Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction
[Display omitted] •A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER activity is successfully synthesized.•The roles of the edges in NiFe-LDH for OER is unraveled. The rational design of advanced nanostructures...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 298; p. 120580 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER activity is successfully synthesized.•The roles of the edges in NiFe-LDH for OER is unraveled.
The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic performance. In this work, we report an edge-enriched (EE) NiFe-layer double hydroxide (LDH) nanoarray with abundant coordinatively unsaturated sites, which was synthesized by a structure inheritance strategy using metal-organic framework (MOF) nanosheet array as a structure-directing template. Impressively, the obtained EE-NiFe-LDH nanosheet array offers high electrocatalytic activity in oxygen evolution reaction (OER) with an overpotential of only 205 mV to reach a current density of 10 mA cm−2, outperforming all reported NiFe-LDH nanostructures. X-ray absorption spectroscopy and density functional theory calculations demonstrate that the exposed edges in EE-NiFe-LDH contain abundant iron and oxygen vacancies, which optimized the electronic state of the NiFe-LDH and enhanced the adsorption of oxygenated intermediates, resulting in the high catalytic activity for OER. |
---|---|
AbstractList | The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic performance. In this work, we report an edge-enriched (EE) NiFe-layer double hydroxide (LDH) nanoarray with abundant coordinatively unsaturated sites, which was synthesized by a structure inheritance strategy using metal-organic framework (MOF) nanosheet array as a structure-directing template. Impressively, the obtained EE-NiFe-LDH nanosheet array offers high electrocatalytic activity in oxygen evolution reaction (OER) with an overpotential of only 205 mV to reach a current density of 10 mA cm−2, outperforming all reported NiFe-LDH nanostructures. X-ray absorption spectroscopy and density functional theory calculations demonstrate that the exposed edges in EE-NiFe-LDH contain abundant iron and oxygen vacancies, which optimized the electronic state of the NiFe-LDH and enhanced the adsorption of oxygenated intermediates, resulting in the high catalytic activity for OER. [Display omitted] •A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER activity is successfully synthesized.•The roles of the edges in NiFe-LDH for OER is unraveled. The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic performance. In this work, we report an edge-enriched (EE) NiFe-layer double hydroxide (LDH) nanoarray with abundant coordinatively unsaturated sites, which was synthesized by a structure inheritance strategy using metal-organic framework (MOF) nanosheet array as a structure-directing template. Impressively, the obtained EE-NiFe-LDH nanosheet array offers high electrocatalytic activity in oxygen evolution reaction (OER) with an overpotential of only 205 mV to reach a current density of 10 mA cm−2, outperforming all reported NiFe-LDH nanostructures. X-ray absorption spectroscopy and density functional theory calculations demonstrate that the exposed edges in EE-NiFe-LDH contain abundant iron and oxygen vacancies, which optimized the electronic state of the NiFe-LDH and enhanced the adsorption of oxygenated intermediates, resulting in the high catalytic activity for OER. |
ArticleNumber | 120580 |
Author | Yang, Can Wang, Bingqing Han, Aijuan Wang, Dingsheng Liu, Junfeng Guo, Chong Jing, Jin Han, Xu Li, Yaping |
Author_xml | – sequence: 1 givenname: Bingqing surname: Wang fullname: Wang, Bingqing organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China – sequence: 2 givenname: Xu surname: Han fullname: Han, Xu organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China – sequence: 3 givenname: Chong surname: Guo fullname: Guo, Chong organization: Department of Chemistry, Tsinghua University, Beijing, 100084, PR China – sequence: 4 givenname: Jin surname: Jing fullname: Jing, Jin organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China – sequence: 5 givenname: Can surname: Yang fullname: Yang, Can organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China – sequence: 6 givenname: Yaping surname: Li fullname: Li, Yaping organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China – sequence: 7 givenname: Aijuan surname: Han fullname: Han, Aijuan organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China – sequence: 8 givenname: Dingsheng surname: Wang fullname: Wang, Dingsheng organization: Department of Chemistry, Tsinghua University, Beijing, 100084, PR China – sequence: 9 givenname: Junfeng surname: Liu fullname: Liu, Junfeng email: ljf@mail.buct.edu.cn organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China |
BookMark | eNqFkEtPGzEURq2KSk1C_0EXllhP8GOeLJBQIE2lFBaFteXYdxJHwQ53PBH59_VoWLFoV_cuvnMfZ0oufPBAyA_O5pzx8no_10ej42YumOBzLlhRsy9kwutKZrKu5QWZsEaUmZSV_EamXbdnjAkp6gnxfyL2JvYI1PkdoIvaG6BdRB1he6Ythlf6-2lJY6Bgt5CBR2d2YOmjW0K2vl9RjahTMCAFvxtoS8P7eQuewikc-uiCpwjaDM0l-drqQwffP-qMvCwfnherbP3089fibp2ZnLGYlbKUubW2bXnBGiYLaI2pCt7WYmPT3XYjZcNlCdDkspB5k1Jc6KblVck2VS1n5Gqce8Tw1kMX1T706NNKJYpaCMFFwVIqH1MGQ9chtOqI7lXjWXGmBrNqr0azajCrRrMJu_mEmaRteC9Zc4f_wbcjDOn9kwNUnXEwWHMIJiob3L8H_AVKIZg9 |
CitedBy_id | crossref_primary_10_1021_acsami_3c01412 crossref_primary_10_1002_aic_18161 crossref_primary_10_1039_D3DT03494A crossref_primary_10_1002_adfm_202406423 crossref_primary_10_1039_D3NJ03560C crossref_primary_10_1039_D3NJ00236E crossref_primary_10_1016_j_cej_2022_136833 crossref_primary_10_1016_j_enchem_2024_100128 crossref_primary_10_1002_smtd_202200084 crossref_primary_10_1016_j_jphotochem_2025_116398 crossref_primary_10_1016_j_aca_2022_340608 crossref_primary_10_1007_s12274_022_5114_8 crossref_primary_10_1016_j_ijbiomac_2023_125566 crossref_primary_10_1002_ange_202417196 crossref_primary_10_1002_aenm_202203913 crossref_primary_10_1007_s40242_024_4121_6 crossref_primary_10_1007_s40843_023_2611_4 crossref_primary_10_1016_j_jallcom_2022_166990 crossref_primary_10_1039_D2NR01516A crossref_primary_10_1002_adma_202204320 crossref_primary_10_1016_j_ijhydene_2025_03_262 crossref_primary_10_1002_adfm_202303776 crossref_primary_10_1002_aenm_202401449 crossref_primary_10_1016_j_jelechem_2022_116573 crossref_primary_10_1002_sstr_202200085 crossref_primary_10_1016_j_ijhydene_2024_07_426 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1016_j_ijhydene_2022_08_147 crossref_primary_10_1002_adfm_202404828 crossref_primary_10_1016_j_cej_2022_139686 crossref_primary_10_1021_acsami_3c15403 crossref_primary_10_1002_advs_202207519 crossref_primary_10_1016_j_apcatb_2022_121150 crossref_primary_10_1016_j_apcatb_2022_121713 crossref_primary_10_1002_cssc_202201205 crossref_primary_10_1021_acssuschemeng_4c06394 crossref_primary_10_1016_j_apcatb_2022_121950 crossref_primary_10_1039_D2CE01491B crossref_primary_10_1039_D4NJ00015C crossref_primary_10_1002_cctc_202201615 crossref_primary_10_1007_s12274_023_5608_z crossref_primary_10_1002_aenm_202202522 crossref_primary_10_1039_D2TA06560F crossref_primary_10_1016_j_apcatb_2023_122808 crossref_primary_10_1021_acsami_2c05977 crossref_primary_10_1016_j_arabjc_2023_105157 crossref_primary_10_1016_j_cej_2022_136105 crossref_primary_10_1039_D2CS00236A crossref_primary_10_1021_acsnano_2c09396 crossref_primary_10_1038_s41467_023_37441_9 crossref_primary_10_1002_smll_202406075 crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_1039_D3CC03838F crossref_primary_10_1016_j_ijhydene_2024_09_159 crossref_primary_10_1007_s12274_022_5163_z crossref_primary_10_1016_j_apcatb_2023_122891 crossref_primary_10_1016_j_apcatb_2022_121146 crossref_primary_10_1016_j_cej_2023_145223 crossref_primary_10_1016_j_apsusc_2023_156991 crossref_primary_10_1016_j_colsurfa_2023_132400 crossref_primary_10_1016_j_jallcom_2022_166145 crossref_primary_10_1039_D2TA02313J crossref_primary_10_1149_1945_7111_ac96a8 crossref_primary_10_1016_j_cej_2024_155435 crossref_primary_10_1002_smll_202404060 crossref_primary_10_1016_j_ijhydene_2022_06_167 crossref_primary_10_1016_j_cej_2024_152721 crossref_primary_10_1016_j_ijhydene_2023_06_322 crossref_primary_10_1016_j_jelechem_2022_116540 crossref_primary_10_1016_j_jcis_2024_05_083 crossref_primary_10_1007_s11696_023_02978_y crossref_primary_10_1016_j_ijhydene_2024_05_367 crossref_primary_10_1021_acs_inorgchem_4c00712 crossref_primary_10_1016_j_cej_2024_151912 crossref_primary_10_1016_j_nanoen_2024_110545 crossref_primary_10_1016_j_apsusc_2022_154287 crossref_primary_10_20517_microstructures_2024_62 crossref_primary_10_1002_batt_202400699 crossref_primary_10_1039_D2TA04963E crossref_primary_10_1002_aenm_202203955 crossref_primary_10_1039_D3CY00789H crossref_primary_10_1016_j_apcatb_2023_123448 crossref_primary_10_1016_j_jelechem_2023_117365 crossref_primary_10_1007_s40843_022_2053_5 crossref_primary_10_1016_j_mcat_2024_114197 crossref_primary_10_1007_s11244_022_01611_8 crossref_primary_10_1016_j_ijhydene_2023_01_237 crossref_primary_10_1002_adma_202300347 crossref_primary_10_1002_adma_202209876 crossref_primary_10_1016_j_foodchem_2022_133399 crossref_primary_10_1021_acs_langmuir_3c03558 crossref_primary_10_1007_s10562_022_04032_0 crossref_primary_10_1002_advs_202415525 crossref_primary_10_1016_j_jallcom_2024_175328 crossref_primary_10_3390_ma18040911 crossref_primary_10_1016_j_seppur_2024_128843 crossref_primary_10_1002_celc_202300103 crossref_primary_10_1016_j_apsusc_2023_156500 crossref_primary_10_1021_acsami_2c04562 crossref_primary_10_1021_acs_energyfuels_3c02823 crossref_primary_10_1002_smll_202208027 crossref_primary_10_1002_smll_202305241 crossref_primary_10_1002_cctc_202400622 crossref_primary_10_1039_D2NR06264J crossref_primary_10_1016_j_rineng_2023_101606 crossref_primary_10_1016_j_seppur_2025_131699 crossref_primary_10_1021_acsami_2c14192 crossref_primary_10_1016_j_jcis_2024_10_128 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1002_adfm_202304403 crossref_primary_10_1002_anie_202417196 crossref_primary_10_1016_j_apmate_2021_10_004 crossref_primary_10_1016_j_jallcom_2024_175275 crossref_primary_10_1039_D2NJ01385A |
Cites_doi | 10.1021/acsenergylett.9b00867 10.1002/adma.201870272 10.1007/s12274-019-2377-9 10.1021/acscatal.0c02501 10.1038/s41570-016-0003 10.1016/j.nanoen.2018.08.045 10.1016/j.apcatb.2020.119326 10.1002/anie.201701477 10.1007/s40843-019-9490-x 10.1021/acsenergylett.8b00515 10.1016/0009-2614(93)87173-Z 10.1021/jacs.8b00752 10.1021/cm4040903 10.1002/aenm.201600621 10.1016/j.chempr.2017.04.016 10.1039/C6CS00328A 10.1002/adfm.201504868 10.1039/C9MH01494B 10.1038/s41467-018-04788-3 10.1016/j.apcatb.2020.119014 10.1002/anie.201903879 10.1039/C5SC02417J 10.1007/s12274-017-1595-2 10.1021/acsenergylett.7b00206 10.1002/adfm.202009245 10.1002/anie.201809689 10.1016/j.jechem.2019.08.014 10.1038/ncomms5477 10.1039/C6EE00377J 10.1016/j.apcatb.2020.119869 10.1002/smtd.201800083 10.1007/s12274-019-2399-3 10.1002/aenm.201703585 10.1021/ja405351s 10.1016/j.apcatb.2020.119740 10.1002/anie.201710877 10.1002/adma.201501901 10.1039/C8NR04402C 10.1093/nsr/nwz118 10.1021/ja511559d 10.1002/aenm.201900881 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Dec 5, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Dec 5, 2021 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2021.120580 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2021_120580 S0926337321007062 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-63634dddff1509035efcc751f82bd328db339136ee943534950912a9f1760b783 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 02:39:50 EDT 2025 Tue Jul 01 04:35:14 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Sat Mar 02 16:00:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LDH Unsaturated sites Edges OER Defects |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-63634dddff1509035efcc751f82bd328db339136ee943534950912a9f1760b783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2582221250 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2582221250 crossref_primary_10_1016_j_apcatb_2021_120580 crossref_citationtrail_10_1016_j_apcatb_2021_120580 elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-05 |
PublicationDateYYYYMMDD | 2021-12-05 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Dionigi, Strasser (bib0030) 2016; 6 Yu, Yang, Guan, Lu, Lou (bib0070) 2018; 57 Zhou, Wang, Jia, Xiong, Yang, Liu, Tang, Zhang, Liu, Zheng, Kuang, Sun, Liu (bib0220) 2019; 58 Song, Hu (bib0055) 2014; 5 He, Liu, Huang, Li, Zou, Dong, Wang (bib0105) 2021; 31 Li, Zhang, Feng, Cheng, Qiu, Dong, Liu, Du (bib0175) 2019; 29 Hunter, Hieringer, Winkler, Gray, Müller (bib0210) 2016; 9 Qin, Wang, Shang, Iqbal, Han, Sun, Xu, Liu (bib0080) 2020; 43 Zhang, Zhao, Zhao, Shi, Waterhouse, Zhang (bib0100) 2019; 9 Hu, Zeng, Wei, Wang, Wu, Gu, Shi, Zhu (bib0040) 2020; 273 Li, Shao, An, Wang, Xu, Wei, Evans, Duan (bib0145) 2015; 6 Suen, Hung, Quan, Zhang, Xu, Chen (bib0005) 2017; 46 Zhou, Xiong, Cai, Han, Jia, Xie, Duan, Xie, Zheng, Sun, Duan (bib0085) 2018; 2 Wang, Liu, Zhang, Liu (bib0125) 2017; 10 Liu, Yu, Yin, Xu, Feng, Jiang, Zheng, Gao, Gao, Que, Ruan, Wu, Shi, Cao (bib0115) 2020; 16 Petrie, Mitra, Jeen, Choi, Meyer, Reboredo, Freeland, Eres, Lee (bib0160) 2016; 26 Wang, Shang, Guo, Zhang, Zhu, Han, Liu (bib0140) 2019; 15 Yuan, Bak, Li, Jia, Zheng, Zhou, Bai, Hu, Yang, Cai (bib0150) 2019; 4 Louie, Bell (bib0225) 2013; 135 Sun, Zhang, Li, Li, Ao, Xue, Ostrikov, Tang, Wang (bib0025) 2021; 284 Zhao, Zhang, Jia, Waterhouse, Shi, Zhang, Zhan, Tao, Wu, Tung, O’Hare, Zhang (bib0065) 2018; 8 Wu, Li, Xia, Zhang, Deng, Wang, Sun (bib0195) 2020; 10 Feng, Jiao, Chen, Dang, Dai, Suib, Zhang, Zhao, Li, Feng (bib0050) 2021; 286 He, Wan, Jiang, Pan, Wu, Wang, Wu, Ye, Ajayan, Song (bib0235) 2018; 3 Zhang, Wu, Cheong, Chen, Lin, Li, Zheng, Yan, Gu, Chen (bib0170) 2018; 9 Liang, Gandi, Xia, Hedhili, Anjum, Schwingenschlögl, Alshareef (bib0205) 2017; 2 Laipan, Yu, Zhu, Zhu, Smith, He, O’Hare, Sun (bib0075) 2020; 7 Huang, Chen, Xie, Chen, Wang, Zeng, Chen, Wang (bib0095) 2018; 10 Tang, Wang, Wang, Zhang, Tian, Nie, Wei (bib0200) 2015; 27 Wang, Shen, Wei, Xi, Ma, Zhang, Zhu, An (bib0045) 2020; 63 Zhu, Chen, Yu, Zeng, Ming, Liang, Wang (bib0010) 2020; 278 Wang, Zhao, Li, Huang, Zhang, Guo, Zhang, Cheng, Liu, Shang, Jin, Sun, Liu, Zhang (bib0130) 2019; 7 Zhang, Liu, Xi, Yu, Chen, Sun, Wang, Lange, Zhang (bib0240) 2018; 140 Zhang, Dong, Wang, Gao, Niu, Peng, Zhang (bib0090) 2019; 3 Cai, Zhang, Jiao, Yu, Jiang (bib0120) 2017; 2 Liu, Wang, Peng, Yang, Jiang, Zhou, Lee, Zhao, Zhang (bib0185) 2018; 30 Xie, Xin, Wang, Zhang, Lei, Qu, Hao, Cui, Tang, Xie (bib0060) 2018; 53 Yan, Sun, Chen, Liu, Zhao, Li, Xie, Cheng, Chen (bib0230) 2018; 9 Soriano, Abbate, Vogel, Fuggle, Fernandez, Gonzalezelipe, Sacchi, Sanz (bib0155) 1993; 208 Wang, Zhang, Liu, Xie, Feng, Liu, Shao, Wang (bib0035) 2017; 56 Liu, Chang, Luo, Xu, Lei, Liu, Sun (bib0020) 2014; 26 Kang, Im, Lee, Kwag, Kwon, Tiruneh, Kim, Kim, Yang, Lim, Yoon (bib0135) 2019; 12 Zu, Wang, Lin, Ou, Wei, Sun, Wu (bib0190) 2019; 12 Dang, Zhu, Xu (bib0110) 2017; 3 Roger, Shipman, Symes (bib0015) 2017; 1 Wang, Xie, Zhang, Liu, Chen, Wang (bib0180) 2018; 28 An, Huang, Zhang, Wang, Zhang, Dai, Xi, Yan (bib0165) 2019; 58 Friebel, Louie, Bajdich, Sanwald, Cai, Wise, Cheng, Sokaras, Weng, Alonso-Mori, Davis, Bargar, Nørskov, Nilsson, Bell (bib0215) 2015; 137 Xie (10.1016/j.apcatb.2021.120580_bib0060) 2018; 53 Song (10.1016/j.apcatb.2021.120580_bib0055) 2014; 5 Hu (10.1016/j.apcatb.2021.120580_bib0040) 2020; 273 Zhang (10.1016/j.apcatb.2021.120580_bib0100) 2019; 9 Suen (10.1016/j.apcatb.2021.120580_bib0005) 2017; 46 Kang (10.1016/j.apcatb.2021.120580_bib0135) 2019; 12 Wang (10.1016/j.apcatb.2021.120580_bib0125) 2017; 10 Tang (10.1016/j.apcatb.2021.120580_bib0200) 2015; 27 Hunter (10.1016/j.apcatb.2021.120580_bib0210) 2016; 9 Friebel (10.1016/j.apcatb.2021.120580_bib0215) 2015; 137 Laipan (10.1016/j.apcatb.2021.120580_bib0075) 2020; 7 Dang (10.1016/j.apcatb.2021.120580_bib0110) 2017; 3 Liu (10.1016/j.apcatb.2021.120580_bib0020) 2014; 26 Yu (10.1016/j.apcatb.2021.120580_bib0070) 2018; 57 Liu (10.1016/j.apcatb.2021.120580_bib0185) 2018; 30 Roger (10.1016/j.apcatb.2021.120580_bib0015) 2017; 1 Petrie (10.1016/j.apcatb.2021.120580_bib0160) 2016; 26 Wang (10.1016/j.apcatb.2021.120580_bib0140) 2019; 15 Louie (10.1016/j.apcatb.2021.120580_bib0225) 2013; 135 He (10.1016/j.apcatb.2021.120580_bib0105) 2021; 31 Zhang (10.1016/j.apcatb.2021.120580_bib0240) 2018; 140 Zu (10.1016/j.apcatb.2021.120580_bib0190) 2019; 12 Zhu (10.1016/j.apcatb.2021.120580_bib0010) 2020; 278 Liang (10.1016/j.apcatb.2021.120580_bib0205) 2017; 2 Cai (10.1016/j.apcatb.2021.120580_bib0120) 2017; 2 Zhou (10.1016/j.apcatb.2021.120580_bib0220) 2019; 58 Wang (10.1016/j.apcatb.2021.120580_bib0130) 2019; 7 Wang (10.1016/j.apcatb.2021.120580_bib0035) 2017; 56 Li (10.1016/j.apcatb.2021.120580_bib0175) 2019; 29 Zhou (10.1016/j.apcatb.2021.120580_bib0085) 2018; 2 Soriano (10.1016/j.apcatb.2021.120580_bib0155) 1993; 208 Feng (10.1016/j.apcatb.2021.120580_bib0050) 2021; 286 Li (10.1016/j.apcatb.2021.120580_bib0145) 2015; 6 Yan (10.1016/j.apcatb.2021.120580_bib0230) 2018; 9 Zhao (10.1016/j.apcatb.2021.120580_bib0065) 2018; 8 Wu (10.1016/j.apcatb.2021.120580_bib0195) 2020; 10 He (10.1016/j.apcatb.2021.120580_bib0235) 2018; 3 Huang (10.1016/j.apcatb.2021.120580_bib0095) 2018; 10 An (10.1016/j.apcatb.2021.120580_bib0165) 2019; 58 Dionigi (10.1016/j.apcatb.2021.120580_bib0030) 2016; 6 Liu (10.1016/j.apcatb.2021.120580_bib0115) 2020; 16 Wang (10.1016/j.apcatb.2021.120580_bib0045) 2020; 63 Zhang (10.1016/j.apcatb.2021.120580_bib0170) 2018; 9 Zhang (10.1016/j.apcatb.2021.120580_bib0090) 2019; 3 Yuan (10.1016/j.apcatb.2021.120580_bib0150) 2019; 4 Qin (10.1016/j.apcatb.2021.120580_bib0080) 2020; 43 Wang (10.1016/j.apcatb.2021.120580_bib0180) 2018; 28 Sun (10.1016/j.apcatb.2021.120580_bib0025) 2021; 284 |
References_xml | – volume: 284 year: 2021 ident: bib0025 article-title: Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis publication-title: Appl. Catal. B: Environ. – volume: 56 start-page: 5867 year: 2017 end-page: 5871 ident: bib0035 article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 4516 year: 2015 end-page: 4522 ident: bib0200 article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity publication-title: Adv. Mater. – volume: 43 start-page: 104 year: 2020 end-page: 107 ident: bib0080 article-title: Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction publication-title: J. Energy Chem. – volume: 6 start-page: 6624 year: 2015 end-page: 6631 ident: bib0145 article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions publication-title: Chem. Sci. – volume: 26 start-page: 1564 year: 2016 end-page: 1570 ident: bib0160 article-title: Strain control of oxygen vacancies in epitaxial strontium cobaltite films publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 ident: bib0185 article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting publication-title: Adv. Mater. – volume: 137 start-page: 1305 year: 2015 end-page: 1313 ident: bib0215 article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1 year: 2018 end-page: 8 ident: bib0170 article-title: Cation vacancy stabilization of single-atomic-site Pt publication-title: Nat. Commun. – volume: 9 year: 2019 ident: bib0100 article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation publication-title: Adv. Energy Mater. – volume: 5 start-page: 4477 year: 2014 ident: bib0055 article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis publication-title: Nat. Commun. – volume: 2 start-page: 1035 year: 2017 end-page: 1042 ident: bib0205 article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications publication-title: ACS Energy Lett. – volume: 58 start-page: 736 year: 2019 end-page: 740 ident: bib0220 article-title: NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis publication-title: Angew. Chem. Int. Ed. – volume: 2 year: 2018 ident: bib0085 article-title: Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity publication-title: Small Methods – volume: 57 start-page: 172 year: 2018 end-page: 176 ident: bib0070 article-title: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 2150 year: 2019 end-page: 2163 ident: bib0190 article-title: Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment publication-title: Nano Res. – volume: 1 start-page: 0003 year: 2017 ident: bib0015 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. – volume: 3 start-page: 1373 year: 2018 end-page: 1380 ident: bib0235 article-title: Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst publication-title: ACS Energy Lett. – volume: 135 start-page: 12329 year: 2013 end-page: 12337 ident: bib0225 article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen publication-title: J. Am. Chem. Soc. – volume: 15 year: 2019 ident: bib0140 article-title: A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays publication-title: Small – volume: 29 year: 2019 ident: bib0175 article-title: Co publication-title: Adv. Funct. Mater. – volume: 10 start-page: 13638 year: 2018 end-page: 13644 ident: bib0095 article-title: Rapid cationic defect and anion dual-regulated layered double hydroxides for efficient water oxidation publication-title: Nanoscale – volume: 31 year: 2021 ident: bib0105 article-title: Fe publication-title: Adv. Fun. Mater. – volume: 7 start-page: 46 year: 2019 end-page: 52 ident: bib0130 article-title: Ultra-thin metal-organic framework nanoribbons publication-title: Natl. Sci. Rev. – volume: 16 year: 2020 ident: bib0115 article-title: Non-3d metal modulation of a 2d Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting publication-title: Small – volume: 9 start-page: 1734 year: 2016 end-page: 1743 ident: bib0210 article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity publication-title: Energy Environ. Sci. – volume: 3 year: 2019 ident: bib0090 article-title: A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst publication-title: Small Methods – volume: 208 start-page: 460 year: 1993 end-page: 464 ident: bib0155 article-title: The electronic-structure of mesoscopic NiO particles publication-title: Chem. Phys. Lett. – volume: 53 start-page: 74 year: 2018 end-page: 82 ident: bib0060 article-title: Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation publication-title: Nano Energy – volume: 10 start-page: 11127 year: 2020 end-page: 11135 ident: bib0195 article-title: NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction publication-title: ACS Catal. – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: bib0005 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. – volume: 273 year: 2020 ident: bib0040 article-title: Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures publication-title: Appl. Catal. B: Environ. – volume: 26 start-page: 1889 year: 2014 end-page: 1895 ident: bib0020 article-title: Hierarchical Zn publication-title: Chem. Mater. – volume: 58 start-page: 9459 year: 2019 end-page: 9463 ident: bib0165 article-title: Interfacial defect engineering for improved portable Zinc-air batteries with a broad working temperature publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 3876 year: 2018 end-page: 3879 ident: bib0240 article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction publication-title: J. Am. Chem. Soc. – volume: 286 year: 2021 ident: bib0050 article-title: Cactus-like NiCo publication-title: Appl. Catal. B: Environ. – volume: 8 year: 2018 ident: bib0065 article-title: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation publication-title: Adv. Energy Mater. – volume: 7 start-page: 715 year: 2020 end-page: 745 ident: bib0075 article-title: Functionalized layered double hydroxides for innovative applications publication-title: Mater. Horiz. – volume: 28 year: 2018 ident: bib0180 article-title: In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1605 year: 2019 end-page: 1611 ident: bib0135 article-title: In-situ formation of MOF derived mesoporous Co publication-title: Nano Res. – volume: 9 start-page: 2373 year: 2018 ident: bib0230 article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution publication-title: Nat. Commun. – volume: 3 start-page: 17075 year: 2017 ident: bib0110 article-title: Nanomaterials derived from metal-organic frameworks publication-title: Nat. Rev. Chem. – volume: 278 year: 2020 ident: bib0010 article-title: NiCo/NiCo-OH and NiFe/NiFe-OH core-shell nanostructures for water splitting electrocatalysis at large currents publication-title: Appl. Catal. B: Environ. – volume: 6 year: 2016 ident: bib0030 article-title: NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes publication-title: Adv. Energy Mater. – volume: 63 start-page: 91 year: 2020 end-page: 99 ident: bib0045 article-title: Synthesis of ultrathin Co publication-title: Sci. China Mater. – volume: 10 start-page: 3826 year: 2017 end-page: 3835 ident: bib0125 article-title: Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions publication-title: Nano Res. – volume: 2 start-page: 791 year: 2017 end-page: 802 ident: bib0120 article-title: Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting publication-title: Chem – volume: 4 start-page: 1412 year: 2019 end-page: 1418 ident: bib0150 article-title: Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH publication-title: ACS Energy Lett. – volume: 4 start-page: 1412 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0150 article-title: Activating layered double hydroxide with multivacancies by memory effect for energy-efficient hydrogen production at neutral pH publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00867 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0185 article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201870272 – volume: 12 start-page: 2150 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0190 article-title: Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment publication-title: Nano Res. doi: 10.1007/s12274-019-2377-9 – volume: 10 start-page: 11127 year: 2020 ident: 10.1016/j.apcatb.2021.120580_bib0195 article-title: NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.0c02501 – volume: 1 start-page: 0003 year: 2017 ident: 10.1016/j.apcatb.2021.120580_bib0015 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0180 article-title: In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction publication-title: Adv. Funct. Mater. – volume: 53 start-page: 74 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0060 article-title: Sub-3 nm pores in two-dimensional nanomesh promoting the generation of electroactive phase for robust water oxidation publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.045 – volume: 278 year: 2020 ident: 10.1016/j.apcatb.2021.120580_bib0010 article-title: NiCo/NiCo-OH and NiFe/NiFe-OH core-shell nanostructures for water splitting electrocatalysis at large currents publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119326 – volume: 56 start-page: 5867 year: 2017 ident: 10.1016/j.apcatb.2021.120580_bib0035 article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 63 start-page: 91 year: 2020 ident: 10.1016/j.apcatb.2021.120580_bib0045 article-title: Synthesis of ultrathin Co2AlO4 nanosheets with oxygen vacancies for enhanced electrocatalytic oxygen evolution publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9490-x – volume: 3 start-page: 1373 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0235 article-title: Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00515 – volume: 208 start-page: 460 year: 1993 ident: 10.1016/j.apcatb.2021.120580_bib0155 article-title: The electronic-structure of mesoscopic NiO particles publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)87173-Z – volume: 140 start-page: 3876 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0240 article-title: Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00752 – volume: 15 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0140 article-title: A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays publication-title: Small – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0170 article-title: Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes publication-title: Nat. Commun. – volume: 26 start-page: 1889 year: 2014 ident: 10.1016/j.apcatb.2021.120580_bib0020 article-title: Hierarchical ZnxCo3-xO4 nanoarrays with high activity for electrocatalytic oxygen evolution publication-title: Chem. Mater. doi: 10.1021/cm4040903 – volume: 6 year: 2016 ident: 10.1016/j.apcatb.2021.120580_bib0030 article-title: NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600621 – volume: 2 start-page: 791 year: 2017 ident: 10.1016/j.apcatb.2021.120580_bib0120 article-title: Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting publication-title: Chem doi: 10.1016/j.chempr.2017.04.016 – volume: 46 start-page: 337 year: 2017 ident: 10.1016/j.apcatb.2021.120580_bib0005 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 26 start-page: 1564 year: 2016 ident: 10.1016/j.apcatb.2021.120580_bib0160 article-title: Strain control of oxygen vacancies in epitaxial strontium cobaltite films publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504868 – volume: 7 start-page: 715 year: 2020 ident: 10.1016/j.apcatb.2021.120580_bib0075 article-title: Functionalized layered double hydroxides for innovative applications publication-title: Mater. Horiz. doi: 10.1039/C9MH01494B – volume: 16 year: 2020 ident: 10.1016/j.apcatb.2021.120580_bib0115 article-title: Non-3d metal modulation of a 2d Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting publication-title: Small – volume: 9 start-page: 2373 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0230 article-title: Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-018-04788-3 – volume: 273 year: 2020 ident: 10.1016/j.apcatb.2021.120580_bib0040 article-title: Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119014 – volume: 58 start-page: 9459 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0165 article-title: Interfacial defect engineering for improved portable Zinc-air batteries with a broad working temperature publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201903879 – volume: 6 start-page: 6624 year: 2015 ident: 10.1016/j.apcatb.2021.120580_bib0145 article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions publication-title: Chem. Sci. doi: 10.1039/C5SC02417J – volume: 10 start-page: 3826 year: 2017 ident: 10.1016/j.apcatb.2021.120580_bib0125 article-title: Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions publication-title: Nano Res. doi: 10.1007/s12274-017-1595-2 – volume: 2 start-page: 1035 year: 2017 ident: 10.1016/j.apcatb.2021.120580_bib0205 article-title: Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00206 – volume: 31 year: 2021 ident: 10.1016/j.apcatb.2021.120580_bib0105 article-title: Fe2+-induced in situ intercalation and cation exsolution of Co80Fe20(OH)(OCH3) with rich vacancies for boosting oxygen evolution reaction publication-title: Adv. Fun. Mater. doi: 10.1002/adfm.202009245 – volume: 58 start-page: 736 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0220 article-title: NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809689 – volume: 43 start-page: 104 year: 2020 ident: 10.1016/j.apcatb.2021.120580_bib0080 article-title: Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.08.014 – volume: 5 start-page: 4477 year: 2014 ident: 10.1016/j.apcatb.2021.120580_bib0055 article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/ncomms5477 – volume: 9 start-page: 1734 year: 2016 ident: 10.1016/j.apcatb.2021.120580_bib0210 article-title: Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00377J – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0175 article-title: Co3O4 nanoparticles with ultrasmall size and abundant oxygen vacancies for boosting oxygen involved reactions publication-title: Adv. Funct. Mater. – volume: 286 year: 2021 ident: 10.1016/j.apcatb.2021.120580_bib0050 article-title: Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119869 – volume: 2 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0085 article-title: Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity publication-title: Small Methods doi: 10.1002/smtd.201800083 – volume: 12 start-page: 1605 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0135 article-title: In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction publication-title: Nano Res. doi: 10.1007/s12274-019-2399-3 – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0065 article-title: Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703585 – volume: 135 start-page: 12329 year: 2013 ident: 10.1016/j.apcatb.2021.120580_bib0225 article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 284 year: 2021 ident: 10.1016/j.apcatb.2021.120580_bib0025 article-title: Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2020.119740 – volume: 57 start-page: 172 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0070 article-title: Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710877 – volume: 27 start-page: 4516 year: 2015 ident: 10.1016/j.apcatb.2021.120580_bib0200 article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity publication-title: Adv. Mater. doi: 10.1002/adma.201501901 – volume: 3 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0090 article-title: A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst publication-title: Small Methods – volume: 10 start-page: 13638 year: 2018 ident: 10.1016/j.apcatb.2021.120580_bib0095 article-title: Rapid cationic defect and anion dual-regulated layered double hydroxides for efficient water oxidation publication-title: Nanoscale doi: 10.1039/C8NR04402C – volume: 7 start-page: 46 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0130 article-title: Ultra-thin metal-organic framework nanoribbons publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz118 – volume: 3 start-page: 17075 year: 2017 ident: 10.1016/j.apcatb.2021.120580_bib0110 article-title: Nanomaterials derived from metal-organic frameworks publication-title: Nat. Rev. Chem. – volume: 137 start-page: 1305 year: 2015 ident: 10.1016/j.apcatb.2021.120580_bib0215 article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 9 year: 2019 ident: 10.1016/j.apcatb.2021.120580_bib0100 article-title: A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900881 |
SSID | ssj0002328 |
Score | 2.6465247 |
Snippet | [Display omitted]
•A structure inheritance strategy to synthesize edge-enriched nanostructures is reported.•An edge-enriched NiFe-LDH nanoarray with high OER... The rational design of advanced nanostructures for catalysts to fully expose the edge or corner sites is highly desirable to optimize their electrocatalytic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120580 |
SubjectTerms | Absorption spectroscopy Arrays Catalysts Catalytic activity Defects Density functional theory Edges Electron states Heredity Inheritances Intermediates Intermetallic compounds Iron compounds LDH Metal-organic frameworks Nanostructure Nickel compounds OER Oxygen Oxygen enrichment Oxygen evolution reactions Unsaturated sites X ray absorption X-ray absorption spectroscopy |
Title | Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction |
URI | https://dx.doi.org/10.1016/j.apcatb.2021.120580 https://www.proquest.com/docview/2582221250 |
Volume | 298 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0hOAAHBAVE2eQDV9MkjuPmiApV2coBkLhZWSaiCKVVGxBc-HbGjsMmJCSOjcZR5DceP1fvjQEOZI4SEyNujbOMh0h1MCHawTGVxEZSOkHbxvOXw2hwG57dybs56DVeGCOrdLW_rum2WrsnHTebnclo1Ln24iASQhkTCuWtrcNhqEyWH759yjyIMdhqTMHcRDf2OavxSiZZUqV0Sgz8Qz_wpGkO-fv29KNQ292nvworjjayo_rL1mAOyxYs9prb2lqw_KWxYAs2Tz79azTMLeDZOpTXtl_s0xTZqDTWv8qgzmZ1j9pXZtwm7PKqz6oxM_-0cUovIxbN2XDUR35xPGDJdJpQ4HjKsLy3-gE2fnmlPGT47PKYERO1fokNuO2f3PQG3F25wDNazBWPRCTCPM-Lgohi7AmJRZYp6RfdIM1pJnNCL_ZFhBgTzxJ0uiK-ESRx4avIS1VXbMJ8OS5xC1gUKyy6MrVWXVUQ-EIUORrrKoZpqNogmpnWmetHbq7FeNSN8OxB1_hog4-u8WkD_xg1qftx_BGvGhD1t7zStGX8MXK3wVy7dT3TgTSEikiht_3vF-_AkvllNTFyF-YJd9wjZlOl-zZ192Hh6PR8MHwH7973Kg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1FcAAOiAYQtNDuodclttdrx0cUiNI2SQ-AxG3lj7EIqpwoMQgu_e3MrNdNi5CQeo1nLWvfzOzbaN4MwFddoMaUi1uTPJchUh5MiXZIzDSxkYxu0Lbx_GQajW7C77f6tgODVgvDZZUu9zc53WZr90vP7WZvMZv1rrwkiJSKWYRCfst5eDOk8OUxBme_13UeRBlsOiZryeatfs4WeaWLPK0zuiYG_pkfeJq7Q759Pr3K1Pb4Ge7BruON4rz5tA_QwaoLW4N2XFsXdv7qLNiFw8u1gI2WuQhe7UN1ZRvGPixRzCrW_tUMu1g1TWqfBctNxOTnUNRzwX-1SfIvrhYtxHQ2RDm-GIl0uUzJcL4UWN3ZAgIxf3omRxT46BxZEBW1gokDuBleXg9G0s1ckDlFcy0jFamwKIqyJKaYeEpjmeex9st-kBW0kwXBl_gqQkyIaCm6XhHhCNKk9OPIy-K-OoSNal7hEYgoibHs68xqdeOS0FeqLJC1qxhmYXwMqt1pk7uG5DwX45dpK8_uTYOPYXxMg88xyD-rFk1Djnfs4xZE849jGToz3ll50mJuXGCvTKCZUREr9D7-94u_wNboejI242_TH59gm5_YAhl9AhvkA3hKNKfOPls3fgGSV_i4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+inheritance+strategy+from+MOF+to+edge-enriched+NiFe-LDH+array+for+enhanced+oxygen+evolution+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wang%2C+Bingqing&rft.au=Han%2C+Xu&rft.au=Guo%2C+Chong&rft.au=Jing%2C+Jin&rft.date=2021-12-05&rft.issn=0926-3373&rft.volume=298&rft.spage=120580&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2021_120580 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |