CM-YOLO: Typical Object Detection Method in Remote Sensing Cloud and Mist Scene Images

Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport traffic management. However, the degradation and loss of features caused by the obstruction of cloud and mist elements still pose a challenging p...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 1; p. 125
Main Authors Hu, Jianming, Wei, Yangyu, Chen, Wenbin, Zhi, Xiyang, Zhang, Wei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport traffic management. However, the degradation and loss of features caused by the obstruction of cloud and mist elements still pose a challenging problem for this technology. To enhance object detection performance in adverse weather conditions, we propose a novel target detection method named CM-YOLO that integrates background suppression and semantic context mining, which can achieve accurate detection of targets under different cloud and mist conditions. Specifically, a component-decoupling-based background suppression (CDBS) module is proposed, which extracts cloud and mist components based on characteristic priors and effectively enhances the contrast between the target and the environmental background through a background subtraction strategy. Moreover, a local-global semantic joint mining (LGSJM) module is utilized, which combines convolutional neural networks (CNNs) and hierarchical selective attention to comprehensively mine global and local semantics, achieving target feature enhancement. Finally, the experimental results on multiple public datasets indicate that the proposed method realizes state-of-the-art performance compared to six advanced detectors, with mAP, precision, and recall indicators reaching 85.5%, 89.4%, and 77.9%, respectively.
AbstractList Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport traffic management. However, the degradation and loss of features caused by the obstruction of cloud and mist elements still pose a challenging problem for this technology. To enhance object detection performance in adverse weather conditions, we propose a novel target detection method named CM-YOLO that integrates background suppression and semantic context mining, which can achieve accurate detection of targets under different cloud and mist conditions. Specifically, a component-decoupling-based background suppression (CDBS) module is proposed, which extracts cloud and mist components based on characteristic priors and effectively enhances the contrast between the target and the environmental background through a background subtraction strategy. Moreover, a local-global semantic joint mining (LGSJM) module is utilized, which combines convolutional neural networks (CNNs) and hierarchical selective attention to comprehensively mine global and local semantics, achieving target feature enhancement. Finally, the experimental results on multiple public datasets indicate that the proposed method realizes state-of-the-art performance compared to six advanced detectors, with mAP, precision, and recall indicators reaching 85.5%, 89.4%, and 77.9%, respectively.
Audience Academic
Author Chen, Wenbin
Hu, Jianming
Wei, Yangyu
Zhi, Xiyang
Zhang, Wei
Author_xml – sequence: 1
  givenname: Jianming
  orcidid: 0000-0002-4418-605X
  surname: Hu
  fullname: Hu, Jianming
– sequence: 2
  givenname: Yangyu
  surname: Wei
  fullname: Wei, Yangyu
– sequence: 3
  givenname: Wenbin
  surname: Chen
  fullname: Chen, Wenbin
– sequence: 4
  givenname: Xiyang
  orcidid: 0000-0001-5504-8480
  surname: Zhi
  fullname: Zhi, Xiyang
– sequence: 5
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
BookMark eNptUU2LFDEQDbKC67oXf0HAm9Br0vnqeFvGVQdmGHBXwVOTTipjhp5kTDKH_fdmHFERqw5VFK9ePeo9RxcxRUDoJSU3jGnyJheqCCW0F0_QZU9U3_Fe9xd_9c_QdSk70oIxqgm_RF8W6-7rZrV5ix8eD8GaGW-mHdiK30FtJaSI11C_JYdDxJ9gnyrge4glxC1ezOnosIkOr0Op-N5CBLzcmy2UF-ipN3OB61_1Cn1-f_ew-NitNh-Wi9tVZzkhtZO-n7QE7YfJcuoGIdUgB6GcUEwJO_iJaANEUq2VgEFYDtIRR5XhPdeesSu0PPO6ZHbjIYe9yY9jMmH8OUh5O5pcg51hVJ5r4f0kqNTcu2Ew7VteGK7k5J1TjevVmeuQ0_cjlDru0jHHJn9kVLCmS0jeUDdn1NY00hB9qtnYlg72wTZDfGjz26FnTBAtTxJfnxdsTqVk8L9lUjKefBv_-NbA5B-wDdWcbGhXwvy_lR8UoZiC
CitedBy_id crossref_primary_10_3390_rs17050733
crossref_primary_10_3390_rs17060972
crossref_primary_10_3390_bioengineering12030274
Cites_doi 10.1109/TGRS.2023.3335484
10.1109/CSNT.2014.169
10.1016/j.eswa.2022.119132
10.3390/rs14081850
10.3390/rs11030286
10.1109/CVPR52688.2022.00475
10.3390/rs16091567
10.7717/peerj-cs.1331
10.1109/JIOT.2023.3317629
10.1109/JSTARS.2022.3170361
10.1109/TGRS.2024.3509874
10.1109/CVPR52733.2024.01605
10.1016/j.ins.2016.02.034
10.1109/TGRS.2022.3225843
10.1109/TPAMI.2016.2577031
10.1109/ACCESS.2022.3140876
10.1109/TGRS.2020.3014195
10.1109/CVPR.2016.91
10.1109/ASIANComNet63184.2024.10811086
10.1016/j.compag.2022.107057
10.1109/ACCESS.2020.2991439
10.3390/rs15123027
10.3390/rs14153731
10.1155/2023/9953198
10.1109/CVPR52729.2023.00995
10.1145/3507623.3507628
10.3390/rs16244715
10.1109/IGARSS46834.2022.9884407
10.3390/rs12030458
10.1109/WACV48630.2021.00120
10.3390/rs13163059
10.3233/MGS-200330
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs17010125
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7f495ffb51694fd88a170f5a476bfdd7
A823350963
10_3390_rs17010125
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c400t-6f2b96e9f8bc41d856786857d57375c8fb09ae0619975e85c4e6d0d17a4249f33
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:21:35 EDT 2025
Fri Jul 25 11:43:40 EDT 2025
Tue Jun 10 20:54:10 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Tue Jul 01 01:33:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-6f2b96e9f8bc41d856786857d57375c8fb09ae0619975e85c4e6d0d17a4249f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4418-605X
0000-0001-5504-8480
OpenAccessLink https://www.proquest.com/docview/3153685564?pq-origsite=%requestingapplication%
PQID 3153685564
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7f495ffb51694fd88a170f5a476bfdd7
proquest_journals_3153685564
gale_infotracacademiconefile_A823350963
crossref_primary_10_3390_rs17010125
crossref_citationtrail_10_3390_rs17010125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_26) 2023; 214
Du (ref_9) 2024; 11
ref_14
ref_36
ref_13
ref_35
Long (ref_15) 2023; 2023
ref_34
ref_33
ref_10
Kahar (ref_16) 2022; 15
Wang (ref_24) 2023; 61
ref_32
ref_30
ref_19
Zheng (ref_18) 2022; 60
Wang (ref_22) 2023; 72
ref_17
Li (ref_31) 2023; 9
ref_39
ref_38
You (ref_25) 2021; 59
Xu (ref_11) 2024; 62
Karim (ref_2) 2020; 16
Qu (ref_28) 2020; 8
ref_21
Ren (ref_37) 2017; 39
ref_40
Turcsany (ref_12) 2016; 349
ref_3
Hu (ref_1) 2024; 62
ref_29
ref_27
Wang (ref_8) 2022; 198
Ye (ref_23) 2022; 71
ref_5
ref_4
Luo (ref_6) 2022; 10
ref_7
Yuan (ref_20) 2024; 62
References_xml – volume: 61
  start-page: 1
  year: 2023
  ident: ref_24
  article-title: Automatic SAR Ship Detection Based on Multifeature Fusion Network in Spatial and Frequency Domains
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3335484
– volume: 62
  start-page: 1
  year: 2024
  ident: ref_11
  article-title: Multimodal and Multiresolution Data Fusion for High-Resolution Cloud Removal: A Novel Baseline and Benchmark
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_13
  doi: 10.1109/CSNT.2014.169
– volume: 214
  start-page: 119132
  year: 2023
  ident: ref_26
  article-title: Info-FPN: An Informative Feature Pyramid Network for Object Detection in Remote Sensing Images
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2022.119132
– ident: ref_33
  doi: 10.3390/rs14081850
– ident: ref_32
  doi: 10.3390/rs11030286
– ident: ref_40
  doi: 10.1109/CVPR52688.2022.00475
– ident: ref_19
  doi: 10.3390/rs16091567
– volume: 9
  start-page: e1331
  year: 2023
  ident: ref_31
  article-title: Real-Time Airplane Detection Using Multi-Dimensional Attention and Feature Fusion
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1331
– ident: ref_39
– volume: 72
  start-page: 1
  year: 2023
  ident: ref_22
  article-title: R-YOLO: A Robust Object Detector in Adverse Weather
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 62
  start-page: 1
  year: 2024
  ident: ref_20
  article-title: Bi-Branch Multiscale Feature Joint Network for ORSI Salient Object Detection in Adverse Weather Conditions
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 7664
  year: 2024
  ident: ref_9
  article-title: YOLO-Based Semantic Communication With Generative AI-Aided Resource Allocation for Digital Twins Construction
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3317629
– ident: ref_14
– volume: 15
  start-page: 3552
  year: 2022
  ident: ref_16
  article-title: Ship Detection in Complex Environment Using SAR Time Series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3170361
– ident: ref_35
– volume: 62
  start-page: 1
  year: 2024
  ident: ref_1
  article-title: Dataset and Benchmark for Ship Detection in Complex Optical Remote Sensing Image
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3509874
– ident: ref_36
  doi: 10.1109/CVPR52733.2024.01605
– volume: 349
  start-page: 229
  year: 2016
  ident: ref_12
  article-title: Local receptive field constrained deep networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.02.034
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_18
  article-title: Dehaze-AGGAN: Unpaired Remote Sensing Image Dehazing Using Enhanced Attention-Guide Generative Adversarial Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3225843
– volume: 39
  start-page: 1137
  year: 2017
  ident: ref_37
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 10
  start-page: 5184
  year: 2022
  ident: ref_6
  article-title: Aircraft Target Detection in Remote Sensing Images Based on Improved YOLOv5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3140876
– volume: 59
  start-page: 6121
  year: 2021
  ident: ref_25
  article-title: OPD-Net: Prow Detection Based on Feature Enhancement and Improved Regression Model in Optical Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3014195
– ident: ref_5
  doi: 10.1109/CVPR.2016.91
– ident: ref_7
  doi: 10.1109/ASIANComNet63184.2024.10811086
– volume: 198
  start-page: 107057
  year: 2022
  ident: ref_8
  article-title: DSE-YOLO: Detail Semantics Enhancement YOLO for Multi-Stage Strawberry Detection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107057
– volume: 8
  start-page: 82832
  year: 2020
  ident: ref_28
  article-title: Dilated Convolution and Feature Fusion SSD Network for Small Object Detection in Remote Sensing Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991439
– ident: ref_29
  doi: 10.3390/rs15123027
– ident: ref_10
  doi: 10.3390/rs14153731
– ident: ref_38
– volume: 2023
  start-page: 9953198
  year: 2023
  ident: ref_15
  article-title: Bishift Networks for Thick Cloud Removal with Multitemporal Remote Sensing Images
  publication-title: Int. J. Intell. Syst.
  doi: 10.1155/2023/9953198
– ident: ref_34
  doi: 10.1109/CVPR52729.2023.00995
– ident: ref_17
  doi: 10.1145/3507623.3507628
– ident: ref_4
  doi: 10.3390/rs16244715
– ident: ref_21
  doi: 10.1109/IGARSS46834.2022.9884407
– ident: ref_3
  doi: 10.3390/rs12030458
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_23
  article-title: Dense and Small Object Detection in UAV-Vision Based on a Global-Local Feature Enhanced Network
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_27
  doi: 10.1109/WACV48630.2021.00120
– ident: ref_30
  doi: 10.3390/rs13163059
– volume: 16
  start-page: 227
  year: 2020
  ident: ref_2
  article-title: A Brief Review and Challenges of Object Detection in Optical Remote Sensing Imagery
  publication-title: Multiagent Grid Syst.
  doi: 10.3233/MGS-200330
SSID ssj0000331904
Score 2.4628463
Snippet Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 125
SubjectTerms Accuracy
Aircraft
aircraft and ship detection
Artificial neural networks
background suppression
cloud and mist interferences
Clouds
Decoupling
Deep learning
Detectors
False alarms
Marine technology
Methods
Mines and mineral resources
Mining
Mist
Modules
Neural networks
Object recognition
optical image
Remote monitoring
Remote sensing
Safety management
semantic joint mining
Semantics
Target detection
Telematics
Weather
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iRS_iiuNGQEE8FNvJWm_jqKg4Drihp5BVBa3izBz8976kdQPFi9eSwuv3JW9Jk-8htEFzbbXUPPNU2wwins60DXmmtfAmSM3KEAvF3ik_vKTH1-z6S6uveCaslgeugdsWAVL4EEz8n0ODk1IXIg9MU8FNcC7dI4eY96WYSj6YwNTKaa1HSqCu334ZROVxcMfsWwRKQv2_ueMUYw6m0VSTHOJObdQMGvPVLJpo-pTfvc6hq24vu-mf9Hcw1I8RXtw3cSMF7_lhOlNV4V5qCY3vK3zmgQaPz-MR9eoWdx-eRg7ryuEeUIvPLXg5fPQI_mQwjy4P9i-6h1nTGSGzsOaGGQ9tU3JfBmksLZxkEHK4ZMIxQQSzMpi81B5CdVkK5iWz1HOXu0JoCuVWIGQBjVdPlV9EmBdeCMjZiCaWcmmkLAjPA4e3hbXOtNDWO1rKNrLhsXvFg4LyISKrPpFtofWPsc-1WMaPo3Yj6B8josB1egC0q4Z29RftLbQZKVNxGYI5Vje3CeCjoqCV6sg2IVHahrTQyjurqlmfA0XA0QNgjNOl_7BmGU22Y1_gtDWzgsaHLyO_CsnK0KylefkGVXvljA
  priority: 102
  providerName: Directory of Open Access Journals
Title CM-YOLO: Typical Object Detection Method in Remote Sensing Cloud and Mist Scene Images
URI https://www.proquest.com/docview/3153685564
https://doaj.org/article/7f495ffb51694fd88a170f5a476bfdd7
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5AAXxFMESrQSSIjDqk72aS4oTRsKqhvUUFRO1j5bpOKUJD3w75l1NqmQgKu9luyZnZn9ZtffB_CaF8YZbSQN3DiKFc9Q42JBjVHBRm1EGRNQrE7k0Rn_dC7Oc8NtmY9VbnJim6j93KUe-R7D0JRaCMnfX_-kSTUq7a5mCY0d6GIK1roD3f3Dk8-n2y5LwXCKFXzNS8oQ3-8tlomBHNOy-KMStYT9_0rLba2ZPID7eZFIRmuvPoQ7oXkEd7Ne-eWvx_B1XNFv0-PpO4I4MpmZTG1qqJCDsGrPVjWkaqWhyfeGnAZ0RyCzdFS9uSDjq_mNJ6bxpEIXk5nDbEc-_sC8snwCZ5PDL-MjmhUSqMPYW1EZh7aUoYzaOj7wWmDpQSMpLxRTwuloi9IELNllqUTQwvEgfeEHynCEXZGxp9Bp5k14BkQOglK4dmOGOS611XrAZBElPq2c87YHbzfWql2mD08qFlc1wohk2frWsj14tR17vSbN-Ouo_WT07YhEdN1emC8u6hw3tYqI4GK0aTuPR6-1wcejMFxJG71XPXiTXFancMTXcSb_VYAflYit6pEeMpYoblgPdjderXOcLuvbWfX8_7dfwL1hUv5tmy-70FktbsJLXI6sbB929ORDH7qjg-p41s8zsN-C-98J7OE7
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcigXxFMEClgChDisulk_FwmhkhISmjQSbVE5GT9LpXZTklSof4rfyMxmNxUScOt1ba92Zz7PeMb2fIS84Ln1VluZRW59Bh7PZtanPLNWRZe0FWXCQHG8JweH_NOROFojv9q7MHissrWJtaEOU4858i0GU1NqISR_d_4jQ9Yo3F1tKTSWsNiNlz8hZJu_He6Afl8WRf_DQW-QNawCmQe8LjKZClfKWCbtPO8GLcBcw4tVEIop4XVyeWkjuLmyVCJq4XmUIQ9dZTmEKgkToGDyb3AGnhxvpvc_rnI6OQNA53xZBRXa863ZHOudgxMQf_i9mh7gX06g9mz92-RWsySl20sM3SFrsbpLNhp29O-X98iX3jj7OhlN3lCIWlGpdOIwfUN34qI-yVXRcU1ETU8q-jmC8iPdx4Px1THtnU4vArVVoGMAFN33YFvp8Ays2Pw-ObwWyT0g69W0ig8Jld2oFKwUmWWeS-207jKZJwmjlffBdcjrVlrGN8XKkTPj1EDQgpI1V5LtkOervufLEh1_7fUehb7qgWW16wfT2bFpZqlRCeLFlBxuHvIUtLYwPAnLlXQpBNUhr1BlBic_fI63zR0G-Ckso2W2dcEYFtRhHbLZatU0VmFurjD86P_Nz8jG4GA8MqPh3u5jcrNAzuE67bNJ1hezi_gEFkIL97RGHyXfrhvuvwH2eRf_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqQRcEE8RKHQlQIiDFcf7NBJCbdKooU1StRSVk9lnQSpOSVKh_jV-XWccOxUScOvV3pXtmc8zO7Oz8xHyiqfGGW1kErhxCXg8kxgX08QYFWzURuQRA8XRWO4e848n4mSN_G7OwmBZZWMTK0Ptpw5z5B0Gv6bUQkjeiXVZxEF_8OH8Z4IMUrjT2tBpLCGyFy5_Qfg2fz_sg65fZ9lg51NvN6kZBhIH2F0kMmY2lyGP2jre9VqA6YaHKC8UU8LpaNPcBHB5ea5E0MLxIH3qu8pwCFsiJkPB_K8rjIpaZH17Z3xwuMrwpAzgnfJlT1TG8rQzm2P3c3AJ4g8vWJEF_MslVH5ucI_crReodGuJqPtkLZQPyO2aK_3b5UPyuTdKvkz2J-8oxLCoYjqxmMyh_bCo6rpKOqpoqen3kh4GgEKgR1gmX57S3tn0wlNTejoCeNEjB5aWDn-ATZs_Isc3IrvHpFVOy_CEUNkNSsG6kRnmuNRW6y6TaZQwWznnbZu8baRVuLp1OTJonBUQwqBki2vJtsnL1djzZcOOv47aRqGvRmCT7erCdHZa1P9soSJEjzFa3Erk0WttYHoUhitpo_eqTd6gygo0BfA6ztQnGuCjsKlWsaUzxrC9DmuTjUarRW0j5sU1op_-__YmuQVQL_aH471n5E6GBMRVDmiDtBazi_AcVkUL-6KGHyVfbxrxV8goHZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CM-YOLO%3A+Typical+Object+Detection+Method+in+Remote+Sensing+Cloud+and+Mist+Scene+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Jianming&rft.au=Wei%2C+Yangyu&rft.au=Chen%2C+Wenbin&rft.au=Zhi%2C+Xiyang&rft.date=2025-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=17&rft.issue=1&rft.spage=125&rft_id=info:doi/10.3390%2Frs17010125&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs17010125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon