CM-YOLO: Typical Object Detection Method in Remote Sensing Cloud and Mist Scene Images
Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport traffic management. However, the degradation and loss of features caused by the obstruction of cloud and mist elements still pose a challenging p...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 1; p. 125 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport traffic management. However, the degradation and loss of features caused by the obstruction of cloud and mist elements still pose a challenging problem for this technology. To enhance object detection performance in adverse weather conditions, we propose a novel target detection method named CM-YOLO that integrates background suppression and semantic context mining, which can achieve accurate detection of targets under different cloud and mist conditions. Specifically, a component-decoupling-based background suppression (CDBS) module is proposed, which extracts cloud and mist components based on characteristic priors and effectively enhances the contrast between the target and the environmental background through a background subtraction strategy. Moreover, a local-global semantic joint mining (LGSJM) module is utilized, which combines convolutional neural networks (CNNs) and hierarchical selective attention to comprehensively mine global and local semantics, achieving target feature enhancement. Finally, the experimental results on multiple public datasets indicate that the proposed method realizes state-of-the-art performance compared to six advanced detectors, with mAP, precision, and recall indicators reaching 85.5%, 89.4%, and 77.9%, respectively. |
---|---|
AbstractList | Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport traffic management. However, the degradation and loss of features caused by the obstruction of cloud and mist elements still pose a challenging problem for this technology. To enhance object detection performance in adverse weather conditions, we propose a novel target detection method named CM-YOLO that integrates background suppression and semantic context mining, which can achieve accurate detection of targets under different cloud and mist conditions. Specifically, a component-decoupling-based background suppression (CDBS) module is proposed, which extracts cloud and mist components based on characteristic priors and effectively enhances the contrast between the target and the environmental background through a background subtraction strategy. Moreover, a local-global semantic joint mining (LGSJM) module is utilized, which combines convolutional neural networks (CNNs) and hierarchical selective attention to comprehensively mine global and local semantics, achieving target feature enhancement. Finally, the experimental results on multiple public datasets indicate that the proposed method realizes state-of-the-art performance compared to six advanced detectors, with mAP, precision, and recall indicators reaching 85.5%, 89.4%, and 77.9%, respectively. |
Audience | Academic |
Author | Chen, Wenbin Hu, Jianming Wei, Yangyu Zhi, Xiyang Zhang, Wei |
Author_xml | – sequence: 1 givenname: Jianming orcidid: 0000-0002-4418-605X surname: Hu fullname: Hu, Jianming – sequence: 2 givenname: Yangyu surname: Wei fullname: Wei, Yangyu – sequence: 3 givenname: Wenbin surname: Chen fullname: Chen, Wenbin – sequence: 4 givenname: Xiyang orcidid: 0000-0001-5504-8480 surname: Zhi fullname: Zhi, Xiyang – sequence: 5 givenname: Wei surname: Zhang fullname: Zhang, Wei |
BookMark | eNptUU2LFDEQDbKC67oXf0HAm9Br0vnqeFvGVQdmGHBXwVOTTipjhp5kTDKH_fdmHFERqw5VFK9ePeo9RxcxRUDoJSU3jGnyJheqCCW0F0_QZU9U3_Fe9xd_9c_QdSk70oIxqgm_RF8W6-7rZrV5ix8eD8GaGW-mHdiK30FtJaSI11C_JYdDxJ9gnyrge4glxC1ezOnosIkOr0Op-N5CBLzcmy2UF-ipN3OB61_1Cn1-f_ew-NitNh-Wi9tVZzkhtZO-n7QE7YfJcuoGIdUgB6GcUEwJO_iJaANEUq2VgEFYDtIRR5XhPdeesSu0PPO6ZHbjIYe9yY9jMmH8OUh5O5pcg51hVJ5r4f0kqNTcu2Ew7VteGK7k5J1TjevVmeuQ0_cjlDru0jHHJn9kVLCmS0jeUDdn1NY00hB9qtnYlg72wTZDfGjz26FnTBAtTxJfnxdsTqVk8L9lUjKefBv_-NbA5B-wDdWcbGhXwvy_lR8UoZiC |
CitedBy_id | crossref_primary_10_3390_rs17050733 crossref_primary_10_3390_rs17060972 crossref_primary_10_3390_bioengineering12030274 |
Cites_doi | 10.1109/TGRS.2023.3335484 10.1109/CSNT.2014.169 10.1016/j.eswa.2022.119132 10.3390/rs14081850 10.3390/rs11030286 10.1109/CVPR52688.2022.00475 10.3390/rs16091567 10.7717/peerj-cs.1331 10.1109/JIOT.2023.3317629 10.1109/JSTARS.2022.3170361 10.1109/TGRS.2024.3509874 10.1109/CVPR52733.2024.01605 10.1016/j.ins.2016.02.034 10.1109/TGRS.2022.3225843 10.1109/TPAMI.2016.2577031 10.1109/ACCESS.2022.3140876 10.1109/TGRS.2020.3014195 10.1109/CVPR.2016.91 10.1109/ASIANComNet63184.2024.10811086 10.1016/j.compag.2022.107057 10.1109/ACCESS.2020.2991439 10.3390/rs15123027 10.3390/rs14153731 10.1155/2023/9953198 10.1109/CVPR52729.2023.00995 10.1145/3507623.3507628 10.3390/rs16244715 10.1109/IGARSS46834.2022.9884407 10.3390/rs12030458 10.1109/WACV48630.2021.00120 10.3390/rs13163059 10.3233/MGS-200330 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs17010125 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7f495ffb51694fd88a170f5a476bfdd7 A823350963 10_3390_rs17010125 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c400t-6f2b96e9f8bc41d856786857d57375c8fb09ae0619975e85c4e6d0d17a4249f33 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:21:35 EDT 2025 Fri Jul 25 11:43:40 EDT 2025 Tue Jun 10 20:54:10 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Tue Jul 01 01:33:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-6f2b96e9f8bc41d856786857d57375c8fb09ae0619975e85c4e6d0d17a4249f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4418-605X 0000-0001-5504-8480 |
OpenAccessLink | https://www.proquest.com/docview/3153685564?pq-origsite=%requestingapplication% |
PQID | 3153685564 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f495ffb51694fd88a170f5a476bfdd7 proquest_journals_3153685564 gale_infotracacademiconefile_A823350963 crossref_primary_10_3390_rs17010125 crossref_citationtrail_10_3390_rs17010125 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_26) 2023; 214 Du (ref_9) 2024; 11 ref_14 ref_36 ref_13 ref_35 Long (ref_15) 2023; 2023 ref_34 ref_33 ref_10 Kahar (ref_16) 2022; 15 Wang (ref_24) 2023; 61 ref_32 ref_30 ref_19 Zheng (ref_18) 2022; 60 Wang (ref_22) 2023; 72 ref_17 Li (ref_31) 2023; 9 ref_39 ref_38 You (ref_25) 2021; 59 Xu (ref_11) 2024; 62 Karim (ref_2) 2020; 16 Qu (ref_28) 2020; 8 ref_21 Ren (ref_37) 2017; 39 ref_40 Turcsany (ref_12) 2016; 349 ref_3 Hu (ref_1) 2024; 62 ref_29 ref_27 Wang (ref_8) 2022; 198 Ye (ref_23) 2022; 71 ref_5 ref_4 Luo (ref_6) 2022; 10 ref_7 Yuan (ref_20) 2024; 62 |
References_xml | – volume: 61 start-page: 1 year: 2023 ident: ref_24 article-title: Automatic SAR Ship Detection Based on Multifeature Fusion Network in Spatial and Frequency Domains publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2023.3335484 – volume: 62 start-page: 1 year: 2024 ident: ref_11 article-title: Multimodal and Multiresolution Data Fusion for High-Resolution Cloud Removal: A Novel Baseline and Benchmark publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_13 doi: 10.1109/CSNT.2014.169 – volume: 214 start-page: 119132 year: 2023 ident: ref_26 article-title: Info-FPN: An Informative Feature Pyramid Network for Object Detection in Remote Sensing Images publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2022.119132 – ident: ref_33 doi: 10.3390/rs14081850 – ident: ref_32 doi: 10.3390/rs11030286 – ident: ref_40 doi: 10.1109/CVPR52688.2022.00475 – ident: ref_19 doi: 10.3390/rs16091567 – volume: 9 start-page: e1331 year: 2023 ident: ref_31 article-title: Real-Time Airplane Detection Using Multi-Dimensional Attention and Feature Fusion publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1331 – ident: ref_39 – volume: 72 start-page: 1 year: 2023 ident: ref_22 article-title: R-YOLO: A Robust Object Detector in Adverse Weather publication-title: IEEE Trans. Instrum. Meas. – volume: 62 start-page: 1 year: 2024 ident: ref_20 article-title: Bi-Branch Multiscale Feature Joint Network for ORSI Salient Object Detection in Adverse Weather Conditions publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 start-page: 7664 year: 2024 ident: ref_9 article-title: YOLO-Based Semantic Communication With Generative AI-Aided Resource Allocation for Digital Twins Construction publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3317629 – ident: ref_14 – volume: 15 start-page: 3552 year: 2022 ident: ref_16 article-title: Ship Detection in Complex Environment Using SAR Time Series publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3170361 – ident: ref_35 – volume: 62 start-page: 1 year: 2024 ident: ref_1 article-title: Dataset and Benchmark for Ship Detection in Complex Optical Remote Sensing Image publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3509874 – ident: ref_36 doi: 10.1109/CVPR52733.2024.01605 – volume: 349 start-page: 229 year: 2016 ident: ref_12 article-title: Local receptive field constrained deep networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.02.034 – volume: 60 start-page: 1 year: 2022 ident: ref_18 article-title: Dehaze-AGGAN: Unpaired Remote Sensing Image Dehazing Using Enhanced Attention-Guide Generative Adversarial Networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3225843 – volume: 39 start-page: 1137 year: 2017 ident: ref_37 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 10 start-page: 5184 year: 2022 ident: ref_6 article-title: Aircraft Target Detection in Remote Sensing Images Based on Improved YOLOv5 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3140876 – volume: 59 start-page: 6121 year: 2021 ident: ref_25 article-title: OPD-Net: Prow Detection Based on Feature Enhancement and Improved Regression Model in Optical Remote Sensing Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3014195 – ident: ref_5 doi: 10.1109/CVPR.2016.91 – ident: ref_7 doi: 10.1109/ASIANComNet63184.2024.10811086 – volume: 198 start-page: 107057 year: 2022 ident: ref_8 article-title: DSE-YOLO: Detail Semantics Enhancement YOLO for Multi-Stage Strawberry Detection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107057 – volume: 8 start-page: 82832 year: 2020 ident: ref_28 article-title: Dilated Convolution and Feature Fusion SSD Network for Small Object Detection in Remote Sensing Images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991439 – ident: ref_29 doi: 10.3390/rs15123027 – ident: ref_10 doi: 10.3390/rs14153731 – ident: ref_38 – volume: 2023 start-page: 9953198 year: 2023 ident: ref_15 article-title: Bishift Networks for Thick Cloud Removal with Multitemporal Remote Sensing Images publication-title: Int. J. Intell. Syst. doi: 10.1155/2023/9953198 – ident: ref_34 doi: 10.1109/CVPR52729.2023.00995 – ident: ref_17 doi: 10.1145/3507623.3507628 – ident: ref_4 doi: 10.3390/rs16244715 – ident: ref_21 doi: 10.1109/IGARSS46834.2022.9884407 – ident: ref_3 doi: 10.3390/rs12030458 – volume: 71 start-page: 1 year: 2022 ident: ref_23 article-title: Dense and Small Object Detection in UAV-Vision Based on a Global-Local Feature Enhanced Network publication-title: IEEE Trans. Instrum. Meas. – ident: ref_27 doi: 10.1109/WACV48630.2021.00120 – ident: ref_30 doi: 10.3390/rs13163059 – volume: 16 start-page: 227 year: 2020 ident: ref_2 article-title: A Brief Review and Challenges of Object Detection in Optical Remote Sensing Imagery publication-title: Multiagent Grid Syst. doi: 10.3233/MGS-200330 |
SSID | ssj0000331904 |
Score | 2.4628463 |
Snippet | Remote sensing target detection technology in cloud and mist scenes is of great significance for applications such as marine safety monitoring and airport... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 125 |
SubjectTerms | Accuracy Aircraft aircraft and ship detection Artificial neural networks background suppression cloud and mist interferences Clouds Decoupling Deep learning Detectors False alarms Marine technology Methods Mines and mineral resources Mining Mist Modules Neural networks Object recognition optical image Remote monitoring Remote sensing Safety management semantic joint mining Semantics Target detection Telematics Weather |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iRS_iiuNGQEE8FNvJWm_jqKg4Drihp5BVBa3izBz8976kdQPFi9eSwuv3JW9Jk-8htEFzbbXUPPNU2wwins60DXmmtfAmSM3KEAvF3ik_vKTH1-z6S6uveCaslgeugdsWAVL4EEz8n0ODk1IXIg9MU8FNcC7dI4eY96WYSj6YwNTKaa1HSqCu334ZROVxcMfsWwRKQv2_ueMUYw6m0VSTHOJObdQMGvPVLJpo-pTfvc6hq24vu-mf9Hcw1I8RXtw3cSMF7_lhOlNV4V5qCY3vK3zmgQaPz-MR9eoWdx-eRg7ryuEeUIvPLXg5fPQI_mQwjy4P9i-6h1nTGSGzsOaGGQ9tU3JfBmksLZxkEHK4ZMIxQQSzMpi81B5CdVkK5iWz1HOXu0JoCuVWIGQBjVdPlV9EmBdeCMjZiCaWcmmkLAjPA4e3hbXOtNDWO1rKNrLhsXvFg4LyISKrPpFtofWPsc-1WMaPo3Yj6B8josB1egC0q4Z29RftLbQZKVNxGYI5Vje3CeCjoqCV6sg2IVHahrTQyjurqlmfA0XA0QNgjNOl_7BmGU22Y1_gtDWzgsaHLyO_CsnK0KylefkGVXvljA priority: 102 providerName: Directory of Open Access Journals |
Title | CM-YOLO: Typical Object Detection Method in Remote Sensing Cloud and Mist Scene Images |
URI | https://www.proquest.com/docview/3153685564 https://doaj.org/article/7f495ffb51694fd88a170f5a476bfdd7 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7R5AAXxFMESrQSSIjDqk72aS4oTRsKqhvUUFRO1j5bpOKUJD3w75l1NqmQgKu9luyZnZn9ZtffB_CaF8YZbSQN3DiKFc9Q42JBjVHBRm1EGRNQrE7k0Rn_dC7Oc8NtmY9VbnJim6j93KUe-R7D0JRaCMnfX_-kSTUq7a5mCY0d6GIK1roD3f3Dk8-n2y5LwXCKFXzNS8oQ3-8tlomBHNOy-KMStYT9_0rLba2ZPID7eZFIRmuvPoQ7oXkEd7Ne-eWvx_B1XNFv0-PpO4I4MpmZTG1qqJCDsGrPVjWkaqWhyfeGnAZ0RyCzdFS9uSDjq_mNJ6bxpEIXk5nDbEc-_sC8snwCZ5PDL-MjmhUSqMPYW1EZh7aUoYzaOj7wWmDpQSMpLxRTwuloi9IELNllqUTQwvEgfeEHynCEXZGxp9Bp5k14BkQOglK4dmOGOS611XrAZBElPq2c87YHbzfWql2mD08qFlc1wohk2frWsj14tR17vSbN-Ouo_WT07YhEdN1emC8u6hw3tYqI4GK0aTuPR6-1wcejMFxJG71XPXiTXFancMTXcSb_VYAflYit6pEeMpYoblgPdjderXOcLuvbWfX8_7dfwL1hUv5tmy-70FktbsJLXI6sbB929ORDH7qjg-p41s8zsN-C-98J7OE7 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcigXxFMEClgChDisulk_FwmhkhISmjQSbVE5GT9LpXZTklSof4rfyMxmNxUScOt1ba92Zz7PeMb2fIS84Ln1VluZRW59Bh7PZtanPLNWRZe0FWXCQHG8JweH_NOROFojv9q7MHissrWJtaEOU4858i0GU1NqISR_d_4jQ9Yo3F1tKTSWsNiNlz8hZJu_He6Afl8WRf_DQW-QNawCmQe8LjKZClfKWCbtPO8GLcBcw4tVEIop4XVyeWkjuLmyVCJq4XmUIQ9dZTmEKgkToGDyb3AGnhxvpvc_rnI6OQNA53xZBRXa863ZHOudgxMQf_i9mh7gX06g9mz92-RWsySl20sM3SFrsbpLNhp29O-X98iX3jj7OhlN3lCIWlGpdOIwfUN34qI-yVXRcU1ETU8q-jmC8iPdx4Px1THtnU4vArVVoGMAFN33YFvp8Ays2Pw-ObwWyT0g69W0ig8Jld2oFKwUmWWeS-207jKZJwmjlffBdcjrVlrGN8XKkTPj1EDQgpI1V5LtkOervufLEh1_7fUehb7qgWW16wfT2bFpZqlRCeLFlBxuHvIUtLYwPAnLlXQpBNUhr1BlBic_fI63zR0G-Ckso2W2dcEYFtRhHbLZatU0VmFurjD86P_Nz8jG4GA8MqPh3u5jcrNAzuE67bNJ1hezi_gEFkIL97RGHyXfrhvuvwH2eRf_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqQRcEE8RKHQlQIiDFcf7NBJCbdKooU1StRSVk9lnQSpOSVKh_jV-XWccOxUScOvV3pXtmc8zO7Oz8xHyiqfGGW1kErhxCXg8kxgX08QYFWzURuQRA8XRWO4e848n4mSN_G7OwmBZZWMTK0Ptpw5z5B0Gv6bUQkjeiXVZxEF_8OH8Z4IMUrjT2tBpLCGyFy5_Qfg2fz_sg65fZ9lg51NvN6kZBhIH2F0kMmY2lyGP2jre9VqA6YaHKC8UU8LpaNPcBHB5ea5E0MLxIH3qu8pwCFsiJkPB_K8rjIpaZH17Z3xwuMrwpAzgnfJlT1TG8rQzm2P3c3AJ4g8vWJEF_MslVH5ucI_crReodGuJqPtkLZQPyO2aK_3b5UPyuTdKvkz2J-8oxLCoYjqxmMyh_bCo6rpKOqpoqen3kh4GgEKgR1gmX57S3tn0wlNTejoCeNEjB5aWDn-ATZs_Isc3IrvHpFVOy_CEUNkNSsG6kRnmuNRW6y6TaZQwWznnbZu8baRVuLp1OTJonBUQwqBki2vJtsnL1djzZcOOv47aRqGvRmCT7erCdHZa1P9soSJEjzFa3Erk0WttYHoUhitpo_eqTd6gygo0BfA6ztQnGuCjsKlWsaUzxrC9DmuTjUarRW0j5sU1op_-__YmuQVQL_aH471n5E6GBMRVDmiDtBazi_AcVkUL-6KGHyVfbxrxV8goHZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CM-YOLO%3A+Typical+Object+Detection+Method+in+Remote+Sensing+Cloud+and+Mist+Scene+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Hu%2C+Jianming&rft.au=Wei%2C+Yangyu&rft.au=Chen%2C+Wenbin&rft.au=Zhi%2C+Xiyang&rft.date=2025-01-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=17&rft.issue=1&rft.spage=125&rft_id=info:doi/10.3390%2Frs17010125&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs17010125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |