Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction

[Display omitted] •A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER activity is successfully synthesized.•The roles of the edges in NiFe-LDH for OER is unraveled. The rational design of advanced nanostructures...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 298; p. 120580
Main Authors Wang, Bingqing, Han, Xu, Guo, Chong, Jing, Jin, Yang, Can, Li, Yaping, Han, Aijuan, Wang, Dingsheng, Liu, Junfeng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.12.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER activity is successfully synthesized.•The roles of the edges in NiFe-LDH for OER is unraveled. The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic performance. In this work, we report an edge-enriched (EE) NiFe-layer double hydroxide (LDH) nanoarray with abundant coordinatively unsaturated sites, which was synthesized by a structure inheritance strategy using metal-organic framework (MOF) nanosheet array as a structure-directing template. Impressively, the obtained EE-NiFe-LDH nanosheet array offers high electrocatalytic activity in oxygen evolution reaction (OER) with an overpotential of only 205 mV to reach a current density of 10 mA cm−2, outperforming all reported NiFe-LDH nanostructures. X-ray absorption spectroscopy and density functional theory calculations demonstrate that the exposed edges in EE-NiFe-LDH contain abundant iron and oxygen vacancies, which optimized the electronic state of the NiFe-LDH and enhanced the adsorption of oxygenated intermediates, resulting in the high catalytic activity for OER.
AbstractList The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic performance. In this work, we report an edge-enriched (EE) NiFe-layer double hydroxide (LDH) nanoarray with abundant coordinatively unsaturated sites, which was synthesized by a structure inheritance strategy using metal-organic framework (MOF) nanosheet array as a structure-directing template. Impressively, the obtained EE-NiFe-LDH nanosheet array offers high electrocatalytic activity in oxygen evolution reaction (OER) with an overpotential of only 205 mV to reach a current density of 10 mA cm−2, outperforming all reported NiFe-LDH nanostructures. X-ray absorption spectroscopy and density functional theory calculations demonstrate that the exposed edges in EE-NiFe-LDH contain abundant iron and oxygen vacancies, which optimized the electronic state of the NiFe-LDH and enhanced the adsorption of oxygenated intermediates, resulting in the high catalytic activity for OER.
[Display omitted] •A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER activity is successfully synthesized.•The roles of the edges in NiFe-LDH for OER is unraveled. The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic performance. In this work, we report an edge-enriched (EE) NiFe-layer double hydroxide (LDH) nanoarray with abundant coordinatively unsaturated sites, which was synthesized by a structure inheritance strategy using metal-organic framework (MOF) nanosheet array as a structure-directing template. Impressively, the obtained EE-NiFe-LDH nanosheet array offers high electrocatalytic activity in oxygen evolution reaction (OER) with an overpotential of only 205 mV to reach a current density of 10 mA cm−2, outperforming all reported NiFe-LDH nanostructures. X-ray absorption spectroscopy and density functional theory calculations demonstrate that the exposed edges in EE-NiFe-LDH contain abundant iron and oxygen vacancies, which optimized the electronic state of the NiFe-LDH and enhanced the adsorption of oxygenated intermediates, resulting in the high catalytic activity for OER.
ArticleNumber 120580
Author Yang, Can
Wang, Bingqing
Han, Aijuan
Wang, Dingsheng
Liu, Junfeng
Guo, Chong
Jing, Jin
Han, Xu
Li, Yaping
Author_xml – sequence: 1
  givenname: Bingqing
  surname: Wang
  fullname: Wang, Bingqing
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
– sequence: 2
  givenname: Xu
  surname: Han
  fullname: Han, Xu
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
– sequence: 3
  givenname: Chong
  surname: Guo
  fullname: Guo, Chong
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
– sequence: 4
  givenname: Jin
  surname: Jing
  fullname: Jing, Jin
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
– sequence: 5
  givenname: Can
  surname: Yang
  fullname: Yang, Can
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
– sequence: 6
  givenname: Yaping
  surname: Li
  fullname: Li, Yaping
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
– sequence: 7
  givenname: Aijuan
  surname: Han
  fullname: Han, Aijuan
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
– sequence: 8
  givenname: Dingsheng
  surname: Wang
  fullname: Wang, Dingsheng
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
– sequence: 9
  givenname: Junfeng
  surname: Liu
  fullname: Liu, Junfeng
  email: ljf@mail.buct.edu.cn
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
BookMark eNqFkEtPGzEURq2KSk1C_0EXllhP8GOeLJBQIE2lFBaFteXYdxJHwQ53PBH59_VoWLFoV_cuvnMfZ0oufPBAyA_O5pzx8no_10ej42YumOBzLlhRsy9kwutKZrKu5QWZsEaUmZSV_EamXbdnjAkp6gnxfyL2JvYI1PkdoIvaG6BdRB1he6Ythlf6-2lJY6Bgt5CBR2d2YOmjW0K2vl9RjahTMCAFvxtoS8P7eQuewikc-uiCpwjaDM0l-drqQwffP-qMvCwfnherbP3089fibp2ZnLGYlbKUubW2bXnBGiYLaI2pCt7WYmPT3XYjZcNlCdDkspB5k1Jc6KblVck2VS1n5Gqce8Tw1kMX1T706NNKJYpaCMFFwVIqH1MGQ9chtOqI7lXjWXGmBrNqr0azajCrRrMJu_mEmaRteC9Zc4f_wbcjDOn9kwNUnXEwWHMIJiob3L8H_AVKIZg9
CitedBy_id crossref_primary_10_1021_acsami_3c01412
crossref_primary_10_1002_aic_18161
crossref_primary_10_1039_D3DT03494A
crossref_primary_10_1002_adfm_202406423
crossref_primary_10_1039_D3NJ03560C
crossref_primary_10_1039_D3NJ00236E
crossref_primary_10_1016_j_cej_2022_136833
crossref_primary_10_1016_j_enchem_2024_100128
crossref_primary_10_1002_smtd_202200084
crossref_primary_10_1016_j_jphotochem_2025_116398
crossref_primary_10_1016_j_aca_2022_340608
crossref_primary_10_1007_s12274_022_5114_8
crossref_primary_10_1016_j_ijbiomac_2023_125566
crossref_primary_10_1002_ange_202417196
crossref_primary_10_1002_aenm_202203913
crossref_primary_10_1007_s40242_024_4121_6
crossref_primary_10_1007_s40843_023_2611_4
crossref_primary_10_1016_j_jallcom_2022_166990
crossref_primary_10_1039_D2NR01516A
crossref_primary_10_1002_adma_202204320
crossref_primary_10_1016_j_ijhydene_2025_03_262
crossref_primary_10_1002_adfm_202303776
crossref_primary_10_1002_aenm_202401449
crossref_primary_10_1016_j_jelechem_2022_116573
crossref_primary_10_1002_sstr_202200085
crossref_primary_10_1016_j_ijhydene_2024_07_426
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1016_j_ijhydene_2022_08_147
crossref_primary_10_1002_adfm_202404828
crossref_primary_10_1016_j_cej_2022_139686
crossref_primary_10_1021_acsami_3c15403
crossref_primary_10_1002_advs_202207519
crossref_primary_10_1016_j_apcatb_2022_121150
crossref_primary_10_1016_j_apcatb_2022_121713
crossref_primary_10_1002_cssc_202201205
crossref_primary_10_1021_acssuschemeng_4c06394
crossref_primary_10_1016_j_apcatb_2022_121950
crossref_primary_10_1039_D2CE01491B
crossref_primary_10_1039_D4NJ00015C
crossref_primary_10_1002_cctc_202201615
crossref_primary_10_1007_s12274_023_5608_z
crossref_primary_10_1002_aenm_202202522
crossref_primary_10_1039_D2TA06560F
crossref_primary_10_1016_j_apcatb_2023_122808
crossref_primary_10_1021_acsami_2c05977
crossref_primary_10_1016_j_arabjc_2023_105157
crossref_primary_10_1016_j_cej_2022_136105
crossref_primary_10_1039_D2CS00236A
crossref_primary_10_1021_acsnano_2c09396
crossref_primary_10_1038_s41467_023_37441_9
crossref_primary_10_1002_smll_202406075
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_1039_D3CC03838F
crossref_primary_10_1016_j_ijhydene_2024_09_159
crossref_primary_10_1007_s12274_022_5163_z
crossref_primary_10_1016_j_apcatb_2023_122891
crossref_primary_10_1016_j_apcatb_2022_121146
crossref_primary_10_1016_j_cej_2023_145223
crossref_primary_10_1016_j_apsusc_2023_156991
crossref_primary_10_1016_j_colsurfa_2023_132400
crossref_primary_10_1016_j_jallcom_2022_166145
crossref_primary_10_1039_D2TA02313J
crossref_primary_10_1149_1945_7111_ac96a8
crossref_primary_10_1016_j_cej_2024_155435
crossref_primary_10_1002_smll_202404060
crossref_primary_10_1016_j_ijhydene_2022_06_167
crossref_primary_10_1016_j_cej_2024_152721
crossref_primary_10_1016_j_ijhydene_2023_06_322
crossref_primary_10_1016_j_jelechem_2022_116540
crossref_primary_10_1016_j_jcis_2024_05_083
crossref_primary_10_1007_s11696_023_02978_y
crossref_primary_10_1016_j_ijhydene_2024_05_367
crossref_primary_10_1021_acs_inorgchem_4c00712
crossref_primary_10_1016_j_cej_2024_151912
crossref_primary_10_1016_j_nanoen_2024_110545
crossref_primary_10_1016_j_apsusc_2022_154287
crossref_primary_10_20517_microstructures_2024_62
crossref_primary_10_1002_batt_202400699
crossref_primary_10_1039_D2TA04963E
crossref_primary_10_1002_aenm_202203955
crossref_primary_10_1039_D3CY00789H
crossref_primary_10_1016_j_apcatb_2023_123448
crossref_primary_10_1016_j_jelechem_2023_117365
crossref_primary_10_1007_s40843_022_2053_5
crossref_primary_10_1016_j_mcat_2024_114197
crossref_primary_10_1007_s11244_022_01611_8
crossref_primary_10_1016_j_ijhydene_2023_01_237
crossref_primary_10_1002_adma_202300347
crossref_primary_10_1002_adma_202209876
crossref_primary_10_1016_j_foodchem_2022_133399
crossref_primary_10_1021_acs_langmuir_3c03558
crossref_primary_10_1007_s10562_022_04032_0
crossref_primary_10_1002_advs_202415525
crossref_primary_10_1016_j_jallcom_2024_175328
crossref_primary_10_3390_ma18040911
crossref_primary_10_1016_j_seppur_2024_128843
crossref_primary_10_1002_celc_202300103
crossref_primary_10_1016_j_apsusc_2023_156500
crossref_primary_10_1021_acsami_2c04562
crossref_primary_10_1021_acs_energyfuels_3c02823
crossref_primary_10_1002_smll_202208027
crossref_primary_10_1002_smll_202305241
crossref_primary_10_1002_cctc_202400622
crossref_primary_10_1039_D2NR06264J
crossref_primary_10_1016_j_rineng_2023_101606
crossref_primary_10_1016_j_seppur_2025_131699
crossref_primary_10_1021_acsami_2c14192
crossref_primary_10_1016_j_jcis_2024_10_128
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1002_adfm_202304403
crossref_primary_10_1002_anie_202417196
crossref_primary_10_1016_j_apmate_2021_10_004
crossref_primary_10_1016_j_jallcom_2024_175275
crossref_primary_10_1039_D2NJ01385A
Cites_doi 10.1021/acsenergylett.9b00867
10.1002/adma.201870272
10.1007/s12274-019-2377-9
10.1021/acscatal.0c02501
10.1038/s41570-016-0003
10.1016/j.nanoen.2018.08.045
10.1016/j.apcatb.2020.119326
10.1002/anie.201701477
10.1007/s40843-019-9490-x
10.1021/acsenergylett.8b00515
10.1016/0009-2614(93)87173-Z
10.1021/jacs.8b00752
10.1021/cm4040903
10.1002/aenm.201600621
10.1016/j.chempr.2017.04.016
10.1039/C6CS00328A
10.1002/adfm.201504868
10.1039/C9MH01494B
10.1038/s41467-018-04788-3
10.1016/j.apcatb.2020.119014
10.1002/anie.201903879
10.1039/C5SC02417J
10.1007/s12274-017-1595-2
10.1021/acsenergylett.7b00206
10.1002/adfm.202009245
10.1002/anie.201809689
10.1016/j.jechem.2019.08.014
10.1038/ncomms5477
10.1039/C6EE00377J
10.1016/j.apcatb.2020.119869
10.1002/smtd.201800083
10.1007/s12274-019-2399-3
10.1002/aenm.201703585
10.1021/ja405351s
10.1016/j.apcatb.2020.119740
10.1002/anie.201710877
10.1002/adma.201501901
10.1039/C8NR04402C
10.1093/nsr/nwz118
10.1021/ja511559d
10.1002/aenm.201900881
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Dec 5, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 5, 2021
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2021.120580
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2021_120580
S0926337321007062
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-63634dddff1509035efcc751f82bd328db339136ee943534950912a9f1760b783
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 02:39:50 EDT 2025
Tue Jul 01 04:35:14 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Sat Mar 02 16:00:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LDH
Unsaturated sites
Edges
OER
Defects
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-63634dddff1509035efcc751f82bd328db339136ee943534950912a9f1760b783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2582221250
PQPubID 2045281
ParticipantIDs proquest_journals_2582221250
crossref_primary_10_1016_j_apcatb_2021_120580
crossref_citationtrail_10_1016_j_apcatb_2021_120580
elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-05
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Dionigi, Strasser (bib0030) 2016; 6
Yu, Yang, Guan, Lu, Lou (bib0070) 2018; 57
Zhou, Wang, Jia, Xiong, Yang, Liu, Tang, Zhang, Liu, Zheng, Kuang, Sun, Liu (bib0220) 2019; 58
Song, Hu (bib0055) 2014; 5
He, Liu, Huang, Li, Zou, Dong, Wang (bib0105) 2021; 31
Li, Zhang, Feng, Cheng, Qiu, Dong, Liu, Du (bib0175) 2019; 29
Hunter, Hieringer, Winkler, Gray, Müller (bib0210) 2016; 9
Qin, Wang, Shang, Iqbal, Han, Sun, Xu, Liu (bib0080) 2020; 43
Zhang, Zhao, Zhao, Shi, Waterhouse, Zhang (bib0100) 2019; 9
Hu, Zeng, Wei, Wang, Wu, Gu, Shi, Zhu (bib0040) 2020; 273
Li, Shao, An, Wang, Xu, Wei, Evans, Duan (bib0145) 2015; 6
Suen, Hung, Quan, Zhang, Xu, Chen (bib0005) 2017; 46
Zhou, Xiong, Cai, Han, Jia, Xie, Duan, Xie, Zheng, Sun, Duan (bib0085) 2018; 2
Wang, Liu, Zhang, Liu (bib0125) 2017; 10
Liu, Yu, Yin, Xu, Feng, Jiang, Zheng, Gao, Gao, Que, Ruan, Wu, Shi, Cao (bib0115) 2020; 16
Petrie, Mitra, Jeen, Choi, Meyer, Reboredo, Freeland, Eres, Lee (bib0160) 2016; 26
Wang, Shang, Guo, Zhang, Zhu, Han, Liu (bib0140) 2019; 15
Yuan, Bak, Li, Jia, Zheng, Zhou, Bai, Hu, Yang, Cai (bib0150) 2019; 4
Louie, Bell (bib0225) 2013; 135
Sun, Zhang, Li, Li, Ao, Xue, Ostrikov, Tang, Wang (bib0025) 2021; 284
Zhao, Zhang, Jia, Waterhouse, Shi, Zhang, Zhan, Tao, Wu, Tung, O’Hare, Zhang (bib0065) 2018; 8
Wu, Li, Xia, Zhang, Deng, Wang, Sun (bib0195) 2020; 10
Feng, Jiao, Chen, Dang, Dai, Suib, Zhang, Zhao, Li, Feng (bib0050) 2021; 286
He, Wan, Jiang, Pan, Wu, Wang, Wu, Ye, Ajayan, Song (bib0235) 2018; 3
Zhang, Wu, Cheong, Chen, Lin, Li, Zheng, Yan, Gu, Chen (bib0170) 2018; 9
Liang, Gandi, Xia, Hedhili, Anjum, Schwingenschlögl, Alshareef (bib0205) 2017; 2
Laipan, Yu, Zhu, Zhu, Smith, He, O’Hare, Sun (bib0075) 2020; 7
Huang, Chen, Xie, Chen, Wang, Zeng, Chen, Wang (bib0095) 2018; 10
Tang, Wang, Wang, Zhang, Tian, Nie, Wei (bib0200) 2015; 27
Wang, Shen, Wei, Xi, Ma, Zhang, Zhu, An (bib0045) 2020; 63
Zhu, Chen, Yu, Zeng, Ming, Liang, Wang (bib0010) 2020; 278
Wang, Zhao, Li, Huang, Zhang, Guo, Zhang, Cheng, Liu, Shang, Jin, Sun, Liu, Zhang (bib0130) 2019; 7
Zhang, Liu, Xi, Yu, Chen, Sun, Wang, Lange, Zhang (bib0240) 2018; 140
Zhang, Dong, Wang, Gao, Niu, Peng, Zhang (bib0090) 2019; 3
Cai, Zhang, Jiao, Yu, Jiang (bib0120) 2017; 2
Liu, Wang, Peng, Yang, Jiang, Zhou, Lee, Zhao, Zhang (bib0185) 2018; 30
Xie, Xin, Wang, Zhang, Lei, Qu, Hao, Cui, Tang, Xie (bib0060) 2018; 53
Yan, Sun, Chen, Liu, Zhao, Li, Xie, Cheng, Chen (bib0230) 2018; 9
Soriano, Abbate, Vogel, Fuggle, Fernandez, Gonzalezelipe, Sacchi, Sanz (bib0155) 1993; 208
Wang, Zhang, Liu, Xie, Feng, Liu, Shao, Wang (bib0035) 2017; 56
Liu, Chang, Luo, Xu, Lei, Liu, Sun (bib0020) 2014; 26
Kang, Im, Lee, Kwag, Kwon, Tiruneh, Kim, Kim, Yang, Lim, Yoon (bib0135) 2019; 12
Zu, Wang, Lin, Ou, Wei, Sun, Wu (bib0190) 2019; 12
Dang, Zhu, Xu (bib0110) 2017; 3
Roger, Shipman, Symes (bib0015) 2017; 1
Wang, Xie, Zhang, Liu, Chen, Wang (bib0180) 2018; 28
An, Huang, Zhang, Wang, Zhang, Dai, Xi, Yan (bib0165) 2019; 58
Friebel, Louie, Bajdich, Sanwald, Cai, Wise, Cheng, Sokaras, Weng, Alonso-Mori, Davis, Bargar, Nørskov, Nilsson, Bell (bib0215) 2015; 137
Xie (10.1016/j.apcatb.2021.120580_bib0060) 2018; 53
Song (10.1016/j.apcatb.2021.120580_bib0055) 2014; 5
Hu (10.1016/j.apcatb.2021.120580_bib0040) 2020; 273
Zhang (10.1016/j.apcatb.2021.120580_bib0100) 2019; 9
Suen (10.1016/j.apcatb.2021.120580_bib0005) 2017; 46
Kang (10.1016/j.apcatb.2021.120580_bib0135) 2019; 12
Wang (10.1016/j.apcatb.2021.120580_bib0125) 2017; 10
Tang (10.1016/j.apcatb.2021.120580_bib0200) 2015; 27
Hunter (10.1016/j.apcatb.2021.120580_bib0210) 2016; 9
Friebel (10.1016/j.apcatb.2021.120580_bib0215) 2015; 137
Laipan (10.1016/j.apcatb.2021.120580_bib0075) 2020; 7
Dang (10.1016/j.apcatb.2021.120580_bib0110) 2017; 3
Liu (10.1016/j.apcatb.2021.120580_bib0020) 2014; 26
Yu (10.1016/j.apcatb.2021.120580_bib0070) 2018; 57
Liu (10.1016/j.apcatb.2021.120580_bib0185) 2018; 30
Roger (10.1016/j.apcatb.2021.120580_bib0015) 2017; 1
Petrie (10.1016/j.apcatb.2021.120580_bib0160) 2016; 26
Wang (10.1016/j.apcatb.2021.120580_bib0140) 2019; 15
Louie (10.1016/j.apcatb.2021.120580_bib0225) 2013; 135
He (10.1016/j.apcatb.2021.120580_bib0105) 2021; 31
Zhang (10.1016/j.apcatb.2021.120580_bib0240) 2018; 140
Zu (10.1016/j.apcatb.2021.120580_bib0190) 2019; 12
Zhu (10.1016/j.apcatb.2021.120580_bib0010) 2020; 278
Liang (10.1016/j.apcatb.2021.120580_bib0205) 2017; 2
Cai (10.1016/j.apcatb.2021.120580_bib0120) 2017; 2
Zhou (10.1016/j.apcatb.2021.120580_bib0220) 2019; 58
Wang (10.1016/j.apcatb.2021.120580_bib0130) 2019; 7
Wang (10.1016/j.apcatb.2021.120580_bib0035) 2017; 56
Li (10.1016/j.apcatb.2021.120580_bib0175) 2019; 29
Zhou (10.1016/j.apcatb.2021.120580_bib0085) 2018; 2
Soriano (10.1016/j.apcatb.2021.120580_bib0155) 1993; 208
Feng (10.1016/j.apcatb.2021.120580_bib0050) 2021; 286
Li (10.1016/j.apcatb.2021.120580_bib0145) 2015; 6
Yan (10.1016/j.apcatb.2021.120580_bib0230) 2018; 9
Zhao (10.1016/j.apcatb.2021.120580_bib0065) 2018; 8
Wu (10.1016/j.apcatb.2021.120580_bib0195) 2020; 10
He (10.1016/j.apcatb.2021.120580_bib0235) 2018; 3
Huang (10.1016/j.apcatb.2021.120580_bib0095) 2018; 10
An (10.1016/j.apcatb.2021.120580_bib0165) 2019; 58
Dionigi (10.1016/j.apcatb.2021.120580_bib0030) 2016; 6
Liu (10.1016/j.apcatb.2021.120580_bib0115) 2020; 16
Wang (10.1016/j.apcatb.2021.120580_bib0045) 2020; 63
Zhang (10.1016/j.apcatb.2021.120580_bib0170) 2018; 9
Zhang (10.1016/j.apcatb.2021.120580_bib0090) 2019; 3
Yuan (10.1016/j.apcatb.2021.120580_bib0150) 2019; 4
Qin (10.1016/j.apcatb.2021.120580_bib0080) 2020; 43
Wang (10.1016/j.apcatb.2021.120580_bib0180) 2018; 28
Sun (10.1016/j.apcatb.2021.120580_bib0025) 2021; 284
References_xml – volume: 284
  year: 2021
  ident: bib0025
  article-title: Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis
  publication-title: Appl. Catal. B: Environ.
– volume: 56
  start-page: 5867
  year: 2017
  end-page: 5871
  ident: bib0035
  article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 4516
  year: 2015
  end-page: 4522
  ident: bib0200
  article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity
  publication-title: Adv. Mater.
– volume: 43
  start-page: 104
  year: 2020
  end-page: 107
  ident: bib0080
  article-title: Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: J. Energy Chem.
– volume: 6
  start-page: 6624
  year: 2015
  end-page: 6631
  ident: bib0145
  article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
  publication-title: Chem. Sci.
– volume: 26
  start-page: 1564
  year: 2016
  end-page: 1570
  ident: bib0160
  article-title: Strain control of oxygen vacancies in epitaxial strontium cobaltite films
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  ident: bib0185
  article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting
  publication-title: Adv. Mater.
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  ident: bib0215
  article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0170
  article-title: Cation vacancy stabilization of single-atomic-site Pt
  publication-title: Nat. Commun.
– volume: 9
  year: 2019
  ident: bib0100
  article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 4477
  year: 2014
  ident: bib0055
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
– volume: 2
  start-page: 1035
  year: 2017
  end-page: 1042
  ident: bib0205
  article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications
  publication-title: ACS Energy Lett.
– volume: 58
  start-page: 736
  year: 2019
  end-page: 740
  ident: bib0220
  article-title: NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  year: 2018
  ident: bib0085
  article-title: Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity
  publication-title: Small Methods
– volume: 57
  start-page: 172
  year: 2018
  end-page: 176
  ident: bib0070
  article-title: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 2150
  year: 2019
  end-page: 2163
  ident: bib0190
  article-title: Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment
  publication-title: Nano Res.
– volume: 1
  start-page: 0003
  year: 2017
  ident: bib0015
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
– volume: 3
  start-page: 1373
  year: 2018
  end-page: 1380
  ident: bib0235
  article-title: Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst
  publication-title: ACS Energy Lett.
– volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  ident: bib0225
  article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen
  publication-title: J. Am. Chem. Soc.
– volume: 15
  year: 2019
  ident: bib0140
  article-title: A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays
  publication-title: Small
– volume: 29
  year: 2019
  ident: bib0175
  article-title: Co
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 13638
  year: 2018
  end-page: 13644
  ident: bib0095
  article-title: Rapid cationic defect and anion dual-regulated layered double hydroxides for efficient water oxidation
  publication-title: Nanoscale
– volume: 31
  year: 2021
  ident: bib0105
  article-title: Fe
  publication-title: Adv. Fun. Mater.
– volume: 7
  start-page: 46
  year: 2019
  end-page: 52
  ident: bib0130
  article-title: Ultra-thin metal-organic framework nanoribbons
  publication-title: Natl. Sci. Rev.
– volume: 16
  year: 2020
  ident: bib0115
  article-title: Non-3d metal modulation of a 2d Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting
  publication-title: Small
– volume: 9
  start-page: 1734
  year: 2016
  end-page: 1743
  ident: bib0210
  article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity
  publication-title: Energy Environ. Sci.
– volume: 3
  year: 2019
  ident: bib0090
  article-title: A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst
  publication-title: Small Methods
– volume: 208
  start-page: 460
  year: 1993
  end-page: 464
  ident: bib0155
  article-title: The electronic-structure of mesoscopic NiO particles
  publication-title: Chem. Phys. Lett.
– volume: 53
  start-page: 74
  year: 2018
  end-page: 82
  ident: bib0060
  article-title: Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation
  publication-title: Nano Energy
– volume: 10
  start-page: 11127
  year: 2020
  end-page: 11135
  ident: bib0195
  article-title: NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction
  publication-title: ACS Catal.
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: bib0005
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
– volume: 273
  year: 2020
  ident: bib0040
  article-title: Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures
  publication-title: Appl. Catal. B: Environ.
– volume: 26
  start-page: 1889
  year: 2014
  end-page: 1895
  ident: bib0020
  article-title: Hierarchical Zn
  publication-title: Chem. Mater.
– volume: 58
  start-page: 9459
  year: 2019
  end-page: 9463
  ident: bib0165
  article-title: Interfacial defect engineering for improved portable Zinc-air batteries with a broad working temperature
  publication-title: Angew. Chem. Int. Ed.
– volume: 140
  start-page: 3876
  year: 2018
  end-page: 3879
  ident: bib0240
  article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
– volume: 286
  year: 2021
  ident: bib0050
  article-title: Cactus-like NiCo
  publication-title: Appl. Catal. B: Environ.
– volume: 8
  year: 2018
  ident: bib0065
  article-title: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 715
  year: 2020
  end-page: 745
  ident: bib0075
  article-title: Functionalized layered double hydroxides for innovative applications
  publication-title: Mater. Horiz.
– volume: 28
  year: 2018
  ident: bib0180
  article-title: In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1605
  year: 2019
  end-page: 1611
  ident: bib0135
  article-title: In-situ formation of MOF derived mesoporous Co
  publication-title: Nano Res.
– volume: 9
  start-page: 2373
  year: 2018
  ident: bib0230
  article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution
  publication-title: Nat. Commun.
– volume: 3
  start-page: 17075
  year: 2017
  ident: bib0110
  article-title: Nanomaterials derived from metal-organic frameworks
  publication-title: Nat. Rev. Chem.
– volume: 278
  year: 2020
  ident: bib0010
  article-title: NiCo/NiCo-OH and NiFe/NiFe-OH core-shell nanostructures for water splitting electrocatalysis at large currents
  publication-title: Appl. Catal. B: Environ.
– volume: 6
  year: 2016
  ident: bib0030
  article-title: NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes
  publication-title: Adv. Energy Mater.
– volume: 63
  start-page: 91
  year: 2020
  end-page: 99
  ident: bib0045
  article-title: Synthesis of ultrathin Co
  publication-title: Sci. China Mater.
– volume: 10
  start-page: 3826
  year: 2017
  end-page: 3835
  ident: bib0125
  article-title: Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions
  publication-title: Nano Res.
– volume: 2
  start-page: 791
  year: 2017
  end-page: 802
  ident: bib0120
  article-title: Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting
  publication-title: Chem
– volume: 4
  start-page: 1412
  year: 2019
  end-page: 1418
  ident: bib0150
  article-title: Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 1412
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0150
  article-title: Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00867
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0185
  article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201870272
– volume: 12
  start-page: 2150
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0190
  article-title: Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2377-9
– volume: 10
  start-page: 11127
  year: 2020
  ident: 10.1016/j.apcatb.2021.120580_bib0195
  article-title: NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02501
– volume: 1
  start-page: 0003
  year: 2017
  ident: 10.1016/j.apcatb.2021.120580_bib0015
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0180
  article-title: In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 74
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0060
  article-title: Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.045
– volume: 278
  year: 2020
  ident: 10.1016/j.apcatb.2021.120580_bib0010
  article-title: NiCo/NiCo-OH and NiFe/NiFe-OH core-shell nanostructures for water splitting electrocatalysis at large currents
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119326
– volume: 56
  start-page: 5867
  year: 2017
  ident: 10.1016/j.apcatb.2021.120580_bib0035
  article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 63
  start-page: 91
  year: 2020
  ident: 10.1016/j.apcatb.2021.120580_bib0045
  article-title: Synthesis of ultrathin Co2AlO4 nanosheets with oxygen vacancies for enhanced electrocatalytic oxygen evolution
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-9490-x
– volume: 3
  start-page: 1373
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0235
  article-title: Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00515
– volume: 208
  start-page: 460
  year: 1993
  ident: 10.1016/j.apcatb.2021.120580_bib0155
  article-title: The electronic-structure of mesoscopic NiO particles
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)87173-Z
– volume: 140
  start-page: 3876
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0240
  article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00752
– volume: 15
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0140
  article-title: A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays
  publication-title: Small
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0170
  article-title: Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1889
  year: 2014
  ident: 10.1016/j.apcatb.2021.120580_bib0020
  article-title: Hierarchical ZnxCo3-xO4 nanoarrays with high activity for electrocatalytic oxygen evolution
  publication-title: Chem. Mater.
  doi: 10.1021/cm4040903
– volume: 6
  year: 2016
  ident: 10.1016/j.apcatb.2021.120580_bib0030
  article-title: NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600621
– volume: 2
  start-page: 791
  year: 2017
  ident: 10.1016/j.apcatb.2021.120580_bib0120
  article-title: Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.04.016
– volume: 46
  start-page: 337
  year: 2017
  ident: 10.1016/j.apcatb.2021.120580_bib0005
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 26
  start-page: 1564
  year: 2016
  ident: 10.1016/j.apcatb.2021.120580_bib0160
  article-title: Strain control of oxygen vacancies in epitaxial strontium cobaltite films
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504868
– volume: 7
  start-page: 715
  year: 2020
  ident: 10.1016/j.apcatb.2021.120580_bib0075
  article-title: Functionalized layered double hydroxides for innovative applications
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01494B
– volume: 16
  year: 2020
  ident: 10.1016/j.apcatb.2021.120580_bib0115
  article-title: Non-3d metal modulation of a 2d Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting
  publication-title: Small
– volume: 9
  start-page: 2373
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0230
  article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04788-3
– volume: 273
  year: 2020
  ident: 10.1016/j.apcatb.2021.120580_bib0040
  article-title: Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119014
– volume: 58
  start-page: 9459
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0165
  article-title: Interfacial defect engineering for improved portable Zinc-air batteries with a broad working temperature
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903879
– volume: 6
  start-page: 6624
  year: 2015
  ident: 10.1016/j.apcatb.2021.120580_bib0145
  article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02417J
– volume: 10
  start-page: 3826
  year: 2017
  ident: 10.1016/j.apcatb.2021.120580_bib0125
  article-title: Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1595-2
– volume: 2
  start-page: 1035
  year: 2017
  ident: 10.1016/j.apcatb.2021.120580_bib0205
  article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00206
– volume: 31
  year: 2021
  ident: 10.1016/j.apcatb.2021.120580_bib0105
  article-title: Fe2+-induced in situ intercalation and cation exsolution of Co80Fe20(OH)(OCH3) with rich vacancies for boosting oxygen evolution reaction
  publication-title: Adv. Fun. Mater.
  doi: 10.1002/adfm.202009245
– volume: 58
  start-page: 736
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0220
  article-title: NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201809689
– volume: 43
  start-page: 104
  year: 2020
  ident: 10.1016/j.apcatb.2021.120580_bib0080
  article-title: Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.08.014
– volume: 5
  start-page: 4477
  year: 2014
  ident: 10.1016/j.apcatb.2021.120580_bib0055
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
– volume: 9
  start-page: 1734
  year: 2016
  ident: 10.1016/j.apcatb.2021.120580_bib0210
  article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00377J
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0175
  article-title: Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions
  publication-title: Adv. Funct. Mater.
– volume: 286
  year: 2021
  ident: 10.1016/j.apcatb.2021.120580_bib0050
  article-title: Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119869
– volume: 2
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0085
  article-title: Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity
  publication-title: Small Methods
  doi: 10.1002/smtd.201800083
– volume: 12
  start-page: 1605
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0135
  article-title: In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2399-3
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0065
  article-title: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703585
– volume: 135
  start-page: 12329
  year: 2013
  ident: 10.1016/j.apcatb.2021.120580_bib0225
  article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 284
  year: 2021
  ident: 10.1016/j.apcatb.2021.120580_bib0025
  article-title: Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2020.119740
– volume: 57
  start-page: 172
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0070
  article-title: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710877
– volume: 27
  start-page: 4516
  year: 2015
  ident: 10.1016/j.apcatb.2021.120580_bib0200
  article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501901
– volume: 3
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0090
  article-title: A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst
  publication-title: Small Methods
– volume: 10
  start-page: 13638
  year: 2018
  ident: 10.1016/j.apcatb.2021.120580_bib0095
  article-title: Rapid cationic defect and anion dual-regulated layered double hydroxides for efficient water oxidation
  publication-title: Nanoscale
  doi: 10.1039/C8NR04402C
– volume: 7
  start-page: 46
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0130
  article-title: Ultra-thin metal-organic framework nanoribbons
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz118
– volume: 3
  start-page: 17075
  year: 2017
  ident: 10.1016/j.apcatb.2021.120580_bib0110
  article-title: Nanomaterials derived from metal-organic frameworks
  publication-title: Nat. Rev. Chem.
– volume: 137
  start-page: 1305
  year: 2015
  ident: 10.1016/j.apcatb.2021.120580_bib0215
  article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 9
  year: 2019
  ident: 10.1016/j.apcatb.2021.120580_bib0100
  article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900881
SSID ssj0002328
Score 2.6465247
Snippet [Display omitted] •A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER...
The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120580
SubjectTerms Absorption spectroscopy
Arrays
Catalysts
Catalytic activity
Defects
Density functional theory
Edges
Electron states
Heredity
Inheritances
Intermediates
Intermetallic compounds
Iron compounds
LDH
Metal-organic frameworks
Nanostructure
Nickel compounds
OER
Oxygen
Oxygen enrichment
Oxygen evolution reactions
Unsaturated sites
X ray absorption
X-ray absorption spectroscopy
Title Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction
URI https://dx.doi.org/10.1016/j.apcatb.2021.120580
https://www.proquest.com/docview/2582221250
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hOAAHBAVE2eQDV9MkjuPmiApV2coBkLhZWSaiCKVVGxBc-HbGjsMmJCSOjcZR5DceP1fvjQEOZI4SEyNujbOMh0h1MCHawTGVxEZSOkHbxvOXw2hwG57dybs56DVeGCOrdLW_rum2WrsnHTebnclo1Ln24iASQhkTCuWtrcNhqEyWH759yjyIMdhqTMHcRDf2OavxSiZZUqV0Sgz8Qz_wpGkO-fv29KNQ292nvworjjayo_rL1mAOyxYs9prb2lqw_KWxYAs2Tz79azTMLeDZOpTXtl_s0xTZqDTWv8qgzmZ1j9pXZtwm7PKqz6oxM_-0cUovIxbN2XDUR35xPGDJdJpQ4HjKsLy3-gE2fnmlPGT47PKYERO1fokNuO2f3PQG3F25wDNazBWPRCTCPM-Lgohi7AmJRZYp6RfdIM1pJnNCL_ZFhBgTzxJ0uiK-ESRx4avIS1VXbMJ8OS5xC1gUKyy6MrVWXVUQ-EIUORrrKoZpqNogmpnWmetHbq7FeNSN8OxB1_hog4-u8WkD_xg1qftx_BGvGhD1t7zStGX8MXK3wVy7dT3TgTSEikiht_3vF-_AkvllNTFyF-YJd9wjZlOl-zZ192Hh6PR8MHwH7973Kg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1FcAAOiAYQtNDuodclttdrx0cUiNI2SQ-AxG3lj7EIqpwoMQgu_e3MrNdNi5CQeo1nLWvfzOzbaN4MwFddoMaUi1uTPJchUh5MiXZIzDSxkYxu0Lbx_GQajW7C77f6tgODVgvDZZUu9zc53WZr90vP7WZvMZv1rrwkiJSKWYRCfst5eDOk8OUxBme_13UeRBlsOiZryeatfs4WeaWLPK0zuiYG_pkfeJq7Q759Pr3K1Pb4Ge7BruON4rz5tA_QwaoLW4N2XFsXdv7qLNiFw8u1gI2WuQhe7UN1ZRvGPixRzCrW_tUMu1g1TWqfBctNxOTnUNRzwX-1SfIvrhYtxHQ2RDm-GIl0uUzJcL4UWN3ZAgIxf3omRxT46BxZEBW1gokDuBleXg9G0s1ckDlFcy0jFamwKIqyJKaYeEpjmeex9st-kBW0kwXBl_gqQkyIaCm6XhHhCNKk9OPIy-K-OoSNal7hEYgoibHs68xqdeOS0FeqLJC1qxhmYXwMqt1pk7uG5DwX45dpK8_uTYOPYXxMg88xyD-rFk1Djnfs4xZE849jGToz3ll50mJuXGCvTKCZUREr9D7-94u_wNboejI242_TH59gm5_YAhl9AhvkA3hKNKfOPls3fgGSV_i4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+inheritance+strategy+from+MOF+to+edge-enriched+NiFe-LDH+array+for+enhanced+oxygen+evolution+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wang%2C+Bingqing&rft.au=Han%2C+Xu&rft.au=Guo%2C+Chong&rft.au=Jing%2C+Jin&rft.date=2021-12-05&rft.issn=0926-3373&rft.volume=298&rft.spage=120580&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2021_120580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon