Assessment of the predictive capability of RANS models in simulating meandering open channel flows

The predictive capability of Reynolds-averaged numerical simulation(RANS) models is investigated by simulating the flow in meandering open channel flumes and comparing the obtained results with the measured data. The flow structures of the two experiments are much different in order to get better in...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 29; no. 1; pp. 40 - 51
Main Author 周建银 邵学军 王虹 假冬冬
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.02.2017
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The predictive capability of Reynolds-averaged numerical simulation(RANS) models is investigated by simulating the flow in meandering open channel flumes and comparing the obtained results with the measured data. The flow structures of the two experiments are much different in order to get better insights. Two eddy viscosity turbulence models and different wall treatment methods are tested. Comparisons show that no essential difference exists among the predictions. The difference of turbulence models has a limited effect, and the near wall refinement improves the predictions slightly. Results show that, while the longitudinal velocities are generally well predicted, the predictive capability of the secondary flow is largely determined by the complexity of the flow structure. In Case 1 of a simple flow structure, the secondary flow velocity is reasonably predicted. In Case 2, consisting of sharp curved consecutive reverse bends, the flow structure becomes complex after the first bend, and the complex flow structure leads to the poor prediction of the secondary flow. The analysis shows that the high level of turbulence anisotropy is related with the boundary layer separation, but not with the flow structure complexity in the central area which definitely causes the poor prediction of RANS models. The turbulence model modifications and the wall treatment methods barely improve the predictive capability of RANS models in simulating complex flow structures.
AbstractList The predictive capability of Reynolds-averaged numerical simulation(RANS) models is investigated by simulating the flow in meandering open channel flumes and comparing the obtained results with the measured data. The flow structures of the two experiments are much different in order to get better insights. Two eddy viscosity turbulence models and different wall treatment methods are tested. Comparisons show that no essential difference exists among the predictions. The difference of turbulence models has a limited effect, and the near wall refinement improves the predictions slightly. Results show that, while the longitudinal velocities are generally well predicted, the predictive capability of the secondary flow is largely determined by the complexity of the flow structure. In Case 1 of a simple flow structure, the secondary flow velocity is reasonably predicted. In Case 2, consisting of sharp curved consecutive reverse bends, the flow structure becomes complex after the first bend, and the complex flow structure leads to the poor prediction of the secondary flow. The analysis shows that the high level of turbulence anisotropy is related with the boundary layer separation, but not with the flow structure complexity in the central area which definitely causes the poor prediction of RANS models. The turbulence model modifications and the wall treatment methods barely improve the predictive capability of RANS models in simulating complex flow structures.
The predictive capability of Reynolds-averaged numerical simulation (RANS) models is investigated by simulating the flow in meandering open channel flumes and comparing the obtained results with the measured data. The flow structures of the two experiments are much different in order to get better insights. Two eddy viscosity turbulence models and different wall treatment methods are tested. Comparisons show that no essential difference exists among the predictions. The difference of turbulence models has a limited effect, and the near wall refinement improves the predictions slightly. Results show that, while the longitudinal velo-cities are generally well predicted, the predictive capability of the secondary flow is largely determined by the complexity of the flow structure. In Case 1 of a simple flow structure, the secondary flow velocity is reasonably predicted. In Case 2, consisting of sharp curved consecutive reverse bends, the flow structure becomes complex after the first bend, and the complex flow structure leads to the poor prediction of the secondary flow. The analysis shows that the high level of turbulence anisotropy is related with the boundary layer separation, but not with the flow structure complexity in the central area which definitely causes the poor prediction of RANS models. The turbulence model modifications and the wall treatment methods barely improve the predictive capability of RANS models in simulating complex flow structures.
Author Shao, Xue-jun
Zhou, Jian-yin
Wang, Hong
Jia, Dong-dong
AuthorAffiliation Key Laboratory of River Regulation and Flood Control of MWR, Changjiang River Scientific Research Institute;State Key Laboratory of Hydroscience and Engineering, Tsinghua University
Author_xml – sequence: 1
  fullname: 周建银 邵学军 王虹 假冬冬
BookMark eNqFkEFPHCEUx0ljk6rtR2jCsT1M5Q3MDBMPzca0amLapLaJN8LCGxczA1Ngbfz2Mq566GUPwCPwe_D_HZEDHzwS8hHYF2DQnlwDY1C1rJGfoP3csg5EdfOGHILsZMW4qA9K_XLlHTlK6Y4x3vZMHJL1KiVMaUKfaRho3iCdI1pnsrtHavSs1250-WE5_LX6cU2nYHFM1Hma3LQddXb-lk6ovcW4lGFGT81Ge48jHcbwL70nbwc9JvzwvB6TP9-__T67qK5-nl-era4qIxjLVScMAONrbmHoO1zz1kID3WBQSF0b4CBk3fHeDgawNtx2NdYNojC257Zm_Jg0u74mhpQiDmqObtLxQQFTiyj1JEotFlTZPYlSN4U7_Y8zLpdcweeo3biXbnd0mpf8GNVd2EZfgu4Fv-7AohPvXQGTcehNkR_RZGWD29uBP398E_zt3_L6a2LJWyl72TVMSNE3zTKXIRvOHwENeaWb
CitedBy_id crossref_primary_10_1016_j_advwatres_2024_104640
crossref_primary_10_2166_ws_2023_006
crossref_primary_10_3390_w12113213
crossref_primary_10_1088_1755_1315_220_1_012038
crossref_primary_10_2166_hydro_2023_201
crossref_primary_10_1088_1755_1315_930_1_012033
crossref_primary_10_1007_s42241_024_0047_1
Cites_doi 10.1016/S1001-6058(08)60079-7
10.1016/S1001-6058(08)60210-3
10.1029/2011WR011375
10.1016/j.advwatres.2009.11.001
10.2514/1.9321
10.1029/2007WR006303
10.1063/1.3459152
10.2514/6.1998-2554
10.1016/j.buildenv.2012.04.018
10.1061/(ASCE)HY.1943-7900.0000709
10.1115/1.3070573
10.1029/2008JF001137
10.1016/0142-727X(95)00079-6
10.1016/S1001-6058(14)60023-8
10.1002/2013JF002965
ContentType Journal Article
Copyright 2017 Publishing House for Journal of Hydrodynamics
China Ship Scientific Research Center 2017
Copyright_xml – notice: 2017 Publishing House for Journal of Hydrodynamics
– notice: China Ship Scientific Research Center 2017
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
DOI 10.1016/S1001-6058(16)60714-X
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Assessment of the predictive capability of RANS models in simulating meandering open channel flows
EISSN 1878-0342
EndPage 51
ExternalDocumentID 10_1016_S1001_6058_16_60714_X
S100160581660714X
83688987504849554849484853
GrantInformation_xml – fundername: National Basic Research Development Program of China
  grantid: (973 Program, Grant No. 2012CB417002)
– fundername: National Natural Science Foundation of China
  grantid: (Grant No. 51579151)
– fundername: National Science-Technology Support Plan Projects
  grantid: (Grant Nos. 2012BAB05B01, 2012BAB04B03)
– fundername: State Key Program of National Natural Science of China
  grantid: (Grant No. 51039004)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92H
92I
92L
92M
9D9
9DA
AABNK
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABXDB
ABXPI
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
Z5O
Z7R
ZMTXR
~LB
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c400t-74c1103b3d1f97eb36d1517fce48a2c131482739dfc1e2c3d72e25ee4cd93d203
IEDL.DBID .~1
ISSN 1001-6058
IngestDate Tue Jul 01 02:16:49 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Fri Feb 21 02:30:55 EST 2025
Fri Feb 23 02:34:37 EST 2024
Wed Feb 14 10:03:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords secondary flows
RANS model
meandering channel
near-wall treatment
boundary layer separation
turbulence model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-74c1103b3d1f97eb36d1517fce48a2c131482739dfc1e2c3d72e25ee4cd93d203
Notes 31-1563/T
Jian-yin Zhou;Xue-jun Shao;Hong Wang;Dong-dong Jia;Key Laboratory of River Regulation and Flood Control of MWR, Changjiang River Scientific Research Institute;State Key Laboratory of Hydroscience and Engineering, Tsinghua University
PageCount 12
ParticipantIDs crossref_primary_10_1016_S1001_6058_16_60714_X
crossref_citationtrail_10_1016_S1001_6058_16_60714_X
springer_journals_10_1016_S1001_6058_16_60714_X
elsevier_sciencedirect_doi_10_1016_S1001_6058_16_60714_X
chongqing_primary_83688987504849554849484853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationTitleAlternate Journal of Hydrodynamics
PublicationYear 2017
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Caldwell, Edmonds (bib6) 2014; 119
He (bib17) 2009
Zhang, Shen (bib4) 2008; 20
Van Balen, Blanckaert, Uijttewaal (bib7) 2010; 11
Smirnov, Menter (bib20) 2009; 131
Van Balen, Uijttewaal, Blanckaer (bib11) 2010; 22
Shao, Liu, Zhao (bib1) 2012; 57
Jia, Shao, ZHANG (bib5) 2013; 139
Zeng, Constantinescu, Blanckaert (bib2) 2008; 44
Huang, Jia, Chan (bib3) 2009; 21
Menter, Kuntz, Langtry (bib19) 2003; 4
Chen, Zhong, Li (bib13) 2012; 23
Kang, Sotiropoulos (bib9) 2012; 48
Chang (bib15) 1971
Liu, Bai (bib16) 2014; 26
Albuquerque, USA, 1998.
Blanckaert (bib14) 2002
Hellsten A. Some improvements in Menter's SST turbulence model [C].
Stoesser, Ruether, Olsen (bib10) 2010; 33
Constantinescu, Koken, Zeng (bib8) 2011; 47
Craft, Launder, Suga (bib18) 1996; 17
Tao (bib23) 2001
Blanckaert (bib12) 2009; 114
Mani, Ladd, Bower (bib22) 2004; 41
Constantinescu, Koken, Zeng (CR8) 2011; 47
Zhang, Shen (CR4) 2008; 20
Chang (CR15) 1971
Van Balen, Blanckaert, Uijttewaal (CR7) 2010; 11
Craft, Launder, Suga (CR18) 1996; 17
Stoesser, Ruether, Olsen (CR10) 2010; 33
Shao, Liu, Zhao (CR1) 2012; 57
Blanckaert (CR12) 2009; 114
Huang, Jia, Chan (CR3) 2009; 21
Blanckaert (CR14) 2002
Tao (CR23) 2001
Jia, Shao, Zhang (CR5) 2013; 139
Caldwell, Edmonds (CR6) 2014; 119
He (CR17) 2009
Kang, Sotiropoulos (CR9) 2012; 48
Zeng, Constantinescu, Blanckaert (CR2) 2008; 44
Hellsten (CR21) 1998
Van Balen, Uijttewaal, Blanckaer (CR11) 2010; 22
Menter, Kuntz, Langtry (CR19) 2003; 4
Smirnov, Menter (CR20) 2009; 131
Chen, Zhong, Li (CR13) 2012; 23
Mani, Ladd, Bower (CR22) 2004; 41
Liu, Bai (CR16) 2014; 26
J T Shao (2901040_CR1) 2012; 57
W Balen Van (2901040_CR11) 2010; 22
A Hellsten (2901040_CR21) 1998
F R Menter (2901040_CR19) 2003; 4
W Balen Van (2901040_CR7) 2010; 11
K Blanckaert (2901040_CR12) 2009; 114
J He (2901040_CR17) 2009
M Mani (2901040_CR22) 2004; 41
S L Huang (2901040_CR3) 2009; 21
S Kang (2901040_CR9) 2012; 48
K Blanckaert (2901040_CR14) 2002
W Q Tao (2901040_CR23) 2001
Y Chang (2901040_CR15) 1971
R L Caldwell (2901040_CR6) 2014; 119
Q Chen (2901040_CR13) 2012; 23
P E Smirnov (2901040_CR20) 2009; 131
J Zeng (2901040_CR2) 2008; 44
T J Craft (2901040_CR18) 1996; 17
D Jia (2901040_CR5) 2013; 139
X X Liu (2901040_CR16) 2014; 26
T Stoesser (2901040_CR10) 2010; 33
M L Zhang (2901040_CR4) 2008; 20
G Constantinescu (2901040_CR8) 2011; 47
References_xml – volume: 21
  start-page: 758
  year: 2009
  end-page: 766
  ident: bib3
  article-title: Three-dimensional numerical modeling of secondary flows in a wide curved channel [J]
  publication-title: Journal of Hydrodynamics
– volume: 22
  start-page: 075108
  year: 2010
  ident: bib11
  article-title: Large-eddy simulation of a curved open-channel flow over topography [J]
  publication-title: Physics of Fluids
– volume: 17
  start-page: 108
  year: 1996
  end-page: 115
  ident: bib18
  article-title: Development and application of a cubic eddy-viscosity model of turbulence [J]
  publication-title: International Journal of Heat and Fluid Flow
– volume: 119
  start-page: 961
  year: 2014
  end-page: 982
  ident: bib6
  article-title: The effects of sediment properties on deltaic processes and morphologies: A numerical modeling study [J]
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 114
  start-page: F03015
  year: 2009
  ident: bib12
  article-title: Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends: Laboratory experiments, analysis, and modeling [J]
  publication-title: Journal of Geophysical Research-Earth Surface
– volume: 131
  start-page: 041010
  year: 2009
  ident: bib20
  article-title: Sensitization of the SST turbulence model to rotation and curvature by applying the spalart-shur correction term [J]
  publication-title: Journal of Turbomachinery
– volume: 41
  start-page: 268
  year: 2004
  end-page: 273
  ident: bib22
  article-title: Rotation and curvature correction assessment for one and two-equation turbulence models [J]
  publication-title: Journal of Aircraft
– volume: 47
  start-page: 159
  year: 2011
  end-page: 164
  ident: bib8
  article-title: The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation [J]
  publication-title: Water Resources Research
– volume: 23
  start-page: 369
  year: 2012
  end-page: 375
  ident: bib13
  article-title: Experimental study of open channel flow in a bend [J]
  publication-title: Advances in Water Science
– year: 2002
  ident: bib14
  publication-title: Flow and turbulence in sharp open-channel bends [D]. Doctoral Thesis
– volume: 26
  start-page: 207
  year: 2014
  end-page: 215
  ident: bib16
  article-title: Turbulent structure and bursting process in multi-bend meander channel [J]
  publication-title: Journal of Hydrodynamics
– year: 2009
  ident: bib17
  publication-title: Experimental study on the flow structure and turbulent characteristics in open-channel bends [D]. Doctoral Thesis
– reference: Hellsten A. Some improvements in Menter's SST turbulence model [C].
– volume: 57
  start-page: 145
  year: 2012
  end-page: 155
  ident: bib1
  article-title: Evaluation of various non-linear models for predicting wind flow around an isolated high-rise building within the surface boundary layer [J]
  publication-title: Building and Environment
– volume: 20
  start-page: 448
  year: 2008
  end-page: 455
  ident: bib4
  article-title: Three-dimensional simulation of meandering river based on 3-D RNG turbulence model [J]
  publication-title: Journal of Hydrodynamics
– volume: 139
  start-page: 669
  year: 2013
  end-page: 674
  ident: bib5
  article-title: Sedimentation patterns of fine-grained particles in the dam area of the Three Gorges Project: 3D numerical simulation [J]
  publication-title: Journal of Hydraulic Engineering, ASCE
– volume: 44
  start-page: 542
  year: 2008
  end-page: 547
  ident: bib2
  article-title: Flow and bathymetry in sharp open-channel bends: Experiments and predictions [J]
  publication-title: Water Resources Research
– volume: 4
  start-page: 625
  year: 2003
  end-page: 632
  ident: bib19
  article-title: Ten years of industrial experience with the SST turbulence model [J]
  publication-title: Turbulence, Heat and Mass Transfer
– volume: 48
  start-page: 6425
  year: 2012
  end-page: 6430
  ident: bib9
  article-title: Assessing the predictive capabilities of isotropic, eddy viscosity Reynolds-averaged turbulence models in a natural-like meandering channel [J]
  publication-title: Water Resources Research
– volume: 11
  start-page: 1
  year: 2010
  end-page: 34
  ident: bib7
  article-title: Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS [J]
  publication-title: Journal of Turbulence
– volume: 33
  start-page: 158
  year: 2010
  end-page: 170
  ident: bib10
  article-title: Calculation of primary and secondary flow and boundary shear stresses in a meandering channel [J]
  publication-title: Advances in Water Resources
– reference: . Albuquerque, USA, 1998.
– year: 1971
  ident: bib15
  publication-title: Lateral mixing in meandering channels [D]. Doctoral Thesis
– start-page: 389
  year: 2001
  ident: bib23
  publication-title: Numerical heat transfor [M]
– volume: 20
  start-page: 448
  issue: 4
  year: 2008
  end-page: 455
  ident: CR4
  article-title: Three-dimensional simulation of meandering river based on 3-D RNG - turbulence model [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(08)60079-7
– volume: 21
  start-page: 758
  issue: 6
  year: 2009
  end-page: 766
  ident: CR3
  article-title: Three-dimensional numerical modeling of secondary flows in a wide curved channel [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(08)60210-3
– volume: 23
  start-page: 369
  issue: 3
  year: 2012
  end-page: 375
  ident: CR13
  article-title: Experimental study of open channel flow in a bend [J]
  publication-title: Advances in Water Science
– start-page: 389
  year: 2001
  ident: CR23
  publication-title: Numerical heat transfor [M]
– volume: 119
  start-page: 961
  issue: 5
  year: 2014
  end-page: 982
  ident: CR6
  article-title: The effects of sediment properties on deltaic processes and morphologies: A numerical modeling study [J]
  publication-title: Journal of Geophysical Research: Earth Surface
– volume: 48
  start-page: 6425
  issue: 6
  year: 2012
  end-page: 6430
  ident: CR9
  article-title: Assessing the predictive capabilities of isotropic, eddy viscosity Reynolds-averaged turbulence models in a natural-like meandering channel [J]
  publication-title: Water Resources Research
  doi: 10.1029/2011WR011375
– volume: 33
  start-page: 158
  issue: 2
  year: 2010
  end-page: 170
  ident: CR10
  article-title: Calculation of primary and secondary flow and boundary shear stresses in a meandering channel [J]
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.11.001
– year: 1971
  ident: CR15
  publication-title: Lateral mixing in meandering channels [D]
– year: 2009
  ident: CR17
  publication-title: Experimental study on the flow structure and turbulent characteristics in open-channel bends [D]
– volume: 47
  start-page: 159
  issue: 5
  year: 2011
  end-page: 164
  ident: CR8
  article-title: The structure of turbulent flow in an open channel bend of strong curvature with deformed bed: Insight provided by detached eddy simulation [J]
  publication-title: Water Resources Research
– volume: 41
  start-page: 268
  issue: 2
  year: 2004
  end-page: 273
  ident: CR22
  article-title: Rotation and curvature correction assessment for one and two-equation turbulence models [J]
  publication-title: Journal of Aircraft
  doi: 10.2514/1.9321
– volume: 44
  start-page: 542
  issue: 9
  year: 2008
  end-page: 547
  ident: CR2
  article-title: Flow and bathymetry in sharp open-channel bends: Experiments and predictions [J]
  publication-title: Water Resources Research
  doi: 10.1029/2007WR006303
– volume: 4
  start-page: 625
  year: 2003
  end-page: 632
  ident: CR19
  article-title: Ten years of industrial experience with the SST turbulence model [J]
  publication-title: Turbulence, Heat and Mass Transfer
– volume: 11
  start-page: 1
  issue: 12
  year: 2010
  end-page: 34
  ident: CR7
  article-title: Analysis of the role of turbulence in curved open-channel flow at different water depths by means of experiments, LES and RANS [J]
  publication-title: Journal of Turbulence
– volume: 22
  start-page: 075108
  issue: 7
  year: 2010
  ident: CR11
  article-title: Large-eddy simulation of a curved open-channel flow over topography [J]
  publication-title: Physics of Fluids
  doi: 10.1063/1.3459152
– year: 1998
  ident: CR21
  publication-title: Some improvements in Menter’s - SST turbulence model [C]
  doi: 10.2514/6.1998-2554
– volume: 57
  start-page: 145
  year: 2012
  end-page: 155
  ident: CR1
  article-title: Evaluation of various non-linear - models for predicting wind flow around an isolated high-rise building within the surface boundary layer [J]
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2012.04.018
– volume: 139
  start-page: 669
  issue: 6
  year: 2013
  end-page: 674
  ident: CR5
  article-title: Sedimentation patterns of fine-grained particles in the dam area of the Three Gorges Project: 3D numerical simulation [J]
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)HY.1943-7900.0000709
– volume: 131
  start-page: 041010
  issue: 4
  year: 2009
  ident: CR20
  article-title: Sensitization of the SST turbulence model to rotation and curvature by applying the spalart-shur correction term [J]
  publication-title: Journal of Turbomachinery
  doi: 10.1115/1.3070573
– year: 2002
  ident: CR14
  publication-title: Flow and turbulence in sharp open-channel bends [D]
– volume: 114
  start-page: F03015
  issue: F3
  year: 2009
  ident: CR12
  article-title: Saturation of curvature-induced secondary flow, energy losses, and turbulence in sharp open-channel bends: Laboratory experiments, analysis, and modeling [J]
  publication-title: Journal of Geophysical Research-Earth Surface
  doi: 10.1029/2008JF001137
– volume: 17
  start-page: 108
  issue: 2
  year: 1996
  end-page: 115
  ident: CR18
  article-title: Development and application of a cubic eddy-viscosity model of turbulence [J]
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/0142-727X(95)00079-6
– volume: 26
  start-page: 207
  issue: 2
  year: 2014
  end-page: 215
  ident: CR16
  article-title: Turbulent structure and bursting process in multi-bend meander channel [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60023-8
– start-page: 389
  volume-title: Numerical heat transfor [M]
  year: 2001
  ident: 2901040_CR23
– volume: 23
  start-page: 369
  issue: 3
  year: 2012
  ident: 2901040_CR13
  publication-title: Advances in Water Science
– volume-title: Some improvements in Menter’s k-ω SST turbulence model [C]
  year: 1998
  ident: 2901040_CR21
  doi: 10.2514/6.1998-2554
– volume: 21
  start-page: 758
  issue: 6
  year: 2009
  ident: 2901040_CR3
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(08)60210-3
– volume: 114
  start-page: F03015
  issue: F3
  year: 2009
  ident: 2901040_CR12
  publication-title: Journal of Geophysical Research-Earth Surface
  doi: 10.1029/2008JF001137
– volume: 33
  start-page: 158
  issue: 2
  year: 2010
  ident: 2901040_CR10
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2009.11.001
– volume: 22
  start-page: 075108
  issue: 7
  year: 2010
  ident: 2901040_CR11
  publication-title: Physics of Fluids
  doi: 10.1063/1.3459152
– volume: 139
  start-page: 669
  issue: 6
  year: 2013
  ident: 2901040_CR5
  publication-title: Journal of Hydraulic Engineering, ASCE
  doi: 10.1061/(ASCE)HY.1943-7900.0000709
– volume: 131
  start-page: 041010
  issue: 4
  year: 2009
  ident: 2901040_CR20
  publication-title: Journal of Turbomachinery
  doi: 10.1115/1.3070573
– volume: 44
  start-page: 542
  issue: 9
  year: 2008
  ident: 2901040_CR2
  publication-title: Water Resources Research
  doi: 10.1029/2007WR006303
– volume: 4
  start-page: 625
  year: 2003
  ident: 2901040_CR19
  publication-title: Turbulence, Heat and Mass Transfer
– volume: 20
  start-page: 448
  issue: 4
  year: 2008
  ident: 2901040_CR4
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(08)60079-7
– volume-title: Experimental study on the flow structure and turbulent characteristics in open-channel bends [D]
  year: 2009
  ident: 2901040_CR17
– volume-title: Lateral mixing in meandering channels [D]
  year: 1971
  ident: 2901040_CR15
– volume: 11
  start-page: 1
  issue: 12
  year: 2010
  ident: 2901040_CR7
  publication-title: Journal of Turbulence
– volume: 48
  start-page: 6425
  issue: 6
  year: 2012
  ident: 2901040_CR9
  publication-title: Water Resources Research
  doi: 10.1029/2011WR011375
– volume: 26
  start-page: 207
  issue: 2
  year: 2014
  ident: 2901040_CR16
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60023-8
– volume: 57
  start-page: 145
  year: 2012
  ident: 2901040_CR1
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2012.04.018
– volume: 119
  start-page: 961
  issue: 5
  year: 2014
  ident: 2901040_CR6
  publication-title: Journal of Geophysical Research: Earth Surface
  doi: 10.1002/2013JF002965
– volume: 41
  start-page: 268
  issue: 2
  year: 2004
  ident: 2901040_CR22
  publication-title: Journal of Aircraft
  doi: 10.2514/1.9321
– volume: 47
  start-page: 159
  issue: 5
  year: 2011
  ident: 2901040_CR8
  publication-title: Water Resources Research
– volume: 17
  start-page: 108
  issue: 2
  year: 1996
  ident: 2901040_CR18
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/0142-727X(95)00079-6
– volume-title: Flow and turbulence in sharp open-channel bends [D]
  year: 2002
  ident: 2901040_CR14
SSID ssj0036904
Score 2.1488316
Snippet The predictive capability of Reynolds-averaged numerical simulation(RANS) models is investigated by simulating the flow in meandering open channel flumes and...
The predictive capability of Reynolds-averaged numerical simulation (RANS) models is investigated by simulating the flow in meandering open channel flumes and...
SourceID crossref
springer
elsevier
chongqing
SourceType Enrichment Source
Index Database
Publisher
StartPage 40
SubjectTerms boundary layer separation
Engineering
Engineering Fluid Dynamics
Hydrology/Water Resources
meandering channel
near-wall treatment
Numerical and Computational Physics
RANS model
secondary flows
Simulation
turbulence model
Title Assessment of the predictive capability of RANS models in simulating meandering open channel flows
URI http://lib.cqvip.com/qk/86648X/201701/83688987504849554849484853.html
https://dx.doi.org/10.1016/S1001-6058(16)60714-X
https://link.springer.com/article/10.1016/S1001-6058(16)60714-X
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR25TsMw1EKwwIA4RbnkgQEk0ia2kzhjVYEKFR04RDaL-IBKbVraIsTCt-PnJuGQoBJDLifPjvzsd-hdCB0Z338IIl97ipHYs_pX5nGlE7vddcI0zZJMQbzzVTdq37HLNEwXUKuMhQG3yoL2z2i6o9ZFS6OYzcao12vcBK5GcgiGL4jCSSGCncWwyuvvlZsHtdqfsyyD6xB8_RnFM-vBNR4H0YnrxEshx8LTMH98tpzjN171w2bqWNH5GlotZEjcnP3mOlrQ-QZa-ZJZcBNlzSrjJh4abKU8PBqDTQaoG5aWQzqn2Dd4ed3s3mBXEWeCezme9AaupFf-iAfaxb7ALVTZwhAlnOs-Nv3h62QL3Z2f3bbaXlFOwZN2o069mEnL62lGVWCS2CrRkbLsPjZSM_5AZEBdSlCaKCMDTSRVMdEk1JpJlVBFfLqNFvNhrncQVlxy4xsio8wwE3IeaqZVwE1koBQWqaHTahLFaJY2Q3AacZ5wyCfPrVoWwtkeVl6oIVbOs5BFanKokNEXlQ8aoEoAqoR9cqgSaQ3VK7BykDkAvESi-LbIhOUf80AbJdJFscsnf0Ps_n-wPbRMQHpwzuH7aHE6ftEHVvaZZoducR-ipeZFp92Fa-f6vvMBvQb7qQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcNSGQ8sBAaVqeO6hB5BwY--u7fUxiqgCtDnQVvJtVe8jjZQ6oQlCXPh2Zja2C0hQqQdb9tqza-14XpoXwKGP48ski11kJc8jtL-qSFlXILm7QjpRFZWlfOfTSTa-kJ_KtNyCUZsLQ2GVDe_f8PTArZuRQbObg-VsNjhLQo_klBxflIVTbsMDieRLbQyOfnZxHgLNv-Baptghev02jWczRRh8m2TvwixRSUUWrhb19CuKjn8Jq7-cpkEWHT-GR40SyYab73wCW65-Cg9_Ky24B9WwK7nJFp6hmseWN-SUIfbGDIrIEBX7gx5-GU7OWGiJs2Kzmq1m16GnVz1l1y4kv9AltdlilCZcuznz88X31TO4OP5wPhpHTT-FyCClrqNcGhT2ohI28UWOVnRmUd7n3jipLrlJRKgJKgrrTeK4ETbnjqfOSWMLYXks9qFXL2p3AMwqo3zsuckqL32qVOqks4nymadeWLwP77tN1MtN3QytRKZUoaigvEK7LKUzHqgw9EG2-6xNU5ucWmTMdReERqjShCqNdwFVuuzDUQfWLnIHgGqRqP_4yzQKkLtABy3SdUPmq_9DPL__Ym9gZ3x-eqJPPk4-v4BdTqpEiBR_Cb31zTf3ChWhdfU6_Oi_AJwC-5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+predictive+capability+of+RANS+models+in+simulating+meandering+open+channel+flows&rft.jtitle=%E6%B0%B4%E5%8A%A8%E5%8A%9B%E5%AD%A6%E7%A0%94%E7%A9%B6%E4%B8%8E%E8%BF%9B%E5%B1%95%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%91%A8%E5%BB%BA%E9%93%B6+%E9%82%B5%E5%AD%A6%E5%86%9B+%E7%8E%8B%E8%99%B9+%E5%81%87%E5%86%AC%E5%86%AC&rft.date=2017-02-01&rft.issn=1001-6058&rft.issue=1&rft.spage=40&rft.epage=51&rft_id=info:doi/10.1016%2FS1001-6058%2816%2960714-X&rft.externalDocID=83688987504849554849484853
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg