Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure
[Display omitted] •P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can effectively improve Volmer and Heyrovsky process of HER catalysis.•The mechanism of enhanced HER activity is well explained. The layered double hyd...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 297; p. 120478 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can effectively improve Volmer and Heyrovsky process of HER catalysis.•The mechanism of enhanced HER activity is well explained.
The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen evolution reaction (HER) activity limits their application. Herein, a general designing strategy to improve the HER activity of LDHs by P doping and deposition of metal nanodots (NDs) is proposed, which increases one order of magnitude higher than that of pristine LDHs. The obtained electrocatalyst, such as Cu NDs/P-FeCoLDH (CPFC-LDH), reaching a current density of 10 mA/cm2 with only 63 mV overpotential for HER in alkaline electrolyte. The adsorption energy of Hads and OH on catalyst is optimized by this strategy, which can weaken the interaction between the adsorbed Hads and electronegative oxygen in LDHs by formation of PO bonds. This work provides a strategy to develop LDHs materials with high catalytic activity for HER. |
---|---|
AbstractList | The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen evolution reaction (HER) activity limits their application. Herein, a general designing strategy to improve the HER activity of LDHs by P doping and deposition of metal nanodots (NDs) is proposed, which increases one order of magnitude higher than that of pristine LDHs. The obtained electrocatalyst, such as Cu NDs/P-FeCoLDH (CPFC-LDH), reaching a current density of 10 mA/cm2 with only 63 mV overpotential for HER in alkaline electrolyte. The adsorption energy of Hads and OH on catalyst is optimized by this strategy, which can weaken the interaction between the adsorbed Hads and electronegative oxygen in LDHs by formation of P-O bonds. This work provides a strategy to develop LDHs materials with high catalytic activity for HER. [Display omitted] •P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can effectively improve Volmer and Heyrovsky process of HER catalysis.•The mechanism of enhanced HER activity is well explained. The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen evolution reaction (HER) activity limits their application. Herein, a general designing strategy to improve the HER activity of LDHs by P doping and deposition of metal nanodots (NDs) is proposed, which increases one order of magnitude higher than that of pristine LDHs. The obtained electrocatalyst, such as Cu NDs/P-FeCoLDH (CPFC-LDH), reaching a current density of 10 mA/cm2 with only 63 mV overpotential for HER in alkaline electrolyte. The adsorption energy of Hads and OH on catalyst is optimized by this strategy, which can weaken the interaction between the adsorbed Hads and electronegative oxygen in LDHs by formation of PO bonds. This work provides a strategy to develop LDHs materials with high catalytic activity for HER. |
ArticleNumber | 120478 |
Author | Wang, Jiajia Dong, Haoran Feng, Haopeng Yu, Jiangfang Ni, Ting Tang, Lin Zhu, Xu Tang, Jing Liang, Chao Tang, Wangwang |
Author_xml | – sequence: 1 givenname: Haopeng surname: Feng fullname: Feng, Haopeng organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 2 givenname: Jiangfang surname: Yu fullname: Yu, Jiangfang organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 3 givenname: Lin surname: Tang fullname: Tang, Lin email: tanglin@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 4 givenname: Jiajia surname: Wang fullname: Wang, Jiajia organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 5 givenname: Haoran surname: Dong fullname: Dong, Haoran organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 6 givenname: Ting surname: Ni fullname: Ni, Ting organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 7 givenname: Jing surname: Tang fullname: Tang, Jing organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 8 givenname: Wangwang surname: Tang fullname: Tang, Wangwang organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 9 givenname: Xu surname: Zhu fullname: Zhu, Xu organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China – sequence: 10 givenname: Chao surname: Liang fullname: Liang, Chao organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China |
BookMark | eNqFkDtPwzAUhS1UJNrCP2CwxJziRxI7DEio4lGpEkt3K7FvWkdpXBynIvx6EoWJAaY73POdo3MWaNa4BhC6pWRFCU3vq1V-0nkoVowwuqKMxEJeoDmVgkdcSj5Dc5KxNOJc8Cu0aNuKEMI4k3O03xxP3p3B4ENvvNtDg-Hs6i5Y1-BcB3u2oceuxHXegx9kxnVFDZP60xrAxfA-BXu0X7bZ43AADDXo4F1jNW6D73ToPFyjyzKvW7j5uUu0e3nerd-i7fvrZv20jXRMSIhkDKkRjGRaUm1KKdM0E5TIxGQsySTRJdMiKyQIwYyQMknGyiUpCihoqfkS3U22Q6mPDtqgKtf5ZkhULBFJxrMkFYPqYVJp79rWQ6m0DflYOfjc1ooSNe6qKjXtqsYQNe06wPEv-OTtMff9f9jjhMHQ_mzBq1ZbaDQY64e5lHH2b4NvCiCXuA |
CitedBy_id | crossref_primary_10_1039_D3CY01249B crossref_primary_10_1016_j_biortech_2021_126141 crossref_primary_10_1016_j_cej_2024_151548 crossref_primary_10_1016_j_cej_2023_143007 crossref_primary_10_1016_j_jwpe_2022_103345 crossref_primary_10_1039_D3MA00685A crossref_primary_10_1007_s10562_024_04894_6 crossref_primary_10_1016_j_jiec_2022_12_030 crossref_primary_10_1002_chem_202300616 crossref_primary_10_1021_acsaem_2c02905 crossref_primary_10_1002_advs_202200307 crossref_primary_10_1021_acs_est_3c10553 crossref_primary_10_1039_D3CY01098H crossref_primary_10_1039_D3QI01587D crossref_primary_10_1016_j_apt_2023_103956 crossref_primary_10_1039_D3NJ01827J crossref_primary_10_1016_j_jcis_2023_09_185 crossref_primary_10_1016_j_jhazmat_2022_129067 crossref_primary_10_1039_D3CY00625E crossref_primary_10_1039_D4NJ00621F crossref_primary_10_1002_smll_202412576 crossref_primary_10_1016_j_seppur_2023_123414 crossref_primary_10_1002_smll_202311221 crossref_primary_10_1007_s12598_024_02653_5 crossref_primary_10_1039_D3NJ01122D crossref_primary_10_1016_j_mseb_2023_116884 crossref_primary_10_1021_acsami_2c00982 crossref_primary_10_1039_D3NJ04801B crossref_primary_10_1007_s40242_024_4121_6 crossref_primary_10_1039_D2TA04789F crossref_primary_10_1039_D4TA01253D crossref_primary_10_1016_j_cej_2022_135471 crossref_primary_10_1016_j_cej_2023_146907 crossref_primary_10_1039_D3NJ02559D crossref_primary_10_1016_j_jhazmat_2024_134138 crossref_primary_10_1016_j_apcatb_2023_123522 crossref_primary_10_1016_j_ijhydene_2023_09_312 crossref_primary_10_1002_aoc_7122 crossref_primary_10_1016_j_cej_2022_137379 crossref_primary_10_1016_j_cis_2022_102811 crossref_primary_10_1016_j_ijhydene_2025_01_432 crossref_primary_10_1039_D3CY01396K crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1016_j_jcis_2023_10_051 crossref_primary_10_3390_catal14040252 crossref_primary_10_1016_j_molstruc_2024_138248 crossref_primary_10_1016_j_cattod_2024_114510 crossref_primary_10_1016_j_inoche_2024_112227 crossref_primary_10_1016_j_ijhydene_2023_03_447 crossref_primary_10_1002_adsu_202200038 crossref_primary_10_1016_j_cej_2023_143464 crossref_primary_10_1002_eem2_12761 crossref_primary_10_1016_j_fuel_2024_133804 crossref_primary_10_1016_j_ijhydene_2022_09_197 crossref_primary_10_1021_acs_inorgchem_3c03520 crossref_primary_10_1016_j_mtener_2022_101082 crossref_primary_10_1002_advs_202207519 crossref_primary_10_1016_j_jallcom_2024_173506 crossref_primary_10_1016_j_ijhydene_2024_10_407 crossref_primary_10_1021_acsestwater_2c00580 crossref_primary_10_1039_D3NJ02084C crossref_primary_10_1016_j_cej_2023_148350 crossref_primary_10_1016_j_seppur_2023_123554 crossref_primary_10_1016_S1872_2067_21_63987_6 crossref_primary_10_1016_j_scitotenv_2024_172109 crossref_primary_10_1016_j_jcis_2023_03_003 crossref_primary_10_1021_acs_energyfuels_2c02013 crossref_primary_10_1007_s11771_025_5872_z crossref_primary_10_1016_j_seppur_2023_124813 crossref_primary_10_1039_D3NJ03248E crossref_primary_10_1016_j_jclepro_2024_142556 crossref_primary_10_1016_j_jhazmat_2022_128801 crossref_primary_10_1039_D3CP00495C crossref_primary_10_1016_j_apcatb_2021_120668 crossref_primary_10_1016_j_jece_2024_112462 crossref_primary_10_1016_j_seppur_2024_131008 crossref_primary_10_1016_j_cej_2021_134385 crossref_primary_10_1016_j_ijhydene_2022_09_111 crossref_primary_10_1039_D3NJ02774K crossref_primary_10_1007_s40820_024_01542_x crossref_primary_10_1016_j_chemosphere_2022_134449 crossref_primary_10_1002_aenm_202403889 crossref_primary_10_1016_j_jallcom_2022_163738 crossref_primary_10_1016_j_cej_2023_144262 crossref_primary_10_1039_D3NJ02475J crossref_primary_10_1016_j_snb_2022_132144 crossref_primary_10_1007_s42864_024_00276_y crossref_primary_10_1016_j_ijhydene_2023_03_463 crossref_primary_10_1016_j_cej_2024_149306 crossref_primary_10_1039_D3NR03391K crossref_primary_10_1016_j_matre_2024_100283 crossref_primary_10_1002_cnma_202300414 crossref_primary_10_1002_adma_202208209 crossref_primary_10_1016_j_jpowsour_2022_231068 crossref_primary_10_1016_j_jclepro_2022_133420 crossref_primary_10_1002_er_8006 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1016_j_ijhydene_2023_07_093 crossref_primary_10_1016_j_envpol_2024_125154 crossref_primary_10_3390_ijerph20053829 crossref_primary_10_1016_j_chemosphere_2024_143015 crossref_primary_10_1016_j_ijhydene_2023_07_091 crossref_primary_10_1016_j_materresbull_2023_112508 crossref_primary_10_1021_acsami_3c01061 crossref_primary_10_1016_j_cej_2022_139751 crossref_primary_10_1016_j_jcis_2022_12_146 crossref_primary_10_1039_D3NJ02135A crossref_primary_10_1016_j_catcom_2024_106880 crossref_primary_10_1016_j_cej_2024_155145 crossref_primary_10_1039_D3CP01223A crossref_primary_10_1016_j_apcatb_2023_123284 crossref_primary_10_1016_j_seppur_2024_126712 crossref_primary_10_1016_j_cej_2023_146383 crossref_primary_10_1016_j_matchemphys_2023_128062 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_2139_ssrn_4051133 crossref_primary_10_1016_j_apsusc_2023_157544 crossref_primary_10_1002_adsu_202300041 crossref_primary_10_1016_j_fuel_2024_132357 crossref_primary_10_1016_j_cej_2024_149406 crossref_primary_10_1002_smll_202301294 crossref_primary_10_1016_j_cej_2022_139400 crossref_primary_10_1016_j_inoche_2023_111060 crossref_primary_10_1016_j_jhazmat_2022_130481 crossref_primary_10_1039_D3NJ02347H crossref_primary_10_1039_D3NJ02323K crossref_primary_10_1016_j_jcis_2023_09_126 crossref_primary_10_1002_adfm_202309824 crossref_primary_10_1016_j_nanoen_2024_109428 crossref_primary_10_1021_acsami_2c21390 crossref_primary_10_1016_j_jhazmat_2022_129483 crossref_primary_10_1016_j_cej_2023_144344 crossref_primary_10_1002_smll_202306692 crossref_primary_10_1016_j_ccr_2024_216164 crossref_primary_10_1021_acs_langmuir_4c00022 crossref_primary_10_1039_D3NJ03111J crossref_primary_10_1016_j_fuel_2023_128368 crossref_primary_10_1002_smll_202311401 crossref_primary_10_1016_j_apsusc_2024_160206 crossref_primary_10_1016_j_scitotenv_2023_165968 crossref_primary_10_1080_09593330_2023_2237658 crossref_primary_10_1016_j_jclepro_2023_139617 crossref_primary_10_1039_D3VA00394A crossref_primary_10_1039_D3CY00525A crossref_primary_10_1016_j_colsurfa_2023_131806 crossref_primary_10_1016_j_apcatb_2022_121346 crossref_primary_10_1016_j_ijoes_2024_100633 |
Cites_doi | 10.1016/j.apcatb.2018.08.049 10.1039/C7EE01571B 10.1039/C4CS00448E 10.1016/j.apcatb.2019.118160 10.1002/aenm.201801127 10.1021/jacs.7b08521 10.1016/j.apcatb.2018.04.075 10.1038/s41467-019-09666-0 10.1039/C8EN00348C 10.1021/ar900253e 10.1002/adma.201701546 10.1002/admi.201500782 10.1039/C8TA01067F 10.1039/C8TA01257A 10.1038/s41467-019-08358-z 10.1002/anie.201406848 10.1021/acscatal.6b00205 10.1038/ncomms10035 10.1038/nchem.1574 10.1021/acs.nanolett.6b03332 10.1016/j.nanoen.2017.09.045 10.1016/j.joule.2017.07.011 10.1016/j.apcatb.2019.118465 10.1002/smll.201703257 10.1039/C4EE00440J 10.1038/s41467-020-18064-w 10.1038/s41467-019-13092-7 10.1016/j.apcatb.2016.10.046 10.1016/j.nanoen.2019.104174 10.1126/science.1258307 10.1038/s41467-018-03858-w 10.1002/cssc.201601272 10.1038/s41560-018-0296-8 10.1016/j.pmatsci.2020.100654 10.1002/adma.201803590 10.1021/acsami.8b11688 10.1021/acscatal.6b01848 10.1016/j.cis.2019.03.001 10.1016/j.apcatb.2018.02.059 10.1016/j.watres.2017.03.059 10.1021/nl501152f 10.1002/adma.201704574 10.1016/j.apcatb.2020.119624 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Nov 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Nov 15, 2021 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2021.120478 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2021_120478 S0926337321006044 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-84e6d7209c81cdf8866971085d925980cf2c79b8e772d788552021f0bbeb1fc3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 10:36:14 EDT 2025 Tue Jul 01 04:35:13 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Sat Mar 02 16:00:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Destabilizing LDH DFT calculation Hydrogen evolution reaction Electronic structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-84e6d7209c81cdf8866971085d925980cf2c79b8e772d788552021f0bbeb1fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2575939567 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2575939567 crossref_citationtrail_10_1016_j_apcatb_2021_120478 crossref_primary_10_1016_j_apcatb_2021_120478 elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Tang, Gan, Zhang, Lu, Jiang, Asiri, Sun, Wang, Chen (bib0145) 2016; 16 Yu, Tang, Pang, Zeng, Feng, Zou, Wang, Feng, Zhu, Ouyang, Tan (bib0035) 2020; 260 Han, Yu, Yang, Zhao, Huang, Liu, Ajayan, Qiu (bib0075) 2016; 3 Yang, Zhang, Niu, Feng, Qin, Guo, Liang, Zhang, Liu, Li (bib0030) 2020; 264 Liu, Wang, Liu, Zou, Wang (bib0120) 2017; 29 Yu, Zhou, Sun, Qin, Luo, Xie, Yu, Bao, Li, Yu, Chen, Ren (bib0010) 2017; 41 Wang, Yang, Diao, Tang, He, Liu, He, Shi, Li, Sha (bib0115) 2018; 10 Zou, Zhang (bib0055) 2015; 44 Li, Wang, Duan, Zheng, Cheng, Zhang, Kuang, Li, Ma, Feng (bib0180) 2019; 10 Tang, Feng, Tang, Zeng, Deng, Wang, Liu, Zhou (bib0135) 2017; 117 Yu, Zhou, Sun, Qin, Yu, Bao, Yu, Chen, Ren (bib0190) 2017; 10 Deng, Tang, Feng, Zeng, Chen, Wang, Feng, Peng, Liu, Zhou (bib0085) 2018; 235 Fang, Xiao, Qian, Ai, Yang, Cao (bib0225) 2014; 14 Xiao, Zhou, Shao, Wei (bib0140) 2018; 6 Feng, Tang, Zeng, Yu, Deng, Zhou, Wang, Feng, Luo, Shao (bib0160) 2020; 67 Yu, Feng, Tang, Pang, Zeng, Lu, Dong, Wang, Liu, Feng, Wang, Peng, Ye (bib0155) 2020; 111 Feng, Wu, Tong, Li (bib0175) 2017; 140 Yu, Zhou, Sun, Qin, Yu, Bao, Yu, Chen, Ren (bib0255) 2017; 10 Hu, Zhang, Jiang, Lin, An, Zhou, Leung, Yang (bib0110) 2017; 1 Zhou, Shan, Wang, Hu, Guo, Hu, Shen, Gu, Cui, Liu, Wu (bib0070) 2019; 10 Feng, Tang, Zeng, Tang, Deng, Yan, Liu, Zhou, Ren, Chen (bib0100) 2018; 6 Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (bib0095) 2017; 8 Dempsey, Brunschwig, Winkler, Gray (bib0025) 2009; 42 Zhang, Yan, Lee (bib0090) 2021; 283 Luo, Im, Mayer, Schreier, Nazeeruddin, Park, Tilley, Fan, Grätzel (bib0080) 2014; 345 Tang, Liu, Wang, Zeng, Deng, Dong, Feng, Wang, Peng (bib0050) 2018; 231 Yu, Zhu, Song, McElhenny, Wang, Wu, Qin, Bao, Yu, Chen, Ren (bib0065) 2019; 10 Hammer, Nørskov (bib0210) 2010; 45 Durst, Siebel, Simon, Hasche, Herranz, Gasteiger (bib0040) 2014; 7 Feng, Wu, Tong, Li (bib0200) 2018; 140 Liu, Wang, Liu, Zou, Wang (bib0240) 2017; 29 Wu, Liu, Han, Song, Shi, Song, Niu, Xie, Cai, Wu (bib0205) 2018; 9 Feng, Tang, Zeng, Zhou, Deng, Ren, Song, Liang, Wei, Yu (bib0105) 2019; 267 Strmcnik, Uchimura, Wang, Subbaraman, Danilovic, Van Der Vliet, Paulikas, Stamenkovic, Markovic (bib0005) 2013; 5 Dinh, Jain, de Arquer, De Luna, Li, Wang, Zheng, Cai, Gregory, Voznyy (bib0215) 2019; 4 Huang, Wang, Zhou, Wang, Duchesne, Muir, Zhang, Han, Zhao, Zeng (bib0250) 2015; 6 Deng, Handoko, Du, Xi, Yeo (bib0245) 2016; 6 Jiang, Liu, Liang, Tian, Asiri, Sun (bib0165) 2014; 53 Du, Dinh, Liang, Zheng, Luo, Zhang, Yan (bib0150) 2018; 8 Ji, Fan, Chen, Bai, Wang, He, Cai, Gao, Deng, Wang, Lei, Fu (bib0015) 2021; 20 Deng, Ting, Neo, Zhang, Peterson, Yeo (bib0185) 2016 Deng, Lin, Feng, Zeng, Chen, Wang, Feng, Bo, Liu, Zhou (bib0130) 2018; 235 Chen, Zhang, Wu, Shen, Fu, Luo, Li, Lei, Luo, Li (bib0020) 2020; 15 Wang, Xu, Liu, Hung, Bin Yang, Gao, Cai, Chen, Li, Liu (bib0060) 2020; 11 Dinh, Zheng, Dai, Zhang, Dangol, Zheng, Li, Zong, Yan (bib0195) 2018; 14 Deng, Lin, Zeng, Zhu, Ming, Zhou, Wang, Liu, Wang (bib0125) 2017; 203 Feng, Deng, Tang, Zeng, Wang, Yu, Liu, Peng, Feng, Wang (bib0045) 2018; 239 Liu, Li, Wang, Zhou, Liu, Guo (bib0170) 2018; 30 Yang, Sliozberg, Sinev, Antoni, Bã¤Hr, Ollegott, Xia, Masa, Grã¼Nert, Cuenya (bib0235) 2016; 10 Feng, Tang, Tang, Zeng, Dong, Deng, Wang, Liu, Ren, Zhou (bib0220) 2018; 5 Yang, Guo, Huang, Xi, Gao, Su, Wang, Cao, Dong (bib0230) 2017; 29 Hu (10.1016/j.apcatb.2021.120478_bib0110) 2017; 1 Ji (10.1016/j.apcatb.2021.120478_bib0015) 2021; 20 Zhou (10.1016/j.apcatb.2021.120478_bib0070) 2019; 10 Deng (10.1016/j.apcatb.2021.120478_bib0185) 2016 Du (10.1016/j.apcatb.2021.120478_bib0150) 2018; 8 Tang (10.1016/j.apcatb.2021.120478_bib0050) 2018; 231 Deng (10.1016/j.apcatb.2021.120478_bib0130) 2018; 235 Liu (10.1016/j.apcatb.2021.120478_bib0120) 2017; 29 Feng (10.1016/j.apcatb.2021.120478_bib0220) 2018; 5 Deng (10.1016/j.apcatb.2021.120478_bib0085) 2018; 235 Hammer (10.1016/j.apcatb.2021.120478_bib0210) 2010; 45 Yu (10.1016/j.apcatb.2021.120478_bib0065) 2019; 10 Durst (10.1016/j.apcatb.2021.120478_bib0040) 2014; 7 Jiang (10.1016/j.apcatb.2021.120478_bib0165) 2014; 53 Feng (10.1016/j.apcatb.2021.120478_bib0200) 2018; 140 Chen (10.1016/j.apcatb.2021.120478_bib0020) 2020; 15 Huang (10.1016/j.apcatb.2021.120478_bib0250) 2015; 6 Feng (10.1016/j.apcatb.2021.120478_bib0045) 2018; 239 Liu (10.1016/j.apcatb.2021.120478_bib0240) 2017; 29 Han (10.1016/j.apcatb.2021.120478_bib0075) 2016; 3 Yu (10.1016/j.apcatb.2021.120478_bib0255) 2017; 10 Yu (10.1016/j.apcatb.2021.120478_bib0155) 2020; 111 Yang (10.1016/j.apcatb.2021.120478_bib0235) 2016; 10 Yu (10.1016/j.apcatb.2021.120478_bib0035) 2020; 260 Yu (10.1016/j.apcatb.2021.120478_bib0190) 2017; 10 Fang (10.1016/j.apcatb.2021.120478_bib0225) 2014; 14 Luo (10.1016/j.apcatb.2021.120478_bib0080) 2014; 345 Tang (10.1016/j.apcatb.2021.120478_bib0135) 2017; 117 Yu (10.1016/j.apcatb.2021.120478_bib0010) 2017; 41 Feng (10.1016/j.apcatb.2021.120478_bib0175) 2017; 140 Feng (10.1016/j.apcatb.2021.120478_bib0160) 2020; 67 Dinh (10.1016/j.apcatb.2021.120478_bib0215) 2019; 4 Xiao (10.1016/j.apcatb.2021.120478_bib0140) 2018; 6 Feng (10.1016/j.apcatb.2021.120478_bib0105) 2019; 267 Deng (10.1016/j.apcatb.2021.120478_bib0245) 2016; 6 Dempsey (10.1016/j.apcatb.2021.120478_bib0025) 2009; 42 Zhang (10.1016/j.apcatb.2021.120478_bib0090) 2021; 283 Yang (10.1016/j.apcatb.2021.120478_bib0030) 2020; 264 Wang (10.1016/j.apcatb.2021.120478_bib0115) 2018; 10 Dinh (10.1016/j.apcatb.2021.120478_bib0195) 2018; 14 Strmcnik (10.1016/j.apcatb.2021.120478_bib0005) 2013; 5 Zhang (10.1016/j.apcatb.2021.120478_bib0095) 2017; 8 Wu (10.1016/j.apcatb.2021.120478_bib0205) 2018; 9 Li (10.1016/j.apcatb.2021.120478_bib0180) 2019; 10 Zou (10.1016/j.apcatb.2021.120478_bib0055) 2015; 44 Tang (10.1016/j.apcatb.2021.120478_bib0145) 2016; 16 Deng (10.1016/j.apcatb.2021.120478_bib0125) 2017; 203 Yang (10.1016/j.apcatb.2021.120478_bib0230) 2017; 29 Wang (10.1016/j.apcatb.2021.120478_bib0060) 2020; 11 Liu (10.1016/j.apcatb.2021.120478_bib0170) 2018; 30 Feng (10.1016/j.apcatb.2021.120478_bib0100) 2018; 6 |
References_xml | – volume: 45 start-page: 71 year: 2010 end-page: 129 ident: bib0210 article-title: Theoretical surface science and catalysis-calculations and concepts publication-title: J. Adv. Catal. Sci. Technol. – volume: 140 start-page: 610 year: 2017 end-page: 617 ident: bib0175 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 156 year: 2016 end-page: 165 ident: bib0235 article-title: Synergistic effect of cobalt and Iron in layered double hydroxide catalysts for the oxygen evolution reaction publication-title: Chemsuschem – volume: 7 start-page: 2255 year: 2014 end-page: 2260 ident: bib0040 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc. – volume: 10 start-page: 35145 year: 2018 end-page: 35153 ident: bib0115 article-title: CeOx-decorated NiFe-Layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering publication-title: ACS Appl. Mater. Interf. – volume: 4 start-page: 107 year: 2019 ident: bib0215 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy – volume: 8 year: 2017 ident: bib0095 article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. – volume: 283 year: 2021 ident: bib0090 article-title: Highly promoted hydrogen production enabled by interfacial PN chemical bonds in copper phosphosulfide Z-scheme composite publication-title: Appl. Catal. B-Environ. – volume: 41 start-page: 327 year: 2017 end-page: 336 ident: bib0010 article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting publication-title: Nano Energy – volume: 203 start-page: 343 year: 2017 end-page: 354 ident: bib0125 article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism publication-title: Appl. Catal. B-Environ. – volume: 231 start-page: 1 year: 2018 end-page: 10 ident: bib0050 article-title: Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism publication-title: Appl. Catal. B-Environ. – volume: 6 start-page: 10035 year: 2015 ident: bib0250 article-title: Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene publication-title: Nat. Commun. – volume: 6 start-page: 7585 year: 2018 end-page: 7591 ident: bib0140 article-title: Fabrication of (Ni,Co)0.85Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: bib0055 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. – volume: 111 year: 2020 ident: bib0155 article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring publication-title: Prog. Mater. Sci. – volume: 10 start-page: 1820 year: 2017 end-page: 1827 ident: bib0255 article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc. – volume: 5 start-page: 300 year: 2013 ident: bib0005 article-title: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption publication-title: Nat. Chem. – volume: 53 start-page: 12855 year: 2014 end-page: 12859 ident: bib0165 article-title: A cost‐effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase publication-title: Angew. Chemie Int. Ed. English – volume: 29 year: 2017 ident: bib0240 article-title: Water-plasma-Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation publication-title: Adv. Mater. – volume: 267 start-page: 26 year: 2019 end-page: 46 ident: bib0105 article-title: Core-shell nanomaterials: applications in energy storage and conversion publication-title: Adv. Colloid Interface Sci. – volume: 11 start-page: 4246 year: 2020 ident: bib0060 article-title: Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting publication-title: Nat. Commun. – volume: 10 start-page: 5106 year: 2019 ident: bib0065 article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis publication-title: Nat. Commun. – volume: 15 year: 2020 ident: bib0020 article-title: Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting publication-title: Mater. Today Phys. – volume: 260 year: 2020 ident: bib0035 article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors publication-title: Appl. Catal. B- Environ. – volume: 140 start-page: 610 year: 2018 end-page: 617 ident: bib0200 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 383 year: 2017 end-page: 393 ident: bib0110 article-title: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media publication-title: Joule – volume: 345 start-page: 1593 year: 2014 end-page: 1596 ident: bib0080 article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts publication-title: Science – volume: 20 year: 2021 ident: bib0015 article-title: Influence of sintering method on microstructure, electrical and magnetic properties of BiFeO3–BaTiO3 solid solution ceramics publication-title: Mater. Today Chem. – volume: 8 year: 2018 ident: bib0150 article-title: Self‐assemble and in situ formation of Ni1− xFexPS3 nanomosaic‐decorated MXene hybrids for overall water splitting publication-title: Adv. Energy Mater. – volume: 29 year: 2017 ident: bib0120 article-title: Water‐plasma‐Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation publication-title: Adv. Mater. – volume: 67 year: 2020 ident: bib0160 article-title: Electron density modulation of Fe1-xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting publication-title: Nano Energy – volume: 6 start-page: 7310 year: 2018 end-page: 7337 ident: bib0100 article-title: Carbon-based core–shell nanostructured materials for electrochemical energy storage publication-title: J. Mater. Chem. A Mater. Energy Sustain. – volume: 14 year: 2018 ident: bib0195 article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Small – volume: 235 start-page: 225 year: 2018 end-page: 237 ident: bib0085 article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light publication-title: Appl. Catal. B-Environ. – volume: 239 start-page: 525 year: 2018 end-page: 536 ident: bib0045 article-title: Core-shell Ag2CrO4/N- GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities publication-title: Appl. Catal. B-Environ. – start-page: 7790 year: 2016 end-page: 7798 ident: bib0185 article-title: Operando raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction publication-title: ACS Catal. – volume: 6 start-page: 2473 year: 2016 end-page: 2481 ident: bib0245 article-title: In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species publication-title: ACS Catal. – volume: 5 start-page: 1595 year: 2018 end-page: 1607 ident: bib0220 article-title: Cu-Doped Fe@Fe2O3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater publication-title: Environ. Sci. Nano – volume: 16 start-page: 6617 year: 2016 end-page: 6621 ident: bib0145 article-title: Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight publication-title: Nano Lett. – volume: 14 start-page: 3539 year: 2014 ident: bib0225 article-title: Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries publication-title: Nano Lett. – volume: 42 start-page: 1995 year: 2009 end-page: 2004 ident: bib0025 article-title: Hydrogen evolution catalyzed by cobaloximes publication-title: Accounts Chem. Res. – volume: 235 start-page: 225 year: 2018 end-page: 237 ident: bib0130 article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light publication-title: Appl. Catal. B-Environ. – volume: 30 year: 2018 ident: bib0170 article-title: Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties publication-title: Adv. Mater. – volume: 10 start-page: 1820 year: 2017 end-page: 1827 ident: bib0190 article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc. – volume: 10 start-page: 399 year: 2019 ident: bib0070 article-title: Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution publication-title: Nat. Commun. – volume: 10 start-page: 1711 year: 2019 ident: bib0180 article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides publication-title: Nat. Commun. – volume: 3 year: 2016 ident: bib0075 article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe‐layered double hydroxide assembled on graphene publication-title: Adv. Mater. Interfaces – volume: 29 year: 2017 ident: bib0230 article-title: Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting publication-title: Adv. Mater. – volume: 264 year: 2020 ident: bib0030 article-title: Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation publication-title: Appl. Catal. B-Environ. – volume: 117 start-page: 175 year: 2017 end-page: 186 ident: bib0135 article-title: Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism publication-title: Water Res. – volume: 9 start-page: 1425 year: 2018 ident: bib0205 article-title: Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis publication-title: Nat. Commun. – volume: 239 start-page: 525 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0045 article-title: Core-shell Ag2CrO4/N- GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.08.049 – volume: 10 start-page: 1820 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0190 article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc. doi: 10.1039/C7EE01571B – volume: 44 start-page: 5148 year: 2015 ident: 10.1016/j.apcatb.2021.120478_bib0055 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 260 year: 2020 ident: 10.1016/j.apcatb.2021.120478_bib0035 article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors publication-title: Appl. Catal. B- Environ. doi: 10.1016/j.apcatb.2019.118160 – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0150 article-title: Self‐assemble and in situ formation of Ni1− xFexPS3 nanomosaic‐decorated MXene hybrids for overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801127 – volume: 140 start-page: 610 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0175 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08521 – volume: 235 start-page: 225 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0085 article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.04.075 – volume: 10 start-page: 1711 year: 2019 ident: 10.1016/j.apcatb.2021.120478_bib0180 article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides publication-title: Nat. Commun. doi: 10.1038/s41467-019-09666-0 – volume: 5 start-page: 1595 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0220 article-title: Cu-Doped Fe@Fe2O3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater publication-title: Environ. Sci. Nano doi: 10.1039/C8EN00348C – volume: 42 start-page: 1995 year: 2009 ident: 10.1016/j.apcatb.2021.120478_bib0025 article-title: Hydrogen evolution catalyzed by cobaloximes publication-title: Accounts Chem. Res. doi: 10.1021/ar900253e – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0240 article-title: Water-plasma-Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 15 year: 2020 ident: 10.1016/j.apcatb.2021.120478_bib0020 article-title: Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting publication-title: Mater. Today Phys. – volume: 3 year: 2016 ident: 10.1016/j.apcatb.2021.120478_bib0075 article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe‐layered double hydroxide assembled on graphene publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500782 – volume: 6 start-page: 7585 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0140 article-title: Fabrication of (Ni,Co)0.85Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C8TA01067F – volume: 6 start-page: 7310 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0100 article-title: Carbon-based core–shell nanostructured materials for electrochemical energy storage publication-title: J. Mater. Chem. A Mater. Energy Sustain. doi: 10.1039/C8TA01257A – volume: 10 start-page: 399 year: 2019 ident: 10.1016/j.apcatb.2021.120478_bib0070 article-title: Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-019-08358-z – volume: 8 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0095 article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. – volume: 53 start-page: 12855 year: 2014 ident: 10.1016/j.apcatb.2021.120478_bib0165 article-title: A cost‐effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase publication-title: Angew. Chemie Int. Ed. English doi: 10.1002/anie.201406848 – volume: 6 start-page: 2473 year: 2016 ident: 10.1016/j.apcatb.2021.120478_bib0245 article-title: In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species publication-title: ACS Catal. doi: 10.1021/acscatal.6b00205 – volume: 6 start-page: 10035 year: 2015 ident: 10.1016/j.apcatb.2021.120478_bib0250 article-title: Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene publication-title: Nat. Commun. doi: 10.1038/ncomms10035 – volume: 5 start-page: 300 year: 2013 ident: 10.1016/j.apcatb.2021.120478_bib0005 article-title: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption publication-title: Nat. Chem. doi: 10.1038/nchem.1574 – volume: 20 year: 2021 ident: 10.1016/j.apcatb.2021.120478_bib0015 article-title: Influence of sintering method on microstructure, electrical and magnetic properties of BiFeO3–BaTiO3 solid solution ceramics publication-title: Mater. Today Chem. – volume: 16 start-page: 6617 year: 2016 ident: 10.1016/j.apcatb.2021.120478_bib0145 article-title: Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03332 – volume: 140 start-page: 610 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0200 article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08521 – volume: 41 start-page: 327 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0010 article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.045 – volume: 45 start-page: 71 year: 2010 ident: 10.1016/j.apcatb.2021.120478_bib0210 article-title: Theoretical surface science and catalysis-calculations and concepts publication-title: J. Adv. Catal. Sci. Technol. – volume: 1 start-page: 383 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0110 article-title: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media publication-title: Joule doi: 10.1016/j.joule.2017.07.011 – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0120 article-title: Water‐plasma‐Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation publication-title: Adv. Mater. doi: 10.1002/adma.201701546 – volume: 264 year: 2020 ident: 10.1016/j.apcatb.2021.120478_bib0030 article-title: Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118465 – volume: 14 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0195 article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting publication-title: Small doi: 10.1002/smll.201703257 – volume: 7 start-page: 2255 year: 2014 ident: 10.1016/j.apcatb.2021.120478_bib0040 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc. doi: 10.1039/C4EE00440J – volume: 235 start-page: 225 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0130 article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.04.075 – volume: 11 start-page: 4246 year: 2020 ident: 10.1016/j.apcatb.2021.120478_bib0060 article-title: Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-020-18064-w – volume: 10 start-page: 5106 year: 2019 ident: 10.1016/j.apcatb.2021.120478_bib0065 article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 203 start-page: 343 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0125 article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.10.046 – volume: 67 year: 2020 ident: 10.1016/j.apcatb.2021.120478_bib0160 article-title: Electron density modulation of Fe1-xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104174 – volume: 345 start-page: 1593 year: 2014 ident: 10.1016/j.apcatb.2021.120478_bib0080 article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts publication-title: Science doi: 10.1126/science.1258307 – volume: 9 start-page: 1425 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0205 article-title: Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-018-03858-w – volume: 10 start-page: 1820 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0255 article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc. doi: 10.1039/C7EE01571B – volume: 10 start-page: 156 year: 2016 ident: 10.1016/j.apcatb.2021.120478_bib0235 article-title: Synergistic effect of cobalt and Iron in layered double hydroxide catalysts for the oxygen evolution reaction publication-title: Chemsuschem doi: 10.1002/cssc.201601272 – volume: 4 start-page: 107 year: 2019 ident: 10.1016/j.apcatb.2021.120478_bib0215 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 111 year: 2020 ident: 10.1016/j.apcatb.2021.120478_bib0155 article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100654 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0170 article-title: Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties publication-title: Adv. Mater. doi: 10.1002/adma.201803590 – volume: 10 start-page: 35145 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0115 article-title: CeOx-decorated NiFe-Layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.8b11688 – start-page: 7790 year: 2016 ident: 10.1016/j.apcatb.2021.120478_bib0185 article-title: Operando raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction publication-title: ACS Catal. doi: 10.1021/acscatal.6b01848 – volume: 267 start-page: 26 year: 2019 ident: 10.1016/j.apcatb.2021.120478_bib0105 article-title: Core-shell nanomaterials: applications in energy storage and conversion publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2019.03.001 – volume: 231 start-page: 1 year: 2018 ident: 10.1016/j.apcatb.2021.120478_bib0050 article-title: Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.02.059 – volume: 117 start-page: 175 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0135 article-title: Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism publication-title: Water Res. doi: 10.1016/j.watres.2017.03.059 – volume: 14 start-page: 3539 year: 2014 ident: 10.1016/j.apcatb.2021.120478_bib0225 article-title: Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries publication-title: Nano Lett. doi: 10.1021/nl501152f – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2021.120478_bib0230 article-title: Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201704574 – volume: 283 year: 2021 ident: 10.1016/j.apcatb.2021.120478_bib0090 article-title: Highly promoted hydrogen production enabled by interfacial PN chemical bonds in copper phosphosulfide Z-scheme composite publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.119624 |
SSID | ssj0002328 |
Score | 2.6630857 |
Snippet | [Display omitted]
•P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can... The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120478 |
SubjectTerms | Catalysts Catalytic activity Copper Destabilizing DFT calculation Electrocatalysts Electrolysis Electronegativity Electronic structure Hydrogen evolution reaction Hydrogen evolution reactions Hydroxides LDH |
Title | Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure |
URI | https://dx.doi.org/10.1016/j.apcatb.2021.120478 https://www.proquest.com/docview/2575939567 |
Volume | 297 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHIADggHiMVAOXMuWPtPjNIEGCC6AxC1qXjA0tmkMBBz47dhtygAJIXFs66RV7Dh25e8zwIEzhocuMgHnKg7iooiCQucpBnJpXqRcZcYROPn8Iu1dx6c3yc0cdGssDJVVet9f-fTSW_s7Lb-arXG_37ps52EaRRmBUIgBhjhB4zgjKz98n5V5YMRQemMUDki6hs-VNV7FWBdThVliyA95SEQ1vx1PPxx1efocr8KKDxtZp_qyNZizwwYsdutubQ1Y_kIs2IDNoxl-DYf5Dfy4DrfVTwRr2N2rmYzQeph99tbHCONArSTYyLFB8UpdPJkZPamBraRf-sYyhY_RzTz03_BNDMNHNuukwyo22qeJ3YCr46Orbi_wvRYCjbt4GojYpiYL27kWXBsnRJrmGSETTI4JkmhrF-osV8JiNG4wbU4SWjTXVgqdvdPRJswPR0O7BUwkYSJUXFglKDpzwiUaJ01U5HAGy7chqldYas9DTu0wBrIuOLuXlV4kvUJWetmG4HPUuOLh-EM-q5Unv9mTxKPij5HNWtfS7-dHGVIf0whzyWzn3xPvwhJdEZCRJ02YR43YPYxopmq_NNl9WOicnPUuPgCm6feV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeEKRFvNlDe3QSr1_rAwfEQ6E8Lk0lbivvqw1Kk4gE2nDgR_ELmbHXhFZCSJW4er2zq53xN7PWzHwAn50xIXeRCcJQxUFcFFFQ6DzFQC7NizRUmXFUnHx-kXa-x18vk8s5eKhrYSit0mN_heklWvsnLX-arVGv1_rWznkaRRkVoVAHmNhnVp7a6W-8t433Tg5RyV84Pz7qHnQCTy0QaDTaSSBim5qMt3MtQm2cEGmaZ5SIb3K8D4i2dlxnuRIWg0-Dt8Qk4egMXVspxDanIxT7DhZiRAtiTWjez9JKMEIp0R83F9Du6nK9MqesGOliopokqxlyaozzkjv8xzGU3u54GZZ8mMr2q5NYgTk7aMDiQc0O14APzxoZNmD1aFYvh9M8YIw_wo_qp4U17OfUXA_RWpm99dbOqKaCqCvY0LF-MSXWUGaGN6pvq7f_9IxlCocR1n717nAlhuEqmzH3sKr77c21_QTdt1DAKswPhgO7BkwkPBEqLqwSFA064RKNQhMVOZRgw3WI6hOW2vc9J_qNvqwT3K5kpRdJS8hKL-sQPM0aVX0_Xnk_q5Un_7Jfia7plZlbta6lx4-x5MSbGuHdNdv4b8G7sNjpnp_Js5OL0014TyNURBkmWzCP2rHbGE1N1E5pvgzkG38uj5KmMVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+hydrogen+evolution+activity+of+layered+double+hydroxide+by+optimizing+the+electronic+structure&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Feng%2C+Haopeng&rft.au=Yu%2C+Jiangfang&rft.au=Tang%2C+Lin&rft.au=Wang%2C+Jiajia&rft.date=2021-11-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=297&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120478&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |