Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell
A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO sub(2). The current density showed a negligible dependence on the thickness of the surface SnO sub(x) layer of Sn nanopartic...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 2; no. 6; pp. 1647 - 1651 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/C3TA13544F |
Cover
Loading…
Abstract | A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO sub(2). The current density showed a negligible dependence on the thickness of the surface SnO sub(x) layer of Sn nanoparticles (100 nm), while the selectivity towards the formation of CO and formate exhibited a strong relationship with the initial SnO sub(x) thickness. Electrodes with a native SnO sub(x) layer of similar to 3.5 nm exhibited the highest Faradaic efficiency (64%) towards formate formation at -1.2 V. The Faradaic efficiency towards CO production reached a maximum (35%) for the electrode with an oxide thickness of 7.0 nm, formed by annealing the Sn nanoparticles at 180 degree C for 6 hours. The electrodes with a native SnO sub(x) layer displayed the highest overall selectivity towards CO sub(2) reduction. The decrease of the selectivity towards CO sub(2) reduction with increasing the thickness of the SnO sub(x) layer can be attributed to the enhancement of hydrogen evolution on the Sn clusters with a low-coordination number derived from the reduction of SnO sub(x). The Faradaic efficiency towards hydrogen production was observed to increase with increasing the thickness of the SnO sub(x) layer. Our results suggest the importance of the underlying surface structure on the selectivity and activity of the Sn electrode for CO sub(2) reduction and provide an insight into the development of efficient catalysts. |
---|---|
AbstractList | A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO₂. The current density showed a negligible dependence on the thickness of the surface SnOₓ layer of Sn nanoparticles (100 nm), while the selectivity towards the formation of CO and formate exhibited a strong relationship with the initial SnOₓ thickness. Electrodes with a native SnOₓ layer of ∼3.5 nm exhibited the highest Faradaic efficiency (64%) towards formate formation at -1.2 V. The Faradaic efficiency towards CO production reached a maximum (35%) for the electrode with an oxide thickness of 7.0 nm, formed by annealing the Sn nanoparticles at 180 °C for 6 hours. The electrodes with a native SnOₓ layer displayed the highest overall selectivity towards CO₂ reduction. The decrease of the selectivity towards CO₂ reduction with increasing the thickness of the SnOₓ layer can be attributed to the enhancement of hydrogen evolution on the Sn clusters with a low-coordination number derived from the reduction of SnOₓ. The Faradaic efficiency towards hydrogen production was observed to increase with increasing the thickness of the SnOₓ layer. Our results suggest the importance of the underlying surface structure on the selectivity and activity of the Sn electrode for CO₂ reduction and provide an insight into the development of efficient catalysts. A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO sub(2). The current density showed a negligible dependence on the thickness of the surface SnO sub(x) layer of Sn nanoparticles (100 nm), while the selectivity towards the formation of CO and formate exhibited a strong relationship with the initial SnO sub(x) thickness. Electrodes with a native SnO sub(x) layer of similar to 3.5 nm exhibited the highest Faradaic efficiency (64%) towards formate formation at -1.2 V. The Faradaic efficiency towards CO production reached a maximum (35%) for the electrode with an oxide thickness of 7.0 nm, formed by annealing the Sn nanoparticles at 180 degree C for 6 hours. The electrodes with a native SnO sub(x) layer displayed the highest overall selectivity towards CO sub(2) reduction. The decrease of the selectivity towards CO sub(2) reduction with increasing the thickness of the SnO sub(x) layer can be attributed to the enhancement of hydrogen evolution on the Sn clusters with a low-coordination number derived from the reduction of SnO sub(x). The Faradaic efficiency towards hydrogen production was observed to increase with increasing the thickness of the SnO sub(x) layer. Our results suggest the importance of the underlying surface structure on the selectivity and activity of the Sn electrode for CO sub(2) reduction and provide an insight into the development of efficient catalysts. |
Author | Ma, Shuguo Wu, Jingjie Risalvato, Frank G. Zhou, Xiao-Dong |
Author_xml | – sequence: 1 givenname: Jingjie surname: Wu fullname: Wu, Jingjie – sequence: 2 givenname: Frank G. surname: Risalvato fullname: Risalvato, Frank G. – sequence: 3 givenname: Shuguo surname: Ma fullname: Ma, Shuguo – sequence: 4 givenname: Xiao-Dong surname: Zhou fullname: Zhou, Xiao-Dong |
BookMark | eNqFkd9KwzAUxoNMcM7d-AS5FKEz6f9cjjG1MPDCeV3S9IRF02YmLbj38IFNrU4Qwdzk8OX3ne-Qc44mrWkBoUtKFpRE7GYVbZc0SuL49gRNQ5KQIItZOjnWeX6G5s49E39yQlLGpuh9rUF01ogdNEpwjS3UveiUabGRWHBb-apW5k3VgIuiWODtDrA1Gob3Udb8ABZ3OyVeWnAOe0fnoT1YaWzDW_HJPrYYxixvUS3mWPZaf2vHfAFaX6BTybWD-dc9Q0-36-3qPtg83BWr5SYQMSFdkIVVzmUaVlUIkjHGOSQyEsAzCrGM01TmnJE0jqIcIOJSJlUdZoKKmAlWe2mGrsa-e2tee3Bd2Sg3DMBbML0rwyjMWEpZQv9FaUJIlieUMI-SERXWOGdBlkJ1fPjSznKlS0rKYV3lz7q85fqXZW9Vw-3hL_gD6GWZUQ |
CitedBy_id | crossref_primary_10_1039_D0RA07783F crossref_primary_10_1002_cphc_202200657 crossref_primary_10_1021_acsaem_4c00196 crossref_primary_10_1021_acssuschemeng_0c08634 crossref_primary_10_1002_adma_201504766 crossref_primary_10_1021_acscatal_5b02322 crossref_primary_10_1016_j_psep_2018_03_005 crossref_primary_10_1016_j_cej_2021_129050 crossref_primary_10_1016_j_jcou_2016_09_002 crossref_primary_10_1002_aenm_201702524 crossref_primary_10_1021_acsomega_7b00437 crossref_primary_10_1016_j_electacta_2015_02_150 crossref_primary_10_1016_j_nantod_2020_101028 crossref_primary_10_1002_anie_201506062 crossref_primary_10_1021_acsami_0c03681 crossref_primary_10_1016_j_jcis_2023_09_180 crossref_primary_10_1002_celc_201701100 crossref_primary_10_1002_slct_201600451 crossref_primary_10_3390_catal11040482 crossref_primary_10_1002_anie_201612194 crossref_primary_10_3390_molecules24112032 crossref_primary_10_1016_j_seppur_2023_123811 crossref_primary_10_1002_cssc_201501112 crossref_primary_10_1021_jp509967m crossref_primary_10_1016_j_apenergy_2016_03_115 crossref_primary_10_1016_j_jcou_2018_07_004 crossref_primary_10_1039_D3CS00857F crossref_primary_10_1016_j_electacta_2021_139526 crossref_primary_10_1002_ente_201402166 crossref_primary_10_1016_j_ccr_2022_214716 crossref_primary_10_3390_catal9080636 crossref_primary_10_1016_j_jcou_2020_101409 crossref_primary_10_1016_j_electacta_2017_07_140 crossref_primary_10_1039_C8TA03480J crossref_primary_10_1021_acsenergylett_3c00489 crossref_primary_10_1039_C6TA04432H crossref_primary_10_1039_C8TA02429D crossref_primary_10_1002_advs_201700194 crossref_primary_10_1002_ange_201916538 crossref_primary_10_1016_j_apsusc_2019_145221 crossref_primary_10_1016_j_chemosphere_2022_134704 crossref_primary_10_1002_ente_202000799 crossref_primary_10_1002_cssc_201701631 crossref_primary_10_1039_D0CS00071J crossref_primary_10_3390_catal13020393 crossref_primary_10_1016_j_elecom_2016_01_019 crossref_primary_10_1021_acs_iecr_7b00819 crossref_primary_10_1016_j_jcou_2017_01_021 crossref_primary_10_1016_j_jpowsour_2014_08_086 crossref_primary_10_1016_j_pecs_2017_05_005 crossref_primary_10_1021_acsaem_1c02233 crossref_primary_10_1016_j_decarb_2023_100018 crossref_primary_10_1016_j_jcat_2015_12_001 crossref_primary_10_1016_j_jpowsour_2014_02_014 crossref_primary_10_1021_acscatal_2c02548 crossref_primary_10_1016_j_apmt_2018_08_014 crossref_primary_10_1016_j_isci_2019_07_014 crossref_primary_10_1016_j_cej_2021_129923 crossref_primary_10_1016_j_jechem_2017_08_010 crossref_primary_10_1016_j_apcatb_2021_119979 crossref_primary_10_1007_s10800_017_1078_x crossref_primary_10_1002_anie_201916538 crossref_primary_10_1002_cssc_202002184 crossref_primary_10_1002_smll_202302295 crossref_primary_10_1039_D1TA03624F crossref_primary_10_1149_1945_7111_ab9eb4 crossref_primary_10_1039_C9SE00625G crossref_primary_10_1016_j_jechem_2021_03_009 crossref_primary_10_1039_D3CC01733H crossref_primary_10_1557_adv_2016_652 crossref_primary_10_1039_D1MA01057C crossref_primary_10_1016_j_rser_2021_111807 crossref_primary_10_1039_D1MH00675D crossref_primary_10_1002_ange_201612194 crossref_primary_10_1002_cey2_87 crossref_primary_10_1016_j_jpowsour_2014_12_118 crossref_primary_10_1016_j_ijhydene_2021_06_152 crossref_primary_10_2139_ssrn_4054186 crossref_primary_10_1016_j_mtener_2023_101433 crossref_primary_10_1039_C6TA04155H crossref_primary_10_1016_j_jcou_2021_101504 crossref_primary_10_1016_j_jcou_2018_05_027 crossref_primary_10_1002_celc_201600290 crossref_primary_10_1016_j_jechem_2020_06_058 crossref_primary_10_1002_aenm_201902338 crossref_primary_10_1021_jp512436w crossref_primary_10_1021_acsami_2c18522 crossref_primary_10_1016_j_apsusc_2021_151971 crossref_primary_10_1016_j_coelec_2022_100993 crossref_primary_10_1016_j_jallcom_2020_158249 crossref_primary_10_1021_acs_iecr_0c04037 crossref_primary_10_1016_j_apsusc_2020_148577 crossref_primary_10_1016_j_apcatb_2021_120447 crossref_primary_10_1021_acsaem_2c01575 crossref_primary_10_1021_acscatal_7b03242 crossref_primary_10_1021_acssuschemeng_7b02913 crossref_primary_10_1021_acs_chemrev_5b00370 crossref_primary_10_1002_cben_202200005 crossref_primary_10_1038_s41598_017_14233_y crossref_primary_10_1016_j_cej_2016_02_084 crossref_primary_10_1039_C9TA13298H crossref_primary_10_1002_cssc_201802725 crossref_primary_10_1039_C9SE00776H crossref_primary_10_1002_aenm_201902106 crossref_primary_10_1002_celc_201900854 crossref_primary_10_1039_C7CY00246G crossref_primary_10_3390_nano15020121 crossref_primary_10_1021_cs502128q crossref_primary_10_1016_j_cattod_2018_03_029 crossref_primary_10_1039_D4SC01931H crossref_primary_10_1016_j_apsusc_2015_08_006 crossref_primary_10_1016_j_electacta_2024_144409 crossref_primary_10_1039_D0TA00569J crossref_primary_10_1039_D0TA02633F crossref_primary_10_1126_sciadv_aay3111 crossref_primary_10_1016_j_jechem_2024_01_062 crossref_primary_10_1021_acscatal_7b02561 crossref_primary_10_1016_j_checat_2024_100906 crossref_primary_10_1016_j_nanoen_2018_09_033 crossref_primary_10_1002_adsu_201800028 crossref_primary_10_1002_cssc_201500694 crossref_primary_10_1002_wene_239 crossref_primary_10_1016_j_nantod_2016_05_007 crossref_primary_10_1002_ange_201506062 crossref_primary_10_1016_S1872_2067_16_62455_5 crossref_primary_10_3390_inorganics2040652 crossref_primary_10_1039_C8TA01367E crossref_primary_10_1016_j_electacta_2019_135457 crossref_primary_10_3390_catal9030224 crossref_primary_10_1016_j_ces_2020_115947 crossref_primary_10_1149_2_0241908jes crossref_primary_10_1016_j_cej_2019_122024 crossref_primary_10_1016_j_jece_2023_109903 crossref_primary_10_1016_j_jiec_2023_03_014 crossref_primary_10_1016_j_jiec_2018_05_036 crossref_primary_10_1016_j_pmatsci_2017_09_001 crossref_primary_10_1021_acs_energyfuels_2c00271 crossref_primary_10_1016_j_diamond_2023_109902 crossref_primary_10_1016_j_mtadv_2019_100038 crossref_primary_10_1039_D0CP04472E crossref_primary_10_1002_cphc_201801194 crossref_primary_10_1002_celc_201900872 crossref_primary_10_1016_j_electacta_2020_137662 crossref_primary_10_1039_D0TA08393C crossref_primary_10_1149_1945_7111_abf063 crossref_primary_10_1039_D3TA03014H crossref_primary_10_1016_j_rser_2016_01_026 crossref_primary_10_1002_cnma_202100031 crossref_primary_10_1016_j_apenergy_2015_08_012 crossref_primary_10_1007_s10800_019_01332_z crossref_primary_10_1134_S0036024421020126 |
Cites_doi | 10.1016/0368-1874(85)80073-3 10.1021/ja3010978 10.1021/jp013478d 10.1016/0368-2048(72)80029-X 10.1039/C1CP22700A 10.1021/ja2108799 10.1039/c2ee21234j 10.1016/S0022-0728(01)00638-6 10.1021/ja309317u 10.1016/0021-9517(91)90227-U 10.1149/1.2086359 10.1002/sia.740150109 10.1021/j100666a029 10.1149/1.3561636 10.1002/1521-3765(20001117)6:22<4082::AID-CHEM4082>3.0.CO;2-S 10.1039/C1CY00314C 10.1149/1.3456590 10.1149/1.2085411 10.1149/2.030309jes 10.1149/2.049207jes |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1039/C3TA13544F |
DatabaseName | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 1651 |
ExternalDocumentID | 10_1039_C3TA13544F |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c400t-72b8af62bb2ef999aae5f3cea71e4f466f8a9064338ee3aff5bd27c1c49c9dee3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 01:02:05 EDT 2025 Fri Jul 11 00:04:57 EDT 2025 Thu Apr 24 22:58:31 EDT 2025 Tue Jul 01 04:17:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-72b8af62bb2ef999aae5f3cea71e4f466f8a9064338ee3aff5bd27c1c49c9dee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1500785109 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2327961951 proquest_miscellaneous_1500785109 crossref_citationtrail_10_1039_C3TA13544F crossref_primary_10_1039_C3TA13544F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2014 |
References | Li (C3TA13544F-(cit9)/*[position()=1]) 2012; 134 Cook (C3TA13544F-(cit1)/*[position()=1]) 1990; 137 Tang (C3TA13544F-(cit7)/*[position()=1]) 2012; 14 Chen (C3TA13544F-(cit12)/*[position()=1]) 2012; 134 Chen (C3TA13544F-(cit10)/*[position()=1]) 2012; 134 Balakrishnan (C3TA13544F-(cit15)/*[position()=1]) 1991; 127 Hori (C3TA13544F-(cit8)/*[position()=1]) 2002; 106 Carlson (C3TA13544F-(cit17)/*[position()=1]) 1972; 1 Whipple (C3TA13544F-(cit4)/*[position()=1]) 2010; 13 Ryu (C3TA13544F-(cit19)/*[position()=1]) 1972; 76 Vassiliev (C3TA13544F-(cit20)/*[position()=1]) 1985; 189 Frese (C3TA13544F-(cit5)/*[position()=1]) 1991; 138 Wu (C3TA13544F-(cit13)/*[position()=1]) 2013; 160 Spinner (C3TA13544F-(cit3)/*[position()=1]) 2012; 2 Le (C3TA13544F-(cit6)/*[position()=1]) 2011; 158 Wu (C3TA13544F-(cit14)/*[position()=1]) 2012; 159 Kuhl (C3TA13544F-(cit2)/*[position()=1]) 2012; 5 Schrebler (C3TA13544F-(cit18)/*[position()=1]) 2001; 516 Nayral (C3TA13544F-(cit11)/*[position()=1]) 2000; 6 Strohmeier (C3TA13544F-(cit16)/*[position()=1]) 1990; 15 |
References_xml | – volume: 189 start-page: 271 year: 1985 ident: C3TA13544F-(cit20)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/0368-1874(85)80073-3 – volume: 134 start-page: 7231 year: 2012 ident: C3TA13544F-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3010978 – volume: 106 start-page: 15 year: 2002 ident: C3TA13544F-(cit8)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp013478d – volume: 1 start-page: 161 year: 1972 ident: C3TA13544F-(cit17)/*[position()=1] publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/0368-2048(72)80029-X – volume: 14 start-page: 76 year: 2012 ident: C3TA13544F-(cit7)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22700A – volume: 134 start-page: 1986 year: 2012 ident: C3TA13544F-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2108799 – volume: 5 start-page: 7050 year: 2012 ident: C3TA13544F-(cit2)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21234j – volume: 516 start-page: 23 year: 2001 ident: C3TA13544F-(cit18)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(01)00638-6 – volume: 134 start-page: 19969 year: 2012 ident: C3TA13544F-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309317u – volume: 127 start-page: 287 year: 1991 ident: C3TA13544F-(cit15)/*[position()=1] publication-title: J. Catal. doi: 10.1016/0021-9517(91)90227-U – volume: 137 start-page: 187 year: 1990 ident: C3TA13544F-(cit1)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2086359 – volume: 15 start-page: 51 year: 1990 ident: C3TA13544F-(cit16)/*[position()=1] publication-title: Surf. Interface Anal. doi: 10.1002/sia.740150109 – volume: 76 start-page: 3278 year: 1972 ident: C3TA13544F-(cit19)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100666a029 – volume: 158 start-page: E45 year: 2011 ident: C3TA13544F-(cit6)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.3561636 – volume: 6 start-page: 4082 year: 2000 ident: C3TA13544F-(cit11)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/1521-3765(20001117)6:22<4082::AID-CHEM4082>3.0.CO;2-S – volume: 2 start-page: 19 year: 2012 ident: C3TA13544F-(cit3)/*[position()=1] publication-title: Catal. Sci. Technol. doi: 10.1039/C1CY00314C – volume: 13 start-page: D109 year: 2010 ident: C3TA13544F-(cit4)/*[position()=1] publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.3456590 – volume: 138 start-page: 3338 year: 1991 ident: C3TA13544F-(cit5)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2085411 – volume: 160 start-page: F953 year: 2013 ident: C3TA13544F-(cit13)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.030309jes – volume: 159 start-page: F353 year: 2012 ident: C3TA13544F-(cit14)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.049207jes |
SSID | ssj0000800699 |
Score | 2.468743 |
Snippet | A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1647 |
SubjectTerms | annealing carbon dioxide catalysts electrochemistry electrodes formates hydrogen production nanoparticles tin |
Title | Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell |
URI | https://www.proquest.com/docview/1500785109 https://www.proquest.com/docview/2327961951 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsYNxnBC4pSmnvzWI1WKxpDYq3Ut8h2bAirkqlrEOJ38Jv4XZxjx0k2NmnwEkXHbtrmfPH5fHIuhLwBm8Z5MmEux1KfYRRIlzMWu4qp0PMSwZSJtjiOD1fhh3W0Hgx-96KW6h0fiZ9X5pX8j1ZBBnrFLNl_0Gx7URDAOegXjqBhON5IxzPTw0bYpP8t1mG1FFCwLYezvKh-FLl0FovFSMdX2HhCI94w4NwOBr2f6kXPvDvAasZtPgGmtZRO0y8n10VGmINueytrvx_fAlzDdoEYmzviCNtibuRMTbaQHdHVx00uonbn29wuDN_tPP-1Bh5Y3G9FC8rPxTnbfGe6JZTm4qddz7CPmh6ffK2_1FXnJq_0ZdYFq9z3VWO9G-eHF_acH3qN9MfR2E1C0xTXLuh-D7exczbCkmmuFzeFbc1CjbKe0bejfxmUcYD1WEWwY14QhaHqzKYNFTj-lM1XR0fZcrZe3iJ7PmxXxkOyN50tF0ettw95eaybmba_2NbKDdJ33eUvsqOL5EAznuU9crdRHp0a3N0nA1k-IHd6BSwfkl-XEEhbBNJKUYNA2iCQIgIpIJAiAnHciDUCaYtACp8ABNIeAnHuSUlbBNKipIwiAuklBFJE4COyms-WB4du0-fDFWBBdm7i8wlTsc-5LxVsWBiTkQqEZIknQxXGsZqwFKlzMJEyYEpFPPcT4YkwFWkOosdkWFalfEJoyGQMe4qUM5UD0VepmiQKNwEi52os033y1t7fTDRF8LEXyybTwRhBmh0Ey6nWxXyfvG7nnpnSL1fOemXVlMHTg3-TlbKqzzPYagH_BpuXXj8H9jNJGnuwzXl6gznPyO3uIXhOhrttLV8AJ97xlw3g_gDw-cFw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+reduction+of+carbon+dioxide+III.+The+role+of+oxide+layer+thickness+on+the+performance+of+Sn+electrode+in+a+full+electrochemical+cell&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wu%2C+Jingjie&rft.au=Risalvato%2C+Frank+G&rft.au=Ma%2C+Shuguo&rft.au=Zhou%2C+Xiao-Dong&rft.date=2014-01-01&rft.issn=2050-7496&rft.volume=2&rft.issue=6+p.1647-1651&rft.spage=1647&rft.epage=1651&rft_id=info:doi/10.1039%2Fc3ta13544f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |