Parameter estimation in a condition-based maintenance model
A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy operational state, or in a failure state. System deterioration is assumed to follow a hidden, three-state continuous time Markov process. Vector autor...
Saved in:
Published in | Statistics & probability letters Vol. 80; no. 21; pp. 1633 - 1639 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2010
Elsevier |
Series | Statistics & Probability Letters |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy operational state, or in a failure state. System deterioration is assumed to follow a hidden, three-state continuous time Markov process. Vector autoregressive data are obtained through condition monitoring at discrete time points, which gives partial information about the unobservable system state. Two kinds of data histories are considered: histories that end with observable system failure and histories that end when the system is suspended from operation but has not failed. Maximum likelihood estimates of the model parameters are obtained using the EM algorithm and a closed form expression for the pseudo-likelihood function is derived. Numerical results are provided which illustrate the estimation procedure. |
---|---|
AbstractList | A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy operational state, or in a failure state. System deterioration is assumed to follow a hidden, three-state continuous time Markov process. Vector autoregressive data are obtained through condition monitoring at discrete time points, which gives partial information about the unobservable system state. Two kinds of data histories are considered: histories that end with observable system failure and histories that end when the system is suspended from operation but has not failed. Maximum likelihood estimates of the model parameters are obtained using the EM algorithm and a closed form expression for the pseudo-likelihood function is derived. Numerical results are provided which illustrate the estimation procedure. |
Author | Jiang, Rui Kim, Michael Jong Makis, Viliam |
Author_xml | – sequence: 1 givenname: Michael Jong surname: Kim fullname: Kim, Michael Jong – sequence: 2 givenname: Viliam surname: Makis fullname: Makis, Viliam email: makis@mie.utoronto.ca – sequence: 3 givenname: Rui surname: Jiang fullname: Jiang, Rui |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23212699$$DView record in Pascal Francis http://econpapers.repec.org/article/eeestapro/v_3a80_3ay_3a2010_3ai_3a21-22_3ap_3a1633-1639.htm$$DView record in RePEc |
BookMark | eNp9UEtLAzEQDqJgrf4Ab3vxuDXJ2mSXnqT4goI96DnMJrOYsi-SUOi_d9aKBw89zEwGvsfku2Ln_dAjY7eCLwQX6n63iGO7kJx2rhecyzM2E6Wucil4cc5mhNG5Fkt5ya5i3HFCLJdixlZbCNBhwpBhTL6D5Ic-830GmR1656c1ryGiyzrwfcIeeotZNzhsr9lFA23Em985Z5_PTx_r13zz_vK2ftzk9oHzRK5YllBCUwNIpRWUqqoLKIWi7lAqIatSNIC64DVq66RyQnBZy5Jb5VwxZ9ujbsARrRkDnRkOBpEuhjEMZm9IjlM7UE0Z0PDTUxgpaY5UQhWFoVaZr9SR5N1RcoRooW0C_crHP2lZSCFVVRFOHHE2DDEGbP4gZDIFb3aGgjc_plwbipU4-h_H-vSTawrg25PM1ZGJlObeYzDReqS8nQ9ok3GDP8H-BnFLnkk |
CODEN | SPLTDC |
CitedBy_id | crossref_primary_10_1002_asmb_1920 crossref_primary_10_1080_0740817X_2013_770188 crossref_primary_10_1155_2012_675830 crossref_primary_10_1177_1077546314554475 crossref_primary_10_1155_2012_347675 crossref_primary_10_1007_s00170_014_6651_4 crossref_primary_10_1007_s10479_011_1013_1 crossref_primary_10_21595_jve_2017_17864 crossref_primary_10_1002_asmb_2849 crossref_primary_10_1016_j_amc_2017_09_020 crossref_primary_10_1016_j_ress_2012_05_004 crossref_primary_10_1016_j_ejor_2011_12_010 |
Cites_doi | 10.1016/0304-4076(94)90036-1 10.1016/0304-4076(90)90093-9 10.1111/j.2517-6161.1977.tb01600.x 10.1239/aap/1103662964 10.1109/18.979322 10.1109/TIT.1982.1056544 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW DKI X2L |
DOI | 10.1016/j.spl.2010.07.002 |
DatabaseName | CrossRef Pascal-Francis RePEc IDEAS RePEc |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1879-2103 |
EndPage | 1639 |
ExternalDocumentID | eeestapro_v_3a80_3ay_3a2010_3ai_3a21_22_3ap_3a1633_1639_htm 23212699 10_1016_j_spl_2010_07_002 S0167715210001896 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1OL 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYJJ ABAOU ABEHJ ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMJ HVGLF HX~ HZ~ H~9 IHE J1W KOM LY1 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDS SES SEW SME SPC SPCBC SSB SSD SSW SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS IQODW SSH 0R 1 8P ABFLS ABPTK ADALY DKI G- HX HZ IPNFZ K M STF X X2L |
ID | FETCH-LOGICAL-c400t-71e88a8afbaa2676a869b3a816b3ade2612981fae730be7cd26d1102b280c6dd3 |
IEDL.DBID | AIKHN |
ISSN | 0167-7152 |
IngestDate | Wed Aug 18 03:10:15 EDT 2021 Mon Jul 21 09:16:53 EDT 2025 Tue Aug 05 11:59:17 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Fri Feb 23 02:34:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | Parameter estimation Vector time series Partially observable failing systems Hidden Markov modeling EM algorithm Markov process Information system Probability theory Time series Continuous time Statistical estimation Statistical method Pseudolikelihood Discrete time Maximum likelihood Likelihood function Autoregressive processes |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-71e88a8afbaa2676a869b3a816b3ade2612981fae730be7cd26d1102b280c6dd3 |
PageCount | 7 |
ParticipantIDs | repec_primary_eeestapro_v_3a80_3ay_3a2010_3ai_3a21_22_3ap_3a1633_1639_htm pascalfrancis_primary_23212699 crossref_primary_10_1016_j_spl_2010_07_002 crossref_citationtrail_10_1016_j_spl_2010_07_002 elsevier_sciencedirect_doi_10_1016_j_spl_2010_07_002 |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationSeriesTitle | Statistics & Probability Letters |
PublicationTitle | Statistics & probability letters |
PublicationYear | 2010 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hamilton (br000015) 1990; 45 Kim (br000020) 1994; 60 Lin, Makis (br000030) 2004; 36 Liporace (br000035) 1982; 28 Bilodeau, Brenner (br000005) 1999 Krishnamurthy, Yin (br000025) 2002; 48 Dempster, Laird, Rubin (br000010) 1977; 39 Lin (10.1016/j.spl.2010.07.002_br000030) 2004; 36 Liporace (10.1016/j.spl.2010.07.002_br000035) 1982; 28 Kim (10.1016/j.spl.2010.07.002_br000020) 1994; 60 Krishnamurthy (10.1016/j.spl.2010.07.002_br000025) 2002; 48 Bilodeau (10.1016/j.spl.2010.07.002_br000005) 1999 Dempster (10.1016/j.spl.2010.07.002_br000010) 1977; 39 Hamilton (10.1016/j.spl.2010.07.002_br000015) 1990; 45 |
References_xml | – volume: 28 start-page: 729 year: 1982 end-page: 734 ident: br000035 article-title: Maximum likelihood estimation for multivariate observations of Markov sources publication-title: IEEE Transactions on Information Theory – year: 1999 ident: br000005 article-title: Theory of Multivariate Statistics – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: br000010 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society – volume: 45 start-page: 39 year: 1990 end-page: 70 ident: br000015 article-title: Analysis of time series subject to changes in regime publication-title: Journal of Econometrics – volume: 48 start-page: 458 year: 2002 end-page: 476 ident: br000025 article-title: Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime publication-title: IEEE Transactions on Information Theory – volume: 36 start-page: 1212 year: 2004 end-page: 1230 ident: br000030 article-title: Filters and parameter estimation for a partially observable system subject to random failure with continuous-range observations publication-title: Advances in Applied Probability – volume: 60 start-page: 1 year: 1994 end-page: 22 ident: br000020 article-title: Dynamic linear models with Markov-switching publication-title: Journal of Econometrics – volume: 60 start-page: 1 year: 1994 ident: 10.1016/j.spl.2010.07.002_br000020 article-title: Dynamic linear models with Markov-switching publication-title: Journal of Econometrics doi: 10.1016/0304-4076(94)90036-1 – volume: 45 start-page: 39 year: 1990 ident: 10.1016/j.spl.2010.07.002_br000015 article-title: Analysis of time series subject to changes in regime publication-title: Journal of Econometrics doi: 10.1016/0304-4076(90)90093-9 – year: 1999 ident: 10.1016/j.spl.2010.07.002_br000005 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.spl.2010.07.002_br000010 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 36 start-page: 1212 year: 2004 ident: 10.1016/j.spl.2010.07.002_br000030 article-title: Filters and parameter estimation for a partially observable system subject to random failure with continuous-range observations publication-title: Advances in Applied Probability doi: 10.1239/aap/1103662964 – volume: 48 start-page: 458 year: 2002 ident: 10.1016/j.spl.2010.07.002_br000025 article-title: Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.979322 – volume: 28 start-page: 729 year: 1982 ident: 10.1016/j.spl.2010.07.002_br000035 article-title: Maximum likelihood estimation for multivariate observations of Markov sources publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1982.1056544 |
SSID | ssj0002551 |
Score | 1.9589549 |
Snippet | A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy... |
SourceID | repec pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1633 |
SubjectTerms | EM algorithm Exact sciences and technology General topics Hidden Markov modeling Inference from stochastic processes; time series analysis Markov processes Mathematics Parameter estimation Parameter estimation Partially observable failing systems Hidden Markov modeling Vector time series EM algorithm Partially observable failing systems Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics Vector time series |
Title | Parameter estimation in a condition-based maintenance model |
URI | https://dx.doi.org/10.1016/j.spl.2010.07.002 http://econpapers.repec.org/article/eeestapro/v_3a80_3ay_3a2010_3ai_3a21-22_3ap_3a1633-1639.htm |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8q5QJCE-NDFLYqh52QQhO7OLY4Vd1Qu6poYkNws-zYEUWlRG1B2mV_-97Ll0CaOOxgJ3LixHm23_s5fv4Z4AsabZXaNAqdYCbsq0yFyjsXpt5llifu3HNa4Dy9EqOb_ve787sWDOu1MORWWen-UqcX2rpK6VXS7OWzWe8nOdAnZH4Ip0glNmCTcSWwaW8OxpPRVaOQETXHNcU3ZagnNws3r1U-rxy8kubnyj_M005uVii0rNztApHs0uc-fWWKLnfhQ4Uhg0FZzI_Q8os92J42BKyrPdgiEFlyMO_DxQ9DLlgowYA4NcrFisFsEZgAR8OucNoKyZy54NEQfwSRcPig2CTnAG4uv_0ajsJq04Qwxe64xg_0UhppMmsME4kwUijLjYwFxs4TY5iScWY8dm3rk9Qx4RACMMtklArn-CG0F08LfwSBI3IvL5XFUSIOwyJL9coRgikmuMiSDkS1rHRaMYrTxhZzXbuOPWgUrybx6ojmuVkHTpsseUmn8d7N_boC9Js2oVHdv5et-6aymhdhyWMmlOrAuKi95oL3KH2DFku_aBRVhNFvDMUzuZnRaawZw2OOAREs1xgpfb9-PP6_Mp7AVuGGUCxq_ATt9fLZf0Z0s7Zd2Dj7E3erNkzHyfXtBFO_TsZ_Afh1-aU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HFREXHFce_Ak1GnTMU3wJKKMy4iggreQNCmO6FicUfDib_e9dFFBPHhIWtqmTV-avC_Nly8AO-i0ZWayKLSc6bAjcxlKZ22YOZubJLX7LqEJzr1L3r3tnN3t343BUT0XhmiVVdtftum-ta6OtCtrtot-v31NBPqU3A_hFCH5OEx2sPpS7dz7-OJ5IGaOa4Fvurwe2vQkr2HxWNG70ubXyi_OabbQQzRZXq51gTj2xRUu--aITuZhrkKQwWGZyQUYc4NFmOk18qvDRZgmCFkqMC_BwZUmAhbaLyBFjXKqYtAfBDrAvrD1lK2QnJkNnjSpR5AEhwv8EjnLcHtyfHPUDaslE8IMK-MIX9AJoYXOjdaMp1wLLk2iRcwxto70wqSIc-2wYhuXZpZxiwCAGSaijFubrMDE4HngViGwJO3lhDTYR8ROWGSoVBMEYJLxhOdpC6LaViqr9MRpWYtHVRPHHhSaV5F5VUSj3KwFu02SohTT-OviTl0A6scXobCx_yvZ1o_Cah6EOY8Zl7IFp770mhPOofU1-iv1ptBUEUbvGPw9E92n3VgxhtsCA-LXRGEk1f3oae1_edyGqe5N70JdnF6er8O0JyT46Y0bMDF6eXWbiHNGZst_x59hrPfN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+in+a+condition-based+maintenance+model&rft.jtitle=Statistics+%26+probability+letters&rft.au=Makis%2C+Viliam&rft.au=Jiang%2C+Rui&rft.au=Kim%2C+Michael+Jong&rft.series=Statistics+%26+Probability+Letters&rft.date=2010-11-01&rft.pub=Elsevier&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=80&rft.issue=21&rft.spage=1633&rft.epage=1639&rft_id=info:doi/10.1016%2Fj.spl.2010.07.002&rft.externalDocID=eeestapro_v_3a80_3ay_3a2010_3ai_3a21_22_3ap_3a1633_1639_htm |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon |