Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion

A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation,” Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 28; no. 2; pp. 026101 - 26121
Main Authors Grigoriev, I. A., Wallin, S., Brethouwer, G., Grundestam, O., Johansson, A. V.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.02.2016
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
1089-7666
DOI10.1063/1.4941352

Cover

Loading…
Abstract A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation,” Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with “local mean acceleration” which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows.
AbstractList A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation,” Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with “local mean acceleration” which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows.
Author Grundestam, O.
Brethouwer, G.
Wallin, S.
Grigoriev, I. A.
Johansson, A. V.
Author_xml – sequence: 1
  givenname: I. A.
  surname: Grigoriev
  fullname: Grigoriev, I. A.
  email: igor@mech.kth.se
  organization: KTH Royal Institute of Technology
– sequence: 2
  givenname: S.
  surname: Wallin
  fullname: Wallin, S.
  organization: 2 Swedish Defence Research Agency (FOI), SE-164 90 Stockholm, Sweden
– sequence: 3
  givenname: G.
  surname: Brethouwer
  fullname: Brethouwer, G.
  organization: KTH Royal Institute of Technology
– sequence: 4
  givenname: O.
  surname: Grundestam
  fullname: Grundestam, O.
  organization: KTH Royal Institute of Technology
– sequence: 5
  givenname: A. V.
  surname: Johansson
  fullname: Johansson, A. V.
  organization: KTH Royal Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183447$$DView record from Swedish Publication Index
BookMark eNp9kU1v1DAQhi1UJPrBgX9giVOR0npsx9kcV4UCUiWkinK1HHuyzZK1U9uhH7-eRLsFRKuexraeefWM54Ds-eCRkHfAToApcQonspYgSv6K7ANb1EWllNqbzxUrlBLwhhyktGaMiZqrffKw7FfYRNNZeon3PvQu0ZQjpkQ3wWHf-RUNLc1jbMYevUWaxmaNNtMcaDRD5-h12IQVegxjosY7OhkV_77ZsBnmwC54GiLFu8H4-XJEXremT_h2Vw_J1fmn72dfiotvn7-eLS8KKxnLk7TiTCAHDsoKwEbatmlryaGCEixfGOtKh2DUXKSomAVX27qUDQrprDgkxTY33eIwNnqI3cbEex1Mpz92P5Y6xJX-ma81LISU1cS_3_JDDDcjpqzXYYx-UtSzxKLmkpcTdbqlbAwpRWy17bLJ01x5-s1eA9PzQjTo3UKmjuP_Oh5NnmM_7JwfU__Av0L8C-rBtS_BT5N_A-SCq10
CODEN PHFLE6
CitedBy_id crossref_primary_10_1063_1_5006946
crossref_primary_10_3847_1538_4357_aa619f
crossref_primary_10_1063_1_5098790
Cites_doi 10.1017/S0022112094001515
10.1007/s10494-016-9716-7
10.1017/S0022112009991054
10.1063/1.4825282
10.1103/PhysRevLett.114.191101
10.1063/1.2364505
10.1017/S0022112099007004
10.1063/1.870404
10.1063/1.868338
10.1016/j.ijheatmasstransfer.2013.02.039
10.1016/j.ijheatfluidflow.2015.01.005
10.1063/1.4917278
10.1007/s10494-014-9535-7
10.1016/j.ijheatfluidflow.2012.12.005
10.1017/jfm.2013.116
ContentType Journal Article
Copyright AIP Publishing LLC
2016 AIP Publishing LLC.
Copyright_xml – notice: AIP Publishing LLC
– notice: 2016 AIP Publishing LLC.
DBID AAYXX
CITATION
8FD
H8D
L7M
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1063/1.4941352
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID oai_DiVA_org_kth_183447
10_1063_1_4941352
GrantInformation_xml – fundername: Vetenskapsrådet (VR)
  grantid: 621-2010-3938; 621-2013-5784; 621-2014-5700
  funderid: http://dx.doi.org/10.13039/501100004359
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c400t-666203e21216c31eb4cfbf94217151c28acd5de1a6d5de4370c1d9c954be34dc3
ISSN 1070-6631
1089-7666
IngestDate Thu Aug 21 06:40:09 EDT 2025
Mon Jun 30 06:10:48 EDT 2025
Thu Apr 24 22:49:20 EDT 2025
Tue Jul 01 03:20:15 EDT 2025
Fri Jun 21 00:14:57 EDT 2024
Sun Jul 14 10:20:35 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 1070-6631/2016/28(2)/026101/21/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-666203e21216c31eb4cfbf94217151c28acd5de1a6d5de4370c1d9c954be34dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2711-4687
0000-0001-8692-0956
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183447
PQID 2121892425
PQPubID 2050667
PageCount 21
ParticipantIDs crossref_citationtrail_10_1063_1_4941352
swepub_primary_oai_DiVA_org_kth_183447
crossref_primary_10_1063_1_4941352
scitation_primary_10_1063_1_4941352
proquest_journals_2121892425
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Pouransari, Vervisch, Fuchs, Johansson (c16)
Peeters, T’Joen, Rohde (c17) 2013; 61
Christen, Rademann, Even (c13) 2006; 25
Grigoriev, Wallin, Brethouwer, Johansson (c4) 2015; 27
Pouransari, Vervisch, Johansson (c12) 2013; 40
Hamlington, Ihme (c5) 2014; 93
Wallin, Johansson (c3) 2000; 403
Grigoriev, Wallin, Brethouwer, Johansson (c2) 2013; 25
Marstorp, Brethouwer, Grundestam, Johansson (c18) 2009; 639
Sjögren, Johansson (c8) 2000; 12
Lazeroms, Brethouwer, Wallin, Johansson (c15) 2015; 53
Wood, Hollerbach (c10) 2015; 114
Lazeroms, Brethouwer, Wallin, Johansson (c14) 2013; 723
Johansson, Hallbäck (c7) 1994; 269
Mahesh, Lele, Moin (c1) 1994; 6
(2023080201340969100_c6) 2004
(2023080201340969100_c15) 2015; 53
(2023080201340969100_c12) 2013; 40
(2023080201340969100_c1) 1994; 6
(2023080201340969100_c3) 2000; 403
(2023080201340969100_c14) 2013; 723
(2023080201340969100_c4) 2015; 27
2023080201340969100_c16
(2023080201340969100_c18) 2009; 639
(2023080201340969100_c17) 2013; 61
(2023080201340969100_c10) 2015; 114
(2023080201340969100_c5) 2014; 93
(2023080201340969100_c7) 1994; 269
(2023080201340969100_c13) 2006; 25
(2023080201340969100_c8) 2000; 12
(2023080201340969100_c2) 2013; 25
References_xml – volume: 6
  start-page: 1052
  year: 1994
  ident: c1
  article-title: The response of anisotropic turbulence to rapid homogeneous one-dimensional compression
  publication-title: Phys. Fluids
– volume: 61
  start-page: 667
  year: 2013
  ident: c17
  article-title: Investigation of the thermal development length in annular upward heated laminar supercritical fluid flows
  publication-title: Int. J. Heat Mass Transfer
– volume: 53
  start-page: 15
  year: 2015
  ident: c15
  article-title: Efficient treatment of the nonlinear features in algebraic Reynolds-stress and heat-flux models for stratified and convective flows
  publication-title: Int. J. Heat Fluid Flow
– volume: 269
  start-page: 143
  year: 1994
  ident: c7
  article-title: Modelling of rapid pressure-strain in Reynolds-stress closures
  publication-title: J. Fluid Mech.
– volume: 723
  start-page: 91
  year: 2013
  ident: c14
  article-title: An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 105112
  year: 2013
  ident: c2
  article-title: A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation
  publication-title: Phys. Fluids
– volume: 114
  start-page: 191101
  year: 2015
  ident: c10
  article-title: Three dimensional simulation of the magnetic stress in a neutron star crust
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 93
  year: 2014
  ident: c5
  article-title: Modeling of non-equilibrium homogeneous turbulence in rapidly compressed flows
  publication-title: Flow, Turbul. Combust.
– volume: 25
  start-page: 174307
  year: 2006
  ident: c13
  article-title: Efficient cooling in supersonic jet expansions of supercritical fluids: and
  publication-title: J. Chem. Phys.
– volume: 639
  start-page: 403
  year: 2009
  ident: c18
  article-title: Explicit algebraic subgrid stress models with application to rotating channel flow
  publication-title: J. Fluid Mech.
– volume: 403
  start-page: 89
  year: 2000
  ident: c3
  article-title: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows
  publication-title: J. Fluid Mech.
– volume: 12
  start-page: 1554
  year: 2000
  ident: c8
  article-title: Development and calibration of algebraic non-linear models for terms in the Reynolds stress transport equations
  publication-title: Phys. Fluids
– ident: c16
  article-title: DNS analysis of wall heat transfer and combustion regimes in a turbulent non-premixed wall-jet flame
  publication-title: Flow Turbulence Combust.
– volume: 40
  start-page: 65
  year: 2013
  ident: c12
  article-title: Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study
  publication-title: Int. J. Heat Fluid Flow
– volume: 27
  start-page: 105112
  year: 2015
  ident: c4
  article-title: Capturing turbulent density flux effects in variable density flow by an explicit algebraic model
  publication-title: Phys. Fluids
– volume: 269
  start-page: 143
  year: 1994
  ident: 2023080201340969100_c7
  article-title: Modelling of rapid pressure-strain in Reynolds-stress closures
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094001515
– ident: 2023080201340969100_c16
  article-title: DNS analysis of wall heat transfer and combustion regimes in a turbulent non-premixed wall-jet flame
  publication-title: Flow Turbulence Combust.
  doi: 10.1007/s10494-016-9716-7
– volume: 639
  start-page: 403
  year: 2009
  ident: 2023080201340969100_c18
  article-title: Explicit algebraic subgrid stress models with application to rotating channel flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009991054
– volume: 25
  start-page: 105112
  issue: 10
  year: 2013
  ident: 2023080201340969100_c2
  article-title: A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation
  publication-title: Phys. Fluids
  doi: 10.1063/1.4825282
– volume: 114
  start-page: 191101
  year: 2015
  ident: 2023080201340969100_c10
  article-title: Three dimensional simulation of the magnetic stress in a neutron star crust
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.191101
– volume: 25
  start-page: 174307
  year: 2006
  ident: 2023080201340969100_c13
  article-title: Efficient cooling in supersonic jet expansions of supercritical fluids: CO and CO2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2364505
– volume: 403
  start-page: 89
  year: 2000
  ident: 2023080201340969100_c3
  article-title: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099007004
– volume: 12
  start-page: 1554
  year: 2000
  ident: 2023080201340969100_c8
  article-title: Development and calibration of algebraic non-linear models for terms in the Reynolds stress transport equations
  publication-title: Phys. Fluids
  doi: 10.1063/1.870404
– volume: 6
  start-page: 1052
  issue: 2
  year: 1994
  ident: 2023080201340969100_c1
  article-title: The response of anisotropic turbulence to rapid homogeneous one-dimensional compression
  publication-title: Phys. Fluids
  doi: 10.1063/1.868338
– volume: 61
  start-page: 667
  year: 2013
  ident: 2023080201340969100_c17
  article-title: Investigation of the thermal development length in annular upward heated laminar supercritical fluid flows
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.02.039
– volume: 53
  start-page: 15
  year: 2015
  ident: 2023080201340969100_c15
  article-title: Efficient treatment of the nonlinear features in algebraic Reynolds-stress and heat-flux models for stratified and convective flows
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2015.01.005
– volume: 27
  start-page: 105112
  issue: 4
  year: 2015
  ident: 2023080201340969100_c4
  article-title: Capturing turbulent density flux effects in variable density flow by an explicit algebraic model
  publication-title: Phys. Fluids
  doi: 10.1063/1.4917278
– volume-title: Modern Compressible Flow: With Historical Perspective
  year: 2004
  ident: 2023080201340969100_c6
– volume: 93
  start-page: 93
  year: 2014
  ident: 2023080201340969100_c5
  article-title: Modeling of non-equilibrium homogeneous turbulence in rapidly compressed flows
  publication-title: Flow, Turbul. Combust.
  doi: 10.1007/s10494-014-9535-7
– volume: 40
  start-page: 65
  year: 2013
  ident: 2023080201340969100_c12
  article-title: Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2012.12.005
– volume: 723
  start-page: 91
  year: 2013
  ident: 2023080201340969100_c14
  article-title: An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.116
SSID ssj0003926
Score 2.1799753
Snippet A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for...
A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for...
SourceID swepub
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 026101
SubjectTerms Algebra
Anisotropy
Boundary layer
Compressed gas
Compressibility
compressible flow
Compression ratio
Computational fluid dynamics
Computer simulation
Density
Direct numerical simulation
DRSM
EARSM
Engineering Mechanics
Evolution
Fluid dynamics
Fluid flow
Jet flow
Kinetic energy
Mathematical models
Physics
Realizability
Reynolds stress
Strain rate
Stretching
Swirling
Teknisk mekanik
Turbulence
Turbulent flow
Vorticity
Title Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion
URI http://dx.doi.org/10.1063/1.4941352
https://www.proquest.com/docview/2121892425
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183447
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJwQvfAwQHQNZgBASytbEids8FgZMiMHDNrS3KP7qKrK6StMB--s5x44TRkGDl7RyXTfN_XK-u_zuDqHnpqJIzlgSiLEaBjGVMkgZ4YHi5pkPISpJTO7wwSe6fxx_OElOer1v3eySiu3wi7V5Jf8jVRgDuZos2X-QrF8UBuA9yBeOIGE4XknGk2JqnvvWXPgfc12IZZP7UTe4cYRm2FTYqrDFZFfMxF2MwVnmi5l4darPNCwvDRHWhNDneh50xwzj3DJl54a5Lr-D8lg2onQ2bU0i5TUlRBWrmbDFn9I07kQZ3pezqQav_LzWSVPdUoLzwrWMP6ykaqH6ujStrQ2F30buZVm1a5nEN7Bqayh_LrTqhi5Cz3b22nY4ToMRtW1XGnUcjTuwizq61XiL9tu_qX2ws0wEYidOYU-2FXHXVNHem32ZZLqcZl-r0yw0DUZG19BGBP5F1Ecbk72Dj4d-EwezkVq6KnjXtG5r6c-2KVBFya7_yV_NmtZXuQGGjOVUXKpFW9svR3fQLed44IlF0V3Uk_NNdNs5Idip-OUmuu7EeQ9deHjhBl7Ywgs38MJa4RZe2MELVxrX8MIdKGGAF74EL9yBF9Yl9vC6j47fvT16sx-4Vh0Bh02ggktEoyGRYAeFlJNQspgrptIYHF4wKXk0zrlIhAxzal5iMhryUKQ8TWImSSw4eYD6cAryIcKExkMVCrBDaQSfRrkigo4iohgfhZHIB-hlc6Wz5tqadipFVvMpKMnCzAllgJ76qQtbvGXdpO1GXJm7t5eZ-SPj1LjjA_TMi_Bvi6yZda7Ldka2EGqAXlgI-Cl_gOXWVSc-QjfbG2sb9atyJR-DlVyxJw7RPwFZv8Nl
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+Reynolds+stress+modeling+of+turbulence+subject+to+rapid+homogeneous+and+non-homogeneous+compression+or+expansion&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Grigoriev%2C+Igor&rft.au=Wallin%2C+Stefan&rft.au=Brethouwer%2C+Geert&rft.au=Grundestam%2C+Olof&rft.date=2016-02-01&rft.issn=1089-7666&rft.volume=28&rft.issue=2&rft.spage=026101&rft_id=info:doi/10.1063%2F1.4941352&rft.externalDocID=oai_DiVA_org_kth_183447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon