Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure

[Display omitted] •P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can effectively improve Volmer and Heyrovsky process of HER catalysis.•The mechanism of enhanced HER activity is well explained. The layered double hyd...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 297; p. 120478
Main Authors Feng, Haopeng, Yu, Jiangfang, Tang, Lin, Wang, Jiajia, Dong, Haoran, Ni, Ting, Tang, Jing, Tang, Wangwang, Zhu, Xu, Liang, Chao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can effectively improve Volmer and Heyrovsky process of HER catalysis.•The mechanism of enhanced HER activity is well explained. The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen evolution reaction (HER) activity limits their application. Herein, a general designing strategy to improve the HER activity of LDHs by P doping and deposition of metal nanodots (NDs) is proposed, which increases one order of magnitude higher than that of pristine LDHs. The obtained electrocatalyst, such as Cu NDs/P-FeCoLDH (CPFC-LDH), reaching a current density of 10 mA/cm2 with only 63 mV overpotential for HER in alkaline electrolyte. The adsorption energy of Hads and OH on catalyst is optimized by this strategy, which can weaken the interaction between the adsorbed Hads and electronegative oxygen in LDHs by formation of PO bonds. This work provides a strategy to develop LDHs materials with high catalytic activity for HER.
AbstractList The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen evolution reaction (HER) activity limits their application. Herein, a general designing strategy to improve the HER activity of LDHs by P doping and deposition of metal nanodots (NDs) is proposed, which increases one order of magnitude higher than that of pristine LDHs. The obtained electrocatalyst, such as Cu NDs/P-FeCoLDH (CPFC-LDH), reaching a current density of 10 mA/cm2 with only 63 mV overpotential for HER in alkaline electrolyte. The adsorption energy of Hads and OH on catalyst is optimized by this strategy, which can weaken the interaction between the adsorbed Hads and electronegative oxygen in LDHs by formation of P-O bonds. This work provides a strategy to develop LDHs materials with high catalytic activity for HER.
[Display omitted] •P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can effectively improve Volmer and Heyrovsky process of HER catalysis.•The mechanism of enhanced HER activity is well explained. The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen evolution reaction (HER) activity limits their application. Herein, a general designing strategy to improve the HER activity of LDHs by P doping and deposition of metal nanodots (NDs) is proposed, which increases one order of magnitude higher than that of pristine LDHs. The obtained electrocatalyst, such as Cu NDs/P-FeCoLDH (CPFC-LDH), reaching a current density of 10 mA/cm2 with only 63 mV overpotential for HER in alkaline electrolyte. The adsorption energy of Hads and OH on catalyst is optimized by this strategy, which can weaken the interaction between the adsorbed Hads and electronegative oxygen in LDHs by formation of PO bonds. This work provides a strategy to develop LDHs materials with high catalytic activity for HER.
ArticleNumber 120478
Author Wang, Jiajia
Dong, Haoran
Feng, Haopeng
Yu, Jiangfang
Ni, Ting
Tang, Lin
Zhu, Xu
Tang, Jing
Liang, Chao
Tang, Wangwang
Author_xml – sequence: 1
  givenname: Haopeng
  surname: Feng
  fullname: Feng, Haopeng
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 2
  givenname: Jiangfang
  surname: Yu
  fullname: Yu, Jiangfang
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 3
  givenname: Lin
  surname: Tang
  fullname: Tang, Lin
  email: tanglin@hnu.edu.cn
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 4
  givenname: Jiajia
  surname: Wang
  fullname: Wang, Jiajia
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 5
  givenname: Haoran
  surname: Dong
  fullname: Dong, Haoran
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 6
  givenname: Ting
  surname: Ni
  fullname: Ni, Ting
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 7
  givenname: Jing
  surname: Tang
  fullname: Tang, Jing
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 8
  givenname: Wangwang
  surname: Tang
  fullname: Tang, Wangwang
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 9
  givenname: Xu
  surname: Zhu
  fullname: Zhu, Xu
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
– sequence: 10
  givenname: Chao
  surname: Liang
  fullname: Liang, Chao
  organization: College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
BookMark eNqFkDtPwzAUhS1UJNrCP2CwxJziRxI7DEio4lGpEkt3K7FvWkdpXBynIvx6EoWJAaY73POdo3MWaNa4BhC6pWRFCU3vq1V-0nkoVowwuqKMxEJeoDmVgkdcSj5Dc5KxNOJc8Cu0aNuKEMI4k3O03xxP3p3B4ENvvNtDg-Hs6i5Y1-BcB3u2oceuxHXegx9kxnVFDZP60xrAxfA-BXu0X7bZ43AADDXo4F1jNW6D73ToPFyjyzKvW7j5uUu0e3nerd-i7fvrZv20jXRMSIhkDKkRjGRaUm1KKdM0E5TIxGQsySTRJdMiKyQIwYyQMknGyiUpCihoqfkS3U22Q6mPDtqgKtf5ZkhULBFJxrMkFYPqYVJp79rWQ6m0DflYOfjc1ooSNe6qKjXtqsYQNe06wPEv-OTtMff9f9jjhMHQ_mzBq1ZbaDQY64e5lHH2b4NvCiCXuA
CitedBy_id crossref_primary_10_1039_D3CY01249B
crossref_primary_10_1016_j_biortech_2021_126141
crossref_primary_10_1016_j_cej_2024_151548
crossref_primary_10_1016_j_cej_2023_143007
crossref_primary_10_1016_j_jwpe_2022_103345
crossref_primary_10_1039_D3MA00685A
crossref_primary_10_1007_s10562_024_04894_6
crossref_primary_10_1016_j_jiec_2022_12_030
crossref_primary_10_1002_chem_202300616
crossref_primary_10_1021_acsaem_2c02905
crossref_primary_10_1002_advs_202200307
crossref_primary_10_1021_acs_est_3c10553
crossref_primary_10_1039_D3CY01098H
crossref_primary_10_1039_D3QI01587D
crossref_primary_10_1016_j_apt_2023_103956
crossref_primary_10_1039_D3NJ01827J
crossref_primary_10_1016_j_jcis_2023_09_185
crossref_primary_10_1016_j_jhazmat_2022_129067
crossref_primary_10_1039_D3CY00625E
crossref_primary_10_1039_D4NJ00621F
crossref_primary_10_1002_smll_202412576
crossref_primary_10_1016_j_seppur_2023_123414
crossref_primary_10_1002_smll_202311221
crossref_primary_10_1007_s12598_024_02653_5
crossref_primary_10_1039_D3NJ01122D
crossref_primary_10_1016_j_mseb_2023_116884
crossref_primary_10_1021_acsami_2c00982
crossref_primary_10_1039_D3NJ04801B
crossref_primary_10_1007_s40242_024_4121_6
crossref_primary_10_1039_D2TA04789F
crossref_primary_10_1039_D4TA01253D
crossref_primary_10_1016_j_cej_2022_135471
crossref_primary_10_1016_j_cej_2023_146907
crossref_primary_10_1039_D3NJ02559D
crossref_primary_10_1016_j_jhazmat_2024_134138
crossref_primary_10_1016_j_apcatb_2023_123522
crossref_primary_10_1016_j_ijhydene_2023_09_312
crossref_primary_10_1002_aoc_7122
crossref_primary_10_1016_j_cej_2022_137379
crossref_primary_10_1016_j_cis_2022_102811
crossref_primary_10_1016_j_ijhydene_2025_01_432
crossref_primary_10_1039_D3CY01396K
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1016_j_jcis_2023_10_051
crossref_primary_10_3390_catal14040252
crossref_primary_10_1016_j_molstruc_2024_138248
crossref_primary_10_1016_j_cattod_2024_114510
crossref_primary_10_1016_j_inoche_2024_112227
crossref_primary_10_1016_j_ijhydene_2023_03_447
crossref_primary_10_1002_adsu_202200038
crossref_primary_10_1016_j_cej_2023_143464
crossref_primary_10_1002_eem2_12761
crossref_primary_10_1016_j_fuel_2024_133804
crossref_primary_10_1016_j_ijhydene_2022_09_197
crossref_primary_10_1021_acs_inorgchem_3c03520
crossref_primary_10_1016_j_mtener_2022_101082
crossref_primary_10_1002_advs_202207519
crossref_primary_10_1016_j_jallcom_2024_173506
crossref_primary_10_1016_j_ijhydene_2024_10_407
crossref_primary_10_1021_acsestwater_2c00580
crossref_primary_10_1039_D3NJ02084C
crossref_primary_10_1016_j_cej_2023_148350
crossref_primary_10_1016_j_seppur_2023_123554
crossref_primary_10_1016_S1872_2067_21_63987_6
crossref_primary_10_1016_j_scitotenv_2024_172109
crossref_primary_10_1016_j_jcis_2023_03_003
crossref_primary_10_1021_acs_energyfuels_2c02013
crossref_primary_10_1007_s11771_025_5872_z
crossref_primary_10_1016_j_seppur_2023_124813
crossref_primary_10_1039_D3NJ03248E
crossref_primary_10_1016_j_jclepro_2024_142556
crossref_primary_10_1016_j_jhazmat_2022_128801
crossref_primary_10_1039_D3CP00495C
crossref_primary_10_1016_j_apcatb_2021_120668
crossref_primary_10_1016_j_jece_2024_112462
crossref_primary_10_1016_j_seppur_2024_131008
crossref_primary_10_1016_j_cej_2021_134385
crossref_primary_10_1016_j_ijhydene_2022_09_111
crossref_primary_10_1039_D3NJ02774K
crossref_primary_10_1007_s40820_024_01542_x
crossref_primary_10_1016_j_chemosphere_2022_134449
crossref_primary_10_1002_aenm_202403889
crossref_primary_10_1016_j_jallcom_2022_163738
crossref_primary_10_1016_j_cej_2023_144262
crossref_primary_10_1039_D3NJ02475J
crossref_primary_10_1016_j_snb_2022_132144
crossref_primary_10_1007_s42864_024_00276_y
crossref_primary_10_1016_j_ijhydene_2023_03_463
crossref_primary_10_1016_j_cej_2024_149306
crossref_primary_10_1039_D3NR03391K
crossref_primary_10_1016_j_matre_2024_100283
crossref_primary_10_1002_cnma_202300414
crossref_primary_10_1002_adma_202208209
crossref_primary_10_1016_j_jpowsour_2022_231068
crossref_primary_10_1016_j_jclepro_2022_133420
crossref_primary_10_1002_er_8006
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1016_j_ijhydene_2023_07_093
crossref_primary_10_1016_j_envpol_2024_125154
crossref_primary_10_3390_ijerph20053829
crossref_primary_10_1016_j_chemosphere_2024_143015
crossref_primary_10_1016_j_ijhydene_2023_07_091
crossref_primary_10_1016_j_materresbull_2023_112508
crossref_primary_10_1021_acsami_3c01061
crossref_primary_10_1016_j_cej_2022_139751
crossref_primary_10_1016_j_jcis_2022_12_146
crossref_primary_10_1039_D3NJ02135A
crossref_primary_10_1016_j_catcom_2024_106880
crossref_primary_10_1016_j_cej_2024_155145
crossref_primary_10_1039_D3CP01223A
crossref_primary_10_1016_j_apcatb_2023_123284
crossref_primary_10_1016_j_seppur_2024_126712
crossref_primary_10_1016_j_cej_2023_146383
crossref_primary_10_1016_j_matchemphys_2023_128062
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_2139_ssrn_4051133
crossref_primary_10_1016_j_apsusc_2023_157544
crossref_primary_10_1002_adsu_202300041
crossref_primary_10_1016_j_fuel_2024_132357
crossref_primary_10_1016_j_cej_2024_149406
crossref_primary_10_1002_smll_202301294
crossref_primary_10_1016_j_cej_2022_139400
crossref_primary_10_1016_j_inoche_2023_111060
crossref_primary_10_1016_j_jhazmat_2022_130481
crossref_primary_10_1039_D3NJ02347H
crossref_primary_10_1039_D3NJ02323K
crossref_primary_10_1016_j_jcis_2023_09_126
crossref_primary_10_1002_adfm_202309824
crossref_primary_10_1016_j_nanoen_2024_109428
crossref_primary_10_1021_acsami_2c21390
crossref_primary_10_1016_j_jhazmat_2022_129483
crossref_primary_10_1016_j_cej_2023_144344
crossref_primary_10_1002_smll_202306692
crossref_primary_10_1016_j_ccr_2024_216164
crossref_primary_10_1021_acs_langmuir_4c00022
crossref_primary_10_1039_D3NJ03111J
crossref_primary_10_1016_j_fuel_2023_128368
crossref_primary_10_1002_smll_202311401
crossref_primary_10_1016_j_apsusc_2024_160206
crossref_primary_10_1016_j_scitotenv_2023_165968
crossref_primary_10_1080_09593330_2023_2237658
crossref_primary_10_1016_j_jclepro_2023_139617
crossref_primary_10_1039_D3VA00394A
crossref_primary_10_1039_D3CY00525A
crossref_primary_10_1016_j_colsurfa_2023_131806
crossref_primary_10_1016_j_apcatb_2022_121346
crossref_primary_10_1016_j_ijoes_2024_100633
Cites_doi 10.1016/j.apcatb.2018.08.049
10.1039/C7EE01571B
10.1039/C4CS00448E
10.1016/j.apcatb.2019.118160
10.1002/aenm.201801127
10.1021/jacs.7b08521
10.1016/j.apcatb.2018.04.075
10.1038/s41467-019-09666-0
10.1039/C8EN00348C
10.1021/ar900253e
10.1002/adma.201701546
10.1002/admi.201500782
10.1039/C8TA01067F
10.1039/C8TA01257A
10.1038/s41467-019-08358-z
10.1002/anie.201406848
10.1021/acscatal.6b00205
10.1038/ncomms10035
10.1038/nchem.1574
10.1021/acs.nanolett.6b03332
10.1016/j.nanoen.2017.09.045
10.1016/j.joule.2017.07.011
10.1016/j.apcatb.2019.118465
10.1002/smll.201703257
10.1039/C4EE00440J
10.1038/s41467-020-18064-w
10.1038/s41467-019-13092-7
10.1016/j.apcatb.2016.10.046
10.1016/j.nanoen.2019.104174
10.1126/science.1258307
10.1038/s41467-018-03858-w
10.1002/cssc.201601272
10.1038/s41560-018-0296-8
10.1016/j.pmatsci.2020.100654
10.1002/adma.201803590
10.1021/acsami.8b11688
10.1021/acscatal.6b01848
10.1016/j.cis.2019.03.001
10.1016/j.apcatb.2018.02.059
10.1016/j.watres.2017.03.059
10.1021/nl501152f
10.1002/adma.201704574
10.1016/j.apcatb.2020.119624
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Nov 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 15, 2021
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2021.120478
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2021_120478
S0926337321006044
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-84e6d7209c81cdf8866971085d925980cf2c79b8e772d788552021f0bbeb1fc3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 10:36:14 EDT 2025
Tue Jul 01 04:35:13 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Sat Mar 02 16:00:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Destabilizing
LDH
DFT calculation
Hydrogen evolution reaction
Electronic structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-84e6d7209c81cdf8866971085d925980cf2c79b8e772d788552021f0bbeb1fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2575939567
PQPubID 2045281
ParticipantIDs proquest_journals_2575939567
crossref_citationtrail_10_1016_j_apcatb_2021_120478
crossref_primary_10_1016_j_apcatb_2021_120478
elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tang, Gan, Zhang, Lu, Jiang, Asiri, Sun, Wang, Chen (bib0145) 2016; 16
Yu, Tang, Pang, Zeng, Feng, Zou, Wang, Feng, Zhu, Ouyang, Tan (bib0035) 2020; 260
Han, Yu, Yang, Zhao, Huang, Liu, Ajayan, Qiu (bib0075) 2016; 3
Yang, Zhang, Niu, Feng, Qin, Guo, Liang, Zhang, Liu, Li (bib0030) 2020; 264
Liu, Wang, Liu, Zou, Wang (bib0120) 2017; 29
Yu, Zhou, Sun, Qin, Luo, Xie, Yu, Bao, Li, Yu, Chen, Ren (bib0010) 2017; 41
Wang, Yang, Diao, Tang, He, Liu, He, Shi, Li, Sha (bib0115) 2018; 10
Zou, Zhang (bib0055) 2015; 44
Li, Wang, Duan, Zheng, Cheng, Zhang, Kuang, Li, Ma, Feng (bib0180) 2019; 10
Tang, Feng, Tang, Zeng, Deng, Wang, Liu, Zhou (bib0135) 2017; 117
Yu, Zhou, Sun, Qin, Yu, Bao, Yu, Chen, Ren (bib0190) 2017; 10
Deng, Tang, Feng, Zeng, Chen, Wang, Feng, Peng, Liu, Zhou (bib0085) 2018; 235
Fang, Xiao, Qian, Ai, Yang, Cao (bib0225) 2014; 14
Xiao, Zhou, Shao, Wei (bib0140) 2018; 6
Feng, Tang, Zeng, Yu, Deng, Zhou, Wang, Feng, Luo, Shao (bib0160) 2020; 67
Yu, Feng, Tang, Pang, Zeng, Lu, Dong, Wang, Liu, Feng, Wang, Peng, Ye (bib0155) 2020; 111
Feng, Wu, Tong, Li (bib0175) 2017; 140
Yu, Zhou, Sun, Qin, Yu, Bao, Yu, Chen, Ren (bib0255) 2017; 10
Hu, Zhang, Jiang, Lin, An, Zhou, Leung, Yang (bib0110) 2017; 1
Zhou, Shan, Wang, Hu, Guo, Hu, Shen, Gu, Cui, Liu, Wu (bib0070) 2019; 10
Feng, Tang, Zeng, Tang, Deng, Yan, Liu, Zhou, Ren, Chen (bib0100) 2018; 6
Zhang, Wang, Liu, Liao, Liu, Zhuang, Chen, Zschech, Feng (bib0095) 2017; 8
Dempsey, Brunschwig, Winkler, Gray (bib0025) 2009; 42
Zhang, Yan, Lee (bib0090) 2021; 283
Luo, Im, Mayer, Schreier, Nazeeruddin, Park, Tilley, Fan, Grätzel (bib0080) 2014; 345
Tang, Liu, Wang, Zeng, Deng, Dong, Feng, Wang, Peng (bib0050) 2018; 231
Yu, Zhu, Song, McElhenny, Wang, Wu, Qin, Bao, Yu, Chen, Ren (bib0065) 2019; 10
Hammer, Nørskov (bib0210) 2010; 45
Durst, Siebel, Simon, Hasche, Herranz, Gasteiger (bib0040) 2014; 7
Feng, Wu, Tong, Li (bib0200) 2018; 140
Liu, Wang, Liu, Zou, Wang (bib0240) 2017; 29
Wu, Liu, Han, Song, Shi, Song, Niu, Xie, Cai, Wu (bib0205) 2018; 9
Feng, Tang, Zeng, Zhou, Deng, Ren, Song, Liang, Wei, Yu (bib0105) 2019; 267
Strmcnik, Uchimura, Wang, Subbaraman, Danilovic, Van Der Vliet, Paulikas, Stamenkovic, Markovic (bib0005) 2013; 5
Dinh, Jain, de Arquer, De Luna, Li, Wang, Zheng, Cai, Gregory, Voznyy (bib0215) 2019; 4
Huang, Wang, Zhou, Wang, Duchesne, Muir, Zhang, Han, Zhao, Zeng (bib0250) 2015; 6
Deng, Handoko, Du, Xi, Yeo (bib0245) 2016; 6
Jiang, Liu, Liang, Tian, Asiri, Sun (bib0165) 2014; 53
Du, Dinh, Liang, Zheng, Luo, Zhang, Yan (bib0150) 2018; 8
Ji, Fan, Chen, Bai, Wang, He, Cai, Gao, Deng, Wang, Lei, Fu (bib0015) 2021; 20
Deng, Ting, Neo, Zhang, Peterson, Yeo (bib0185) 2016
Deng, Lin, Feng, Zeng, Chen, Wang, Feng, Bo, Liu, Zhou (bib0130) 2018; 235
Chen, Zhang, Wu, Shen, Fu, Luo, Li, Lei, Luo, Li (bib0020) 2020; 15
Wang, Xu, Liu, Hung, Bin Yang, Gao, Cai, Chen, Li, Liu (bib0060) 2020; 11
Dinh, Zheng, Dai, Zhang, Dangol, Zheng, Li, Zong, Yan (bib0195) 2018; 14
Deng, Lin, Zeng, Zhu, Ming, Zhou, Wang, Liu, Wang (bib0125) 2017; 203
Feng, Deng, Tang, Zeng, Wang, Yu, Liu, Peng, Feng, Wang (bib0045) 2018; 239
Liu, Li, Wang, Zhou, Liu, Guo (bib0170) 2018; 30
Yang, Sliozberg, Sinev, Antoni, Bã¤Hr, Ollegott, Xia, Masa, Grã¼Nert, Cuenya (bib0235) 2016; 10
Feng, Tang, Tang, Zeng, Dong, Deng, Wang, Liu, Ren, Zhou (bib0220) 2018; 5
Yang, Guo, Huang, Xi, Gao, Su, Wang, Cao, Dong (bib0230) 2017; 29
Hu (10.1016/j.apcatb.2021.120478_bib0110) 2017; 1
Ji (10.1016/j.apcatb.2021.120478_bib0015) 2021; 20
Zhou (10.1016/j.apcatb.2021.120478_bib0070) 2019; 10
Deng (10.1016/j.apcatb.2021.120478_bib0185) 2016
Du (10.1016/j.apcatb.2021.120478_bib0150) 2018; 8
Tang (10.1016/j.apcatb.2021.120478_bib0050) 2018; 231
Deng (10.1016/j.apcatb.2021.120478_bib0130) 2018; 235
Liu (10.1016/j.apcatb.2021.120478_bib0120) 2017; 29
Feng (10.1016/j.apcatb.2021.120478_bib0220) 2018; 5
Deng (10.1016/j.apcatb.2021.120478_bib0085) 2018; 235
Hammer (10.1016/j.apcatb.2021.120478_bib0210) 2010; 45
Yu (10.1016/j.apcatb.2021.120478_bib0065) 2019; 10
Durst (10.1016/j.apcatb.2021.120478_bib0040) 2014; 7
Jiang (10.1016/j.apcatb.2021.120478_bib0165) 2014; 53
Feng (10.1016/j.apcatb.2021.120478_bib0200) 2018; 140
Chen (10.1016/j.apcatb.2021.120478_bib0020) 2020; 15
Huang (10.1016/j.apcatb.2021.120478_bib0250) 2015; 6
Feng (10.1016/j.apcatb.2021.120478_bib0045) 2018; 239
Liu (10.1016/j.apcatb.2021.120478_bib0240) 2017; 29
Han (10.1016/j.apcatb.2021.120478_bib0075) 2016; 3
Yu (10.1016/j.apcatb.2021.120478_bib0255) 2017; 10
Yu (10.1016/j.apcatb.2021.120478_bib0155) 2020; 111
Yang (10.1016/j.apcatb.2021.120478_bib0235) 2016; 10
Yu (10.1016/j.apcatb.2021.120478_bib0035) 2020; 260
Yu (10.1016/j.apcatb.2021.120478_bib0190) 2017; 10
Fang (10.1016/j.apcatb.2021.120478_bib0225) 2014; 14
Luo (10.1016/j.apcatb.2021.120478_bib0080) 2014; 345
Tang (10.1016/j.apcatb.2021.120478_bib0135) 2017; 117
Yu (10.1016/j.apcatb.2021.120478_bib0010) 2017; 41
Feng (10.1016/j.apcatb.2021.120478_bib0175) 2017; 140
Feng (10.1016/j.apcatb.2021.120478_bib0160) 2020; 67
Dinh (10.1016/j.apcatb.2021.120478_bib0215) 2019; 4
Xiao (10.1016/j.apcatb.2021.120478_bib0140) 2018; 6
Feng (10.1016/j.apcatb.2021.120478_bib0105) 2019; 267
Deng (10.1016/j.apcatb.2021.120478_bib0245) 2016; 6
Dempsey (10.1016/j.apcatb.2021.120478_bib0025) 2009; 42
Zhang (10.1016/j.apcatb.2021.120478_bib0090) 2021; 283
Yang (10.1016/j.apcatb.2021.120478_bib0030) 2020; 264
Wang (10.1016/j.apcatb.2021.120478_bib0115) 2018; 10
Dinh (10.1016/j.apcatb.2021.120478_bib0195) 2018; 14
Strmcnik (10.1016/j.apcatb.2021.120478_bib0005) 2013; 5
Zhang (10.1016/j.apcatb.2021.120478_bib0095) 2017; 8
Wu (10.1016/j.apcatb.2021.120478_bib0205) 2018; 9
Li (10.1016/j.apcatb.2021.120478_bib0180) 2019; 10
Zou (10.1016/j.apcatb.2021.120478_bib0055) 2015; 44
Tang (10.1016/j.apcatb.2021.120478_bib0145) 2016; 16
Deng (10.1016/j.apcatb.2021.120478_bib0125) 2017; 203
Yang (10.1016/j.apcatb.2021.120478_bib0230) 2017; 29
Wang (10.1016/j.apcatb.2021.120478_bib0060) 2020; 11
Liu (10.1016/j.apcatb.2021.120478_bib0170) 2018; 30
Feng (10.1016/j.apcatb.2021.120478_bib0100) 2018; 6
References_xml – volume: 45
  start-page: 71
  year: 2010
  end-page: 129
  ident: bib0210
  article-title: Theoretical surface science and catalysis-calculations and concepts
  publication-title: J. Adv. Catal. Sci. Technol.
– volume: 140
  start-page: 610
  year: 2017
  end-page: 617
  ident: bib0175
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 156
  year: 2016
  end-page: 165
  ident: bib0235
  article-title: Synergistic effect of cobalt and Iron in layered double hydroxide catalysts for the oxygen evolution reaction
  publication-title: Chemsuschem
– volume: 7
  start-page: 2255
  year: 2014
  end-page: 2260
  ident: bib0040
  article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
  publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc.
– volume: 10
  start-page: 35145
  year: 2018
  end-page: 35153
  ident: bib0115
  article-title: CeOx-decorated NiFe-Layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering
  publication-title: ACS Appl. Mater. Interf.
– volume: 4
  start-page: 107
  year: 2019
  ident: bib0215
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
– volume: 8
  year: 2017
  ident: bib0095
  article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
– volume: 283
  year: 2021
  ident: bib0090
  article-title: Highly promoted hydrogen production enabled by interfacial PN chemical bonds in copper phosphosulfide Z-scheme composite
  publication-title: Appl. Catal. B-Environ.
– volume: 41
  start-page: 327
  year: 2017
  end-page: 336
  ident: bib0010
  article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting
  publication-title: Nano Energy
– volume: 203
  start-page: 343
  year: 2017
  end-page: 354
  ident: bib0125
  article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism
  publication-title: Appl. Catal. B-Environ.
– volume: 231
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0050
  article-title: Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism
  publication-title: Appl. Catal. B-Environ.
– volume: 6
  start-page: 10035
  year: 2015
  ident: bib0250
  article-title: Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7585
  year: 2018
  end-page: 7591
  ident: bib0140
  article-title: Fabrication of (Ni,Co)0.85Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: bib0055
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
– volume: 111
  year: 2020
  ident: bib0155
  article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring
  publication-title: Prog. Mater. Sci.
– volume: 10
  start-page: 1820
  year: 2017
  end-page: 1827
  ident: bib0255
  article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc.
– volume: 5
  start-page: 300
  year: 2013
  ident: bib0005
  article-title: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
  publication-title: Nat. Chem.
– volume: 53
  start-page: 12855
  year: 2014
  end-page: 12859
  ident: bib0165
  article-title: A cost‐effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase
  publication-title: Angew. Chemie Int. Ed. English
– volume: 29
  year: 2017
  ident: bib0240
  article-title: Water-plasma-Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation
  publication-title: Adv. Mater.
– volume: 267
  start-page: 26
  year: 2019
  end-page: 46
  ident: bib0105
  article-title: Core-shell nanomaterials: applications in energy storage and conversion
  publication-title: Adv. Colloid Interface Sci.
– volume: 11
  start-page: 4246
  year: 2020
  ident: bib0060
  article-title: Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting
  publication-title: Nat. Commun.
– volume: 10
  start-page: 5106
  year: 2019
  ident: bib0065
  article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
  publication-title: Nat. Commun.
– volume: 15
  year: 2020
  ident: bib0020
  article-title: Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting
  publication-title: Mater. Today Phys.
– volume: 260
  year: 2020
  ident: bib0035
  article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors
  publication-title: Appl. Catal. B- Environ.
– volume: 140
  start-page: 610
  year: 2018
  end-page: 617
  ident: bib0200
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 383
  year: 2017
  end-page: 393
  ident: bib0110
  article-title: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media
  publication-title: Joule
– volume: 345
  start-page: 1593
  year: 2014
  end-page: 1596
  ident: bib0080
  article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
  publication-title: Science
– volume: 20
  year: 2021
  ident: bib0015
  article-title: Influence of sintering method on microstructure, electrical and magnetic properties of BiFeO3–BaTiO3 solid solution ceramics
  publication-title: Mater. Today Chem.
– volume: 8
  year: 2018
  ident: bib0150
  article-title: Self‐assemble and in situ formation of Ni1− xFexPS3 nanomosaic‐decorated MXene hybrids for overall water splitting
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  ident: bib0120
  article-title: Water‐plasma‐Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation
  publication-title: Adv. Mater.
– volume: 67
  year: 2020
  ident: bib0160
  article-title: Electron density modulation of Fe1-xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting
  publication-title: Nano Energy
– volume: 6
  start-page: 7310
  year: 2018
  end-page: 7337
  ident: bib0100
  article-title: Carbon-based core–shell nanostructured materials for electrochemical energy storage
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
– volume: 14
  year: 2018
  ident: bib0195
  article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Small
– volume: 235
  start-page: 225
  year: 2018
  end-page: 237
  ident: bib0085
  article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light
  publication-title: Appl. Catal. B-Environ.
– volume: 239
  start-page: 525
  year: 2018
  end-page: 536
  ident: bib0045
  article-title: Core-shell Ag2CrO4/N- GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities
  publication-title: Appl. Catal. B-Environ.
– start-page: 7790
  year: 2016
  end-page: 7798
  ident: bib0185
  article-title: Operando raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction
  publication-title: ACS Catal.
– volume: 6
  start-page: 2473
  year: 2016
  end-page: 2481
  ident: bib0245
  article-title: In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species
  publication-title: ACS Catal.
– volume: 5
  start-page: 1595
  year: 2018
  end-page: 1607
  ident: bib0220
  article-title: Cu-Doped Fe@Fe2O3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater
  publication-title: Environ. Sci. Nano
– volume: 16
  start-page: 6617
  year: 2016
  end-page: 6621
  ident: bib0145
  article-title: Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight
  publication-title: Nano Lett.
– volume: 14
  start-page: 3539
  year: 2014
  ident: bib0225
  article-title: Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries
  publication-title: Nano Lett.
– volume: 42
  start-page: 1995
  year: 2009
  end-page: 2004
  ident: bib0025
  article-title: Hydrogen evolution catalyzed by cobaloximes
  publication-title: Accounts Chem. Res.
– volume: 235
  start-page: 225
  year: 2018
  end-page: 237
  ident: bib0130
  article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light
  publication-title: Appl. Catal. B-Environ.
– volume: 30
  year: 2018
  ident: bib0170
  article-title: Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1820
  year: 2017
  end-page: 1827
  ident: bib0190
  article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc.
– volume: 10
  start-page: 399
  year: 2019
  ident: bib0070
  article-title: Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1711
  year: 2019
  ident: bib0180
  article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides
  publication-title: Nat. Commun.
– volume: 3
  year: 2016
  ident: bib0075
  article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe‐layered double hydroxide assembled on graphene
  publication-title: Adv. Mater. Interfaces
– volume: 29
  year: 2017
  ident: bib0230
  article-title: Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting
  publication-title: Adv. Mater.
– volume: 264
  year: 2020
  ident: bib0030
  article-title: Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation
  publication-title: Appl. Catal. B-Environ.
– volume: 117
  start-page: 175
  year: 2017
  end-page: 186
  ident: bib0135
  article-title: Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism
  publication-title: Water Res.
– volume: 9
  start-page: 1425
  year: 2018
  ident: bib0205
  article-title: Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis
  publication-title: Nat. Commun.
– volume: 239
  start-page: 525
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0045
  article-title: Core-shell Ag2CrO4/N- GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.08.049
– volume: 10
  start-page: 1820
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0190
  article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc.
  doi: 10.1039/C7EE01571B
– volume: 44
  start-page: 5148
  year: 2015
  ident: 10.1016/j.apcatb.2021.120478_bib0055
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 260
  year: 2020
  ident: 10.1016/j.apcatb.2021.120478_bib0035
  article-title: Hierarchical porous biochar from shrimp shell for persulfate activation: a two-electron transfer path and key impact factors
  publication-title: Appl. Catal. B- Environ.
  doi: 10.1016/j.apcatb.2019.118160
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0150
  article-title: Self‐assemble and in situ formation of Ni1− xFexPS3 nanomosaic‐decorated MXene hybrids for overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801127
– volume: 140
  start-page: 610
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0175
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08521
– volume: 235
  start-page: 225
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0085
  article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.04.075
– volume: 10
  start-page: 1711
  year: 2019
  ident: 10.1016/j.apcatb.2021.120478_bib0180
  article-title: Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09666-0
– volume: 5
  start-page: 1595
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0220
  article-title: Cu-Doped Fe@Fe2O3 core–shell nanoparticle shifted oxygen reduction pathway for high-efficiency arsenic removal in smelting wastewater
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C8EN00348C
– volume: 42
  start-page: 1995
  year: 2009
  ident: 10.1016/j.apcatb.2021.120478_bib0025
  article-title: Hydrogen evolution catalyzed by cobaloximes
  publication-title: Accounts Chem. Res.
  doi: 10.1021/ar900253e
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0240
  article-title: Water-plasma-Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 15
  year: 2020
  ident: 10.1016/j.apcatb.2021.120478_bib0020
  article-title: Regulation of the electronic structure of Co4N with novel Nb to form hierarchical porous nanosheets for electrocatalytic overall water splitting
  publication-title: Mater. Today Phys.
– volume: 3
  year: 2016
  ident: 10.1016/j.apcatb.2021.120478_bib0075
  article-title: Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe‐layered double hydroxide assembled on graphene
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500782
– volume: 6
  start-page: 7585
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0140
  article-title: Fabrication of (Ni,Co)0.85Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C8TA01067F
– volume: 6
  start-page: 7310
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0100
  article-title: Carbon-based core–shell nanostructured materials for electrochemical energy storage
  publication-title: J. Mater. Chem. A Mater. Energy Sustain.
  doi: 10.1039/C8TA01257A
– volume: 10
  start-page: 399
  year: 2019
  ident: 10.1016/j.apcatb.2021.120478_bib0070
  article-title: Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08358-z
– volume: 8
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0095
  article-title: Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
– volume: 53
  start-page: 12855
  year: 2014
  ident: 10.1016/j.apcatb.2021.120478_bib0165
  article-title: A cost‐effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase
  publication-title: Angew. Chemie Int. Ed. English
  doi: 10.1002/anie.201406848
– volume: 6
  start-page: 2473
  year: 2016
  ident: 10.1016/j.apcatb.2021.120478_bib0245
  article-title: In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00205
– volume: 6
  start-page: 10035
  year: 2015
  ident: 10.1016/j.apcatb.2021.120478_bib0250
  article-title: Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10035
– volume: 5
  start-page: 300
  year: 2013
  ident: 10.1016/j.apcatb.2021.120478_bib0005
  article-title: Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1574
– volume: 20
  year: 2021
  ident: 10.1016/j.apcatb.2021.120478_bib0015
  article-title: Influence of sintering method on microstructure, electrical and magnetic properties of BiFeO3–BaTiO3 solid solution ceramics
  publication-title: Mater. Today Chem.
– volume: 16
  start-page: 6617
  year: 2016
  ident: 10.1016/j.apcatb.2021.120478_bib0145
  article-title: Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03332
– volume: 140
  start-page: 610
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0200
  article-title: Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08521
– volume: 41
  start-page: 327
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0010
  article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.045
– volume: 45
  start-page: 71
  year: 2010
  ident: 10.1016/j.apcatb.2021.120478_bib0210
  article-title: Theoretical surface science and catalysis-calculations and concepts
  publication-title: J. Adv. Catal. Sci. Technol.
– volume: 1
  start-page: 383
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0110
  article-title: Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.011
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0120
  article-title: Water‐plasma‐Enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701546
– volume: 264
  year: 2020
  ident: 10.1016/j.apcatb.2021.120478_bib0030
  article-title: Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.118465
– volume: 14
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0195
  article-title: Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting
  publication-title: Small
  doi: 10.1002/smll.201703257
– volume: 7
  start-page: 2255
  year: 2014
  ident: 10.1016/j.apcatb.2021.120478_bib0040
  article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
  publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc.
  doi: 10.1039/C4EE00440J
– volume: 235
  start-page: 225
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0130
  article-title: Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.04.075
– volume: 11
  start-page: 4246
  year: 2020
  ident: 10.1016/j.apcatb.2021.120478_bib0060
  article-title: Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18064-w
– volume: 10
  start-page: 5106
  year: 2019
  ident: 10.1016/j.apcatb.2021.120478_bib0065
  article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 203
  start-page: 343
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0125
  article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.10.046
– volume: 67
  year: 2020
  ident: 10.1016/j.apcatb.2021.120478_bib0160
  article-title: Electron density modulation of Fe1-xCoxP nanosheet arrays by iron incorporation for highly efficient water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104174
– volume: 345
  start-page: 1593
  year: 2014
  ident: 10.1016/j.apcatb.2021.120478_bib0080
  article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
  publication-title: Science
  doi: 10.1126/science.1258307
– volume: 9
  start-page: 1425
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0205
  article-title: Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03858-w
– volume: 10
  start-page: 1820
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0255
  article-title: Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting
  publication-title: Synth. Lect. Energy Environ. Technol. Sci. Soc.
  doi: 10.1039/C7EE01571B
– volume: 10
  start-page: 156
  year: 2016
  ident: 10.1016/j.apcatb.2021.120478_bib0235
  article-title: Synergistic effect of cobalt and Iron in layered double hydroxide catalysts for the oxygen evolution reaction
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201601272
– volume: 4
  start-page: 107
  year: 2019
  ident: 10.1016/j.apcatb.2021.120478_bib0215
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 111
  year: 2020
  ident: 10.1016/j.apcatb.2021.120478_bib0155
  article-title: Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100654
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0170
  article-title: Interfacial electron transfer of Ni2P–NiP2 polymorphs inducing enhanced electrochemical properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803590
– volume: 10
  start-page: 35145
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0115
  article-title: CeOx-decorated NiFe-Layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.8b11688
– start-page: 7790
  year: 2016
  ident: 10.1016/j.apcatb.2021.120478_bib0185
  article-title: Operando raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: identification of sulfur atoms as catalytically active sites for H+ reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01848
– volume: 267
  start-page: 26
  year: 2019
  ident: 10.1016/j.apcatb.2021.120478_bib0105
  article-title: Core-shell nanomaterials: applications in energy storage and conversion
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2019.03.001
– volume: 231
  start-page: 1
  year: 2018
  ident: 10.1016/j.apcatb.2021.120478_bib0050
  article-title: Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.02.059
– volume: 117
  start-page: 175
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0135
  article-title: Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.059
– volume: 14
  start-page: 3539
  year: 2014
  ident: 10.1016/j.apcatb.2021.120478_bib0225
  article-title: Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl501152f
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2021.120478_bib0230
  article-title: Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704574
– volume: 283
  year: 2021
  ident: 10.1016/j.apcatb.2021.120478_bib0090
  article-title: Highly promoted hydrogen production enabled by interfacial PN chemical bonds in copper phosphosulfide Z-scheme composite
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.119624
SSID ssj0002328
Score 2.6630857
Snippet [Display omitted] •P doping can weaken MO bonds by forming PO bonds.•The deposition of metal nanodots can destabilize water molecules.•This strategy can...
The layered double hydroxides (LDHs) are considered to own great potential to serve as a catalyst for water electrolysis, while their extremely poor hydrogen...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120478
SubjectTerms Catalysts
Catalytic activity
Copper
Destabilizing
DFT calculation
Electrocatalysts
Electrolysis
Electronegativity
Electronic structure
Hydrogen evolution reaction
Hydrogen evolution reactions
Hydroxides
LDH
Title Improved hydrogen evolution activity of layered double hydroxide by optimizing the electronic structure
URI https://dx.doi.org/10.1016/j.apcatb.2021.120478
https://www.proquest.com/docview/2575939567
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHIADggHiMVAOXMuWPtPjNIEGCC6AxC1qXjA0tmkMBBz47dhtygAJIXFs66RV7Dh25e8zwIEzhocuMgHnKg7iooiCQucpBnJpXqRcZcYROPn8Iu1dx6c3yc0cdGssDJVVet9f-fTSW_s7Lb-arXG_37ps52EaRRmBUIgBhjhB4zgjKz98n5V5YMRQemMUDki6hs-VNV7FWBdThVliyA95SEQ1vx1PPxx1efocr8KKDxtZp_qyNZizwwYsdutubQ1Y_kIs2IDNoxl-DYf5Dfy4DrfVTwRr2N2rmYzQeph99tbHCONArSTYyLFB8UpdPJkZPamBraRf-sYyhY_RzTz03_BNDMNHNuukwyo22qeJ3YCr46Orbi_wvRYCjbt4GojYpiYL27kWXBsnRJrmGSETTI4JkmhrF-osV8JiNG4wbU4SWjTXVgqdvdPRJswPR0O7BUwkYSJUXFglKDpzwiUaJ01U5HAGy7chqldYas9DTu0wBrIuOLuXlV4kvUJWetmG4HPUuOLh-EM-q5Unv9mTxKPij5HNWtfS7-dHGVIf0whzyWzn3xPvwhJdEZCRJ02YR43YPYxopmq_NNl9WOicnPUuPgCm6feV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONAeEKRFvNlDe3QSr1_rAwfEQ6E8Lk0lbivvqw1Kk4gE2nDgR_ELmbHXhFZCSJW4er2zq53xN7PWzHwAn50xIXeRCcJQxUFcFFFQ6DzFQC7NizRUmXFUnHx-kXa-x18vk8s5eKhrYSit0mN_heklWvsnLX-arVGv1_rWznkaRRkVoVAHmNhnVp7a6W-8t433Tg5RyV84Pz7qHnQCTy0QaDTaSSBim5qMt3MtQm2cEGmaZ5SIb3K8D4i2dlxnuRIWg0-Dt8Qk4egMXVspxDanIxT7DhZiRAtiTWjez9JKMEIp0R83F9Du6nK9MqesGOliopokqxlyaozzkjv8xzGU3u54GZZ8mMr2q5NYgTk7aMDiQc0O14APzxoZNmD1aFYvh9M8YIw_wo_qp4U17OfUXA_RWpm99dbOqKaCqCvY0LF-MSXWUGaGN6pvq7f_9IxlCocR1n717nAlhuEqmzH3sKr77c21_QTdt1DAKswPhgO7BkwkPBEqLqwSFA064RKNQhMVOZRgw3WI6hOW2vc9J_qNvqwT3K5kpRdJS8hKL-sQPM0aVX0_Xnk_q5Un_7Jfia7plZlbta6lx4-x5MSbGuHdNdv4b8G7sNjpnp_Js5OL0014TyNURBkmWzCP2rHbGE1N1E5pvgzkG38uj5KmMVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+hydrogen+evolution+activity+of+layered+double+hydroxide+by+optimizing+the+electronic+structure&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Feng%2C+Haopeng&rft.au=Yu%2C+Jiangfang&rft.au=Tang%2C+Lin&rft.au=Wang%2C+Jiajia&rft.date=2021-11-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=297&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120478&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon