Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion
A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation,” Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model...
Saved in:
Published in | Physics of fluids (1994) Vol. 28; no. 2; pp. 026101 - 26121 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 1089-7666 |
DOI | 10.1063/1.4941352 |
Cover
Loading…
Abstract | A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation,” Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with “local mean acceleration” which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows. |
---|---|
AbstractList | A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation,” Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with “local mean acceleration” which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows. |
Author | Grundestam, O. Brethouwer, G. Wallin, S. Grigoriev, I. A. Johansson, A. V. |
Author_xml | – sequence: 1 givenname: I. A. surname: Grigoriev fullname: Grigoriev, I. A. email: igor@mech.kth.se organization: KTH Royal Institute of Technology – sequence: 2 givenname: S. surname: Wallin fullname: Wallin, S. organization: 2 Swedish Defence Research Agency (FOI), SE-164 90 Stockholm, Sweden – sequence: 3 givenname: G. surname: Brethouwer fullname: Brethouwer, G. organization: KTH Royal Institute of Technology – sequence: 4 givenname: O. surname: Grundestam fullname: Grundestam, O. organization: KTH Royal Institute of Technology – sequence: 5 givenname: A. V. surname: Johansson fullname: Johansson, A. V. organization: KTH Royal Institute of Technology |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183447$$DView record from Swedish Publication Index |
BookMark | eNp9kU1v1DAQhi1UJPrBgX9giVOR0npsx9kcV4UCUiWkinK1HHuyzZK1U9uhH7-eRLsFRKuexraeefWM54Ds-eCRkHfAToApcQonspYgSv6K7ANb1EWllNqbzxUrlBLwhhyktGaMiZqrffKw7FfYRNNZeon3PvQu0ZQjpkQ3wWHf-RUNLc1jbMYevUWaxmaNNtMcaDRD5-h12IQVegxjosY7OhkV_77ZsBnmwC54GiLFu8H4-XJEXremT_h2Vw_J1fmn72dfiotvn7-eLS8KKxnLk7TiTCAHDsoKwEbatmlryaGCEixfGOtKh2DUXKSomAVX27qUDQrprDgkxTY33eIwNnqI3cbEex1Mpz92P5Y6xJX-ma81LISU1cS_3_JDDDcjpqzXYYx-UtSzxKLmkpcTdbqlbAwpRWy17bLJ01x5-s1eA9PzQjTo3UKmjuP_Oh5NnmM_7JwfU__Av0L8C-rBtS_BT5N_A-SCq10 |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1063_1_5006946 crossref_primary_10_3847_1538_4357_aa619f crossref_primary_10_1063_1_5098790 |
Cites_doi | 10.1017/S0022112094001515 10.1007/s10494-016-9716-7 10.1017/S0022112009991054 10.1063/1.4825282 10.1103/PhysRevLett.114.191101 10.1063/1.2364505 10.1017/S0022112099007004 10.1063/1.870404 10.1063/1.868338 10.1016/j.ijheatmasstransfer.2013.02.039 10.1016/j.ijheatfluidflow.2015.01.005 10.1063/1.4917278 10.1007/s10494-014-9535-7 10.1016/j.ijheatfluidflow.2012.12.005 10.1017/jfm.2013.116 |
ContentType | Journal Article |
Copyright | AIP Publishing LLC 2016 AIP Publishing LLC. |
Copyright_xml | – notice: AIP Publishing LLC – notice: 2016 AIP Publishing LLC. |
DBID | AAYXX CITATION 8FD H8D L7M ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1063/1.4941352 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | oai_DiVA_org_kth_183447 10_1063_1_4941352 |
GrantInformation_xml | – fundername: Vetenskapsrådet (VR) grantid: 621-2010-3938; 621-2013-5784; 621-2014-5700 funderid: http://dx.doi.org/10.13039/501100004359 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M ADTPV AFDQA AOWAS D8T D8V ZZAVC |
ID | FETCH-LOGICAL-c400t-666203e21216c31eb4cfbf94217151c28acd5de1a6d5de4370c1d9c954be34dc3 |
ISSN | 1070-6631 1089-7666 |
IngestDate | Thu Aug 21 06:40:09 EDT 2025 Mon Jun 30 06:10:48 EDT 2025 Thu Apr 24 22:49:20 EDT 2025 Tue Jul 01 03:20:15 EDT 2025 Fri Jun 21 00:14:57 EDT 2024 Sun Jul 14 10:20:35 EDT 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 1070-6631/2016/28(2)/026101/21/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-666203e21216c31eb4cfbf94217151c28acd5de1a6d5de4370c1d9c954be34dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2711-4687 0000-0001-8692-0956 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183447 |
PQID | 2121892425 |
PQPubID | 2050667 |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1063_1_4941352 swepub_primary_oai_DiVA_org_kth_183447 crossref_primary_10_1063_1_4941352 scitation_primary_10_1063_1_4941352 proquest_journals_2121892425 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2016 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Pouransari, Vervisch, Fuchs, Johansson (c16) Peeters, T’Joen, Rohde (c17) 2013; 61 Christen, Rademann, Even (c13) 2006; 25 Grigoriev, Wallin, Brethouwer, Johansson (c4) 2015; 27 Pouransari, Vervisch, Johansson (c12) 2013; 40 Hamlington, Ihme (c5) 2014; 93 Wallin, Johansson (c3) 2000; 403 Grigoriev, Wallin, Brethouwer, Johansson (c2) 2013; 25 Marstorp, Brethouwer, Grundestam, Johansson (c18) 2009; 639 Sjögren, Johansson (c8) 2000; 12 Lazeroms, Brethouwer, Wallin, Johansson (c15) 2015; 53 Wood, Hollerbach (c10) 2015; 114 Lazeroms, Brethouwer, Wallin, Johansson (c14) 2013; 723 Johansson, Hallbäck (c7) 1994; 269 Mahesh, Lele, Moin (c1) 1994; 6 (2023080201340969100_c6) 2004 (2023080201340969100_c15) 2015; 53 (2023080201340969100_c12) 2013; 40 (2023080201340969100_c1) 1994; 6 (2023080201340969100_c3) 2000; 403 (2023080201340969100_c14) 2013; 723 (2023080201340969100_c4) 2015; 27 2023080201340969100_c16 (2023080201340969100_c18) 2009; 639 (2023080201340969100_c17) 2013; 61 (2023080201340969100_c10) 2015; 114 (2023080201340969100_c5) 2014; 93 (2023080201340969100_c7) 1994; 269 (2023080201340969100_c13) 2006; 25 (2023080201340969100_c8) 2000; 12 (2023080201340969100_c2) 2013; 25 |
References_xml | – volume: 6 start-page: 1052 year: 1994 ident: c1 article-title: The response of anisotropic turbulence to rapid homogeneous one-dimensional compression publication-title: Phys. Fluids – volume: 61 start-page: 667 year: 2013 ident: c17 article-title: Investigation of the thermal development length in annular upward heated laminar supercritical fluid flows publication-title: Int. J. Heat Mass Transfer – volume: 53 start-page: 15 year: 2015 ident: c15 article-title: Efficient treatment of the nonlinear features in algebraic Reynolds-stress and heat-flux models for stratified and convective flows publication-title: Int. J. Heat Fluid Flow – volume: 269 start-page: 143 year: 1994 ident: c7 article-title: Modelling of rapid pressure-strain in Reynolds-stress closures publication-title: J. Fluid Mech. – volume: 723 start-page: 91 year: 2013 ident: c14 article-title: An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows publication-title: J. Fluid Mech. – volume: 25 start-page: 105112 year: 2013 ident: c2 article-title: A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation publication-title: Phys. Fluids – volume: 114 start-page: 191101 year: 2015 ident: c10 article-title: Three dimensional simulation of the magnetic stress in a neutron star crust publication-title: Phys. Rev. Lett. – volume: 93 start-page: 93 year: 2014 ident: c5 article-title: Modeling of non-equilibrium homogeneous turbulence in rapidly compressed flows publication-title: Flow, Turbul. Combust. – volume: 25 start-page: 174307 year: 2006 ident: c13 article-title: Efficient cooling in supersonic jet expansions of supercritical fluids: and publication-title: J. Chem. Phys. – volume: 639 start-page: 403 year: 2009 ident: c18 article-title: Explicit algebraic subgrid stress models with application to rotating channel flow publication-title: J. Fluid Mech. – volume: 403 start-page: 89 year: 2000 ident: c3 article-title: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows publication-title: J. Fluid Mech. – volume: 12 start-page: 1554 year: 2000 ident: c8 article-title: Development and calibration of algebraic non-linear models for terms in the Reynolds stress transport equations publication-title: Phys. Fluids – ident: c16 article-title: DNS analysis of wall heat transfer and combustion regimes in a turbulent non-premixed wall-jet flame publication-title: Flow Turbulence Combust. – volume: 40 start-page: 65 year: 2013 ident: c12 article-title: Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study publication-title: Int. J. Heat Fluid Flow – volume: 27 start-page: 105112 year: 2015 ident: c4 article-title: Capturing turbulent density flux effects in variable density flow by an explicit algebraic model publication-title: Phys. Fluids – volume: 269 start-page: 143 year: 1994 ident: 2023080201340969100_c7 article-title: Modelling of rapid pressure-strain in Reynolds-stress closures publication-title: J. Fluid Mech. doi: 10.1017/S0022112094001515 – ident: 2023080201340969100_c16 article-title: DNS analysis of wall heat transfer and combustion regimes in a turbulent non-premixed wall-jet flame publication-title: Flow Turbulence Combust. doi: 10.1007/s10494-016-9716-7 – volume: 639 start-page: 403 year: 2009 ident: 2023080201340969100_c18 article-title: Explicit algebraic subgrid stress models with application to rotating channel flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112009991054 – volume: 25 start-page: 105112 issue: 10 year: 2013 ident: 2023080201340969100_c2 article-title: A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation publication-title: Phys. Fluids doi: 10.1063/1.4825282 – volume: 114 start-page: 191101 year: 2015 ident: 2023080201340969100_c10 article-title: Three dimensional simulation of the magnetic stress in a neutron star crust publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.191101 – volume: 25 start-page: 174307 year: 2006 ident: 2023080201340969100_c13 article-title: Efficient cooling in supersonic jet expansions of supercritical fluids: CO and CO2 publication-title: J. Chem. Phys. doi: 10.1063/1.2364505 – volume: 403 start-page: 89 year: 2000 ident: 2023080201340969100_c3 article-title: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112099007004 – volume: 12 start-page: 1554 year: 2000 ident: 2023080201340969100_c8 article-title: Development and calibration of algebraic non-linear models for terms in the Reynolds stress transport equations publication-title: Phys. Fluids doi: 10.1063/1.870404 – volume: 6 start-page: 1052 issue: 2 year: 1994 ident: 2023080201340969100_c1 article-title: The response of anisotropic turbulence to rapid homogeneous one-dimensional compression publication-title: Phys. Fluids doi: 10.1063/1.868338 – volume: 61 start-page: 667 year: 2013 ident: 2023080201340969100_c17 article-title: Investigation of the thermal development length in annular upward heated laminar supercritical fluid flows publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.02.039 – volume: 53 start-page: 15 year: 2015 ident: 2023080201340969100_c15 article-title: Efficient treatment of the nonlinear features in algebraic Reynolds-stress and heat-flux models for stratified and convective flows publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2015.01.005 – volume: 27 start-page: 105112 issue: 4 year: 2015 ident: 2023080201340969100_c4 article-title: Capturing turbulent density flux effects in variable density flow by an explicit algebraic model publication-title: Phys. Fluids doi: 10.1063/1.4917278 – volume-title: Modern Compressible Flow: With Historical Perspective year: 2004 ident: 2023080201340969100_c6 – volume: 93 start-page: 93 year: 2014 ident: 2023080201340969100_c5 article-title: Modeling of non-equilibrium homogeneous turbulence in rapidly compressed flows publication-title: Flow, Turbul. Combust. doi: 10.1007/s10494-014-9535-7 – volume: 40 start-page: 65 year: 2013 ident: 2023080201340969100_c12 article-title: Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2012.12.005 – volume: 723 start-page: 91 year: 2013 ident: 2023080201340969100_c14 article-title: An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.116 |
SSID | ssj0003926 |
Score | 2.1799753 |
Snippet | A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. [“A realizable explicit algebraic Reynolds stress model for... A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for... |
SourceID | swepub proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 026101 |
SubjectTerms | Algebra Anisotropy Boundary layer Compressed gas Compressibility compressible flow Compression ratio Computational fluid dynamics Computer simulation Density Direct numerical simulation DRSM EARSM Engineering Mechanics Evolution Fluid dynamics Fluid flow Jet flow Kinetic energy Mathematical models Physics Realizability Reynolds stress Strain rate Stretching Swirling Teknisk mekanik Turbulence Turbulent flow Vorticity |
Title | Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion |
URI | http://dx.doi.org/10.1063/1.4941352 https://www.proquest.com/docview/2121892425 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183447 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJwQvfAwQHQNZgBASytbEids8FgZMiMHDNrS3KP7qKrK6StMB--s5x44TRkGDl7RyXTfN_XK-u_zuDqHnpqJIzlgSiLEaBjGVMkgZ4YHi5pkPISpJTO7wwSe6fxx_OElOer1v3eySiu3wi7V5Jf8jVRgDuZos2X-QrF8UBuA9yBeOIGE4XknGk2JqnvvWXPgfc12IZZP7UTe4cYRm2FTYqrDFZFfMxF2MwVnmi5l4darPNCwvDRHWhNDneh50xwzj3DJl54a5Lr-D8lg2onQ2bU0i5TUlRBWrmbDFn9I07kQZ3pezqQav_LzWSVPdUoLzwrWMP6ykaqH6ujStrQ2F30buZVm1a5nEN7Bqayh_LrTqhi5Cz3b22nY4ToMRtW1XGnUcjTuwizq61XiL9tu_qX2ws0wEYidOYU-2FXHXVNHem32ZZLqcZl-r0yw0DUZG19BGBP5F1Ecbk72Dj4d-EwezkVq6KnjXtG5r6c-2KVBFya7_yV_NmtZXuQGGjOVUXKpFW9svR3fQLed44IlF0V3Uk_NNdNs5Idip-OUmuu7EeQ9deHjhBl7Ywgs38MJa4RZe2MELVxrX8MIdKGGAF74EL9yBF9Yl9vC6j47fvT16sx-4Vh0Bh02ggktEoyGRYAeFlJNQspgrptIYHF4wKXk0zrlIhAxzal5iMhryUKQ8TWImSSw4eYD6cAryIcKExkMVCrBDaQSfRrkigo4iohgfhZHIB-hlc6Wz5tqadipFVvMpKMnCzAllgJ76qQtbvGXdpO1GXJm7t5eZ-SPj1LjjA_TMi_Bvi6yZda7Ldka2EGqAXlgI-Cl_gOXWVSc-QjfbG2sb9atyJR-DlVyxJw7RPwFZv8Nl |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algebraic+Reynolds+stress+modeling+of+turbulence+subject+to+rapid+homogeneous+and+non-homogeneous+compression+or+expansion&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Grigoriev%2C+Igor&rft.au=Wallin%2C+Stefan&rft.au=Brethouwer%2C+Geert&rft.au=Grundestam%2C+Olof&rft.date=2016-02-01&rft.issn=1089-7666&rft.volume=28&rft.issue=2&rft.spage=026101&rft_id=info:doi/10.1063%2F1.4941352&rft.externalDocID=oai_DiVA_org_kth_183447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |