Charge-transfer state dynamics in all-polymer solar cells: formation, dissociation and decoherence
All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 21; no. 5; pp. 2755 - 2763 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
30.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/c8cp06467a |
Cover
Abstract | All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells.
The dissociation of CT states takes place within an ultrafast timescale and manifests a decoherence scenario. |
---|---|
AbstractList | All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells. All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells. The dissociation of CT states takes place within an ultrafast timescale and manifests a decoherence scenario. All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells.All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells. |
Author | Huang, Jiaqing Mo, Yijie Yao, Yao |
AuthorAffiliation | Department of Physics and State Key Laboratory of Luminescent Materials and Devices South China University of Technology |
AuthorAffiliation_xml | – name: South China University of Technology – name: Department of Physics and State Key Laboratory of Luminescent Materials and Devices |
Author_xml | – sequence: 1 givenname: Jiaqing surname: Huang fullname: Huang, Jiaqing – sequence: 2 givenname: Yijie surname: Mo fullname: Mo, Yijie – sequence: 3 givenname: Yao surname: Yao fullname: Yao, Yao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30666324$$D View this record in MEDLINE/PubMed |
BookMark | eNp90cFO3DAQAFCroiqw7aX3Vka9VBWBcew4WW4oagsSEj3A2Zq1nWKU2MHOHvbvcXaBSqjiNLb8ZjSeOSR7PnhLyGcGJwz48lQ3egQpZI3vyAETkhdLaMTey7mW--QwpXsAYBXjH8g-ByklL8UBWbV3GP_aYoroU2cjTRNOlpqNx8HpRJ2n2PfFGPrNML-GHiPVtu_TGe1CHHBywR9T41IK2m1vFL2hxupwZ6P12n4k7zvsk_30FBfk9tfPm_aiuLr-fdmeXxVaAEyFZN1Kigqw0qauSw5gG61RdrwRXWkNVHXFKqMNW2psmOFC5s8bEGhwDnxBvu_qjjE8rG2a1ODS3Cp6G9ZJlaxeiuygyvTbK3of1tHn7mZVNoxVufiCfH1S69VgjRqjGzBu1PP0MoAd0DGkFG2ntJu2M8jjdL1ioOYFqbZp_2wXdJ5TfrxKea76X3y0wzHpF_dv22o0XTZf3jL8Ebb_pQQ |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_15_014021 crossref_primary_10_1039_D1TA04214A crossref_primary_10_1016_j_orgel_2020_105886 crossref_primary_10_1039_D3CP02164E |
Cites_doi | 10.1016/j.orgel.2011.03.024 10.1002/anie.201712460 10.1002/adma.201306242 10.1002/adma.201704263 10.1103/PhysRevLett.42.1698 10.1016/j.mattod.2013.04.005 10.1063/1.4802764 10.1002/cjoc.201800015 10.1002/pssa.200404339 10.1103/PhysRevLett.46.1156 10.1103/PhysRevLett.103.210401 10.1109/18.761271 10.1126/science.aat2612 10.1002/adma.201803166 10.1002/aenm.201700855 10.1021/acs.jpclett.7b03224 10.1039/C8EE01546E 10.1103/PhysRevLett.103.036402 10.1002/anie.201707678 10.1002/aenm.201702166 10.1002/adma.201602387 10.1103/PhysRevB.94.075305 10.1039/C4CP02184C 10.1002/adma.201404317 10.1063/1.3604561 10.1021/acs.chemmater.6b02222 10.1103/PhysRevB.74.224304 10.1002/adma.201703344 10.1103/PhysRev.54.554 10.1039/C7EE00619E 10.1039/c2ee03071c 10.1002/adma.201402473 10.1103/PhysRevLett.114.128701 10.1103/PhysRevLett.101.196403 10.1021/acs.chemmater.7b02536 10.1103/PhysRevB.65.094304 10.1103/PhysRevB.75.115327 10.1088/1367-2630/15/9/093022 10.1038/nenergy.2016.89 10.1021/jacs.5b10735 10.1021/ar900099h 10.1038/376498a0 10.1103/PhysRevLett.114.247003 10.1021/acs.jpcc.7b02368 10.1063/1.2431358 10.1021/acsnano.7b06575 10.1063/1.1924540 10.1021/acsami.5b08531 10.1002/adma.201504629 10.1063/1.3665392 10.1021/ar800269u 10.1002/adma.201703906 10.1021/jz2012403 10.1088/0022-3727/20/11/005 10.1103/PhysRevLett.100.196602 10.1002/adfm.201802004 10.1016/j.mattod.2018.02.003 10.1063/1.5052656 10.1103/PhysRevB.50.14702 10.1038/nmat5063 10.1016/j.nanoen.2018.06.081 10.1103/PhysRevLett.105.266602 10.1021/jacs.6b12826 10.1021/acsami.5b07605 10.1021/jacs.6b04822 10.1063/1.3328107 10.1039/C4EE03424D 10.1038/ncomms13651 10.1021/acs.accounts.6b00347 10.1021/acs.jpclett.6b02400 10.1143/JPSJ.59.2893 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1039/c8cp06467a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 2763 |
ExternalDocumentID | 30666324 10_1039_C8CP06467A c8cp06467a |
Genre | Journal Article |
GroupedDBID | -JG 0-7 1TJ 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3G J3I R7B R7C RCNCU RPMJG RRC RSCEA SKA SKF SLH VH6 --- -DZ -~X 0R~ 123 29O 2WC 4.4 53G 87K AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACNCT ADMRA AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AZFZN BLAPV CITATION CS3 D0L DU5 EBS ECGLT EJD F5P GGIMP H13 HZ~ M4U N9A NHB O9- P2P R56 RAOCF RNS RRA TN5 TWZ UHB WH7 YNT NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c400t-61fb6450a5cd772300e8cca6f384f2ed057515dcd19ca81d346039d04ada9d043 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 09:24:12 EDT 2025 Sun Jun 29 14:33:58 EDT 2025 Thu Apr 03 06:56:53 EDT 2025 Tue Jul 01 01:55:31 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Thu Jan 31 06:28:32 EST 2019 Sat Jun 01 22:25:45 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-61fb6450a5cd772300e8cca6f384f2ed057515dcd19ca81d346039d04ada9d043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4073-8240 0000-0003-3988-2939 |
PMID | 30666324 |
PQID | 2172811560 |
PQPubID | 2047499 |
PageCount | 9 |
ParticipantIDs | rsc_primary_c8cp06467a crossref_citationtrail_10_1039_C8CP06467A proquest_journals_2172811560 pubmed_primary_30666324 crossref_primary_10_1039_C8CP06467A proquest_miscellaneous_2179404305 |
ProviderPackageCode | J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG 1TJ SKA -JG AGSTE AUDPV EF- BSQNT SKF ADSRN ABGFH 705 R7B AAEMU J3G R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190130 |
PublicationDateYYYYMMDD | 2019-01-30 |
PublicationDate_xml | – month: 1 year: 2019 text: 20190130 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gao (C8CP06467A-(cit35)/*[position()=1]) 2015; 114 Fan (C8CP06467A-(cit7)/*[position()=2]) 2017; 29 Su (C8CP06467A-(cit45)/*[position()=1]) 1979; 42 da Cunha (C8CP06467A-(cit57)/*[position()=1]) 2014; 16 Mu (C8CP06467A-(cit9)/*[position()=1]) 2014; 26 Bin (C8CP06467A-(cit48)/*[position()=1]) 2017; 139 Strobel (C8CP06467A-(cit32)/*[position()=1]) 2010; 105 Zhou (C8CP06467A-(cit62)/*[position()=1]) 2014; 26 Zhang (C8CP06467A-(cit4)/*[position()=1]) 2017; 56 Ribeiro (C8CP06467A-(cit59)/*[position()=1]) 2011; 135 Zhou (C8CP06467A-(cit14)/*[position()=1]) 2018; 21 Gao (C8CP06467A-(cit6)/*[position()=1]) 2016; 28 Deibel (C8CP06467A-(cit33)/*[position()=1]) 2009; 103 Monahan (C8CP06467A-(cit36)/*[position()=1]) 2015; 114 Zhou (C8CP06467A-(cit40)/*[position()=1]) 2015; 7 McNeill (C8CP06467A-(cit61)/*[position()=1]) 2012; 5 Ono (C8CP06467A-(cit54)/*[position()=1]) 1990; 59 Liu (C8CP06467A-(cit28)/*[position()=1]) 2016; 1 Lin (C8CP06467A-(cit1)/*[position()=2]) 2015; 8 Mahani (C8CP06467A-(cit58)/*[position()=1]) 2017; 121 Bittner (C8CP06467A-(cit25)/*[position()=1]) 2005; 122 Rand (C8CP06467A-(cit27)/*[position()=1]) 2007; 75 Wang (C8CP06467A-(cit53)/*[position()=1]) 2010; 132 Fuchs (C8CP06467A-(cit65)/*[position()=1]) 1999; 45 Chandross (C8CP06467A-(cit18)/*[position()=1]) 1994; 50 Aaronson (C8CP06467A-(cit67)/*[position()=1]) 2013; 15 Facchetti (C8CP06467A-(cit12)/*[position()=1]) 2013; 16 Zhou (C8CP06467A-(cit10)/*[position()=1]) 2016; 138 Hou (C8CP06467A-(cit3)/*[position()=1]) 2018; 17 Yao (C8CP06467A-(cit43)/*[position()=1]) 2018; 9 Lima (C8CP06467A-(cit56)/*[position()=1]) 2006; 74 Breuer (C8CP06467A-(cit66)/*[position()=1]) 2009; 103 Xue (C8CP06467A-(cit49)/*[position()=1]) 2017; 29 Fan (C8CP06467A-(cit7)/*[position()=1]) 2017; 10 Li (C8CP06467A-(cit7)/*[position()=3]) 2018; 51 Bin (C8CP06467A-(cit46)/*[position()=1]) 2016; 7 Wang (C8CP06467A-(cit53)/*[position()=2]) 2011; 134 Meng (C8CP06467A-(cit2)/*[position()=1]) 2018; 361 Gautam (C8CP06467A-(cit39)/*[position()=1]) 2015; 7 Zhang (C8CP06467A-(cit15)/*[position()=1]) 2018; 30 Muntwiler (C8CP06467A-(cit20)/*[position()=1]) 2008; 101 Yao (C8CP06467A-(cit42)/*[position()=1]) 2016; 7 Qiu (C8CP06467A-(cit47)/*[position()=1]) 2017; 29 Friend (C8CP06467A-(cit17)/*[position()=1]) 1987; 20 Tamura (C8CP06467A-(cit26)/*[position()=1]) 2007; 126 Nikolis (C8CP06467A-(cit29)/*[position()=1]) 2017; 7 Kang (C8CP06467A-(cit13)/*[position()=1]) 2016; 49 Sebastian (C8CP06467A-(cit30)/*[position()=1]) 1981; 46 Halls (C8CP06467A-(cit16)/*[position()=1]) 1995; 376 Tamai (C8CP06467A-(cit68)/*[position()=1]) 2017; 11 Sun (C8CP06467A-(cit23)/*[position()=1]) 2013; 138 Ono (C8CP06467A-(cit37)/*[position()=1]) 2016; 94 Li (C8CP06467A-(cit11)/*[position()=1]) 2016; 138 Jeong (C8CP06467A-(cit51)/*[position()=1]) 2018; 8 Yao (C8CP06467A-(cit44)/*[position()=1]) 2018; 149 Arkhipov (C8CP06467A-(cit19)/*[position()=1]) 2004; 201 Yang (C8CP06467A-(cit8)/*[position()=1]) 2018; 57 Chen (C8CP06467A-(cit50)/*[position()=1]) 2018; 11 da Silva Pinheiro (C8CP06467A-(cit55)/*[position()=1]) 2002; 65 Onsager (C8CP06467A-(cit60)/*[position()=1]) 1938; 54 Eastham (C8CP06467A-(cit63)/*[position()=1]) 2018; 30 Liu (C8CP06467A-(cit5)/*[position()=1]) 2018; 28 Brédas (C8CP06467A-(cit21)/*[position()=1]) 2009; 42 Gao (C8CP06467A-(cit24)/*[position()=1]) 2011; 12 Zhu (C8CP06467A-(cit22)/*[position()=1]) 2009; 42 Lin (C8CP06467A-(cit1)/*[position()=1]) 2015; 27 Gregg (C8CP06467A-(cit34)/*[position()=1]) 2011; 2 Yao (C8CP06467A-(cit41)/*[position()=1]) 2018; 36 Rubel (C8CP06467A-(cit31)/*[position()=1]) 2008; 100 Guo (C8CP06467A-(cit64)/*[position()=1]) 2016; 28 Ye (C8CP06467A-(cit38)/*[position()=1]) 2016; 28 |
References_xml | – volume: 12 start-page: 1010 year: 2011 ident: C8CP06467A-(cit24)/*[position()=1] publication-title: Org. Electron. doi: 10.1016/j.orgel.2011.03.024 – volume: 57 start-page: 1 year: 2018 ident: C8CP06467A-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201712460 – volume: 26 start-page: 3767 year: 2014 ident: C8CP06467A-(cit62)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201306242 – volume: 30 start-page: 1704263 year: 2018 ident: C8CP06467A-(cit63)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704263 – volume: 42 start-page: 1698 year: 1979 ident: C8CP06467A-(cit45)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.42.1698 – volume: 16 start-page: 123 year: 2013 ident: C8CP06467A-(cit12)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2013.04.005 – volume: 138 start-page: 164905 year: 2013 ident: C8CP06467A-(cit23)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4802764 – volume: 36 start-page: 491 year: 2018 ident: C8CP06467A-(cit41)/*[position()=1] publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201800015 – volume: 201 start-page: 1152 year: 2004 ident: C8CP06467A-(cit19)/*[position()=1] publication-title: Phys. Status Solidi A doi: 10.1002/pssa.200404339 – volume: 46 start-page: 1156 year: 1981 ident: C8CP06467A-(cit30)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.1156 – volume: 103 start-page: 210401 year: 2009 ident: C8CP06467A-(cit66)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.210401 – volume: 45 start-page: 1216 year: 1999 ident: C8CP06467A-(cit65)/*[position()=1] publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.761271 – volume: 361 start-page: 1094 year: 2018 ident: C8CP06467A-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.aat2612 – volume: 30 start-page: 1803166 year: 2018 ident: C8CP06467A-(cit15)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803166 – volume: 7 start-page: 1700855 year: 2017 ident: C8CP06467A-(cit29)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700855 – volume: 9 start-page: 413 year: 2018 ident: C8CP06467A-(cit43)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b03224 – volume: 11 start-page: 2569 year: 2018 ident: C8CP06467A-(cit50)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01546E – volume: 103 start-page: 036402 year: 2009 ident: C8CP06467A-(cit33)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.036402 – volume: 56 start-page: 13503 year: 2017 ident: C8CP06467A-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201707678 – volume: 8 start-page: 1702166 year: 2018 ident: C8CP06467A-(cit51)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702166 – volume: 28 start-page: 8483 year: 2016 ident: C8CP06467A-(cit64)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201602387 – volume: 94 start-page: 075305 year: 2016 ident: C8CP06467A-(cit37)/*[position()=1] publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.075305 – volume: 16 start-page: 17072 year: 2014 ident: C8CP06467A-(cit57)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02184C – volume: 27 start-page: 1170 year: 2015 ident: C8CP06467A-(cit1)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404317 – volume: 134 start-page: 244116 year: 2011 ident: C8CP06467A-(cit53)/*[position()=2] publication-title: J. Chem. Phys. doi: 10.1063/1.3604561 – volume: 28 start-page: 6178 year: 2016 ident: C8CP06467A-(cit38)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02222 – volume: 74 start-page: 224304 year: 2006 ident: C8CP06467A-(cit56)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.224304 – volume: 29 start-page: 1703344 year: 2017 ident: C8CP06467A-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703344 – volume: 54 start-page: 554 year: 1938 ident: C8CP06467A-(cit60)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.54.554 – volume: 10 start-page: 1243 year: 2017 ident: C8CP06467A-(cit7)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00619E – volume: 5 start-page: 5653 year: 2012 ident: C8CP06467A-(cit61)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03071c – volume: 26 start-page: 7224 year: 2014 ident: C8CP06467A-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201402473 – volume: 114 start-page: 128701 year: 2015 ident: C8CP06467A-(cit35)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.128701 – volume: 101 start-page: 196403 year: 2008 ident: C8CP06467A-(cit20)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.196403 – volume: 29 start-page: 7543 year: 2017 ident: C8CP06467A-(cit47)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02536 – volume: 65 start-page: 094304 year: 2002 ident: C8CP06467A-(cit55)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.65.094304 – volume: 75 start-page: 115327 year: 2007 ident: C8CP06467A-(cit27)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.115327 – volume: 15 start-page: 093022 year: 2013 ident: C8CP06467A-(cit67)/*[position()=1] publication-title: New J. Phys. doi: 10.1088/1367-2630/15/9/093022 – volume: 1 start-page: 16089 year: 2016 ident: C8CP06467A-(cit28)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.89 – volume: 138 start-page: 1240 year: 2016 ident: C8CP06467A-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10735 – volume: 42 start-page: 1691 year: 2009 ident: C8CP06467A-(cit21)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar900099h – volume: 376 start-page: 498 year: 1995 ident: C8CP06467A-(cit16)/*[position()=1] publication-title: Nature doi: 10.1038/376498a0 – volume: 114 start-page: 247003 year: 2015 ident: C8CP06467A-(cit36)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.247003 – volume: 121 start-page: 10317 year: 2017 ident: C8CP06467A-(cit58)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b02368 – volume: 126 start-page: 021103 year: 2007 ident: C8CP06467A-(cit26)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2431358 – volume: 11 start-page: 12473 year: 2017 ident: C8CP06467A-(cit68)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b06575 – volume: 122 start-page: 214719 year: 2005 ident: C8CP06467A-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1924540 – volume: 7 start-page: 27586 year: 2015 ident: C8CP06467A-(cit39)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b08531 – volume: 28 start-page: 1884 year: 2016 ident: C8CP06467A-(cit6)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504629 – volume: 135 start-page: 224901 year: 2011 ident: C8CP06467A-(cit59)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3665392 – volume: 42 start-page: 1779 year: 2009 ident: C8CP06467A-(cit22)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar800269u – volume: 29 start-page: 1703906 year: 2017 ident: C8CP06467A-(cit7)/*[position()=2] publication-title: Adv. Mater. doi: 10.1002/adma.201703906 – volume: 2 start-page: 3013 year: 2011 ident: C8CP06467A-(cit34)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2012403 – volume: 20 start-page: 1367 year: 1987 ident: C8CP06467A-(cit17)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/20/11/005 – volume: 100 start-page: 196602 year: 2008 ident: C8CP06467A-(cit31)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.196602 – volume: 28 start-page: 1802004 year: 2018 ident: C8CP06467A-(cit5)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802004 – volume: 21 start-page: 377 year: 2018 ident: C8CP06467A-(cit14)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2018.02.003 – volume: 149 start-page: 194902 year: 2018 ident: C8CP06467A-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.5052656 – volume: 50 start-page: 14702 year: 1994 ident: C8CP06467A-(cit18)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.14702 – volume: 17 start-page: 119 year: 2018 ident: C8CP06467A-(cit3)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat5063 – volume: 51 start-page: 434 year: 2018 ident: C8CP06467A-(cit7)/*[position()=3] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.081 – volume: 105 start-page: 266602 year: 2010 ident: C8CP06467A-(cit32)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.266602 – volume: 139 start-page: 5085 year: 2017 ident: C8CP06467A-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12826 – volume: 7 start-page: 25352 year: 2015 ident: C8CP06467A-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07605 – volume: 138 start-page: 10935 year: 2016 ident: C8CP06467A-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04822 – volume: 132 start-page: 081101 year: 2010 ident: C8CP06467A-(cit53)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3328107 – volume: 8 start-page: 610 year: 2015 ident: C8CP06467A-(cit1)/*[position()=2] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03424D – volume: 7 start-page: 13651 year: 2016 ident: C8CP06467A-(cit46)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13651 – volume: 49 start-page: 2424 year: 2016 ident: C8CP06467A-(cit13)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00347 – volume: 7 start-page: 4830 year: 2016 ident: C8CP06467A-(cit42)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02400 – volume: 59 start-page: 2893 year: 1990 ident: C8CP06467A-(cit54)/*[position()=1] publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.59.2893 |
SSID | ssj0001513 |
Score | 2.3053718 |
Snippet | All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2755 |
SubjectTerms | Charge transfer Coherence Dependence Photovoltaic cells Polarons Polymers Quantum phenomena Solar cells |
Title | Charge-transfer state dynamics in all-polymer solar cells: formation, dissociation and decoherence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30666324 https://www.proquest.com/docview/2172811560 https://www.proquest.com/docview/2179404305 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BK0EviFchpSAjuKASSNZ5cltFRaVCaA9bqZwix3Zg0TYb2u0Bfj0zdpyEdpGASzayvYni7_N4xvbMALwUguRhJnylFQXV5hM_j6PaT4SKEpnmFBCGTlt8So5OouPT-HQ4xG68S9bVG_lzo1_J_6CKZYgrecn-A7L9Q7EA7xFfvCLCeP0rjGmv_Iv210b5pLDMpDkeKJtk3hx0Fcul366WP86olqzYA1qpN8fgerdF6mXalncwmf0EhWbpV-sKONZfZw5W6RLF2TsqsoskF2aRYVYUs4Ex3Zr08UJ8dzOlOedr5P_i26In12dhy8RqvBpBDlCh21jRVoJGCffzwOZ9cyLWOkF3VIrH8jK1QXqvCfKAUxxUmckWdaYkFeNG-BntmYGUk_XFrRP2lbDZruombE_SlHbwt6eH8w8f-2kaVR3u4tXy_O3wqh245f78u7JyzQJBfeTc5Ykx-sj8LtzpDAk2tay4Bzd0cx9uFw6WB1BdYQcz7GCOHWzRsBE7mGEHM-x4x3puvGZjZjBkBhsx4yGcvD-cF0d-l1HDlyir134S1lUSxYGIpUKzigeBznAIJzXPonqiFSnvYaykCnMp0JLhUYJ9o4JIKEE_fBe2mlWjHwPLBKfFglTGNjxWTm7MkypOQ4WzRqU9eOW6rpRduHnKerIszbEHnpdFVsxMj089eNG3bW2QlY2t9h0CZTcIL0qTXy2kcAAePO-rsaepv0SjV5emTR6Z2HYePLLI9a9xSHuwi1D2xQMbPNjbXFG2qt774_OewM4wPPZha31-qZ-i-rqunnVE_AVpHJnO |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge-transfer+state+dynamics+in+all-polymer+solar+cells%3A+formation%2C+dissociation+and+decoherence&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Huang%2C+Jiaqing&rft.au=Mo%2C+Yijie&rft.au=Yao%2C+Yao&rft.date=2019-01-30&rft.eissn=1463-9084&rft.volume=21&rft.issue=5&rft.spage=2755&rft_id=info:doi/10.1039%2Fc8cp06467a&rft_id=info%3Apmid%2F30666324&rft.externalDocID=30666324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |