quality of service (QoS) of the system with reduced reliance on centralized cloud infrastructure. However, the paradigm is vulnerable to free-riding attacks, where some devices benefit from the collective intelligence without contributing their fair share, potentially disincentivizing collaboration and undermining the system’s effectiveness. Moreover, data collected from heterogeneous IoT devices may contain biased information that decreases the prediction accuracy of DML models. To address these challenges, we propose a novel incentive mechanism that relies on time-dependent blockchain records and multi-access edge computing (MEC). We formulate the QoS problem as an unbounded multiple knapsack problem at the network edge. Furthermore, a decentralized valuation protocol is introduced atop blockchain to incentivize contributors and disincentivize free-riders. To improve model prediction accuracy within latency requirements, a data scheduling algorithm is given based on a curriculum learning framework. Based on our computer simulations using heterogeneous datasets, we identify two critical factors for enhancing the QoS in collaborative edge intelligence systems: (1) mitigating the impact of information loss and free-riders via decentralized data valuation and (2) optimizing the marginal utility of individual data samples by adaptive data scheduling.
Audience Academic
Author Du, Yao
Leung, Victor C. M.
Leung, Cyril
Wang, Zehua
Author_xml – sequence: 1
  givenname: Yao
  orcidid: 0000-0002-9086-5467
  surname: Du
  fullname: Du, Yao
– sequence: 2
  givenname: Zehua
  orcidid: 0000-0001-9040-847X
  surname: Wang
  fullname: Wang, Zehua
– sequence: 3
  givenname: Cyril
  orcidid: 0000-0001-9911-2069
  surname: Leung
  fullname: Leung, Cyril
– sequence: 4
  givenname: Victor C. M.
  orcidid: 0000-0003-3529-2640
  surname: Leung
  fullname: Leung, Victor C. M.
BookMark eNptkV1rFDEUhgepYK298RcEvBOmnkxm8-Fdu1ZdKIi0ehvO5GOaNZvUzMyW_ntjV1HE5CLh8D5vzsn7vDlKObmmeUnhjDEFb3ygHCR0XDxpjqlSql0pYEd_3Z81p9O0hbqY6jgXx839Tb7HYieyzjHikAvOYe_IpR0d2aTZxRhGl4x7Sy5iNt_MLYbUXuDkLHmHM5KvGJeK5EQwWXJtbp1dYkgj8bmQze6u5H2Vfl4whvmBZE-uXdkH4140Tz3GyZ3-Ok-aL-8vb9Yf26tPHzbr86vW9ABzK4X1nVSd5Vb0yLwaVG2eIiovnEDqwAnPveW99MMAbmU7BE47ITnruO_ZSbM5-NqMW31Xwg7Lg84Y9GMhl1FjmYOJTq-GQXaDpNYD7aWQ9SVhuWDMICj0WL1eHbzqVN8XN816m5eSavuagRIKuOpUVZ0dVCNW05B8nguauq3bBVMT86HWzyWInqqeQwXgAJiSp6k4r02YH_-0giFqCvpnvPpPvBV5_Q_ye7L_iH8Af1Cmlg
CitedBy_id crossref_primary_10_3390_fi17010045
Cites_doi 10.1109/MNET.021.1900617
10.1109/TWC.2021.3062708
10.1109/COMST.2020.2969706
10.1109/COMST.2020.2986024
10.1109/ACCESS.2018.2805837
10.1007/s11263-022-01611-x
10.1109/ICNC57223.2023.10074543
10.1109/JIOT.2021.3072611
10.1109/BigData47090.2019.9006327
10.1016/S0893-6080(05)80010-3
10.1109/MNET.001.1800526
10.1109/CVPR52688.2022.01170
10.1109/TNSE.2020.3014385
10.1109/TCE.2024.3371501
10.1109/ICCV51070.2023.00469
10.1145/3524059.3532364
10.1109/COMST.2022.3189962
10.1038/s42256-022-00516-1
10.1007/978-3-030-63076-8_9
10.1109/JIOT.2020.2967772
10.1177/1745691617693393
10.1109/TMC.2023.3290925
10.1007/978-3-030-63076-8_11
10.1109/TC.2020.2994391
10.1109/JIOT.2023.3298606
10.1016/j.compbiomed.2017.08.001
10.1109/TMC.2023.3325334
10.1162/neco_a_01094
10.1038/s41586-021-03583-3
10.1109/TIT.2014.2320500
10.1109/JSAC.2021.3126076
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/fi16080267
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1999-5903
ExternalDocumentID oai_doaj_org_article_5bb82b81df0148789007d6733ca09afa
A807419460
10_3390_fi16080267
GroupedDBID -DT
.4I
5VS
7WY
8FE
8FG
8FL
AADQD
AAFWJ
AAKPC
AAYXX
ABDBF
ABUWG
ACIHN
ADBBV
ADMLS
AEAQA
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
EAP
EBS
EJD
ESX
FRNLG
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K60
K6V
K6~
K7-
KQ8
M0C
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
RNS
TR2
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
ACUHS
JQ2
L.-
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c400t-87df2892d6d74a3f9b90001aa9f7e7a1e0e7f6fd648fbb0e5d2a0612786326f43
IEDL.DBID BENPR
ISSN 1999-5903
IngestDate Wed Aug 27 01:22:04 EDT 2025
Sat Jul 26 02:23:05 EDT 2025
Tue Jun 10 21:07:23 EDT 2025
Thu Apr 24 22:49:15 EDT 2025
Tue Jul 01 01:25:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-87df2892d6d74a3f9b90001aa9f7e7a1e0e7f6fd648fbb0e5d2a0612786326f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9040-847X
0000-0002-9086-5467
0000-0003-3529-2640
0000-0001-9911-2069
OpenAccessLink https://www.proquest.com/docview/3097906929?pq-origsite=%requestingapplication%
PQID 3097906929
PQPubID 2032396
ParticipantIDs doaj_primary_oai_doaj_org_article_5bb82b81df0148789007d6733ca09afa
proquest_journals_3097906929
gale_infotracacademiconefile_A807419460
crossref_citationtrail_10_3390_fi16080267
crossref_primary_10_3390_fi16080267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Future internet
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Soviany (ref_40) 2022; 130
ref_14
ref_11
Lim (ref_4) 2020; 22
ref_53
ref_52
ref_51
Lopes (ref_36) 2017; 89
Li (ref_50) 2020; 2
Xu (ref_21) 2023; 23
Letaief (ref_2) 2021; 40
Abarbanel (ref_10) 2018; 30
Xiao (ref_13) 2020; 22
ref_25
Le (ref_29) 2021; 20
ref_24
ref_23
ref_28
ref_27
Qiu (ref_19) 2020; 34
Liang (ref_22) 2022; 4
ref_26
Yarkoni (ref_3) 2017; 12
Wang (ref_33) 2021; 8
ref_31
ref_30
Wu (ref_42) 2020; 70
Wang (ref_20) 2024; 70
ref_39
ref_37
Du (ref_17) 2023; 23
Blum (ref_35) 1992; 5
Wang (ref_15) 2022; 24
Zhan (ref_34) 2020; 7
Nguyen (ref_12) 2021; 8
Wang (ref_18) 2018; 6
ref_47
Li (ref_5) 2020; 37
ref_46
ref_45
ref_44
Zhang (ref_16) 2019; 33
ref_43
Strickland (ref_9) 2022; 59
ref_41
ref_1
Schultze (ref_32) 2021; 594
ref_49
ref_48
Wang (ref_6) 2023; 11
ref_8
Harremos (ref_38) 2014; 60
ref_7
References_xml – ident: ref_49
– ident: ref_51
– volume: 34
  start-page: 62
  year: 2020
  ident: ref_19
  article-title: AI-chain: Blockchain energized edge intelligence for beyond 5G networks
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.021.1900617
– volume: 20
  start-page: 4874
  year: 2021
  ident: ref_29
  article-title: An incentive mechanism for federated learning in wireless cellular networks: An auction approach
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3062708
– ident: ref_1
– ident: ref_23
– volume: 37
  start-page: 50
  year: 2020
  ident: ref_5
  article-title: Federated Learning: Challenges, Methods, and Future Directions
  publication-title: IEEE Signal Process. Mag.
– volume: 22
  start-page: 1432
  year: 2020
  ident: ref_13
  article-title: A Survey of Distributed Consensus Protocols for Blockchain Networks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2969706
– volume: 22
  start-page: 2031
  year: 2020
  ident: ref_4
  article-title: Federated Learning in Mobile Edge Networks: A Comprehensive Survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2020.2986024
– ident: ref_8
– ident: ref_31
– ident: ref_52
– volume: 6
  start-page: 17545
  year: 2018
  ident: ref_18
  article-title: A blockchain based privacy-preserving incentive mechanism in crowdsensing applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2805837
– volume: 130
  start-page: 1526
  year: 2022
  ident: ref_40
  article-title: Curriculum learning: A survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-022-01611-x
– ident: ref_39
  doi: 10.1109/ICNC57223.2023.10074543
– volume: 8
  start-page: 12806
  year: 2021
  ident: ref_12
  article-title: Federated Learning Meets Blockchain in Edge Computing: Opportunities and Challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3072611
– ident: ref_45
– ident: ref_26
  doi: 10.1109/BigData47090.2019.9006327
– ident: ref_7
– volume: 2
  start-page: 429
  year: 2020
  ident: ref_50
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc. Mach. Learn. Syst.
– ident: ref_53
– ident: ref_30
– volume: 5
  start-page: 117
  year: 1992
  ident: ref_35
  article-title: Training a 3-node neural network is NP-complete
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80010-3
– ident: ref_24
– volume: 33
  start-page: 12
  year: 2019
  ident: ref_16
  article-title: Edge intelligence and blockchain empowered 5G beyond for the industrial Internet of Things
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.001.1800526
– volume: 59
  start-page: 22
  year: 2022
  ident: ref_9
  article-title: Andrew Ng, AI Minimalist: The Machine-Learning Pioneer Says Small is the New Big
  publication-title: IEEE Spectr.
– ident: ref_47
– ident: ref_48
  doi: 10.1109/CVPR52688.2022.01170
– volume: 8
  start-page: 1055
  year: 2021
  ident: ref_33
  article-title: Learning in the Air: Secure Federated Learning for UAV-Assisted Crowdsensing
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.3014385
– volume: 70
  start-page: 1214
  year: 2024
  ident: ref_20
  article-title: Blockchain-Enabled Decentralized Edge Intelligence for Trustworthy 6G Consumer Electronics
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2024.3371501
– ident: ref_41
  doi: 10.1109/ICCV51070.2023.00469
– ident: ref_37
– ident: ref_14
– ident: ref_11
  doi: 10.1145/3524059.3532364
– volume: 24
  start-page: 2193
  year: 2022
  ident: ref_15
  article-title: Integrating edge intelligence and blockchain: What, why, and how
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2022.3189962
– volume: 4
  start-page: 669
  year: 2022
  ident: ref_22
  article-title: Advances, challenges and opportunities in creating data for trustworthy AI
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00516-1
– ident: ref_44
– ident: ref_28
  doi: 10.1007/978-3-030-63076-8_9
– volume: 7
  start-page: 6360
  year: 2020
  ident: ref_34
  article-title: A Learning-Based Incentive Mechanism for Federated Learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2967772
– ident: ref_25
– volume: 12
  start-page: 1100
  year: 2017
  ident: ref_3
  article-title: Choosing prediction over explanation in psychology: Lessons from machine learning
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691617693393
– volume: 23
  start-page: 4453
  year: 2023
  ident: ref_21
  article-title: Scei: A smart-contract driven edge intelligence framework for IoT systems
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2023.3290925
– ident: ref_27
  doi: 10.1007/978-3-030-63076-8_11
– volume: 70
  start-page: 655
  year: 2020
  ident: ref_42
  article-title: SAFA: A semi-asynchronous protocol for fast federated learning with low overhead
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2020.2994391
– ident: ref_46
– volume: 11
  start-page: 4377
  year: 2023
  ident: ref_6
  article-title: Frad: Free-rider attacks detection mechanism for federated learning in AIoT
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3298606
– volume: 89
  start-page: 135
  year: 2017
  ident: ref_36
  article-title: Pre-trained convolutional neural networks as feature extractors for tuberculosis detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.001
– volume: 23
  start-page: 6712
  year: 2023
  ident: ref_17
  article-title: Accelerating and Securing Blockchain-enabled Distributed Machine Learning
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2023.3325334
– volume: 30
  start-page: 2025
  year: 2018
  ident: ref_10
  article-title: Machine learning: Deepest learning as statistical data assimilation problems
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01094
– volume: 594
  start-page: 265
  year: 2021
  ident: ref_32
  article-title: Swarm, Learning, for, decentralized, a nd confidential clinical machine learning
  publication-title: Nature
  doi: 10.1038/s41586-021-03583-3
– volume: 60
  start-page: 3797
  year: 2014
  ident: ref_38
  article-title: Rényi Divergence and Kullback-Leibler Divergence
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2320500
– ident: ref_43
– volume: 40
  start-page: 5
  year: 2021
  ident: ref_2
  article-title: Edge artificial intelligence for 6G: Vision, enabling technologies, and applications
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2021.3126076
SSID ssj0000392667
Score 2.2915406
Snippet Collaborative edge intelligence, a distributed computing paradigm, refers to a system where multiple edge devices work together to process data and perform...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 267
SubjectTerms Accuracy
Adaptive sampling
Algorithms
Artificial intelligence
Blockchain
Cloud computing
Collaboration
Curricula
curriculum learning
Data integrity
data valuation
Datasets
Devices
distributed machine learning
Distributed processing
Edge computing
edge intelligence
Efficiency
incentive mechanism
Internet of Things
Knapsack problem
Machine learning
Mobile computing
Network latency
Privacy
Quality of service
Quality of service architectures
Scheduling
Simulation methods
Swarm intelligence
Task scheduling
Valuation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ1arLCiIh2Ceu1lvba2ooBdb8bbsU0VJxVbFf-9MkrY5KF68hiHszszOfJPMfkPIYSRUpqy2gQNwG6Te-0AYYQLtucqinLnc4m3k6xt2MUyv7rP7xqgv7Amr6IErxZ1kWuexBlTl8dsXXtsMuWU8SYwKhfIlNIKc1yimyhgMaZ8xXvGRJlDXn_iniOG90nKg_DwDlUT9v4XjMsecr5KVGhzSTrWoNbLginWy3KAM3CCfg7LPdUx7cwN-ONq3D45eNug1T2kX0tSzeYTKP-hCqrL0TE0UvZuSe1NVWHoLJrPYi_5AAbzS6gsDiFbMGl905GkdTDbJ8Lw_6F0E9fCEwMCxnECUsx6Kqdgyy1OVeKFxPGiklPDccRW50HHPvGVp7rUOXWZjhXCH5wwQnU-TLbJYjAq3Tag2ITciNi5HrhrrBP79S3ILdvECXtgix1OFSlMzi-OAixcJFQYqX86V3yIHM9nXik_jR6ku2mUmgRzY5QPwDFl7hvzLM1rkCK0q8aTCcoyqLxzAppDzSnaQBygSKQtbpD01vKyP8FgmoeCwU4CPO_-xml2yFAMeqnoH22Rx8vbu9gDPTPR-6brfHVDzog
  priority: 102
  providerName: Directory of Open Access Journals
Title Towards Collaborative Edge Intelligence: Blockchain-Based Data Valuation and Scheduling for Improved Quality of Service
URI https://www.proquest.com/docview/3097906929
https://doaj.org/article/5bb82b81df0148789007d6733ca09afa
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoc4FDVV4ipUSWQEIcVvW-_OgFZduEgkSFoEW9WX6GimrTNgHEv2dm10l6AK67o5XX43l65htCXuXK1MZbnwVwbrMqxpgpp1xmozB1LnmQHruRP57yk_Pqw0V9kRJui1RWudKJnaL2c4c58oOSKaEYB2v-9vomw6lReLuaRmhskQGoYAnB16CZnH76vM6yMDD_nIsel7SE-P4gXuYc-0u7wfIbS9QB9v9LLXe2ZrpLdpKTSMc9Vx-Se6F9RB7cgQ58TH6ddfWuC3q0YeTPQCd-Fuj7OzCbh7QBc_XdfTOXbdaAyfL02CwN_boC-aam9fQLsM5jTfqMghNL-0wDkPYIG7_pPNKkVJ6Q8-nk7OgkS0MUMgfiuQRt5yMEVYXnXlSmjMrimNDcGBVFECYPLIjIo-eVjNayUPvCoNsjJAfPLlblU7LdztvwjFDrmHCqcEEiZo0PCm8BS-llYaOCDw7Jm9WGapcQxnHQxZWGSAM3X282f0hermmve1yNv1I1yJc1BWJhdw_mtzOdREvX1sIKwO-OmB3Fxl4mPBdl6QxTJpoheY1c1SixsBxnUuMB_BRiX-kx4gHlquJsSPZXjNdJlBd6c_D2_v_6OblfgMfTVwfuk-3l7Y_wAjyWpR2RLTl9NyKDcXPcTEfpkI66-P8PHBbwOA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb1MxEB6VcgAOiFUEClgChDg81W-zn5EQatqGhC4XUtSb8RoqUFKaQNU_xW9k5i1JD8Ct1-eR5WfP8nmZbwBepsqUxlufBAS3SRFjTJRTLrFRmjKtRKg8ZSMfHIrhUfHxuDxeg99dLgw9q-x8Yu2o_czRGflmzpVUXGA0f3_6I6GqUXS72pXQaNRiL1yc45Zt_m60g-v7KssGu-PtYdJWFUgc6usCzd9H3GVkXnhZmDwqS3UzU2NUlEGaNPAgo4heFFW0lofSZ4ZwgKwEQp1Y5NjvNbhe5Lkii6oGH5ZnOhzBhhCyYUHFdr4ZT1JB2ax1GftV3KvLA_wrCNSRbXAHbreQlG01OnQX1sL0Hty6RFR4H87H9evaOdteqc2vwHb9JLDRJVLPt6yPwfGb-2pOpkkfA6RnO2Zh2OeOUpyZqWefUFE8vYCfMITMrDnXQNGGz-OCzSJrXdgDOLqSyX0I69PZNDwCZh2XTmUuVMSQ44OiO8e88lVmo8IOe_Cmm1DtWj5zKqvxXeO-hiZfrya_By-WsqcNi8dfpfq0LksJYt6uP8zOJro1ZF1aiyNAlB_pLJbSiLn0Qua5M1yZaHrwmlZVk3_A4TjTpjngTxHTlt4i9qFUFYL3YKNbeN06jrleqfnj_zc_hxvD8cG-3h8d7j2BmxlireZd4gasL85-hqeIlRb2Wa2gDL5ctUX8AXuCKEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFoIAlQIjDKt6XvUZCqGkSNRSiClrUm-v1I1SgpDSBqn-NX8fMPpIegFuvuyNr1zOe-WzPfAPwIlYmN650kUdwG2UhhEhZZaMySJPHhfCFo2rkjxOxe5i9P8qPNuB3WwtDaZWtT6wctZtbOiPvpVxJxQVG815o0iL2B6N3pz8i6iBFN61tO43aRPb8xTlu3xZvxwPU9cskGQ0PdnajpsNAZNF2l-gKXMAdR-KEk5lJgyqph2ZsjArSSxN77mUQwYmsCGXJfe4SQ5hAFgJhT8hSHPcabErcFfEObPaHk_1PqxMejtBDCFlzoqap4r1wEguqba2a2q-jYNUs4F8hoYpzo9twqwGobLu2qDuw4Wd34eYl2sJ7cH5Q5dou2M7aiH55NnRTz8aXKD7fsD6Gym_2qzmZRX0Ml44NzNKwLy3BODMzxz6j2TjKh58yBNCsPuVA0Zrd44LNA2sc2n04vJLpfQCd2XzmHwIrLZdWJdYXxJfjvKIbyLRwRVIGhQN24XU7odo27ObUZOO7xl0OTb5eT34Xnq9kT2tOj79K9UkvKwni4a4ezM-mulnWOi9L_ALE_IFOZqmomEsnZJpaw5UJpguvSKuavAV-jjVN0QP-FPFu6W3iIopVJngXtlrF68aNLPTa6B_9__UzuI6rQX8YT_Yew40EgVedpLgFneXZT_8EgdOyfNpYKIPjq14UfwAUfC3e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Collaborative+Edge+Intelligence%3A+Blockchain-Based+Data+Valuation+and+Scheduling+for+Improved+Quality+of+Service&rft.jtitle=Future+internet&rft.au=Du%2C+Yao&rft.au=Wang%2C+Zehua&rft.au=Leung%2C+Cyril&rft.au=Leung%2C+Victor+C.+M.&rft.date=2024-08-01&rft.issn=1999-5903&rft.eissn=1999-5903&rft.volume=16&rft.issue=8&rft.spage=267&rft_id=info:doi/10.3390%2Ffi16080267&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fi16080267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-5903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-5903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-5903&client=summon