Parameter estimation in a condition-based maintenance model

A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy operational state, or in a failure state. System deterioration is assumed to follow a hidden, three-state continuous time Markov process. Vector autor...

Full description

Saved in:
Bibliographic Details
Published inStatistics & probability letters Vol. 80; no. 21; pp. 1633 - 1639
Main Authors Kim, Michael Jong, Makis, Viliam, Jiang, Rui
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2010
Elsevier
SeriesStatistics & Probability Letters
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy operational state, or in a failure state. System deterioration is assumed to follow a hidden, three-state continuous time Markov process. Vector autoregressive data are obtained through condition monitoring at discrete time points, which gives partial information about the unobservable system state. Two kinds of data histories are considered: histories that end with observable system failure and histories that end when the system is suspended from operation but has not failed. Maximum likelihood estimates of the model parameters are obtained using the EM algorithm and a closed form expression for the pseudo-likelihood function is derived. Numerical results are provided which illustrate the estimation procedure.
AbstractList A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy operational state, or in a failure state. System deterioration is assumed to follow a hidden, three-state continuous time Markov process. Vector autoregressive data are obtained through condition monitoring at discrete time points, which gives partial information about the unobservable system state. Two kinds of data histories are considered: histories that end with observable system failure and histories that end when the system is suspended from operation but has not failed. Maximum likelihood estimates of the model parameters are obtained using the EM algorithm and a closed form expression for the pseudo-likelihood function is derived. Numerical results are provided which illustrate the estimation procedure.
Author Jiang, Rui
Kim, Michael Jong
Makis, Viliam
Author_xml – sequence: 1
  givenname: Michael Jong
  surname: Kim
  fullname: Kim, Michael Jong
– sequence: 2
  givenname: Viliam
  surname: Makis
  fullname: Makis, Viliam
  email: makis@mie.utoronto.ca
– sequence: 3
  givenname: Rui
  surname: Jiang
  fullname: Jiang, Rui
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23212699$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeestapro/v_3a80_3ay_3a2010_3ai_3a21-22_3ap_3a1633-1639.htm$$DView record in RePEc
BookMark eNp9UEtLAzEQDqJgrf4Ab3vxuDXJ2mSXnqT4goI96DnMJrOYsi-SUOi_d9aKBw89zEwGvsfku2Ln_dAjY7eCLwQX6n63iGO7kJx2rhecyzM2E6Wucil4cc5mhNG5Fkt5ya5i3HFCLJdixlZbCNBhwpBhTL6D5Ic-830GmR1656c1ryGiyzrwfcIeeotZNzhsr9lFA23Em985Z5_PTx_r13zz_vK2ftzk9oHzRK5YllBCUwNIpRWUqqoLKIWi7lAqIatSNIC64DVq66RyQnBZy5Jb5VwxZ9ujbsARrRkDnRkOBpEuhjEMZm9IjlM7UE0Z0PDTUxgpaY5UQhWFoVaZr9SR5N1RcoRooW0C_crHP2lZSCFVVRFOHHE2DDEGbP4gZDIFb3aGgjc_plwbipU4-h_H-vSTawrg25PM1ZGJlObeYzDReqS8nQ9ok3GDP8H-BnFLnkk
CODEN SPLTDC
CitedBy_id crossref_primary_10_1002_asmb_1920
crossref_primary_10_1080_0740817X_2013_770188
crossref_primary_10_1155_2012_675830
crossref_primary_10_1177_1077546314554475
crossref_primary_10_1155_2012_347675
crossref_primary_10_1007_s00170_014_6651_4
crossref_primary_10_1007_s10479_011_1013_1
crossref_primary_10_21595_jve_2017_17864
crossref_primary_10_1002_asmb_2849
crossref_primary_10_1016_j_amc_2017_09_020
crossref_primary_10_1016_j_ress_2012_05_004
crossref_primary_10_1016_j_ejor_2011_12_010
Cites_doi 10.1016/0304-4076(94)90036-1
10.1016/0304-4076(90)90093-9
10.1111/j.2517-6161.1977.tb01600.x
10.1239/aap/1103662964
10.1109/18.979322
10.1109/TIT.1982.1056544
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DKI
X2L
DOI 10.1016/j.spl.2010.07.002
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
EndPage 1639
ExternalDocumentID eeestapro_v_3a80_3ay_3a2010_3ai_3a21_22_3ap_3a1633_1639_htm
23212699
10_1016_j_spl_2010_07_002
S0167715210001896
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
IQODW
SSH
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HX
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c400t-71e88a8afbaa2676a869b3a816b3ade2612981fae730be7cd26d1102b280c6dd3
IEDL.DBID AIKHN
ISSN 0167-7152
IngestDate Wed Aug 18 03:10:15 EDT 2021
Mon Jul 21 09:16:53 EDT 2025
Tue Aug 05 11:59:17 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Fri Feb 23 02:34:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords Parameter estimation
Vector time series
Partially observable failing systems
Hidden Markov modeling
EM algorithm
Markov process
Information system
Probability theory
Time series
Continuous time
Statistical estimation
Statistical method
Pseudolikelihood
Discrete time
Maximum likelihood
Likelihood function
Autoregressive processes
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-71e88a8afbaa2676a869b3a816b3ade2612981fae730be7cd26d1102b280c6dd3
PageCount 7
ParticipantIDs repec_primary_eeestapro_v_3a80_3ay_3a2010_3ai_3a21_22_3ap_3a1633_1639_htm
pascalfrancis_primary_23212699
crossref_primary_10_1016_j_spl_2010_07_002
crossref_citationtrail_10_1016_j_spl_2010_07_002
elsevier_sciencedirect_doi_10_1016_j_spl_2010_07_002
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle Statistics & Probability Letters
PublicationTitle Statistics & probability letters
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hamilton (br000015) 1990; 45
Kim (br000020) 1994; 60
Lin, Makis (br000030) 2004; 36
Liporace (br000035) 1982; 28
Bilodeau, Brenner (br000005) 1999
Krishnamurthy, Yin (br000025) 2002; 48
Dempster, Laird, Rubin (br000010) 1977; 39
Lin (10.1016/j.spl.2010.07.002_br000030) 2004; 36
Liporace (10.1016/j.spl.2010.07.002_br000035) 1982; 28
Kim (10.1016/j.spl.2010.07.002_br000020) 1994; 60
Krishnamurthy (10.1016/j.spl.2010.07.002_br000025) 2002; 48
Bilodeau (10.1016/j.spl.2010.07.002_br000005) 1999
Dempster (10.1016/j.spl.2010.07.002_br000010) 1977; 39
Hamilton (10.1016/j.spl.2010.07.002_br000015) 1990; 45
References_xml – volume: 28
  start-page: 729
  year: 1982
  end-page: 734
  ident: br000035
  article-title: Maximum likelihood estimation for multivariate observations of Markov sources
  publication-title: IEEE Transactions on Information Theory
– year: 1999
  ident: br000005
  article-title: Theory of Multivariate Statistics
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: br000010
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society
– volume: 45
  start-page: 39
  year: 1990
  end-page: 70
  ident: br000015
  article-title: Analysis of time series subject to changes in regime
  publication-title: Journal of Econometrics
– volume: 48
  start-page: 458
  year: 2002
  end-page: 476
  ident: br000025
  article-title: Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
  publication-title: IEEE Transactions on Information Theory
– volume: 36
  start-page: 1212
  year: 2004
  end-page: 1230
  ident: br000030
  article-title: Filters and parameter estimation for a partially observable system subject to random failure with continuous-range observations
  publication-title: Advances in Applied Probability
– volume: 60
  start-page: 1
  year: 1994
  end-page: 22
  ident: br000020
  article-title: Dynamic linear models with Markov-switching
  publication-title: Journal of Econometrics
– volume: 60
  start-page: 1
  year: 1994
  ident: 10.1016/j.spl.2010.07.002_br000020
  article-title: Dynamic linear models with Markov-switching
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(94)90036-1
– volume: 45
  start-page: 39
  year: 1990
  ident: 10.1016/j.spl.2010.07.002_br000015
  article-title: Analysis of time series subject to changes in regime
  publication-title: Journal of Econometrics
  doi: 10.1016/0304-4076(90)90093-9
– year: 1999
  ident: 10.1016/j.spl.2010.07.002_br000005
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.spl.2010.07.002_br000010
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 36
  start-page: 1212
  year: 2004
  ident: 10.1016/j.spl.2010.07.002_br000030
  article-title: Filters and parameter estimation for a partially observable system subject to random failure with continuous-range observations
  publication-title: Advances in Applied Probability
  doi: 10.1239/aap/1103662964
– volume: 48
  start-page: 458
  year: 2002
  ident: 10.1016/j.spl.2010.07.002_br000025
  article-title: Recursive algorithms for estimation of hidden Markov models and autoregressive models with Markov regime
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.979322
– volume: 28
  start-page: 729
  year: 1982
  ident: 10.1016/j.spl.2010.07.002_br000035
  article-title: Maximum likelihood estimation for multivariate observations of Markov sources
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056544
SSID ssj0002551
Score 1.9589549
Snippet A parameter estimation problem for a condition-based maintenance model is considered. We model a failing system that can be in a healthy or unhealthy...
SourceID repec
pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1633
SubjectTerms EM algorithm
Exact sciences and technology
General topics
Hidden Markov modeling
Inference from stochastic processes; time series analysis
Markov processes
Mathematics
Parameter estimation
Parameter estimation Partially observable failing systems Hidden Markov modeling Vector time series EM algorithm
Partially observable failing systems
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Vector time series
Title Parameter estimation in a condition-based maintenance model
URI https://dx.doi.org/10.1016/j.spl.2010.07.002
http://econpapers.repec.org/article/eeestapro/v_3a80_3ay_3a2010_3ai_3a21-22_3ap_3a1633-1639.htm
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8q5QJCE-NDFLYqh52QQhO7OLY4Vd1Qu6poYkNws-zYEUWlRG1B2mV_-97Ll0CaOOxgJ3LixHm23_s5fv4Z4AsabZXaNAqdYCbsq0yFyjsXpt5llifu3HNa4Dy9EqOb_ve787sWDOu1MORWWen-UqcX2rpK6VXS7OWzWe8nOdAnZH4Ip0glNmCTcSWwaW8OxpPRVaOQETXHNcU3ZagnNws3r1U-rxy8kubnyj_M005uVii0rNztApHs0uc-fWWKLnfhQ4Uhg0FZzI_Q8os92J42BKyrPdgiEFlyMO_DxQ9DLlgowYA4NcrFisFsEZgAR8OucNoKyZy54NEQfwSRcPig2CTnAG4uv_0ajsJq04Qwxe64xg_0UhppMmsME4kwUijLjYwFxs4TY5iScWY8dm3rk9Qx4RACMMtklArn-CG0F08LfwSBI3IvL5XFUSIOwyJL9coRgikmuMiSDkS1rHRaMYrTxhZzXbuOPWgUrybx6ojmuVkHTpsseUmn8d7N_boC9Js2oVHdv5et-6aymhdhyWMmlOrAuKi95oL3KH2DFku_aBRVhNFvDMUzuZnRaawZw2OOAREs1xgpfb9-PP6_Mp7AVuGGUCxq_ATt9fLZf0Z0s7Zd2Dj7E3erNkzHyfXtBFO_TsZ_Afh1-aU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HFREXHFce_Ak1GnTMU3wJKKMy4iggreQNCmO6FicUfDib_e9dFFBPHhIWtqmTV-avC_Nly8AO-i0ZWayKLSc6bAjcxlKZ22YOZubJLX7LqEJzr1L3r3tnN3t343BUT0XhmiVVdtftum-ta6OtCtrtot-v31NBPqU3A_hFCH5OEx2sPpS7dz7-OJ5IGaOa4Fvurwe2vQkr2HxWNG70ubXyi_OabbQQzRZXq51gTj2xRUu--aITuZhrkKQwWGZyQUYc4NFmOk18qvDRZgmCFkqMC_BwZUmAhbaLyBFjXKqYtAfBDrAvrD1lK2QnJkNnjSpR5AEhwv8EjnLcHtyfHPUDaslE8IMK-MIX9AJoYXOjdaMp1wLLk2iRcwxto70wqSIc-2wYhuXZpZxiwCAGSaijFubrMDE4HngViGwJO3lhDTYR8ROWGSoVBMEYJLxhOdpC6LaViqr9MRpWYtHVRPHHhSaV5F5VUSj3KwFu02SohTT-OviTl0A6scXobCx_yvZ1o_Cah6EOY8Zl7IFp770mhPOofU1-iv1ptBUEUbvGPw9E92n3VgxhtsCA-LXRGEk1f3oae1_edyGqe5N70JdnF6er8O0JyT46Y0bMDF6eXWbiHNGZst_x59hrPfN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+in+a+condition-based+maintenance+model&rft.jtitle=Statistics+%26+probability+letters&rft.au=Makis%2C+Viliam&rft.au=Jiang%2C+Rui&rft.au=Kim%2C+Michael+Jong&rft.series=Statistics+%26+Probability+Letters&rft.date=2010-11-01&rft.pub=Elsevier&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=80&rft.issue=21&rft.spage=1633&rft.epage=1639&rft_id=info:doi/10.1016%2Fj.spl.2010.07.002&rft.externalDocID=eeestapro_v_3a80_3ay_3a2010_3ai_3a21_22_3ap_3a1633_1639_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon