One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation
[Display omitted] •Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI) reduction slightly.•Spontaneous precipitation of Cr(III) occurred in the presence of Ca2+ (>2ppm).•eaq− was identified as the dominant reactiv...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 308; pp. 791 - 797 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI) reduction slightly.•Spontaneous precipitation of Cr(III) occurred in the presence of Ca2+ (>2ppm).•eaq− was identified as the dominant reactive species in UV/sulfite process.
Chemical reduction of Cr(VI) to Cr(III) followed by Cr(III) precipitation is a widely employed strategy to mitigate Cr(VI) pollution from industrial effluents. Nevertheless, most of the available reduction processes are feasible at acidic pHs only, and very few technologies are capable of reducing Cr(VI) at alkaline pHs. Herein, we demonstrated that the UV/sulfite process is very promising for alkaline Cr(VI) remediation, including the Cr(VI) reduction to Cr(III) and simultaneous Cr(III) precipitation. In this process Cr(VI) reduction followed near zero-order kinetics, declining with an increase of pH (5–10) but boosting with increasing sulfite concentration. The co-existing Cl− and SO42− in water exerted negligible effect on Cr(VI) reduction, whereas the reduction kinetics was improved in the presence of citrate, EDTA or humic acid possibly due to their complexation with Cr(III). Similarly, the presence of borate buffer would significantly inhibit Cr(VI) reduction to Cr(III) as well as the final Cr(III) removal during precipitation. Fortunately, the presence of calcium ions even at trace level would favor Cr(III) precipitation and result in one-step removal of the total Cr at alkaline pH. The mechanism of Cr(VI) reduction was probed through irradiation manipulation and N2O addition, and the results suggested that excitation of sulfite is essential for alkaline Cr(VI) reduction, and eaq− is the dominant reactive species in the UV/sulfite process. |
---|---|
AbstractList | [Display omitted]
•Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI) reduction slightly.•Spontaneous precipitation of Cr(III) occurred in the presence of Ca2+ (>2ppm).•eaq− was identified as the dominant reactive species in UV/sulfite process.
Chemical reduction of Cr(VI) to Cr(III) followed by Cr(III) precipitation is a widely employed strategy to mitigate Cr(VI) pollution from industrial effluents. Nevertheless, most of the available reduction processes are feasible at acidic pHs only, and very few technologies are capable of reducing Cr(VI) at alkaline pHs. Herein, we demonstrated that the UV/sulfite process is very promising for alkaline Cr(VI) remediation, including the Cr(VI) reduction to Cr(III) and simultaneous Cr(III) precipitation. In this process Cr(VI) reduction followed near zero-order kinetics, declining with an increase of pH (5–10) but boosting with increasing sulfite concentration. The co-existing Cl− and SO42− in water exerted negligible effect on Cr(VI) reduction, whereas the reduction kinetics was improved in the presence of citrate, EDTA or humic acid possibly due to their complexation with Cr(III). Similarly, the presence of borate buffer would significantly inhibit Cr(VI) reduction to Cr(III) as well as the final Cr(III) removal during precipitation. Fortunately, the presence of calcium ions even at trace level would favor Cr(III) precipitation and result in one-step removal of the total Cr at alkaline pH. The mechanism of Cr(VI) reduction was probed through irradiation manipulation and N2O addition, and the results suggested that excitation of sulfite is essential for alkaline Cr(VI) reduction, and eaq− is the dominant reactive species in the UV/sulfite process. |
Author | Xu, Zhe Pan, Bingcai Xie, Bihuang Li, Xuchun Zhang, Xiaolin Shan, Chao Chen, Jiajia |
Author_xml | – sequence: 1 givenname: Bihuang surname: Xie fullname: Xie, Bihuang organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China – sequence: 2 givenname: Chao surname: Shan fullname: Shan, Chao organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China – sequence: 3 givenname: Zhe surname: Xu fullname: Xu, Zhe organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China – sequence: 4 givenname: Xuchun surname: Li fullname: Li, Xuchun organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 5 givenname: Xiaolin surname: Zhang fullname: Zhang, Xiaolin organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China – sequence: 6 givenname: Jiajia surname: Chen fullname: Chen, Jiajia organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China – sequence: 7 givenname: Bingcai surname: Pan fullname: Pan, Bingcai email: bcpan@nju.edu.cn organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China |
BookMark | eNp9kEtrwzAQhEVJoUnaH9Cbju3Bzspy_GhPJfQRCARKk6uQpTXIdWwjKSn597VJ6KGHnHYY9lt2ZkJGTdsgIfcMQgYsmVWhwiqMehlCHrKIX5Exy1Ie8IhFo17zbB5keZzekIlzFQAkOcvH5GfdYOA8dtTirj3ImrYlXdiH7fKRSk9l_S1r0yDtPmhxpJvtzO3r0vjesK1C557oJ-q98qZtqG8Hcrkc0EZT01Bn_P7P6ywq0xkvh-Vbcl3K2uHdeU7J5u31a_ERrNbvy8XLKlAxgA-yOSheJFpHHPMoUolMCkg1xjnjUkHBYsjikqWKJ5pBooFBLnkmy1iXZcYyPiXsdFfZ1jmLpeis2Ul7FAzE0JyoRN-cGJoTkIu-uZ5J_zHq_LW30tQXyecTiX2kg0ErnDLYKNSmD--Fbs0F-heOQokZ |
CitedBy_id | crossref_primary_10_1016_j_watres_2017_11_030 crossref_primary_10_1080_01932691_2023_2234480 crossref_primary_10_1016_j_seppur_2022_122164 crossref_primary_10_1007_s11356_018_04091_0 crossref_primary_10_1016_j_desal_2024_118460 crossref_primary_10_1016_j_apcatb_2020_119002 crossref_primary_10_1016_j_scitotenv_2019_06_292 crossref_primary_10_1021_acsenvironau_1c00042 crossref_primary_10_1016_j_eti_2020_100907 crossref_primary_10_1016_j_jssc_2023_124063 crossref_primary_10_3390_membranes12050462 crossref_primary_10_1016_j_scitotenv_2022_159446 crossref_primary_10_1016_j_jcis_2021_11_035 crossref_primary_10_1016_j_cej_2019_122763 crossref_primary_10_1016_j_jece_2021_105885 crossref_primary_10_1016_j_seppur_2023_126006 crossref_primary_10_2174_1573413716666210101121907 crossref_primary_10_1016_j_cej_2018_03_086 crossref_primary_10_1016_j_cej_2024_148826 crossref_primary_10_1016_j_biortech_2021_126154 crossref_primary_10_1016_j_jssc_2019_01_015 crossref_primary_10_1016_j_jclepro_2018_05_043 crossref_primary_10_1016_j_cej_2024_156556 crossref_primary_10_1016_j_colsurfa_2024_134474 crossref_primary_10_1016_j_jcis_2019_03_080 crossref_primary_10_1016_j_jcis_2022_07_107 crossref_primary_10_1016_j_jhazmat_2017_08_060 crossref_primary_10_1016_j_talanta_2017_05_017 crossref_primary_10_1039_C8EN01362D crossref_primary_10_1016_j_scitotenv_2023_166244 crossref_primary_10_1021_acsami_2c10298 crossref_primary_10_1039_C9RA10558A crossref_primary_10_1016_j_matchemphys_2020_123194 crossref_primary_10_1021_acsanm_0c03235 crossref_primary_10_1016_j_jece_2024_114410 crossref_primary_10_1016_j_watres_2022_118981 crossref_primary_10_2139_ssrn_3997601 crossref_primary_10_1016_j_resconrec_2024_107956 crossref_primary_10_1016_j_envint_2022_107383 crossref_primary_10_1016_j_clay_2019_04_013 crossref_primary_10_1061__ASCE_EE_1943_7870_0001995 crossref_primary_10_1016_j_chemosphere_2018_07_159 crossref_primary_10_1016_j_ijleo_2021_167415 crossref_primary_10_1016_j_reactfunctpolym_2023_105575 crossref_primary_10_1080_10643389_2023_2168473 crossref_primary_10_3390_pr9050790 crossref_primary_10_1007_s11783_021_1489_0 crossref_primary_10_1016_j_jenvman_2024_123583 crossref_primary_10_1021_acsanm_1c00380 crossref_primary_10_1016_j_eng_2020_12_018 crossref_primary_10_1016_j_jece_2022_108977 crossref_primary_10_3390_min11070775 crossref_primary_10_1016_j_jece_2024_112344 crossref_primary_10_1016_j_jphotochem_2019_01_010 crossref_primary_10_1016_j_apsusc_2020_147325 crossref_primary_10_1007_s10853_019_04191_3 crossref_primary_10_1016_j_cej_2022_135896 crossref_primary_10_1016_j_mssp_2017_11_011 crossref_primary_10_1016_j_jhazmat_2019_05_090 crossref_primary_10_1007_s12274_022_4327_1 crossref_primary_10_1016_j_cej_2019_123601 crossref_primary_10_1007_s10570_021_04217_7 crossref_primary_10_1039_D1EN00081K crossref_primary_10_1016_j_jhazmat_2022_129945 crossref_primary_10_1038_s44221_023_00098_1 crossref_primary_10_1016_j_saa_2023_123762 crossref_primary_10_3390_microorganisms12040754 crossref_primary_10_1021_acs_iecr_2c04348 crossref_primary_10_1016_j_jhazmat_2021_127809 crossref_primary_10_1007_s13762_022_04475_3 crossref_primary_10_1002_wer_1578 crossref_primary_10_1016_j_jwpe_2021_102333 crossref_primary_10_1016_j_envres_2020_109159 crossref_primary_10_1016_j_ijleo_2021_168053 crossref_primary_10_1016_j_scitotenv_2020_142762 crossref_primary_10_1016_j_jece_2022_107864 crossref_primary_10_1016_j_apsusc_2020_147002 crossref_primary_10_1016_j_cej_2023_147080 crossref_primary_10_1002_slct_201801193 crossref_primary_10_1016_j_jhazmat_2018_05_049 crossref_primary_10_1016_j_ijbiomac_2024_130812 crossref_primary_10_1007_s11356_022_21257_z crossref_primary_10_1016_j_jcis_2020_10_036 crossref_primary_10_1016_j_micromeso_2019_109905 crossref_primary_10_1016_j_seppur_2022_122193 crossref_primary_10_1016_j_psep_2019_01_020 crossref_primary_10_1016_j_jece_2022_107292 crossref_primary_10_1016_j_seppur_2023_126060 crossref_primary_10_1016_j_apcatb_2017_05_041 crossref_primary_10_1007_s10098_024_02895_y crossref_primary_10_1016_j_cej_2025_161607 crossref_primary_10_1016_j_jclepro_2022_134800 crossref_primary_10_1016_j_materresbull_2019_110671 crossref_primary_10_1016_j_watres_2017_09_021 crossref_primary_10_1021_acssuschemeng_8b05299 crossref_primary_10_1016_j_cherd_2024_03_017 crossref_primary_10_1007_s11356_021_17274_z crossref_primary_10_1007_s10924_022_02602_2 crossref_primary_10_1016_j_apsusc_2022_155247 crossref_primary_10_1016_j_seppur_2022_121424 crossref_primary_10_1007_s13399_022_03041_8 crossref_primary_10_1016_j_jphotochem_2017_09_057 crossref_primary_10_1007_s11356_021_18280_x crossref_primary_10_1002_slct_202404149 crossref_primary_10_1016_j_cclet_2023_109195 crossref_primary_10_1016_j_cej_2020_125632 crossref_primary_10_1039_D2NJ02313J crossref_primary_10_1016_j_cej_2018_10_214 crossref_primary_10_1016_j_chemosphere_2020_127094 crossref_primary_10_1016_j_cej_2022_137625 crossref_primary_10_1021_acs_iecr_8b05990 crossref_primary_10_1016_j_cej_2018_01_132 crossref_primary_10_1016_j_jenvman_2024_120670 crossref_primary_10_1021_acs_est_9b05565 crossref_primary_10_1016_j_jece_2023_110181 crossref_primary_10_1016_j_cej_2020_126278 crossref_primary_10_1016_j_seppur_2021_119862 crossref_primary_10_1016_j_chemosphere_2018_03_128 crossref_primary_10_1016_j_chemgeo_2021_120481 crossref_primary_10_1016_j_seppur_2025_132660 crossref_primary_10_4491_eer_2022_706 crossref_primary_10_1016_j_watres_2021_117143 crossref_primary_10_1007_s42114_024_01171_3 crossref_primary_10_1021_acs_est_4c05488 crossref_primary_10_31590_ejosat_656319 crossref_primary_10_1016_j_jece_2023_110735 crossref_primary_10_1039_D3RA00520H crossref_primary_10_1016_j_cej_2017_09_163 crossref_primary_10_5004_dwt_2019_23505 crossref_primary_10_1016_j_ceramint_2018_12_157 crossref_primary_10_1016_j_cej_2021_128872 crossref_primary_10_1016_j_cej_2024_149533 crossref_primary_10_1016_j_chemosphere_2018_08_143 crossref_primary_10_3390_min11020160 crossref_primary_10_1007_s11356_022_19811_w crossref_primary_10_1016_j_chemosphere_2021_132287 crossref_primary_10_1016_j_biteb_2018_01_004 crossref_primary_10_1016_j_cej_2020_125412 crossref_primary_10_1016_j_cjche_2020_03_019 crossref_primary_10_1007_s11356_023_30775_3 crossref_primary_10_1002_smtd_202100887 crossref_primary_10_1016_j_seppur_2024_130747 crossref_primary_10_1007_s10967_023_09138_2 crossref_primary_10_1016_j_cej_2019_01_109 crossref_primary_10_1016_j_jssc_2021_122721 crossref_primary_10_1016_j_apcatb_2019_118306 crossref_primary_10_1021_acs_jpcc_2c08064 crossref_primary_10_1016_j_watres_2020_116625 crossref_primary_10_1016_j_jhazmat_2023_130860 crossref_primary_10_1016_j_jhazmat_2019_121841 crossref_primary_10_1016_j_cej_2019_03_083 crossref_primary_10_1016_j_jhazmat_2022_129462 crossref_primary_10_1016_j_seppur_2024_128788 crossref_primary_10_1021_acs_iecr_8b02742 crossref_primary_10_1016_j_apcatb_2019_03_068 crossref_primary_10_1039_C8EW00216A crossref_primary_10_3390_su16020918 crossref_primary_10_1080_09593330_2019_1567825 crossref_primary_10_1016_j_apsusc_2019_04_146 crossref_primary_10_1016_j_molliq_2022_120131 crossref_primary_10_1016_j_jhazmat_2022_129913 crossref_primary_10_1016_j_jhazmat_2020_123016 crossref_primary_10_1016_j_envpol_2018_08_033 crossref_primary_10_2139_ssrn_4123946 crossref_primary_10_3934_environsci_2024023 crossref_primary_10_1016_j_clay_2024_107536 crossref_primary_10_1016_j_watres_2022_118919 crossref_primary_10_1021_acs_est_0c04703 crossref_primary_10_5004_dwt_2021_27447 crossref_primary_10_1016_j_jhazmat_2023_132017 crossref_primary_10_1016_j_jallcom_2020_154898 crossref_primary_10_1016_j_jhazmat_2024_136798 crossref_primary_10_1016_j_jhazmat_2022_129598 crossref_primary_10_1016_j_scitotenv_2019_07_021 crossref_primary_10_1016_j_cej_2019_123105 crossref_primary_10_1016_j_jhazmat_2017_09_015 crossref_primary_10_1016_j_micromeso_2021_111479 crossref_primary_10_1016_j_seppur_2023_125207 crossref_primary_10_1007_s10904_021_02222_8 crossref_primary_10_1016_j_bej_2020_107919 crossref_primary_10_1039_D4EN00026A crossref_primary_10_1016_j_jhazmat_2020_123702 crossref_primary_10_1016_j_scitotenv_2019_136002 crossref_primary_10_1016_j_chemosphere_2020_128422 crossref_primary_10_1016_j_ijleo_2020_164983 crossref_primary_10_1016_j_cej_2024_158324 crossref_primary_10_5004_dwt_2021_27314 crossref_primary_10_1016_j_jhazmat_2019_01_025 crossref_primary_10_1007_s11356_022_20987_4 crossref_primary_10_1039_D4NJ04201H crossref_primary_10_1016_j_jallcom_2019_06_285 crossref_primary_10_1155_2022_3956977 crossref_primary_10_1016_j_jhazmat_2021_126448 crossref_primary_10_1080_09593330_2022_2036249 crossref_primary_10_1016_j_cej_2023_143453 crossref_primary_10_1016_j_cej_2024_149612 crossref_primary_10_1016_j_jphotochem_2022_114107 crossref_primary_10_1016_j_jece_2024_113153 crossref_primary_10_1016_j_matchemphys_2023_127662 crossref_primary_10_1021_acs_iecr_7b03093 crossref_primary_10_1016_j_mssp_2020_105276 crossref_primary_10_1021_acs_est_7b02451 crossref_primary_10_1016_j_jcis_2017_12_045 crossref_primary_10_1016_j_apcatb_2018_08_077 crossref_primary_10_1016_j_cclet_2024_110664 crossref_primary_10_1039_D3TA05384A crossref_primary_10_1021_acs_est_2c02003 crossref_primary_10_1007_s11356_020_09904_9 crossref_primary_10_1016_j_ijbiomac_2023_124266 crossref_primary_10_1016_j_jcis_2020_03_077 crossref_primary_10_1016_j_jphotochem_2019_01_040 crossref_primary_10_5004_dwt_2023_29337 crossref_primary_10_1016_j_cclet_2023_109130 crossref_primary_10_1016_j_cej_2023_145865 crossref_primary_10_5004_dwt_2018_21621 crossref_primary_10_1021_acs_cgd_8b01053 crossref_primary_10_1039_D3MA00625E crossref_primary_10_1061__ASCE_EE_1943_7870_0002036 crossref_primary_10_1016_j_jhazmat_2023_131475 crossref_primary_10_1016_j_seppur_2024_127410 crossref_primary_10_1016_j_chemosphere_2017_10_023 crossref_primary_10_1016_j_jenvman_2017_07_012 crossref_primary_10_1016_j_molliq_2019_111703 crossref_primary_10_1016_j_arabjc_2020_04_029 crossref_primary_10_1016_j_jiec_2019_07_027 crossref_primary_10_2139_ssrn_4047603 crossref_primary_10_1016_j_colsurfa_2021_127045 crossref_primary_10_1016_j_clay_2020_105669 crossref_primary_10_1016_j_trac_2023_117280 crossref_primary_10_1016_j_cej_2018_02_002 crossref_primary_10_1080_01496395_2020_1842451 crossref_primary_10_1016_j_envpol_2024_125436 crossref_primary_10_1590_1980_5373_mr_2021_0006 crossref_primary_10_1016_j_jece_2022_108665 crossref_primary_10_5004_dwt_2018_22293 crossref_primary_10_1016_j_ceramint_2023_03_272 crossref_primary_10_1016_j_clay_2021_106025 crossref_primary_10_1016_j_jece_2021_107119 crossref_primary_10_1016_j_colsurfa_2024_134808 crossref_primary_10_1021_acsomega_1c04280 crossref_primary_10_1038_s41598_024_55585_6 crossref_primary_10_1016_j_watres_2023_119876 crossref_primary_10_1007_s13369_023_08145_5 crossref_primary_10_1007_s10570_022_04787_0 crossref_primary_10_1016_j_chemosphere_2020_128109 crossref_primary_10_1016_j_jwpe_2021_102191 crossref_primary_10_1021_acs_est_4c07010 crossref_primary_10_1016_j_jmgm_2023_108566 crossref_primary_10_1021_acs_inorgchem_3c03841 crossref_primary_10_1016_j_chemosphere_2020_128221 crossref_primary_10_1039_C9RA08298K crossref_primary_10_5004_dwt_2019_24687 crossref_primary_10_1016_j_colsurfa_2020_125724 crossref_primary_10_1016_j_jcis_2020_04_090 crossref_primary_10_1016_j_jiec_2022_03_050 crossref_primary_10_1016_j_jmmm_2022_169788 crossref_primary_10_1007_s11356_022_20066_8 crossref_primary_10_1016_j_seppur_2023_125932 crossref_primary_10_1016_j_envres_2022_114616 crossref_primary_10_1016_j_scitotenv_2020_136822 crossref_primary_10_1016_j_ijbiomac_2019_05_125 crossref_primary_10_1016_j_watcyc_2025_01_001 crossref_primary_10_1016_j_apcatb_2021_120508 crossref_primary_10_1016_j_cattod_2018_09_012 crossref_primary_10_1007_s10570_018_1791_6 crossref_primary_10_1016_j_mcat_2023_113137 crossref_primary_10_1016_j_chemosphere_2022_135209 crossref_primary_10_1016_j_jwpe_2022_103334 crossref_primary_10_1016_j_jhazmat_2022_130072 crossref_primary_10_1016_j_jwpe_2019_100983 crossref_primary_10_1016_j_apcatb_2018_03_017 crossref_primary_10_1016_j_ecoenv_2018_06_020 crossref_primary_10_1016_j_jhazmat_2023_131582 crossref_primary_10_1016_j_ijbiomac_2019_09_112 crossref_primary_10_1007_s10854_022_08502_4 crossref_primary_10_1016_j_seppur_2024_127982 crossref_primary_10_1016_j_seppur_2022_121609 crossref_primary_10_1016_j_apsusc_2021_149692 crossref_primary_10_1016_j_seppur_2023_124612 crossref_primary_10_1016_j_jwpe_2022_102917 crossref_primary_10_1016_j_seppur_2024_127505 |
Cites_doi | 10.1016/j.jhazmat.2011.11.003 10.1016/j.chemgeo.2011.04.005 10.1016/j.apcatb.2015.01.017 10.1016/j.jhazmat.2013.08.059 10.1021/es0017007 10.1016/j.watres.2015.02.058 10.1021/es101859b 10.1016/j.jhazmat.2012.04.054 10.1063/1.555805 10.1016/j.watres.2013.12.043 10.1021/am5074722 10.1016/j.desal.2010.10.055 10.1021/es962269h 10.1016/j.apgeochem.2014.12.001 10.1021/es035447x 10.1021/acs.est.5b01759 10.1021/acs.est.5b03275 10.1016/j.jhazmat.2013.08.061 10.1016/j.watres.2013.09.006 10.1021/es5039084 10.1016/j.watres.2013.09.043 10.1021/es405804m 10.1016/j.watres.2011.03.006 10.1016/S0043-1354(00)00389-4 10.1016/j.jhazmat.2010.10.028 10.1016/0048-9697(89)90189-7 10.1039/C4NJ01203H 10.1002/zaac.19744040107 10.1039/C3CP54765E 10.1021/es050185f 10.1016/j.watres.2015.09.025 10.1021/es2021704 10.1016/j.sjbs.2010.12.003 10.1016/j.watres.2014.05.051 10.1016/j.jhazmat.2015.11.011 10.1016/j.scitotenv.2013.03.060 10.1016/j.watres.2012.10.056 10.1016/j.chemosphere.2015.01.014 10.1016/j.watres.2012.11.028 10.1016/S0016-7037(97)00077-X 10.1021/es3008535 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2016.09.123 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
EndPage | 797 |
ExternalDocumentID | 10_1016_j_cej_2016_09_123 S1385894716313675 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c400t-850c3b6dd23e922c6a6b07de4913ac0b14084f17c36d106d0109a38af4dff8183 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:10:11 EDT 2025 Tue Jul 01 03:51:35 EDT 2025 Fri Feb 23 02:24:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Alkaline pHs Reduction Precipitation Cr(VI) UV/sulfite process |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-850c3b6dd23e922c6a6b07de4913ac0b14084f17c36d106d0109a38af4dff8183 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2016_09_123 crossref_citationtrail_10_1016_j_cej_2016_09_123 elsevier_sciencedirect_doi_10_1016_j_cej_2016_09_123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-15 |
PublicationDateYYYYMMDD | 2017-01-15 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dossing, Dideriksen, Stipp, Frei (b0045) 2011; 285 Jiang, Cai, Xu, Yang, Cai, Dionysiou, O’Shea (b0180) 2014; 48 Xu, Luo, Li, Wei, Xie, Liu, Jiang, Liu (b0105) 2011; 185 Liu, Song, Zhang, Wang, Pan (b0150) 2014; 16 Legrand, El Figuigui, Mercier, Chausse (b0015) 2004; 38 Bokare, Choi (b0025) 2011; 45 Xu, Gao, Pan, Zhang, Lv (b0155) 2015; 87 Rai, Eary, Zachara (b0090) 1989; 86 Sun, Zhang, Qin, Cao, Liu, Li, Qu, Liu (b0060) 2015; 49 Dean (b0165) 1999 Brose, James (b0185) 2010; 44 Sedlak, Chan (b0040) 1997; 61 Pakzadeh, Batista (b0120) 2011; 45 Kantar, Ari, Keskin (b0175) 2015; 76 Su, Ludwig (b0050) 2005; 39 Vellanki, Batchelor (b0145) 2013; 262 Buxton, Greenstock, Helman, Ross, Tsang (b0160) 1988; 17 Jiang, Liu, Zheng, Tan, Wang, Wu (b0190) 2015; 49 James (b0005) 1996; 30 Kim, Zhou, Deng, Thornton, Xu (b0115) 2001; 35 Liu, Yang, Wang, Yan (b0210) 2013; 47 Li, Zhu, Liu, Chen, Gu, Zhu, Lu, Zhang, Ma (b0215) 2013; 47 Gupta, Gupta, Sharma (b0020) 2001; 35 Qian, Liao, Yuan, Luo (b0195) 2014; 48 Jiang, Wang, Liu, Wang, Zheng, Wu (b0200) 2016; 304 Liu, Ni, Yin (b0070) 2014; 53 Song, Tang, Wang, Zhu (b0135) 2013; 262 Watts, Coker, Parry, Thomas, Kalin, Lloyd (b0100) 2015; 170 Ying, Cheng, Jing, Lan (b0030) 2015; 127 Hinz, Altmaier, Gaona, Rabung, Schild, Richmann, Reed, Alekseev, Geckeis (b0205) 2015; 39 Li, Ma, Liu, Fang, Yue, Guan, Chen, Liu (b0125) 2012; 46 Liu, Yoon, Batchelor, Abdel-Wahab (b0140) 2013; 454 Li, Fang, Liu, Zhang, Pan, Ma (b0130) 2014; 62 Sengupta, Nandi (b0170) 1974; 404 Zhang, Lu, Wang, Zhou, Sui (b0080) 2014; 48 Mangaiyarkarasi, Vincent, Janarthanan, Rao, Tata (b0085) 2011; 18 Watts, Coker, Parry, Pattrick, Thomas, Kalin, Lloyd (b0110) 2015; 54 Ying, Liu, Wang, Mao, Cao, Hu, Peng (b0075) 2015; 7 Lee, Park, Harvey (b0055) 2013; 47 Bhatti, Reddy, Kalia, Thukral (b0065) 2011; 269 Barrera-Diaz, Lugo-Lugo, Bilyeu (b0010) 2012; 223 Qian, Wang, Doudrick, Chan (b0035) 2015; 176–177 Chrysochoou, Johnston, Dahal (b0095) 2012; 201 Li (10.1016/j.cej.2016.09.123_b0215) 2013; 47 Dossing (10.1016/j.cej.2016.09.123_b0045) 2011; 285 Kantar (10.1016/j.cej.2016.09.123_b0175) 2015; 76 Li (10.1016/j.cej.2016.09.123_b0125) 2012; 46 Watts (10.1016/j.cej.2016.09.123_b0100) 2015; 170 Liu (10.1016/j.cej.2016.09.123_b0150) 2014; 16 Su (10.1016/j.cej.2016.09.123_b0050) 2005; 39 Li (10.1016/j.cej.2016.09.123_b0130) 2014; 62 Chrysochoou (10.1016/j.cej.2016.09.123_b0095) 2012; 201 Vellanki (10.1016/j.cej.2016.09.123_b0145) 2013; 262 Dean (10.1016/j.cej.2016.09.123_b0165) 1999 Rai (10.1016/j.cej.2016.09.123_b0090) 1989; 86 James (10.1016/j.cej.2016.09.123_b0005) 1996; 30 Jiang (10.1016/j.cej.2016.09.123_b0200) 2016; 304 Sengupta (10.1016/j.cej.2016.09.123_b0170) 1974; 404 Barrera-Diaz (10.1016/j.cej.2016.09.123_b0010) 2012; 223 Xu (10.1016/j.cej.2016.09.123_b0155) 2015; 87 Sedlak (10.1016/j.cej.2016.09.123_b0040) 1997; 61 Mangaiyarkarasi (10.1016/j.cej.2016.09.123_b0085) 2011; 18 Xu (10.1016/j.cej.2016.09.123_b0105) 2011; 185 Song (10.1016/j.cej.2016.09.123_b0135) 2013; 262 Legrand (10.1016/j.cej.2016.09.123_b0015) 2004; 38 Buxton (10.1016/j.cej.2016.09.123_b0160) 1988; 17 Watts (10.1016/j.cej.2016.09.123_b0110) 2015; 54 Pakzadeh (10.1016/j.cej.2016.09.123_b0120) 2011; 45 Qian (10.1016/j.cej.2016.09.123_b0035) 2015; 176–177 Qian (10.1016/j.cej.2016.09.123_b0195) 2014; 48 Liu (10.1016/j.cej.2016.09.123_b0140) 2013; 454 Jiang (10.1016/j.cej.2016.09.123_b0180) 2014; 48 Gupta (10.1016/j.cej.2016.09.123_b0020) 2001; 35 Kim (10.1016/j.cej.2016.09.123_b0115) 2001; 35 Jiang (10.1016/j.cej.2016.09.123_b0190) 2015; 49 Sun (10.1016/j.cej.2016.09.123_b0060) 2015; 49 Liu (10.1016/j.cej.2016.09.123_b0070) 2014; 53 Lee (10.1016/j.cej.2016.09.123_b0055) 2013; 47 Bokare (10.1016/j.cej.2016.09.123_b0025) 2011; 45 Zhang (10.1016/j.cej.2016.09.123_b0080) 2014; 48 Ying (10.1016/j.cej.2016.09.123_b0075) 2015; 7 Brose (10.1016/j.cej.2016.09.123_b0185) 2010; 44 Hinz (10.1016/j.cej.2016.09.123_b0205) 2015; 39 Ying (10.1016/j.cej.2016.09.123_b0030) 2015; 127 Bhatti (10.1016/j.cej.2016.09.123_b0065) 2011; 269 Liu (10.1016/j.cej.2016.09.123_b0210) 2013; 47 |
References_xml | – volume: 39 start-page: 6208 year: 2005 end-page: 6216 ident: b0050 article-title: Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite publication-title: Environ. Sci. Technol. – volume: 54 start-page: 27 year: 2015 end-page: 42 ident: b0110 article-title: Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue publication-title: Appl. Geochem. – volume: 38 start-page: 4587 year: 2004 end-page: 4595 ident: b0015 article-title: Reduction of aqueous chromate by Fe(11)/Fe(1 publication-title: Environ. Sci. Technol. – volume: 30 start-page: A248 year: 1996 end-page: A251 ident: b0005 article-title: The challenge of remediating chromium-contaminated soil publication-title: Environ. Sci. Technol. – volume: 49 start-page: 12363 year: 2015 end-page: 12371 ident: b0190 article-title: Synergetic transformations of multiple pollutants driven by Cr(VI)–sulfite reactions publication-title: Environ. Sci. Technol. – volume: 53 start-page: 12 year: 2014 end-page: 25 ident: b0070 article-title: Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO(2) and titanate nanotubes publication-title: Water Res. – volume: 39 start-page: 849 year: 2015 end-page: 859 ident: b0205 article-title: Interaction of Nd(III) and Cm(III) with borate in dilute to concentrated alkaline NaCl, MgCl publication-title: New J. Chem. – volume: 61 start-page: 2185 year: 1997 end-page: 2192 ident: b0040 article-title: Reduction of hexavalent chromium by ferrous iron publication-title: Geochim. Cosmochim. Acta – volume: 262 start-page: 332 year: 2013 end-page: 338 ident: b0135 article-title: Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system publication-title: J. Hazard. Mater. – volume: 35 start-page: 1125 year: 2001 end-page: 1134 ident: b0020 article-title: Process development for the removal of lead and chromium from aqueous solutions using red mud – an aluminium industry waste publication-title: Water Res. – volume: 262 start-page: 348 year: 2013 end-page: 356 ident: b0145 article-title: Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process publication-title: J. Hazard. Mater. – volume: 285 start-page: 157 year: 2011 end-page: 166 ident: b0045 article-title: Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments publication-title: Chem. Geol. – volume: 47 start-page: 4188 year: 2013 end-page: 4197 ident: b0215 article-title: N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal publication-title: Water Res. – volume: 62 start-page: 220 year: 2014 end-page: 228 ident: b0130 article-title: Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process publication-title: Water Res. – volume: 48 start-page: 12876 year: 2014 end-page: 12885 ident: b0080 article-title: Cr (VI) reduction and Cr (III) immobilization by Acinetobacter sp. HK-1 with the assistance of a Novel Quinone/Graphene Oxide Composite publication-title: Environ. Sci. Technol. – volume: 454 start-page: 578 year: 2013 end-page: 583 ident: b0140 article-title: Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): effects of process variables and a kinetic model publication-title: Sci. Total Environ. – year: 1999 ident: b0165 article-title: Lange’s Handbook of Chemistry – volume: 76 start-page: 66 year: 2015 end-page: 75 ident: b0175 article-title: Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure publication-title: Water Res. – volume: 47 start-page: 6691 year: 2013 end-page: 6700 ident: b0210 article-title: Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers publication-title: Water Res. – volume: 176–177 start-page: 740 year: 2015 end-page: 748 ident: b0035 article-title: Hexavalent chromium removal using metal oxide photocatalysts publication-title: Appl. Catal. B – volume: 185 start-page: 1169 year: 2011 end-page: 1176 ident: b0105 article-title: Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions publication-title: J. Hazard. Mater. – volume: 16 start-page: 7571 year: 2014 end-page: 7577 ident: b0150 article-title: Non-hydroxyl radical mediated photochemical processes for dye degradation publication-title: Phys. Chem. Chem. Phys. – volume: 223 start-page: 1 year: 2012 end-page: 12 ident: b0010 article-title: A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction publication-title: J. Hazard. Mater. – volume: 170 start-page: 162 year: 2015 end-page: 172 ident: b0100 article-title: Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: impact of electron donor and aqueous geochemistry publication-title: Appl. Catal. B Environ. – volume: 47 start-page: 1136 year: 2013 end-page: 1146 ident: b0055 article-title: Reduction of Chromium(VI) mediated by zero-valent magnesium under neutral pH conditions publication-title: Water Res. – volume: 48 start-page: 8078 year: 2014 end-page: 8085 ident: b0180 article-title: Cr(VI) adsorption and reduction by humic acid coated on magnetite publication-title: Environ. Sci. Technol. – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: b0160 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 87 start-page: 378 year: 2015 end-page: 384 ident: b0155 article-title: A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation publication-title: Water Res. – volume: 46 start-page: 7342 year: 2012 end-page: 7349 ident: b0125 article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process publication-title: Environ. Sci. Technol. – volume: 127 start-page: 87 year: 2015 end-page: 92 ident: b0030 article-title: Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light publication-title: Chemosphere – volume: 48 start-page: 326 year: 2014 end-page: 334 ident: b0195 article-title: Efficient reduction of Cr(VI) in groundwater by a hybrid electro-Pd process publication-title: Water Res. – volume: 86 start-page: 15 year: 1989 end-page: 23 ident: b0090 article-title: Environmental chemistry of chromium publication-title: Sci. Total Environ. – volume: 45 start-page: 3055 year: 2011 end-page: 3064 ident: b0120 article-title: Chromium removal from ion-exchange waste brines with calcium polysulfide publication-title: Water Res. – volume: 35 start-page: 2219 year: 2001 end-page: 2225 ident: b0115 article-title: Chromium (VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics publication-title: Environ. Sci. Technol. – volume: 45 start-page: 9332 year: 2011 end-page: 9338 ident: b0025 article-title: Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle publication-title: Environ. Sci. Technol. – volume: 201 start-page: 33 year: 2012 end-page: 42 ident: b0095 article-title: A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron publication-title: J. Hazard. Mater. – volume: 44 start-page: 9438 year: 2010 end-page: 9444 ident: b0185 article-title: Oxidation−reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones publication-title: Environ. Sci. Technol. – volume: 18 start-page: 157 year: 2011 end-page: 167 ident: b0085 article-title: Bioreduction of Cr(VI) by alkaliphilic publication-title: Saudi J. Biol. Sci. – volume: 404 start-page: 81 year: 1974 end-page: 86 ident: b0170 article-title: Complex carbonates of chromium(III) publication-title: Z. Anorg. Chem. – volume: 7 start-page: 1795 year: 2015 end-page: 1803 ident: b0075 article-title: Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 9289 year: 2015 end-page: 9297 ident: b0060 article-title: Redox conversion of chromium(VI) and arsenic(III) with the intermediates of chromium(V) and arsenic(IV) via AuPd/CNTs electrocatalysis in acid aqueous solution publication-title: Environ. Sci. Technol. – volume: 304 start-page: 457 year: 2016 end-page: 466 ident: b0200 article-title: The roles of polycarboxylates in Cr(VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer publication-title: J. Hazard. Mater. – volume: 269 start-page: 157 year: 2011 end-page: 162 ident: b0065 article-title: Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium publication-title: Desalination – volume: 201 start-page: 33 year: 2012 ident: 10.1016/j.cej.2016.09.123_b0095 article-title: A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.11.003 – volume: 285 start-page: 157 year: 2011 ident: 10.1016/j.cej.2016.09.123_b0045 article-title: Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2011.04.005 – volume: 170 start-page: 162 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0100 article-title: Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: impact of electron donor and aqueous geochemistry publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.01.017 – volume: 262 start-page: 332 year: 2013 ident: 10.1016/j.cej.2016.09.123_b0135 article-title: Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.08.059 – volume: 35 start-page: 2219 year: 2001 ident: 10.1016/j.cej.2016.09.123_b0115 article-title: Chromium (VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics publication-title: Environ. Sci. Technol. doi: 10.1021/es0017007 – volume: 76 start-page: 66 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0175 article-title: Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure publication-title: Water Res. doi: 10.1016/j.watres.2015.02.058 – volume: 44 start-page: 9438 year: 2010 ident: 10.1016/j.cej.2016.09.123_b0185 article-title: Oxidation−reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones publication-title: Environ. Sci. Technol. doi: 10.1021/es101859b – volume: 223 start-page: 1 year: 2012 ident: 10.1016/j.cej.2016.09.123_b0010 article-title: A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.04.054 – volume: 17 start-page: 513 year: 1988 ident: 10.1016/j.cej.2016.09.123_b0160 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 53 start-page: 12 year: 2014 ident: 10.1016/j.cej.2016.09.123_b0070 article-title: Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO(2) and titanate nanotubes publication-title: Water Res. doi: 10.1016/j.watres.2013.12.043 – volume: 7 start-page: 1795 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0075 article-title: Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5074722 – volume: 269 start-page: 157 year: 2011 ident: 10.1016/j.cej.2016.09.123_b0065 article-title: Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium publication-title: Desalination doi: 10.1016/j.desal.2010.10.055 – volume: 30 start-page: A248 year: 1996 ident: 10.1016/j.cej.2016.09.123_b0005 article-title: The challenge of remediating chromium-contaminated soil publication-title: Environ. Sci. Technol. doi: 10.1021/es962269h – volume: 54 start-page: 27 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0110 article-title: Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.12.001 – volume: 38 start-page: 4587 year: 2004 ident: 10.1016/j.cej.2016.09.123_b0015 article-title: Reduction of aqueous chromate by Fe(11)/Fe(111) carbonate green rust: kinetic and mechanistic studies publication-title: Environ. Sci. Technol. doi: 10.1021/es035447x – volume: 49 start-page: 9289 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0060 article-title: Redox conversion of chromium(VI) and arsenic(III) with the intermediates of chromium(V) and arsenic(IV) via AuPd/CNTs electrocatalysis in acid aqueous solution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01759 – volume: 49 start-page: 12363 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0190 article-title: Synergetic transformations of multiple pollutants driven by Cr(VI)–sulfite reactions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03275 – volume: 262 start-page: 348 year: 2013 ident: 10.1016/j.cej.2016.09.123_b0145 article-title: Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.08.061 – volume: 47 start-page: 6691 year: 2013 ident: 10.1016/j.cej.2016.09.123_b0210 article-title: Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers publication-title: Water Res. doi: 10.1016/j.watres.2013.09.006 – volume: 48 start-page: 12876 year: 2014 ident: 10.1016/j.cej.2016.09.123_b0080 article-title: Cr (VI) reduction and Cr (III) immobilization by Acinetobacter sp. HK-1 with the assistance of a Novel Quinone/Graphene Oxide Composite publication-title: Environ. Sci. Technol. doi: 10.1021/es5039084 – volume: 48 start-page: 326 year: 2014 ident: 10.1016/j.cej.2016.09.123_b0195 article-title: Efficient reduction of Cr(VI) in groundwater by a hybrid electro-Pd process publication-title: Water Res. doi: 10.1016/j.watres.2013.09.043 – year: 1999 ident: 10.1016/j.cej.2016.09.123_b0165 – volume: 48 start-page: 8078 year: 2014 ident: 10.1016/j.cej.2016.09.123_b0180 article-title: Cr(VI) adsorption and reduction by humic acid coated on magnetite publication-title: Environ. Sci. Technol. doi: 10.1021/es405804m – volume: 45 start-page: 3055 year: 2011 ident: 10.1016/j.cej.2016.09.123_b0120 article-title: Chromium removal from ion-exchange waste brines with calcium polysulfide publication-title: Water Res. doi: 10.1016/j.watres.2011.03.006 – volume: 35 start-page: 1125 year: 2001 ident: 10.1016/j.cej.2016.09.123_b0020 article-title: Process development for the removal of lead and chromium from aqueous solutions using red mud – an aluminium industry waste publication-title: Water Res. doi: 10.1016/S0043-1354(00)00389-4 – volume: 185 start-page: 1169 year: 2011 ident: 10.1016/j.cej.2016.09.123_b0105 article-title: Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.028 – volume: 86 start-page: 15 year: 1989 ident: 10.1016/j.cej.2016.09.123_b0090 article-title: Environmental chemistry of chromium publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(89)90189-7 – volume: 39 start-page: 849 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0205 article-title: Interaction of Nd(III) and Cm(III) with borate in dilute to concentrated alkaline NaCl, MgCl2 and CaCl2 solutions: solubility and TRLFS studies publication-title: New J. Chem. doi: 10.1039/C4NJ01203H – volume: 404 start-page: 81 year: 1974 ident: 10.1016/j.cej.2016.09.123_b0170 article-title: Complex carbonates of chromium(III) publication-title: Z. Anorg. Chem. doi: 10.1002/zaac.19744040107 – volume: 16 start-page: 7571 year: 2014 ident: 10.1016/j.cej.2016.09.123_b0150 article-title: Non-hydroxyl radical mediated photochemical processes for dye degradation publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP54765E – volume: 39 start-page: 6208 year: 2005 ident: 10.1016/j.cej.2016.09.123_b0050 article-title: Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite publication-title: Environ. Sci. Technol. doi: 10.1021/es050185f – volume: 87 start-page: 378 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0155 article-title: A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation publication-title: Water Res. doi: 10.1016/j.watres.2015.09.025 – volume: 45 start-page: 9332 issue: 21 year: 2011 ident: 10.1016/j.cej.2016.09.123_b0025 article-title: Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle publication-title: Environ. Sci. Technol. doi: 10.1021/es2021704 – volume: 18 start-page: 157 year: 2011 ident: 10.1016/j.cej.2016.09.123_b0085 article-title: Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2010.12.003 – volume: 62 start-page: 220 year: 2014 ident: 10.1016/j.cej.2016.09.123_b0130 article-title: Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process publication-title: Water Res. doi: 10.1016/j.watres.2014.05.051 – volume: 304 start-page: 457 year: 2016 ident: 10.1016/j.cej.2016.09.123_b0200 article-title: The roles of polycarboxylates in Cr(VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.11.011 – volume: 454 start-page: 578 year: 2013 ident: 10.1016/j.cej.2016.09.123_b0140 article-title: Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): effects of process variables and a kinetic model publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.03.060 – volume: 47 start-page: 4188 year: 2013 ident: 10.1016/j.cej.2016.09.123_b0215 article-title: N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal publication-title: Water Res. doi: 10.1016/j.watres.2012.10.056 – volume: 176–177 start-page: 740 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0035 article-title: Hexavalent chromium removal using metal oxide photocatalysts publication-title: Appl. Catal. B – volume: 127 start-page: 87 year: 2015 ident: 10.1016/j.cej.2016.09.123_b0030 article-title: Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.01.014 – volume: 47 start-page: 1136 year: 2013 ident: 10.1016/j.cej.2016.09.123_b0055 article-title: Reduction of Chromium(VI) mediated by zero-valent magnesium under neutral pH conditions publication-title: Water Res. doi: 10.1016/j.watres.2012.11.028 – volume: 61 start-page: 2185 year: 1997 ident: 10.1016/j.cej.2016.09.123_b0040 article-title: Reduction of hexavalent chromium by ferrous iron publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(97)00077-X – volume: 46 start-page: 7342 year: 2012 ident: 10.1016/j.cej.2016.09.123_b0125 article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process publication-title: Environ. Sci. Technol. doi: 10.1021/es3008535 |
SSID | ssj0006919 |
Score | 2.6250224 |
Snippet | [Display omitted]
•Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 791 |
SubjectTerms | Alkaline pHs Cr(VI) Precipitation Reduction UV/sulfite process |
Title | One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation |
URI | https://dx.doi.org/10.1016/j.cej.2016.09.123 |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9AIHRHmIQFv5wAEqmazXXu-aWxRRJUS0UiGlt5WfUtKwWaUbIS789s4ku6VIwIHTSpZHsmbG81jPfEPIax2TkBdeMM-1ZlKZhFllExYzlzpXWPAQ-Gvg05kaz-THq-xqj4y6Xhgsq2xt_86mb611uzJouTmo5_PBZ45vWhqMqxKIO4aN5lLmqOXvfv4q81B6O9wDNzPc3b1sbmu8XFhgdZdCqFOeij_7pnv-5vQxedQGinS4O8sB2QvVE_LwHnzgU_L9vAoMpFTTdfi2ApWhq0hH6zeXk7fUNNQsrw0GkbQeU_uDzi5B65YRQkxa77oD3tMLBG5F0dBmhZSTCZJWns4rejNvNndrNYJg1C2e9zMyO_3wZTRm7SAF5uCKNqzIEies8j4VQaepUwbEkfsgNRfGJRaSrEJGnjuhPKSIHp_LjChMlD5G8OjiOelVqyq8IDRyHoxNcw9ppNSFtpnL4c6LolDRKmn6JOlYWLr2VDjsYll25WSLErheItfLRJfA9T45uSOpdxAb_9osO7mUv-lJCS7g72Qv_4_sFXmQohtPOOPZIek16004giCkscdbLTsm-8PJdHyG3-nF1-ktviLaWA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4oPJSCxR84ABI1sZx4sTcqlWrhLaLBN2qN8tPacuSjZZUiH-PZzdZFalw4Gp5JGtmPA_P-BuAtzIkvigdp45JSTOhE2qESWjIbWptaaKHwKeB86moZtmnq_xqBybDXxhsq-xt_8amr611vzLuuTlu5_PxV4Y1LRmNq-CIO5bfg11Ep8pHsHtUn1bTrUEWcj3fA_dTJBiKm-s2L-uvscFLINopS_nd7umWyznZg0d9rEiONsd5DDu-eQIPbyEIPoWfnxtPo6BasvLfl1FryDKQyerdZf2e6I7oxTeNcSRpK2J-kdllVLxFiFEmaTcfBD6SL4jditIh3RIp6xpJG0fmDfkx7262ay3iYLQ9pPczmJ0cX0wq2s9SoDbe0o6WeWK5Ec6l3Ms0tUJHiRTOZ5JxbRMT86wyC6ywXLiYJTqsmGle6pC5EKJT589h1Cwbvw8kMOa1SQsXM8lMltLktojXnpelCEZk-gCSgYXK9qfCeRcLNXSUXavIdYVcV4lUkesH8GFL0m5QNv61ORvkov5QFRW9wN_JXvwf2Ru4X12cn6mzenr6Eh6k6NUTRln-Ckbd6sYfxpikM697nfsNdCDbZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+removal+of+Cr%28VI%29+at+alkaline+pH+by+UV%2Fsulfite+process%3A+Reduction+to+Cr%28III%29+and+in+situ+Cr%28III%29+precipitation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Xie%2C+Bihuang&rft.au=Shan%2C+Chao&rft.au=Xu%2C+Zhe&rft.au=Li%2C+Xuchun&rft.date=2017-01-15&rft.issn=1385-8947&rft.volume=308&rft.spage=791&rft.epage=797&rft_id=info:doi/10.1016%2Fj.cej.2016.09.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2016_09_123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |