Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell

A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO sub(2). The current density showed a negligible dependence on the thickness of the surface SnO sub(x) layer of Sn nanopartic...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 2; no. 6; pp. 1647 - 1651
Main Authors Wu, Jingjie, Risalvato, Frank G., Ma, Shuguo, Zhou, Xiao-Dong
Format Journal Article
LanguageEnglish
Published 01.01.2014
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/C3TA13544F

Cover

Loading…
Abstract A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO sub(2). The current density showed a negligible dependence on the thickness of the surface SnO sub(x) layer of Sn nanoparticles (100 nm), while the selectivity towards the formation of CO and formate exhibited a strong relationship with the initial SnO sub(x) thickness. Electrodes with a native SnO sub(x) layer of similar to 3.5 nm exhibited the highest Faradaic efficiency (64%) towards formate formation at -1.2 V. The Faradaic efficiency towards CO production reached a maximum (35%) for the electrode with an oxide thickness of 7.0 nm, formed by annealing the Sn nanoparticles at 180 degree C for 6 hours. The electrodes with a native SnO sub(x) layer displayed the highest overall selectivity towards CO sub(2) reduction. The decrease of the selectivity towards CO sub(2) reduction with increasing the thickness of the SnO sub(x) layer can be attributed to the enhancement of hydrogen evolution on the Sn clusters with a low-coordination number derived from the reduction of SnO sub(x). The Faradaic efficiency towards hydrogen production was observed to increase with increasing the thickness of the SnO sub(x) layer. Our results suggest the importance of the underlying surface structure on the selectivity and activity of the Sn electrode for CO sub(2) reduction and provide an insight into the development of efficient catalysts.
AbstractList A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO₂. The current density showed a negligible dependence on the thickness of the surface SnOₓ layer of Sn nanoparticles (100 nm), while the selectivity towards the formation of CO and formate exhibited a strong relationship with the initial SnOₓ thickness. Electrodes with a native SnOₓ layer of ∼3.5 nm exhibited the highest Faradaic efficiency (64%) towards formate formation at -1.2 V. The Faradaic efficiency towards CO production reached a maximum (35%) for the electrode with an oxide thickness of 7.0 nm, formed by annealing the Sn nanoparticles at 180 °C for 6 hours. The electrodes with a native SnOₓ layer displayed the highest overall selectivity towards CO₂ reduction. The decrease of the selectivity towards CO₂ reduction with increasing the thickness of the SnOₓ layer can be attributed to the enhancement of hydrogen evolution on the Sn clusters with a low-coordination number derived from the reduction of SnOₓ. The Faradaic efficiency towards hydrogen production was observed to increase with increasing the thickness of the SnOₓ layer. Our results suggest the importance of the underlying surface structure on the selectivity and activity of the Sn electrode for CO₂ reduction and provide an insight into the development of efficient catalysts.
A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical conversion of CO sub(2). The current density showed a negligible dependence on the thickness of the surface SnO sub(x) layer of Sn nanoparticles (100 nm), while the selectivity towards the formation of CO and formate exhibited a strong relationship with the initial SnO sub(x) thickness. Electrodes with a native SnO sub(x) layer of similar to 3.5 nm exhibited the highest Faradaic efficiency (64%) towards formate formation at -1.2 V. The Faradaic efficiency towards CO production reached a maximum (35%) for the electrode with an oxide thickness of 7.0 nm, formed by annealing the Sn nanoparticles at 180 degree C for 6 hours. The electrodes with a native SnO sub(x) layer displayed the highest overall selectivity towards CO sub(2) reduction. The decrease of the selectivity towards CO sub(2) reduction with increasing the thickness of the SnO sub(x) layer can be attributed to the enhancement of hydrogen evolution on the Sn clusters with a low-coordination number derived from the reduction of SnO sub(x). The Faradaic efficiency towards hydrogen production was observed to increase with increasing the thickness of the SnO sub(x) layer. Our results suggest the importance of the underlying surface structure on the selectivity and activity of the Sn electrode for CO sub(2) reduction and provide an insight into the development of efficient catalysts.
Author Ma, Shuguo
Wu, Jingjie
Risalvato, Frank G.
Zhou, Xiao-Dong
Author_xml – sequence: 1
  givenname: Jingjie
  surname: Wu
  fullname: Wu, Jingjie
– sequence: 2
  givenname: Frank G.
  surname: Risalvato
  fullname: Risalvato, Frank G.
– sequence: 3
  givenname: Shuguo
  surname: Ma
  fullname: Ma, Shuguo
– sequence: 4
  givenname: Xiao-Dong
  surname: Zhou
  fullname: Zhou, Xiao-Dong
BookMark eNqFkd9KwzAUxoNMcM7d-AS5FKEz6f9cjjG1MPDCeV3S9IRF02YmLbj38IFNrU4Qwdzk8OX3ne-Qc44mrWkBoUtKFpRE7GYVbZc0SuL49gRNQ5KQIItZOjnWeX6G5s49E39yQlLGpuh9rUF01ogdNEpwjS3UveiUabGRWHBb-apW5k3VgIuiWODtDrA1Gob3Udb8ABZ3OyVeWnAOe0fnoT1YaWzDW_HJPrYYxixvUS3mWPZaf2vHfAFaX6BTybWD-dc9Q0-36-3qPtg83BWr5SYQMSFdkIVVzmUaVlUIkjHGOSQyEsAzCrGM01TmnJE0jqIcIOJSJlUdZoKKmAlWe2mGrsa-e2tee3Bd2Sg3DMBbML0rwyjMWEpZQv9FaUJIlieUMI-SERXWOGdBlkJ1fPjSznKlS0rKYV3lz7q85fqXZW9Vw-3hL_gD6GWZUQ
CitedBy_id crossref_primary_10_1039_D0RA07783F
crossref_primary_10_1002_cphc_202200657
crossref_primary_10_1021_acsaem_4c00196
crossref_primary_10_1021_acssuschemeng_0c08634
crossref_primary_10_1002_adma_201504766
crossref_primary_10_1021_acscatal_5b02322
crossref_primary_10_1016_j_psep_2018_03_005
crossref_primary_10_1016_j_cej_2021_129050
crossref_primary_10_1016_j_jcou_2016_09_002
crossref_primary_10_1002_aenm_201702524
crossref_primary_10_1021_acsomega_7b00437
crossref_primary_10_1016_j_electacta_2015_02_150
crossref_primary_10_1016_j_nantod_2020_101028
crossref_primary_10_1002_anie_201506062
crossref_primary_10_1021_acsami_0c03681
crossref_primary_10_1016_j_jcis_2023_09_180
crossref_primary_10_1002_celc_201701100
crossref_primary_10_1002_slct_201600451
crossref_primary_10_3390_catal11040482
crossref_primary_10_1002_anie_201612194
crossref_primary_10_3390_molecules24112032
crossref_primary_10_1016_j_seppur_2023_123811
crossref_primary_10_1002_cssc_201501112
crossref_primary_10_1021_jp509967m
crossref_primary_10_1016_j_apenergy_2016_03_115
crossref_primary_10_1016_j_jcou_2018_07_004
crossref_primary_10_1039_D3CS00857F
crossref_primary_10_1016_j_electacta_2021_139526
crossref_primary_10_1002_ente_201402166
crossref_primary_10_1016_j_ccr_2022_214716
crossref_primary_10_3390_catal9080636
crossref_primary_10_1016_j_jcou_2020_101409
crossref_primary_10_1016_j_electacta_2017_07_140
crossref_primary_10_1039_C8TA03480J
crossref_primary_10_1021_acsenergylett_3c00489
crossref_primary_10_1039_C6TA04432H
crossref_primary_10_1039_C8TA02429D
crossref_primary_10_1002_advs_201700194
crossref_primary_10_1002_ange_201916538
crossref_primary_10_1016_j_apsusc_2019_145221
crossref_primary_10_1016_j_chemosphere_2022_134704
crossref_primary_10_1002_ente_202000799
crossref_primary_10_1002_cssc_201701631
crossref_primary_10_1039_D0CS00071J
crossref_primary_10_3390_catal13020393
crossref_primary_10_1016_j_elecom_2016_01_019
crossref_primary_10_1021_acs_iecr_7b00819
crossref_primary_10_1016_j_jcou_2017_01_021
crossref_primary_10_1016_j_jpowsour_2014_08_086
crossref_primary_10_1016_j_pecs_2017_05_005
crossref_primary_10_1021_acsaem_1c02233
crossref_primary_10_1016_j_decarb_2023_100018
crossref_primary_10_1016_j_jcat_2015_12_001
crossref_primary_10_1016_j_jpowsour_2014_02_014
crossref_primary_10_1021_acscatal_2c02548
crossref_primary_10_1016_j_apmt_2018_08_014
crossref_primary_10_1016_j_isci_2019_07_014
crossref_primary_10_1016_j_cej_2021_129923
crossref_primary_10_1016_j_jechem_2017_08_010
crossref_primary_10_1016_j_apcatb_2021_119979
crossref_primary_10_1007_s10800_017_1078_x
crossref_primary_10_1002_anie_201916538
crossref_primary_10_1002_cssc_202002184
crossref_primary_10_1002_smll_202302295
crossref_primary_10_1039_D1TA03624F
crossref_primary_10_1149_1945_7111_ab9eb4
crossref_primary_10_1039_C9SE00625G
crossref_primary_10_1016_j_jechem_2021_03_009
crossref_primary_10_1039_D3CC01733H
crossref_primary_10_1557_adv_2016_652
crossref_primary_10_1039_D1MA01057C
crossref_primary_10_1016_j_rser_2021_111807
crossref_primary_10_1039_D1MH00675D
crossref_primary_10_1002_ange_201612194
crossref_primary_10_1002_cey2_87
crossref_primary_10_1016_j_jpowsour_2014_12_118
crossref_primary_10_1016_j_ijhydene_2021_06_152
crossref_primary_10_2139_ssrn_4054186
crossref_primary_10_1016_j_mtener_2023_101433
crossref_primary_10_1039_C6TA04155H
crossref_primary_10_1016_j_jcou_2021_101504
crossref_primary_10_1016_j_jcou_2018_05_027
crossref_primary_10_1002_celc_201600290
crossref_primary_10_1016_j_jechem_2020_06_058
crossref_primary_10_1002_aenm_201902338
crossref_primary_10_1021_jp512436w
crossref_primary_10_1021_acsami_2c18522
crossref_primary_10_1016_j_apsusc_2021_151971
crossref_primary_10_1016_j_coelec_2022_100993
crossref_primary_10_1016_j_jallcom_2020_158249
crossref_primary_10_1021_acs_iecr_0c04037
crossref_primary_10_1016_j_apsusc_2020_148577
crossref_primary_10_1016_j_apcatb_2021_120447
crossref_primary_10_1021_acsaem_2c01575
crossref_primary_10_1021_acscatal_7b03242
crossref_primary_10_1021_acssuschemeng_7b02913
crossref_primary_10_1021_acs_chemrev_5b00370
crossref_primary_10_1002_cben_202200005
crossref_primary_10_1038_s41598_017_14233_y
crossref_primary_10_1016_j_cej_2016_02_084
crossref_primary_10_1039_C9TA13298H
crossref_primary_10_1002_cssc_201802725
crossref_primary_10_1039_C9SE00776H
crossref_primary_10_1002_aenm_201902106
crossref_primary_10_1002_celc_201900854
crossref_primary_10_1039_C7CY00246G
crossref_primary_10_3390_nano15020121
crossref_primary_10_1021_cs502128q
crossref_primary_10_1016_j_cattod_2018_03_029
crossref_primary_10_1039_D4SC01931H
crossref_primary_10_1016_j_apsusc_2015_08_006
crossref_primary_10_1016_j_electacta_2024_144409
crossref_primary_10_1039_D0TA00569J
crossref_primary_10_1039_D0TA02633F
crossref_primary_10_1126_sciadv_aay3111
crossref_primary_10_1016_j_jechem_2024_01_062
crossref_primary_10_1021_acscatal_7b02561
crossref_primary_10_1016_j_checat_2024_100906
crossref_primary_10_1016_j_nanoen_2018_09_033
crossref_primary_10_1002_adsu_201800028
crossref_primary_10_1002_cssc_201500694
crossref_primary_10_1002_wene_239
crossref_primary_10_1016_j_nantod_2016_05_007
crossref_primary_10_1002_ange_201506062
crossref_primary_10_1016_S1872_2067_16_62455_5
crossref_primary_10_3390_inorganics2040652
crossref_primary_10_1039_C8TA01367E
crossref_primary_10_1016_j_electacta_2019_135457
crossref_primary_10_3390_catal9030224
crossref_primary_10_1016_j_ces_2020_115947
crossref_primary_10_1149_2_0241908jes
crossref_primary_10_1016_j_cej_2019_122024
crossref_primary_10_1016_j_jece_2023_109903
crossref_primary_10_1016_j_jiec_2023_03_014
crossref_primary_10_1016_j_jiec_2018_05_036
crossref_primary_10_1016_j_pmatsci_2017_09_001
crossref_primary_10_1021_acs_energyfuels_2c00271
crossref_primary_10_1016_j_diamond_2023_109902
crossref_primary_10_1016_j_mtadv_2019_100038
crossref_primary_10_1039_D0CP04472E
crossref_primary_10_1002_cphc_201801194
crossref_primary_10_1002_celc_201900872
crossref_primary_10_1016_j_electacta_2020_137662
crossref_primary_10_1039_D0TA08393C
crossref_primary_10_1149_1945_7111_abf063
crossref_primary_10_1039_D3TA03014H
crossref_primary_10_1016_j_rser_2016_01_026
crossref_primary_10_1002_cnma_202100031
crossref_primary_10_1016_j_apenergy_2015_08_012
crossref_primary_10_1007_s10800_019_01332_z
crossref_primary_10_1134_S0036024421020126
Cites_doi 10.1016/0368-1874(85)80073-3
10.1021/ja3010978
10.1021/jp013478d
10.1016/0368-2048(72)80029-X
10.1039/C1CP22700A
10.1021/ja2108799
10.1039/c2ee21234j
10.1016/S0022-0728(01)00638-6
10.1021/ja309317u
10.1016/0021-9517(91)90227-U
10.1149/1.2086359
10.1002/sia.740150109
10.1021/j100666a029
10.1149/1.3561636
10.1002/1521-3765(20001117)6:22<4082::AID-CHEM4082>3.0.CO;2-S
10.1039/C1CY00314C
10.1149/1.3456590
10.1149/1.2085411
10.1149/2.030309jes
10.1149/2.049207jes
ContentType Journal Article
DBID AAYXX
CITATION
7ST
7U6
C1K
7S9
L.6
DOI 10.1039/C3TA13544F
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 1651
ExternalDocumentID 10_1039_C3TA13544F
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c400t-72b8af62bb2ef999aae5f3cea71e4f466f8a9064338ee3aff5bd27c1c49c9dee3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 01:02:05 EDT 2025
Fri Jul 11 00:04:57 EDT 2025
Thu Apr 24 22:58:31 EDT 2025
Tue Jul 01 04:17:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-72b8af62bb2ef999aae5f3cea71e4f466f8a9064338ee3aff5bd27c1c49c9dee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500785109
PQPubID 23462
PageCount 5
ParticipantIDs proquest_miscellaneous_2327961951
proquest_miscellaneous_1500785109
crossref_citationtrail_10_1039_C3TA13544F
crossref_primary_10_1039_C3TA13544F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2014
References Li (C3TA13544F-(cit9)/*[position()=1]) 2012; 134
Cook (C3TA13544F-(cit1)/*[position()=1]) 1990; 137
Tang (C3TA13544F-(cit7)/*[position()=1]) 2012; 14
Chen (C3TA13544F-(cit12)/*[position()=1]) 2012; 134
Chen (C3TA13544F-(cit10)/*[position()=1]) 2012; 134
Balakrishnan (C3TA13544F-(cit15)/*[position()=1]) 1991; 127
Hori (C3TA13544F-(cit8)/*[position()=1]) 2002; 106
Carlson (C3TA13544F-(cit17)/*[position()=1]) 1972; 1
Whipple (C3TA13544F-(cit4)/*[position()=1]) 2010; 13
Ryu (C3TA13544F-(cit19)/*[position()=1]) 1972; 76
Vassiliev (C3TA13544F-(cit20)/*[position()=1]) 1985; 189
Frese (C3TA13544F-(cit5)/*[position()=1]) 1991; 138
Wu (C3TA13544F-(cit13)/*[position()=1]) 2013; 160
Spinner (C3TA13544F-(cit3)/*[position()=1]) 2012; 2
Le (C3TA13544F-(cit6)/*[position()=1]) 2011; 158
Wu (C3TA13544F-(cit14)/*[position()=1]) 2012; 159
Kuhl (C3TA13544F-(cit2)/*[position()=1]) 2012; 5
Schrebler (C3TA13544F-(cit18)/*[position()=1]) 2001; 516
Nayral (C3TA13544F-(cit11)/*[position()=1]) 2000; 6
Strohmeier (C3TA13544F-(cit16)/*[position()=1]) 1990; 15
References_xml – volume: 189
  start-page: 271
  year: 1985
  ident: C3TA13544F-(cit20)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0368-1874(85)80073-3
– volume: 134
  start-page: 7231
  year: 2012
  ident: C3TA13544F-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3010978
– volume: 106
  start-page: 15
  year: 2002
  ident: C3TA13544F-(cit8)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp013478d
– volume: 1
  start-page: 161
  year: 1972
  ident: C3TA13544F-(cit17)/*[position()=1]
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/0368-2048(72)80029-X
– volume: 14
  start-page: 76
  year: 2012
  ident: C3TA13544F-(cit7)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22700A
– volume: 134
  start-page: 1986
  year: 2012
  ident: C3TA13544F-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2108799
– volume: 5
  start-page: 7050
  year: 2012
  ident: C3TA13544F-(cit2)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21234j
– volume: 516
  start-page: 23
  year: 2001
  ident: C3TA13544F-(cit18)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(01)00638-6
– volume: 134
  start-page: 19969
  year: 2012
  ident: C3TA13544F-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309317u
– volume: 127
  start-page: 287
  year: 1991
  ident: C3TA13544F-(cit15)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(91)90227-U
– volume: 137
  start-page: 187
  year: 1990
  ident: C3TA13544F-(cit1)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086359
– volume: 15
  start-page: 51
  year: 1990
  ident: C3TA13544F-(cit16)/*[position()=1]
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740150109
– volume: 76
  start-page: 3278
  year: 1972
  ident: C3TA13544F-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100666a029
– volume: 158
  start-page: E45
  year: 2011
  ident: C3TA13544F-(cit6)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3561636
– volume: 6
  start-page: 4082
  year: 2000
  ident: C3TA13544F-(cit11)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/1521-3765(20001117)6:22<4082::AID-CHEM4082>3.0.CO;2-S
– volume: 2
  start-page: 19
  year: 2012
  ident: C3TA13544F-(cit3)/*[position()=1]
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C1CY00314C
– volume: 13
  start-page: D109
  year: 2010
  ident: C3TA13544F-(cit4)/*[position()=1]
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.3456590
– volume: 138
  start-page: 3338
  year: 1991
  ident: C3TA13544F-(cit5)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2085411
– volume: 160
  start-page: F953
  year: 2013
  ident: C3TA13544F-(cit13)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.030309jes
– volume: 159
  start-page: F353
  year: 2012
  ident: C3TA13544F-(cit14)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.049207jes
SSID ssj0000800699
Score 2.468743
Snippet A full electrochemical cell was employed to investigate the role of the surface oxide thickness on the activity of Sn-based electrodes for the electrochemical...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1647
SubjectTerms annealing
carbon dioxide
catalysts
electrochemistry
electrodes
formates
hydrogen production
nanoparticles
tin
Title Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell
URI https://www.proquest.com/docview/1500785109
https://www.proquest.com/docview/2327961951
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiKsYNxnBC4pSmnvzWI1WKxpDYq3Ut8h2bAirkqlrEOJ38Jv4XZxjx0k2NmnwEkXHbtrmfPH5fHIuhLwBm8Z5MmEux1KfYRRIlzMWu4qp0PMSwZSJtjiOD1fhh3W0Hgx-96KW6h0fiZ9X5pX8j1ZBBnrFLNl_0Gx7URDAOegXjqBhON5IxzPTw0bYpP8t1mG1FFCwLYezvKh-FLl0FovFSMdX2HhCI94w4NwOBr2f6kXPvDvAasZtPgGmtZRO0y8n10VGmINueytrvx_fAlzDdoEYmzviCNtibuRMTbaQHdHVx00uonbn29wuDN_tPP-1Bh5Y3G9FC8rPxTnbfGe6JZTm4qddz7CPmh6ffK2_1FXnJq_0ZdYFq9z3VWO9G-eHF_acH3qN9MfR2E1C0xTXLuh-D7exczbCkmmuFzeFbc1CjbKe0bejfxmUcYD1WEWwY14QhaHqzKYNFTj-lM1XR0fZcrZe3iJ7PmxXxkOyN50tF0ettw95eaybmba_2NbKDdJ33eUvsqOL5EAznuU9crdRHp0a3N0nA1k-IHd6BSwfkl-XEEhbBNJKUYNA2iCQIgIpIJAiAnHciDUCaYtACp8ABNIeAnHuSUlbBNKipIwiAuklBFJE4COyms-WB4du0-fDFWBBdm7i8wlTsc-5LxVsWBiTkQqEZIknQxXGsZqwFKlzMJEyYEpFPPcT4YkwFWkOosdkWFalfEJoyGQMe4qUM5UD0VepmiQKNwEi52os033y1t7fTDRF8LEXyybTwRhBmh0Ey6nWxXyfvG7nnpnSL1fOemXVlMHTg3-TlbKqzzPYagH_BpuXXj8H9jNJGnuwzXl6gznPyO3uIXhOhrttLV8AJ97xlw3g_gDw-cFw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+reduction+of+carbon+dioxide+III.+The+role+of+oxide+layer+thickness+on+the+performance+of+Sn+electrode+in+a+full+electrochemical+cell&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wu%2C+Jingjie&rft.au=Risalvato%2C+Frank+G&rft.au=Ma%2C+Shuguo&rft.au=Zhou%2C+Xiao-Dong&rft.date=2014-01-01&rft.issn=2050-7496&rft.volume=2&rft.issue=6+p.1647-1651&rft.spage=1647&rft.epage=1651&rft_id=info:doi/10.1039%2Fc3ta13544f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon