One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation

[Display omitted] •Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI) reduction slightly.•Spontaneous precipitation of Cr(III) occurred in the presence of Ca2+ (>2ppm).•eaq− was identified as the dominant reactiv...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 308; pp. 791 - 797
Main Authors Xie, Bihuang, Shan, Chao, Xu, Zhe, Li, Xuchun, Zhang, Xiaolin, Chen, Jiajia, Pan, Bingcai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI) reduction slightly.•Spontaneous precipitation of Cr(III) occurred in the presence of Ca2+ (>2ppm).•eaq− was identified as the dominant reactive species in UV/sulfite process. Chemical reduction of Cr(VI) to Cr(III) followed by Cr(III) precipitation is a widely employed strategy to mitigate Cr(VI) pollution from industrial effluents. Nevertheless, most of the available reduction processes are feasible at acidic pHs only, and very few technologies are capable of reducing Cr(VI) at alkaline pHs. Herein, we demonstrated that the UV/sulfite process is very promising for alkaline Cr(VI) remediation, including the Cr(VI) reduction to Cr(III) and simultaneous Cr(III) precipitation. In this process Cr(VI) reduction followed near zero-order kinetics, declining with an increase of pH (5–10) but boosting with increasing sulfite concentration. The co-existing Cl− and SO42− in water exerted negligible effect on Cr(VI) reduction, whereas the reduction kinetics was improved in the presence of citrate, EDTA or humic acid possibly due to their complexation with Cr(III). Similarly, the presence of borate buffer would significantly inhibit Cr(VI) reduction to Cr(III) as well as the final Cr(III) removal during precipitation. Fortunately, the presence of calcium ions even at trace level would favor Cr(III) precipitation and result in one-step removal of the total Cr at alkaline pH. The mechanism of Cr(VI) reduction was probed through irradiation manipulation and N2O addition, and the results suggested that excitation of sulfite is essential for alkaline Cr(VI) reduction, and eaq− is the dominant reactive species in the UV/sulfite process.
AbstractList [Display omitted] •Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI) reduction slightly.•Spontaneous precipitation of Cr(III) occurred in the presence of Ca2+ (>2ppm).•eaq− was identified as the dominant reactive species in UV/sulfite process. Chemical reduction of Cr(VI) to Cr(III) followed by Cr(III) precipitation is a widely employed strategy to mitigate Cr(VI) pollution from industrial effluents. Nevertheless, most of the available reduction processes are feasible at acidic pHs only, and very few technologies are capable of reducing Cr(VI) at alkaline pHs. Herein, we demonstrated that the UV/sulfite process is very promising for alkaline Cr(VI) remediation, including the Cr(VI) reduction to Cr(III) and simultaneous Cr(III) precipitation. In this process Cr(VI) reduction followed near zero-order kinetics, declining with an increase of pH (5–10) but boosting with increasing sulfite concentration. The co-existing Cl− and SO42− in water exerted negligible effect on Cr(VI) reduction, whereas the reduction kinetics was improved in the presence of citrate, EDTA or humic acid possibly due to their complexation with Cr(III). Similarly, the presence of borate buffer would significantly inhibit Cr(VI) reduction to Cr(III) as well as the final Cr(III) removal during precipitation. Fortunately, the presence of calcium ions even at trace level would favor Cr(III) precipitation and result in one-step removal of the total Cr at alkaline pH. The mechanism of Cr(VI) reduction was probed through irradiation manipulation and N2O addition, and the results suggested that excitation of sulfite is essential for alkaline Cr(VI) reduction, and eaq− is the dominant reactive species in the UV/sulfite process.
Author Xu, Zhe
Pan, Bingcai
Xie, Bihuang
Li, Xuchun
Zhang, Xiaolin
Shan, Chao
Chen, Jiajia
Author_xml – sequence: 1
  givenname: Bihuang
  surname: Xie
  fullname: Xie, Bihuang
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 2
  givenname: Chao
  surname: Shan
  fullname: Shan, Chao
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 3
  givenname: Zhe
  surname: Xu
  fullname: Xu, Zhe
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 4
  givenname: Xuchun
  surname: Li
  fullname: Li, Xuchun
  organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
– sequence: 5
  givenname: Xiaolin
  surname: Zhang
  fullname: Zhang, Xiaolin
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 6
  givenname: Jiajia
  surname: Chen
  fullname: Chen, Jiajia
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
– sequence: 7
  givenname: Bingcai
  surname: Pan
  fullname: Pan, Bingcai
  email: bcpan@nju.edu.cn
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
BookMark eNp9kEtrwzAQhEVJoUnaH9Cbju3Bzspy_GhPJfQRCARKk6uQpTXIdWwjKSn597VJ6KGHnHYY9lt2ZkJGTdsgIfcMQgYsmVWhwiqMehlCHrKIX5Exy1Ie8IhFo17zbB5keZzekIlzFQAkOcvH5GfdYOA8dtTirj3ImrYlXdiH7fKRSk9l_S1r0yDtPmhxpJvtzO3r0vjesK1C557oJ-q98qZtqG8Hcrkc0EZT01Bn_P7P6ywq0xkvh-Vbcl3K2uHdeU7J5u31a_ERrNbvy8XLKlAxgA-yOSheJFpHHPMoUolMCkg1xjnjUkHBYsjikqWKJ5pBooFBLnkmy1iXZcYyPiXsdFfZ1jmLpeis2Ul7FAzE0JyoRN-cGJoTkIu-uZ5J_zHq_LW30tQXyecTiX2kg0ErnDLYKNSmD--Fbs0F-heOQokZ
CitedBy_id crossref_primary_10_1016_j_watres_2017_11_030
crossref_primary_10_1080_01932691_2023_2234480
crossref_primary_10_1016_j_seppur_2022_122164
crossref_primary_10_1007_s11356_018_04091_0
crossref_primary_10_1016_j_desal_2024_118460
crossref_primary_10_1016_j_apcatb_2020_119002
crossref_primary_10_1016_j_scitotenv_2019_06_292
crossref_primary_10_1021_acsenvironau_1c00042
crossref_primary_10_1016_j_eti_2020_100907
crossref_primary_10_1016_j_jssc_2023_124063
crossref_primary_10_3390_membranes12050462
crossref_primary_10_1016_j_scitotenv_2022_159446
crossref_primary_10_1016_j_jcis_2021_11_035
crossref_primary_10_1016_j_cej_2019_122763
crossref_primary_10_1016_j_jece_2021_105885
crossref_primary_10_1016_j_seppur_2023_126006
crossref_primary_10_2174_1573413716666210101121907
crossref_primary_10_1016_j_cej_2018_03_086
crossref_primary_10_1016_j_cej_2024_148826
crossref_primary_10_1016_j_biortech_2021_126154
crossref_primary_10_1016_j_jssc_2019_01_015
crossref_primary_10_1016_j_jclepro_2018_05_043
crossref_primary_10_1016_j_cej_2024_156556
crossref_primary_10_1016_j_colsurfa_2024_134474
crossref_primary_10_1016_j_jcis_2019_03_080
crossref_primary_10_1016_j_jcis_2022_07_107
crossref_primary_10_1016_j_jhazmat_2017_08_060
crossref_primary_10_1016_j_talanta_2017_05_017
crossref_primary_10_1039_C8EN01362D
crossref_primary_10_1016_j_scitotenv_2023_166244
crossref_primary_10_1021_acsami_2c10298
crossref_primary_10_1039_C9RA10558A
crossref_primary_10_1016_j_matchemphys_2020_123194
crossref_primary_10_1021_acsanm_0c03235
crossref_primary_10_1016_j_jece_2024_114410
crossref_primary_10_1016_j_watres_2022_118981
crossref_primary_10_2139_ssrn_3997601
crossref_primary_10_1016_j_resconrec_2024_107956
crossref_primary_10_1016_j_envint_2022_107383
crossref_primary_10_1016_j_clay_2019_04_013
crossref_primary_10_1061__ASCE_EE_1943_7870_0001995
crossref_primary_10_1016_j_chemosphere_2018_07_159
crossref_primary_10_1016_j_ijleo_2021_167415
crossref_primary_10_1016_j_reactfunctpolym_2023_105575
crossref_primary_10_1080_10643389_2023_2168473
crossref_primary_10_3390_pr9050790
crossref_primary_10_1007_s11783_021_1489_0
crossref_primary_10_1016_j_jenvman_2024_123583
crossref_primary_10_1021_acsanm_1c00380
crossref_primary_10_1016_j_eng_2020_12_018
crossref_primary_10_1016_j_jece_2022_108977
crossref_primary_10_3390_min11070775
crossref_primary_10_1016_j_jece_2024_112344
crossref_primary_10_1016_j_jphotochem_2019_01_010
crossref_primary_10_1016_j_apsusc_2020_147325
crossref_primary_10_1007_s10853_019_04191_3
crossref_primary_10_1016_j_cej_2022_135896
crossref_primary_10_1016_j_mssp_2017_11_011
crossref_primary_10_1016_j_jhazmat_2019_05_090
crossref_primary_10_1007_s12274_022_4327_1
crossref_primary_10_1016_j_cej_2019_123601
crossref_primary_10_1007_s10570_021_04217_7
crossref_primary_10_1039_D1EN00081K
crossref_primary_10_1016_j_jhazmat_2022_129945
crossref_primary_10_1038_s44221_023_00098_1
crossref_primary_10_1016_j_saa_2023_123762
crossref_primary_10_3390_microorganisms12040754
crossref_primary_10_1021_acs_iecr_2c04348
crossref_primary_10_1016_j_jhazmat_2021_127809
crossref_primary_10_1007_s13762_022_04475_3
crossref_primary_10_1002_wer_1578
crossref_primary_10_1016_j_jwpe_2021_102333
crossref_primary_10_1016_j_envres_2020_109159
crossref_primary_10_1016_j_ijleo_2021_168053
crossref_primary_10_1016_j_scitotenv_2020_142762
crossref_primary_10_1016_j_jece_2022_107864
crossref_primary_10_1016_j_apsusc_2020_147002
crossref_primary_10_1016_j_cej_2023_147080
crossref_primary_10_1002_slct_201801193
crossref_primary_10_1016_j_jhazmat_2018_05_049
crossref_primary_10_1016_j_ijbiomac_2024_130812
crossref_primary_10_1007_s11356_022_21257_z
crossref_primary_10_1016_j_jcis_2020_10_036
crossref_primary_10_1016_j_micromeso_2019_109905
crossref_primary_10_1016_j_seppur_2022_122193
crossref_primary_10_1016_j_psep_2019_01_020
crossref_primary_10_1016_j_jece_2022_107292
crossref_primary_10_1016_j_seppur_2023_126060
crossref_primary_10_1016_j_apcatb_2017_05_041
crossref_primary_10_1007_s10098_024_02895_y
crossref_primary_10_1016_j_cej_2025_161607
crossref_primary_10_1016_j_jclepro_2022_134800
crossref_primary_10_1016_j_materresbull_2019_110671
crossref_primary_10_1016_j_watres_2017_09_021
crossref_primary_10_1021_acssuschemeng_8b05299
crossref_primary_10_1016_j_cherd_2024_03_017
crossref_primary_10_1007_s11356_021_17274_z
crossref_primary_10_1007_s10924_022_02602_2
crossref_primary_10_1016_j_apsusc_2022_155247
crossref_primary_10_1016_j_seppur_2022_121424
crossref_primary_10_1007_s13399_022_03041_8
crossref_primary_10_1016_j_jphotochem_2017_09_057
crossref_primary_10_1007_s11356_021_18280_x
crossref_primary_10_1002_slct_202404149
crossref_primary_10_1016_j_cclet_2023_109195
crossref_primary_10_1016_j_cej_2020_125632
crossref_primary_10_1039_D2NJ02313J
crossref_primary_10_1016_j_cej_2018_10_214
crossref_primary_10_1016_j_chemosphere_2020_127094
crossref_primary_10_1016_j_cej_2022_137625
crossref_primary_10_1021_acs_iecr_8b05990
crossref_primary_10_1016_j_cej_2018_01_132
crossref_primary_10_1016_j_jenvman_2024_120670
crossref_primary_10_1021_acs_est_9b05565
crossref_primary_10_1016_j_jece_2023_110181
crossref_primary_10_1016_j_cej_2020_126278
crossref_primary_10_1016_j_seppur_2021_119862
crossref_primary_10_1016_j_chemosphere_2018_03_128
crossref_primary_10_1016_j_chemgeo_2021_120481
crossref_primary_10_1016_j_seppur_2025_132660
crossref_primary_10_4491_eer_2022_706
crossref_primary_10_1016_j_watres_2021_117143
crossref_primary_10_1007_s42114_024_01171_3
crossref_primary_10_1021_acs_est_4c05488
crossref_primary_10_31590_ejosat_656319
crossref_primary_10_1016_j_jece_2023_110735
crossref_primary_10_1039_D3RA00520H
crossref_primary_10_1016_j_cej_2017_09_163
crossref_primary_10_5004_dwt_2019_23505
crossref_primary_10_1016_j_ceramint_2018_12_157
crossref_primary_10_1016_j_cej_2021_128872
crossref_primary_10_1016_j_cej_2024_149533
crossref_primary_10_1016_j_chemosphere_2018_08_143
crossref_primary_10_3390_min11020160
crossref_primary_10_1007_s11356_022_19811_w
crossref_primary_10_1016_j_chemosphere_2021_132287
crossref_primary_10_1016_j_biteb_2018_01_004
crossref_primary_10_1016_j_cej_2020_125412
crossref_primary_10_1016_j_cjche_2020_03_019
crossref_primary_10_1007_s11356_023_30775_3
crossref_primary_10_1002_smtd_202100887
crossref_primary_10_1016_j_seppur_2024_130747
crossref_primary_10_1007_s10967_023_09138_2
crossref_primary_10_1016_j_cej_2019_01_109
crossref_primary_10_1016_j_jssc_2021_122721
crossref_primary_10_1016_j_apcatb_2019_118306
crossref_primary_10_1021_acs_jpcc_2c08064
crossref_primary_10_1016_j_watres_2020_116625
crossref_primary_10_1016_j_jhazmat_2023_130860
crossref_primary_10_1016_j_jhazmat_2019_121841
crossref_primary_10_1016_j_cej_2019_03_083
crossref_primary_10_1016_j_jhazmat_2022_129462
crossref_primary_10_1016_j_seppur_2024_128788
crossref_primary_10_1021_acs_iecr_8b02742
crossref_primary_10_1016_j_apcatb_2019_03_068
crossref_primary_10_1039_C8EW00216A
crossref_primary_10_3390_su16020918
crossref_primary_10_1080_09593330_2019_1567825
crossref_primary_10_1016_j_apsusc_2019_04_146
crossref_primary_10_1016_j_molliq_2022_120131
crossref_primary_10_1016_j_jhazmat_2022_129913
crossref_primary_10_1016_j_jhazmat_2020_123016
crossref_primary_10_1016_j_envpol_2018_08_033
crossref_primary_10_2139_ssrn_4123946
crossref_primary_10_3934_environsci_2024023
crossref_primary_10_1016_j_clay_2024_107536
crossref_primary_10_1016_j_watres_2022_118919
crossref_primary_10_1021_acs_est_0c04703
crossref_primary_10_5004_dwt_2021_27447
crossref_primary_10_1016_j_jhazmat_2023_132017
crossref_primary_10_1016_j_jallcom_2020_154898
crossref_primary_10_1016_j_jhazmat_2024_136798
crossref_primary_10_1016_j_jhazmat_2022_129598
crossref_primary_10_1016_j_scitotenv_2019_07_021
crossref_primary_10_1016_j_cej_2019_123105
crossref_primary_10_1016_j_jhazmat_2017_09_015
crossref_primary_10_1016_j_micromeso_2021_111479
crossref_primary_10_1016_j_seppur_2023_125207
crossref_primary_10_1007_s10904_021_02222_8
crossref_primary_10_1016_j_bej_2020_107919
crossref_primary_10_1039_D4EN00026A
crossref_primary_10_1016_j_jhazmat_2020_123702
crossref_primary_10_1016_j_scitotenv_2019_136002
crossref_primary_10_1016_j_chemosphere_2020_128422
crossref_primary_10_1016_j_ijleo_2020_164983
crossref_primary_10_1016_j_cej_2024_158324
crossref_primary_10_5004_dwt_2021_27314
crossref_primary_10_1016_j_jhazmat_2019_01_025
crossref_primary_10_1007_s11356_022_20987_4
crossref_primary_10_1039_D4NJ04201H
crossref_primary_10_1016_j_jallcom_2019_06_285
crossref_primary_10_1155_2022_3956977
crossref_primary_10_1016_j_jhazmat_2021_126448
crossref_primary_10_1080_09593330_2022_2036249
crossref_primary_10_1016_j_cej_2023_143453
crossref_primary_10_1016_j_cej_2024_149612
crossref_primary_10_1016_j_jphotochem_2022_114107
crossref_primary_10_1016_j_jece_2024_113153
crossref_primary_10_1016_j_matchemphys_2023_127662
crossref_primary_10_1021_acs_iecr_7b03093
crossref_primary_10_1016_j_mssp_2020_105276
crossref_primary_10_1021_acs_est_7b02451
crossref_primary_10_1016_j_jcis_2017_12_045
crossref_primary_10_1016_j_apcatb_2018_08_077
crossref_primary_10_1016_j_cclet_2024_110664
crossref_primary_10_1039_D3TA05384A
crossref_primary_10_1021_acs_est_2c02003
crossref_primary_10_1007_s11356_020_09904_9
crossref_primary_10_1016_j_ijbiomac_2023_124266
crossref_primary_10_1016_j_jcis_2020_03_077
crossref_primary_10_1016_j_jphotochem_2019_01_040
crossref_primary_10_5004_dwt_2023_29337
crossref_primary_10_1016_j_cclet_2023_109130
crossref_primary_10_1016_j_cej_2023_145865
crossref_primary_10_5004_dwt_2018_21621
crossref_primary_10_1021_acs_cgd_8b01053
crossref_primary_10_1039_D3MA00625E
crossref_primary_10_1061__ASCE_EE_1943_7870_0002036
crossref_primary_10_1016_j_jhazmat_2023_131475
crossref_primary_10_1016_j_seppur_2024_127410
crossref_primary_10_1016_j_chemosphere_2017_10_023
crossref_primary_10_1016_j_jenvman_2017_07_012
crossref_primary_10_1016_j_molliq_2019_111703
crossref_primary_10_1016_j_arabjc_2020_04_029
crossref_primary_10_1016_j_jiec_2019_07_027
crossref_primary_10_2139_ssrn_4047603
crossref_primary_10_1016_j_colsurfa_2021_127045
crossref_primary_10_1016_j_clay_2020_105669
crossref_primary_10_1016_j_trac_2023_117280
crossref_primary_10_1016_j_cej_2018_02_002
crossref_primary_10_1080_01496395_2020_1842451
crossref_primary_10_1016_j_envpol_2024_125436
crossref_primary_10_1590_1980_5373_mr_2021_0006
crossref_primary_10_1016_j_jece_2022_108665
crossref_primary_10_5004_dwt_2018_22293
crossref_primary_10_1016_j_ceramint_2023_03_272
crossref_primary_10_1016_j_clay_2021_106025
crossref_primary_10_1016_j_jece_2021_107119
crossref_primary_10_1016_j_colsurfa_2024_134808
crossref_primary_10_1021_acsomega_1c04280
crossref_primary_10_1038_s41598_024_55585_6
crossref_primary_10_1016_j_watres_2023_119876
crossref_primary_10_1007_s13369_023_08145_5
crossref_primary_10_1007_s10570_022_04787_0
crossref_primary_10_1016_j_chemosphere_2020_128109
crossref_primary_10_1016_j_jwpe_2021_102191
crossref_primary_10_1021_acs_est_4c07010
crossref_primary_10_1016_j_jmgm_2023_108566
crossref_primary_10_1021_acs_inorgchem_3c03841
crossref_primary_10_1016_j_chemosphere_2020_128221
crossref_primary_10_1039_C9RA08298K
crossref_primary_10_5004_dwt_2019_24687
crossref_primary_10_1016_j_colsurfa_2020_125724
crossref_primary_10_1016_j_jcis_2020_04_090
crossref_primary_10_1016_j_jiec_2022_03_050
crossref_primary_10_1016_j_jmmm_2022_169788
crossref_primary_10_1007_s11356_022_20066_8
crossref_primary_10_1016_j_seppur_2023_125932
crossref_primary_10_1016_j_envres_2022_114616
crossref_primary_10_1016_j_scitotenv_2020_136822
crossref_primary_10_1016_j_ijbiomac_2019_05_125
crossref_primary_10_1016_j_watcyc_2025_01_001
crossref_primary_10_1016_j_apcatb_2021_120508
crossref_primary_10_1016_j_cattod_2018_09_012
crossref_primary_10_1007_s10570_018_1791_6
crossref_primary_10_1016_j_mcat_2023_113137
crossref_primary_10_1016_j_chemosphere_2022_135209
crossref_primary_10_1016_j_jwpe_2022_103334
crossref_primary_10_1016_j_jhazmat_2022_130072
crossref_primary_10_1016_j_jwpe_2019_100983
crossref_primary_10_1016_j_apcatb_2018_03_017
crossref_primary_10_1016_j_ecoenv_2018_06_020
crossref_primary_10_1016_j_jhazmat_2023_131582
crossref_primary_10_1016_j_ijbiomac_2019_09_112
crossref_primary_10_1007_s10854_022_08502_4
crossref_primary_10_1016_j_seppur_2024_127982
crossref_primary_10_1016_j_seppur_2022_121609
crossref_primary_10_1016_j_apsusc_2021_149692
crossref_primary_10_1016_j_seppur_2023_124612
crossref_primary_10_1016_j_jwpe_2022_102917
crossref_primary_10_1016_j_seppur_2024_127505
Cites_doi 10.1016/j.jhazmat.2011.11.003
10.1016/j.chemgeo.2011.04.005
10.1016/j.apcatb.2015.01.017
10.1016/j.jhazmat.2013.08.059
10.1021/es0017007
10.1016/j.watres.2015.02.058
10.1021/es101859b
10.1016/j.jhazmat.2012.04.054
10.1063/1.555805
10.1016/j.watres.2013.12.043
10.1021/am5074722
10.1016/j.desal.2010.10.055
10.1021/es962269h
10.1016/j.apgeochem.2014.12.001
10.1021/es035447x
10.1021/acs.est.5b01759
10.1021/acs.est.5b03275
10.1016/j.jhazmat.2013.08.061
10.1016/j.watres.2013.09.006
10.1021/es5039084
10.1016/j.watres.2013.09.043
10.1021/es405804m
10.1016/j.watres.2011.03.006
10.1016/S0043-1354(00)00389-4
10.1016/j.jhazmat.2010.10.028
10.1016/0048-9697(89)90189-7
10.1039/C4NJ01203H
10.1002/zaac.19744040107
10.1039/C3CP54765E
10.1021/es050185f
10.1016/j.watres.2015.09.025
10.1021/es2021704
10.1016/j.sjbs.2010.12.003
10.1016/j.watres.2014.05.051
10.1016/j.jhazmat.2015.11.011
10.1016/j.scitotenv.2013.03.060
10.1016/j.watres.2012.10.056
10.1016/j.chemosphere.2015.01.014
10.1016/j.watres.2012.11.028
10.1016/S0016-7037(97)00077-X
10.1021/es3008535
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2016.09.123
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
EndPage 797
ExternalDocumentID 10_1016_j_cej_2016_09_123
S1385894716313675
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
SSH
ZY4
ID FETCH-LOGICAL-c400t-850c3b6dd23e922c6a6b07de4913ac0b14084f17c36d106d0109a38af4dff8183
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 23:10:11 EDT 2025
Tue Jul 01 03:51:35 EDT 2025
Fri Feb 23 02:24:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Alkaline pHs
Reduction
Precipitation
Cr(VI)
UV/sulfite process
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-850c3b6dd23e922c6a6b07de4913ac0b14084f17c36d106d0109a38af4dff8183
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_cej_2016_09_123
crossref_citationtrail_10_1016_j_cej_2016_09_123
elsevier_sciencedirect_doi_10_1016_j_cej_2016_09_123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-15
PublicationDateYYYYMMDD 2017-01-15
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dossing, Dideriksen, Stipp, Frei (b0045) 2011; 285
Jiang, Cai, Xu, Yang, Cai, Dionysiou, O’Shea (b0180) 2014; 48
Xu, Luo, Li, Wei, Xie, Liu, Jiang, Liu (b0105) 2011; 185
Liu, Song, Zhang, Wang, Pan (b0150) 2014; 16
Legrand, El Figuigui, Mercier, Chausse (b0015) 2004; 38
Bokare, Choi (b0025) 2011; 45
Xu, Gao, Pan, Zhang, Lv (b0155) 2015; 87
Rai, Eary, Zachara (b0090) 1989; 86
Sun, Zhang, Qin, Cao, Liu, Li, Qu, Liu (b0060) 2015; 49
Dean (b0165) 1999
Brose, James (b0185) 2010; 44
Sedlak, Chan (b0040) 1997; 61
Pakzadeh, Batista (b0120) 2011; 45
Kantar, Ari, Keskin (b0175) 2015; 76
Su, Ludwig (b0050) 2005; 39
Vellanki, Batchelor (b0145) 2013; 262
Buxton, Greenstock, Helman, Ross, Tsang (b0160) 1988; 17
Jiang, Liu, Zheng, Tan, Wang, Wu (b0190) 2015; 49
James (b0005) 1996; 30
Kim, Zhou, Deng, Thornton, Xu (b0115) 2001; 35
Liu, Yang, Wang, Yan (b0210) 2013; 47
Li, Zhu, Liu, Chen, Gu, Zhu, Lu, Zhang, Ma (b0215) 2013; 47
Gupta, Gupta, Sharma (b0020) 2001; 35
Qian, Liao, Yuan, Luo (b0195) 2014; 48
Jiang, Wang, Liu, Wang, Zheng, Wu (b0200) 2016; 304
Liu, Ni, Yin (b0070) 2014; 53
Song, Tang, Wang, Zhu (b0135) 2013; 262
Watts, Coker, Parry, Thomas, Kalin, Lloyd (b0100) 2015; 170
Ying, Cheng, Jing, Lan (b0030) 2015; 127
Hinz, Altmaier, Gaona, Rabung, Schild, Richmann, Reed, Alekseev, Geckeis (b0205) 2015; 39
Li, Ma, Liu, Fang, Yue, Guan, Chen, Liu (b0125) 2012; 46
Liu, Yoon, Batchelor, Abdel-Wahab (b0140) 2013; 454
Li, Fang, Liu, Zhang, Pan, Ma (b0130) 2014; 62
Sengupta, Nandi (b0170) 1974; 404
Zhang, Lu, Wang, Zhou, Sui (b0080) 2014; 48
Mangaiyarkarasi, Vincent, Janarthanan, Rao, Tata (b0085) 2011; 18
Watts, Coker, Parry, Pattrick, Thomas, Kalin, Lloyd (b0110) 2015; 54
Ying, Liu, Wang, Mao, Cao, Hu, Peng (b0075) 2015; 7
Lee, Park, Harvey (b0055) 2013; 47
Bhatti, Reddy, Kalia, Thukral (b0065) 2011; 269
Barrera-Diaz, Lugo-Lugo, Bilyeu (b0010) 2012; 223
Qian, Wang, Doudrick, Chan (b0035) 2015; 176–177
Chrysochoou, Johnston, Dahal (b0095) 2012; 201
Li (10.1016/j.cej.2016.09.123_b0215) 2013; 47
Dossing (10.1016/j.cej.2016.09.123_b0045) 2011; 285
Kantar (10.1016/j.cej.2016.09.123_b0175) 2015; 76
Li (10.1016/j.cej.2016.09.123_b0125) 2012; 46
Watts (10.1016/j.cej.2016.09.123_b0100) 2015; 170
Liu (10.1016/j.cej.2016.09.123_b0150) 2014; 16
Su (10.1016/j.cej.2016.09.123_b0050) 2005; 39
Li (10.1016/j.cej.2016.09.123_b0130) 2014; 62
Chrysochoou (10.1016/j.cej.2016.09.123_b0095) 2012; 201
Vellanki (10.1016/j.cej.2016.09.123_b0145) 2013; 262
Dean (10.1016/j.cej.2016.09.123_b0165) 1999
Rai (10.1016/j.cej.2016.09.123_b0090) 1989; 86
James (10.1016/j.cej.2016.09.123_b0005) 1996; 30
Jiang (10.1016/j.cej.2016.09.123_b0200) 2016; 304
Sengupta (10.1016/j.cej.2016.09.123_b0170) 1974; 404
Barrera-Diaz (10.1016/j.cej.2016.09.123_b0010) 2012; 223
Xu (10.1016/j.cej.2016.09.123_b0155) 2015; 87
Sedlak (10.1016/j.cej.2016.09.123_b0040) 1997; 61
Mangaiyarkarasi (10.1016/j.cej.2016.09.123_b0085) 2011; 18
Xu (10.1016/j.cej.2016.09.123_b0105) 2011; 185
Song (10.1016/j.cej.2016.09.123_b0135) 2013; 262
Legrand (10.1016/j.cej.2016.09.123_b0015) 2004; 38
Buxton (10.1016/j.cej.2016.09.123_b0160) 1988; 17
Watts (10.1016/j.cej.2016.09.123_b0110) 2015; 54
Pakzadeh (10.1016/j.cej.2016.09.123_b0120) 2011; 45
Qian (10.1016/j.cej.2016.09.123_b0035) 2015; 176–177
Qian (10.1016/j.cej.2016.09.123_b0195) 2014; 48
Liu (10.1016/j.cej.2016.09.123_b0140) 2013; 454
Jiang (10.1016/j.cej.2016.09.123_b0180) 2014; 48
Gupta (10.1016/j.cej.2016.09.123_b0020) 2001; 35
Kim (10.1016/j.cej.2016.09.123_b0115) 2001; 35
Jiang (10.1016/j.cej.2016.09.123_b0190) 2015; 49
Sun (10.1016/j.cej.2016.09.123_b0060) 2015; 49
Liu (10.1016/j.cej.2016.09.123_b0070) 2014; 53
Lee (10.1016/j.cej.2016.09.123_b0055) 2013; 47
Bokare (10.1016/j.cej.2016.09.123_b0025) 2011; 45
Zhang (10.1016/j.cej.2016.09.123_b0080) 2014; 48
Ying (10.1016/j.cej.2016.09.123_b0075) 2015; 7
Brose (10.1016/j.cej.2016.09.123_b0185) 2010; 44
Hinz (10.1016/j.cej.2016.09.123_b0205) 2015; 39
Ying (10.1016/j.cej.2016.09.123_b0030) 2015; 127
Bhatti (10.1016/j.cej.2016.09.123_b0065) 2011; 269
Liu (10.1016/j.cej.2016.09.123_b0210) 2013; 47
References_xml – volume: 39
  start-page: 6208
  year: 2005
  end-page: 6216
  ident: b0050
  article-title: Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 27
  year: 2015
  end-page: 42
  ident: b0110
  article-title: Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue
  publication-title: Appl. Geochem.
– volume: 38
  start-page: 4587
  year: 2004
  end-page: 4595
  ident: b0015
  article-title: Reduction of aqueous chromate by Fe(11)/Fe(1
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: A248
  year: 1996
  end-page: A251
  ident: b0005
  article-title: The challenge of remediating chromium-contaminated soil
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 12363
  year: 2015
  end-page: 12371
  ident: b0190
  article-title: Synergetic transformations of multiple pollutants driven by Cr(VI)–sulfite reactions
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 12
  year: 2014
  end-page: 25
  ident: b0070
  article-title: Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO(2) and titanate nanotubes
  publication-title: Water Res.
– volume: 39
  start-page: 849
  year: 2015
  end-page: 859
  ident: b0205
  article-title: Interaction of Nd(III) and Cm(III) with borate in dilute to concentrated alkaline NaCl, MgCl
  publication-title: New J. Chem.
– volume: 61
  start-page: 2185
  year: 1997
  end-page: 2192
  ident: b0040
  article-title: Reduction of hexavalent chromium by ferrous iron
  publication-title: Geochim. Cosmochim. Acta
– volume: 262
  start-page: 332
  year: 2013
  end-page: 338
  ident: b0135
  article-title: Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system
  publication-title: J. Hazard. Mater.
– volume: 35
  start-page: 1125
  year: 2001
  end-page: 1134
  ident: b0020
  article-title: Process development for the removal of lead and chromium from aqueous solutions using red mud – an aluminium industry waste
  publication-title: Water Res.
– volume: 262
  start-page: 348
  year: 2013
  end-page: 356
  ident: b0145
  article-title: Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process
  publication-title: J. Hazard. Mater.
– volume: 285
  start-page: 157
  year: 2011
  end-page: 166
  ident: b0045
  article-title: Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments
  publication-title: Chem. Geol.
– volume: 47
  start-page: 4188
  year: 2013
  end-page: 4197
  ident: b0215
  article-title: N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal
  publication-title: Water Res.
– volume: 62
  start-page: 220
  year: 2014
  end-page: 228
  ident: b0130
  article-title: Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process
  publication-title: Water Res.
– volume: 48
  start-page: 12876
  year: 2014
  end-page: 12885
  ident: b0080
  article-title: Cr (VI) reduction and Cr (III) immobilization by Acinetobacter sp. HK-1 with the assistance of a Novel Quinone/Graphene Oxide Composite
  publication-title: Environ. Sci. Technol.
– volume: 454
  start-page: 578
  year: 2013
  end-page: 583
  ident: b0140
  article-title: Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): effects of process variables and a kinetic model
  publication-title: Sci. Total Environ.
– year: 1999
  ident: b0165
  article-title: Lange’s Handbook of Chemistry
– volume: 76
  start-page: 66
  year: 2015
  end-page: 75
  ident: b0175
  article-title: Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure
  publication-title: Water Res.
– volume: 47
  start-page: 6691
  year: 2013
  end-page: 6700
  ident: b0210
  article-title: Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers
  publication-title: Water Res.
– volume: 176–177
  start-page: 740
  year: 2015
  end-page: 748
  ident: b0035
  article-title: Hexavalent chromium removal using metal oxide photocatalysts
  publication-title: Appl. Catal. B
– volume: 185
  start-page: 1169
  year: 2011
  end-page: 1176
  ident: b0105
  article-title: Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions
  publication-title: J. Hazard. Mater.
– volume: 16
  start-page: 7571
  year: 2014
  end-page: 7577
  ident: b0150
  article-title: Non-hydroxyl radical mediated photochemical processes for dye degradation
  publication-title: Phys. Chem. Chem. Phys.
– volume: 223
  start-page: 1
  year: 2012
  end-page: 12
  ident: b0010
  article-title: A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction
  publication-title: J. Hazard. Mater.
– volume: 170
  start-page: 162
  year: 2015
  end-page: 172
  ident: b0100
  article-title: Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: impact of electron donor and aqueous geochemistry
  publication-title: Appl. Catal. B Environ.
– volume: 47
  start-page: 1136
  year: 2013
  end-page: 1146
  ident: b0055
  article-title: Reduction of Chromium(VI) mediated by zero-valent magnesium under neutral pH conditions
  publication-title: Water Res.
– volume: 48
  start-page: 8078
  year: 2014
  end-page: 8085
  ident: b0180
  article-title: Cr(VI) adsorption and reduction by humic acid coated on magnetite
  publication-title: Environ. Sci. Technol.
– volume: 17
  start-page: 513
  year: 1988
  end-page: 886
  ident: b0160
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
– volume: 87
  start-page: 378
  year: 2015
  end-page: 384
  ident: b0155
  article-title: A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation
  publication-title: Water Res.
– volume: 46
  start-page: 7342
  year: 2012
  end-page: 7349
  ident: b0125
  article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process
  publication-title: Environ. Sci. Technol.
– volume: 127
  start-page: 87
  year: 2015
  end-page: 92
  ident: b0030
  article-title: Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light
  publication-title: Chemosphere
– volume: 48
  start-page: 326
  year: 2014
  end-page: 334
  ident: b0195
  article-title: Efficient reduction of Cr(VI) in groundwater by a hybrid electro-Pd process
  publication-title: Water Res.
– volume: 86
  start-page: 15
  year: 1989
  end-page: 23
  ident: b0090
  article-title: Environmental chemistry of chromium
  publication-title: Sci. Total Environ.
– volume: 45
  start-page: 3055
  year: 2011
  end-page: 3064
  ident: b0120
  article-title: Chromium removal from ion-exchange waste brines with calcium polysulfide
  publication-title: Water Res.
– volume: 35
  start-page: 2219
  year: 2001
  end-page: 2225
  ident: b0115
  article-title: Chromium (VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 9332
  year: 2011
  end-page: 9338
  ident: b0025
  article-title: Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle
  publication-title: Environ. Sci. Technol.
– volume: 201
  start-page: 33
  year: 2012
  end-page: 42
  ident: b0095
  article-title: A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron
  publication-title: J. Hazard. Mater.
– volume: 44
  start-page: 9438
  year: 2010
  end-page: 9444
  ident: b0185
  article-title: Oxidation−reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 157
  year: 2011
  end-page: 167
  ident: b0085
  article-title: Bioreduction of Cr(VI) by alkaliphilic
  publication-title: Saudi J. Biol. Sci.
– volume: 404
  start-page: 81
  year: 1974
  end-page: 86
  ident: b0170
  article-title: Complex carbonates of chromium(III)
  publication-title: Z. Anorg. Chem.
– volume: 7
  start-page: 1795
  year: 2015
  end-page: 1803
  ident: b0075
  article-title: Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 9289
  year: 2015
  end-page: 9297
  ident: b0060
  article-title: Redox conversion of chromium(VI) and arsenic(III) with the intermediates of chromium(V) and arsenic(IV) via AuPd/CNTs electrocatalysis in acid aqueous solution
  publication-title: Environ. Sci. Technol.
– volume: 304
  start-page: 457
  year: 2016
  end-page: 466
  ident: b0200
  article-title: The roles of polycarboxylates in Cr(VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer
  publication-title: J. Hazard. Mater.
– volume: 269
  start-page: 157
  year: 2011
  end-page: 162
  ident: b0065
  article-title: Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium
  publication-title: Desalination
– volume: 201
  start-page: 33
  year: 2012
  ident: 10.1016/j.cej.2016.09.123_b0095
  article-title: A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.11.003
– volume: 285
  start-page: 157
  year: 2011
  ident: 10.1016/j.cej.2016.09.123_b0045
  article-title: Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2011.04.005
– volume: 170
  start-page: 162
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0100
  article-title: Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: impact of electron donor and aqueous geochemistry
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.01.017
– volume: 262
  start-page: 332
  year: 2013
  ident: 10.1016/j.cej.2016.09.123_b0135
  article-title: Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.08.059
– volume: 35
  start-page: 2219
  year: 2001
  ident: 10.1016/j.cej.2016.09.123_b0115
  article-title: Chromium (VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0017007
– volume: 76
  start-page: 66
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0175
  article-title: Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.058
– volume: 44
  start-page: 9438
  year: 2010
  ident: 10.1016/j.cej.2016.09.123_b0185
  article-title: Oxidation−reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101859b
– volume: 223
  start-page: 1
  year: 2012
  ident: 10.1016/j.cej.2016.09.123_b0010
  article-title: A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.04.054
– volume: 17
  start-page: 513
  year: 1988
  ident: 10.1016/j.cej.2016.09.123_b0160
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 53
  start-page: 12
  year: 2014
  ident: 10.1016/j.cej.2016.09.123_b0070
  article-title: Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO(2) and titanate nanotubes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.12.043
– volume: 7
  start-page: 1795
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0075
  article-title: Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5074722
– volume: 269
  start-page: 157
  year: 2011
  ident: 10.1016/j.cej.2016.09.123_b0065
  article-title: Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.10.055
– volume: 30
  start-page: A248
  year: 1996
  ident: 10.1016/j.cej.2016.09.123_b0005
  article-title: The challenge of remediating chromium-contaminated soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es962269h
– volume: 54
  start-page: 27
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0110
  article-title: Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.12.001
– volume: 38
  start-page: 4587
  year: 2004
  ident: 10.1016/j.cej.2016.09.123_b0015
  article-title: Reduction of aqueous chromate by Fe(11)/Fe(111) carbonate green rust: kinetic and mechanistic studies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035447x
– volume: 49
  start-page: 9289
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0060
  article-title: Redox conversion of chromium(VI) and arsenic(III) with the intermediates of chromium(V) and arsenic(IV) via AuPd/CNTs electrocatalysis in acid aqueous solution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01759
– volume: 49
  start-page: 12363
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0190
  article-title: Synergetic transformations of multiple pollutants driven by Cr(VI)–sulfite reactions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03275
– volume: 262
  start-page: 348
  year: 2013
  ident: 10.1016/j.cej.2016.09.123_b0145
  article-title: Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.08.061
– volume: 47
  start-page: 6691
  year: 2013
  ident: 10.1016/j.cej.2016.09.123_b0210
  article-title: Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.006
– volume: 48
  start-page: 12876
  year: 2014
  ident: 10.1016/j.cej.2016.09.123_b0080
  article-title: Cr (VI) reduction and Cr (III) immobilization by Acinetobacter sp. HK-1 with the assistance of a Novel Quinone/Graphene Oxide Composite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5039084
– volume: 48
  start-page: 326
  year: 2014
  ident: 10.1016/j.cej.2016.09.123_b0195
  article-title: Efficient reduction of Cr(VI) in groundwater by a hybrid electro-Pd process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.043
– year: 1999
  ident: 10.1016/j.cej.2016.09.123_b0165
– volume: 48
  start-page: 8078
  year: 2014
  ident: 10.1016/j.cej.2016.09.123_b0180
  article-title: Cr(VI) adsorption and reduction by humic acid coated on magnetite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405804m
– volume: 45
  start-page: 3055
  year: 2011
  ident: 10.1016/j.cej.2016.09.123_b0120
  article-title: Chromium removal from ion-exchange waste brines with calcium polysulfide
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.03.006
– volume: 35
  start-page: 1125
  year: 2001
  ident: 10.1016/j.cej.2016.09.123_b0020
  article-title: Process development for the removal of lead and chromium from aqueous solutions using red mud – an aluminium industry waste
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00389-4
– volume: 185
  start-page: 1169
  year: 2011
  ident: 10.1016/j.cej.2016.09.123_b0105
  article-title: Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.10.028
– volume: 86
  start-page: 15
  year: 1989
  ident: 10.1016/j.cej.2016.09.123_b0090
  article-title: Environmental chemistry of chromium
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(89)90189-7
– volume: 39
  start-page: 849
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0205
  article-title: Interaction of Nd(III) and Cm(III) with borate in dilute to concentrated alkaline NaCl, MgCl2 and CaCl2 solutions: solubility and TRLFS studies
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ01203H
– volume: 404
  start-page: 81
  year: 1974
  ident: 10.1016/j.cej.2016.09.123_b0170
  article-title: Complex carbonates of chromium(III)
  publication-title: Z. Anorg. Chem.
  doi: 10.1002/zaac.19744040107
– volume: 16
  start-page: 7571
  year: 2014
  ident: 10.1016/j.cej.2016.09.123_b0150
  article-title: Non-hydroxyl radical mediated photochemical processes for dye degradation
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP54765E
– volume: 39
  start-page: 6208
  year: 2005
  ident: 10.1016/j.cej.2016.09.123_b0050
  article-title: Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050185f
– volume: 87
  start-page: 378
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0155
  article-title: A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.09.025
– volume: 45
  start-page: 9332
  issue: 21
  year: 2011
  ident: 10.1016/j.cej.2016.09.123_b0025
  article-title: Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2021704
– volume: 18
  start-page: 157
  year: 2011
  ident: 10.1016/j.cej.2016.09.123_b0085
  article-title: Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2010.12.003
– volume: 62
  start-page: 220
  year: 2014
  ident: 10.1016/j.cej.2016.09.123_b0130
  article-title: Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.05.051
– volume: 304
  start-page: 457
  year: 2016
  ident: 10.1016/j.cej.2016.09.123_b0200
  article-title: The roles of polycarboxylates in Cr(VI)/sulfite reaction system: involvement of reactive oxygen species and intramolecular electron transfer
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.11.011
– volume: 454
  start-page: 578
  year: 2013
  ident: 10.1016/j.cej.2016.09.123_b0140
  article-title: Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): effects of process variables and a kinetic model
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.03.060
– volume: 47
  start-page: 4188
  year: 2013
  ident: 10.1016/j.cej.2016.09.123_b0215
  article-title: N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.10.056
– volume: 176–177
  start-page: 740
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0035
  article-title: Hexavalent chromium removal using metal oxide photocatalysts
  publication-title: Appl. Catal. B
– volume: 127
  start-page: 87
  year: 2015
  ident: 10.1016/j.cej.2016.09.123_b0030
  article-title: Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.01.014
– volume: 47
  start-page: 1136
  year: 2013
  ident: 10.1016/j.cej.2016.09.123_b0055
  article-title: Reduction of Chromium(VI) mediated by zero-valent magnesium under neutral pH conditions
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.028
– volume: 61
  start-page: 2185
  year: 1997
  ident: 10.1016/j.cej.2016.09.123_b0040
  article-title: Reduction of hexavalent chromium by ferrous iron
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(97)00077-X
– volume: 46
  start-page: 7342
  year: 2012
  ident: 10.1016/j.cej.2016.09.123_b0125
  article-title: Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3008535
SSID ssj0006919
Score 2.6250224
Snippet [Display omitted] •Cr(VI) was efficiently reduced to Cr(III) at alkaline pHs by UV/sulfite process.•Common ions and organic matters interfered with Cr(VI)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 791
SubjectTerms Alkaline pHs
Cr(VI)
Precipitation
Reduction
UV/sulfite process
Title One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation
URI https://dx.doi.org/10.1016/j.cej.2016.09.123
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaq9AIHRHmIQFv5wAEqmazXXu-aWxRRJUS0UiGlt5WfUtKwWaUbIS789s4ku6VIwIHTSpZHsmbG81jPfEPIax2TkBdeMM-1ZlKZhFllExYzlzpXWPAQ-Gvg05kaz-THq-xqj4y6Xhgsq2xt_86mb611uzJouTmo5_PBZ45vWhqMqxKIO4aN5lLmqOXvfv4q81B6O9wDNzPc3b1sbmu8XFhgdZdCqFOeij_7pnv-5vQxedQGinS4O8sB2QvVE_LwHnzgU_L9vAoMpFTTdfi2ApWhq0hH6zeXk7fUNNQsrw0GkbQeU_uDzi5B65YRQkxa77oD3tMLBG5F0dBmhZSTCZJWns4rejNvNndrNYJg1C2e9zMyO_3wZTRm7SAF5uCKNqzIEies8j4VQaepUwbEkfsgNRfGJRaSrEJGnjuhPKSIHp_LjChMlD5G8OjiOelVqyq8IDRyHoxNcw9ppNSFtpnL4c6LolDRKmn6JOlYWLr2VDjsYll25WSLErheItfLRJfA9T45uSOpdxAb_9osO7mUv-lJCS7g72Qv_4_sFXmQohtPOOPZIek16004giCkscdbLTsm-8PJdHyG3-nF1-ktviLaWA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QE4oPJSCxR84ABI1sZx4sTcqlWrhLaLBN2qN8tPacuSjZZUiH-PZzdZFalw4Gp5JGtmPA_P-BuAtzIkvigdp45JSTOhE2qESWjIbWptaaKHwKeB86moZtmnq_xqBybDXxhsq-xt_8amr611vzLuuTlu5_PxV4Y1LRmNq-CIO5bfg11Ep8pHsHtUn1bTrUEWcj3fA_dTJBiKm-s2L-uvscFLINopS_nd7umWyznZg0d9rEiONsd5DDu-eQIPbyEIPoWfnxtPo6BasvLfl1FryDKQyerdZf2e6I7oxTeNcSRpK2J-kdllVLxFiFEmaTcfBD6SL4jditIh3RIp6xpJG0fmDfkx7262ay3iYLQ9pPczmJ0cX0wq2s9SoDbe0o6WeWK5Ec6l3Ms0tUJHiRTOZ5JxbRMT86wyC6ywXLiYJTqsmGle6pC5EKJT589h1Cwbvw8kMOa1SQsXM8lMltLktojXnpelCEZk-gCSgYXK9qfCeRcLNXSUXavIdYVcV4lUkesH8GFL0m5QNv61ORvkov5QFRW9wN_JXvwf2Ru4X12cn6mzenr6Eh6k6NUTRln-Ckbd6sYfxpikM697nfsNdCDbZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+removal+of+Cr%28VI%29+at+alkaline+pH+by+UV%2Fsulfite+process%3A+Reduction+to+Cr%28III%29+and+in+situ+Cr%28III%29+precipitation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Xie%2C+Bihuang&rft.au=Shan%2C+Chao&rft.au=Xu%2C+Zhe&rft.au=Li%2C+Xuchun&rft.date=2017-01-15&rft.issn=1385-8947&rft.volume=308&rft.spage=791&rft.epage=797&rft_id=info:doi/10.1016%2Fj.cej.2016.09.123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2016_09_123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon