Charge-transfer state dynamics in all-polymer solar cells: formation, dissociation and decoherence

All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 21; no. 5; pp. 2755 - 2763
Main Authors Huang, Jiaqing, Mo, Yijie, Yao, Yao
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 30.01.2019
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/c8cp06467a

Cover

Abstract All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells. The dissociation of CT states takes place within an ultrafast timescale and manifests a decoherence scenario.
AbstractList All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells.
All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells. The dissociation of CT states takes place within an ultrafast timescale and manifests a decoherence scenario.
All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells.All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to quantitatively study the influence of the molecular electrostatic potential on the charge generation proposed by the experimenter, we simulate the ultrafast dynamics of the charge-transfer (CT) state at the interface between two polymer chains, which are respectively regarded as the donor and acceptor in all-polymer solar cells. The formation of a stable CT state is found to be sensitive to the distance between two oppositely charged polarons and the relevant critical electrostatic potential is thus quantified, which is in good agreement with experiments. In order to get insight into the dependence of the dissociation of the CT state on the width of the interfacial layer, two quantities are calculated: one is the Coulomb capture radius between the two polarons and the other is the quantum trace distance which serves as the fingerprint of the quantum coherence between them. The dissociation of the CT state is found to take place within an ultrafast timescale for an optimum interfacial width. The classical spatial distance and the quantum trace distance manifest a converging trend, suggesting a decoherence scenario for the charge separation in all-polymer solar cells.
Author Huang, Jiaqing
Mo, Yijie
Yao, Yao
AuthorAffiliation Department of Physics and State Key Laboratory of Luminescent Materials and Devices
South China University of Technology
AuthorAffiliation_xml – name: South China University of Technology
– name: Department of Physics and State Key Laboratory of Luminescent Materials and Devices
Author_xml – sequence: 1
  givenname: Jiaqing
  surname: Huang
  fullname: Huang, Jiaqing
– sequence: 2
  givenname: Yijie
  surname: Mo
  fullname: Mo, Yijie
– sequence: 3
  givenname: Yao
  surname: Yao
  fullname: Yao, Yao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30666324$$D View this record in MEDLINE/PubMed
BookMark eNp90cFO3DAQAFCroiqw7aX3Vka9VBWBcew4WW4oagsSEj3A2Zq1nWKU2MHOHvbvcXaBSqjiNLb8ZjSeOSR7PnhLyGcGJwz48lQ3egQpZI3vyAETkhdLaMTey7mW--QwpXsAYBXjH8g-ByklL8UBWbV3GP_aYoroU2cjTRNOlpqNx8HpRJ2n2PfFGPrNML-GHiPVtu_TGe1CHHBywR9T41IK2m1vFL2hxupwZ6P12n4k7zvsk_30FBfk9tfPm_aiuLr-fdmeXxVaAEyFZN1Kigqw0qauSw5gG61RdrwRXWkNVHXFKqMNW2psmOFC5s8bEGhwDnxBvu_qjjE8rG2a1ODS3Cp6G9ZJlaxeiuygyvTbK3of1tHn7mZVNoxVufiCfH1S69VgjRqjGzBu1PP0MoAd0DGkFG2ntJu2M8jjdL1ioOYFqbZp_2wXdJ5TfrxKea76X3y0wzHpF_dv22o0XTZf3jL8Ebb_pQQ
CitedBy_id crossref_primary_10_1103_PhysRevApplied_15_014021
crossref_primary_10_1039_D1TA04214A
crossref_primary_10_1016_j_orgel_2020_105886
crossref_primary_10_1039_D3CP02164E
Cites_doi 10.1016/j.orgel.2011.03.024
10.1002/anie.201712460
10.1002/adma.201306242
10.1002/adma.201704263
10.1103/PhysRevLett.42.1698
10.1016/j.mattod.2013.04.005
10.1063/1.4802764
10.1002/cjoc.201800015
10.1002/pssa.200404339
10.1103/PhysRevLett.46.1156
10.1103/PhysRevLett.103.210401
10.1109/18.761271
10.1126/science.aat2612
10.1002/adma.201803166
10.1002/aenm.201700855
10.1021/acs.jpclett.7b03224
10.1039/C8EE01546E
10.1103/PhysRevLett.103.036402
10.1002/anie.201707678
10.1002/aenm.201702166
10.1002/adma.201602387
10.1103/PhysRevB.94.075305
10.1039/C4CP02184C
10.1002/adma.201404317
10.1063/1.3604561
10.1021/acs.chemmater.6b02222
10.1103/PhysRevB.74.224304
10.1002/adma.201703344
10.1103/PhysRev.54.554
10.1039/C7EE00619E
10.1039/c2ee03071c
10.1002/adma.201402473
10.1103/PhysRevLett.114.128701
10.1103/PhysRevLett.101.196403
10.1021/acs.chemmater.7b02536
10.1103/PhysRevB.65.094304
10.1103/PhysRevB.75.115327
10.1088/1367-2630/15/9/093022
10.1038/nenergy.2016.89
10.1021/jacs.5b10735
10.1021/ar900099h
10.1038/376498a0
10.1103/PhysRevLett.114.247003
10.1021/acs.jpcc.7b02368
10.1063/1.2431358
10.1021/acsnano.7b06575
10.1063/1.1924540
10.1021/acsami.5b08531
10.1002/adma.201504629
10.1063/1.3665392
10.1021/ar800269u
10.1002/adma.201703906
10.1021/jz2012403
10.1088/0022-3727/20/11/005
10.1103/PhysRevLett.100.196602
10.1002/adfm.201802004
10.1016/j.mattod.2018.02.003
10.1063/1.5052656
10.1103/PhysRevB.50.14702
10.1038/nmat5063
10.1016/j.nanoen.2018.06.081
10.1103/PhysRevLett.105.266602
10.1021/jacs.6b12826
10.1021/acsami.5b07605
10.1021/jacs.6b04822
10.1063/1.3328107
10.1039/C4EE03424D
10.1038/ncomms13651
10.1021/acs.accounts.6b00347
10.1021/acs.jpclett.6b02400
10.1143/JPSJ.59.2893
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/c8cp06467a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 2763
ExternalDocumentID 30666324
10_1039_C8CP06467A
c8cp06467a
Genre Journal Article
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3G
J3I
R7B
R7C
RCNCU
RPMJG
RRC
RSCEA
SKA
SKF
SLH
VH6
---
-DZ
-~X
0R~
123
29O
2WC
4.4
53G
87K
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACNCT
ADMRA
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
CITATION
CS3
D0L
DU5
EBS
ECGLT
EJD
F5P
GGIMP
H13
HZ~
M4U
N9A
NHB
O9-
P2P
R56
RAOCF
RNS
RRA
TN5
TWZ
UHB
WH7
YNT
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c400t-61fb6450a5cd772300e8cca6f384f2ed057515dcd19ca81d346039d04ada9d043
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 09:24:12 EDT 2025
Sun Jun 29 14:33:58 EDT 2025
Thu Apr 03 06:56:53 EDT 2025
Tue Jul 01 01:55:31 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Thu Jan 31 06:28:32 EST 2019
Sat Jun 01 22:25:45 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-61fb6450a5cd772300e8cca6f384f2ed057515dcd19ca81d346039d04ada9d043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4073-8240
0000-0003-3988-2939
PMID 30666324
PQID 2172811560
PQPubID 2047499
PageCount 9
ParticipantIDs rsc_primary_c8cp06467a
crossref_citationtrail_10_1039_C8CP06467A
proquest_journals_2172811560
pubmed_primary_30666324
crossref_primary_10_1039_C8CP06467A
proquest_miscellaneous_2179404305
ProviderPackageCode J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
ADSRN
ABGFH
705
R7B
AAEMU
J3G
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190130
PublicationDateYYYYMMDD 2019-01-30
PublicationDate_xml – month: 1
  year: 2019
  text: 20190130
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gao (C8CP06467A-(cit35)/*[position()=1]) 2015; 114
Fan (C8CP06467A-(cit7)/*[position()=2]) 2017; 29
Su (C8CP06467A-(cit45)/*[position()=1]) 1979; 42
da Cunha (C8CP06467A-(cit57)/*[position()=1]) 2014; 16
Mu (C8CP06467A-(cit9)/*[position()=1]) 2014; 26
Bin (C8CP06467A-(cit48)/*[position()=1]) 2017; 139
Strobel (C8CP06467A-(cit32)/*[position()=1]) 2010; 105
Zhou (C8CP06467A-(cit62)/*[position()=1]) 2014; 26
Zhang (C8CP06467A-(cit4)/*[position()=1]) 2017; 56
Ribeiro (C8CP06467A-(cit59)/*[position()=1]) 2011; 135
Zhou (C8CP06467A-(cit14)/*[position()=1]) 2018; 21
Gao (C8CP06467A-(cit6)/*[position()=1]) 2016; 28
Deibel (C8CP06467A-(cit33)/*[position()=1]) 2009; 103
Monahan (C8CP06467A-(cit36)/*[position()=1]) 2015; 114
Zhou (C8CP06467A-(cit40)/*[position()=1]) 2015; 7
McNeill (C8CP06467A-(cit61)/*[position()=1]) 2012; 5
Ono (C8CP06467A-(cit54)/*[position()=1]) 1990; 59
Liu (C8CP06467A-(cit28)/*[position()=1]) 2016; 1
Lin (C8CP06467A-(cit1)/*[position()=2]) 2015; 8
Mahani (C8CP06467A-(cit58)/*[position()=1]) 2017; 121
Bittner (C8CP06467A-(cit25)/*[position()=1]) 2005; 122
Rand (C8CP06467A-(cit27)/*[position()=1]) 2007; 75
Wang (C8CP06467A-(cit53)/*[position()=1]) 2010; 132
Fuchs (C8CP06467A-(cit65)/*[position()=1]) 1999; 45
Chandross (C8CP06467A-(cit18)/*[position()=1]) 1994; 50
Aaronson (C8CP06467A-(cit67)/*[position()=1]) 2013; 15
Facchetti (C8CP06467A-(cit12)/*[position()=1]) 2013; 16
Zhou (C8CP06467A-(cit10)/*[position()=1]) 2016; 138
Hou (C8CP06467A-(cit3)/*[position()=1]) 2018; 17
Yao (C8CP06467A-(cit43)/*[position()=1]) 2018; 9
Lima (C8CP06467A-(cit56)/*[position()=1]) 2006; 74
Breuer (C8CP06467A-(cit66)/*[position()=1]) 2009; 103
Xue (C8CP06467A-(cit49)/*[position()=1]) 2017; 29
Fan (C8CP06467A-(cit7)/*[position()=1]) 2017; 10
Li (C8CP06467A-(cit7)/*[position()=3]) 2018; 51
Bin (C8CP06467A-(cit46)/*[position()=1]) 2016; 7
Wang (C8CP06467A-(cit53)/*[position()=2]) 2011; 134
Meng (C8CP06467A-(cit2)/*[position()=1]) 2018; 361
Gautam (C8CP06467A-(cit39)/*[position()=1]) 2015; 7
Zhang (C8CP06467A-(cit15)/*[position()=1]) 2018; 30
Muntwiler (C8CP06467A-(cit20)/*[position()=1]) 2008; 101
Yao (C8CP06467A-(cit42)/*[position()=1]) 2016; 7
Qiu (C8CP06467A-(cit47)/*[position()=1]) 2017; 29
Friend (C8CP06467A-(cit17)/*[position()=1]) 1987; 20
Tamura (C8CP06467A-(cit26)/*[position()=1]) 2007; 126
Nikolis (C8CP06467A-(cit29)/*[position()=1]) 2017; 7
Kang (C8CP06467A-(cit13)/*[position()=1]) 2016; 49
Sebastian (C8CP06467A-(cit30)/*[position()=1]) 1981; 46
Halls (C8CP06467A-(cit16)/*[position()=1]) 1995; 376
Tamai (C8CP06467A-(cit68)/*[position()=1]) 2017; 11
Sun (C8CP06467A-(cit23)/*[position()=1]) 2013; 138
Ono (C8CP06467A-(cit37)/*[position()=1]) 2016; 94
Li (C8CP06467A-(cit11)/*[position()=1]) 2016; 138
Jeong (C8CP06467A-(cit51)/*[position()=1]) 2018; 8
Yao (C8CP06467A-(cit44)/*[position()=1]) 2018; 149
Arkhipov (C8CP06467A-(cit19)/*[position()=1]) 2004; 201
Yang (C8CP06467A-(cit8)/*[position()=1]) 2018; 57
Chen (C8CP06467A-(cit50)/*[position()=1]) 2018; 11
da Silva Pinheiro (C8CP06467A-(cit55)/*[position()=1]) 2002; 65
Onsager (C8CP06467A-(cit60)/*[position()=1]) 1938; 54
Eastham (C8CP06467A-(cit63)/*[position()=1]) 2018; 30
Liu (C8CP06467A-(cit5)/*[position()=1]) 2018; 28
Brédas (C8CP06467A-(cit21)/*[position()=1]) 2009; 42
Gao (C8CP06467A-(cit24)/*[position()=1]) 2011; 12
Zhu (C8CP06467A-(cit22)/*[position()=1]) 2009; 42
Lin (C8CP06467A-(cit1)/*[position()=1]) 2015; 27
Gregg (C8CP06467A-(cit34)/*[position()=1]) 2011; 2
Yao (C8CP06467A-(cit41)/*[position()=1]) 2018; 36
Rubel (C8CP06467A-(cit31)/*[position()=1]) 2008; 100
Guo (C8CP06467A-(cit64)/*[position()=1]) 2016; 28
Ye (C8CP06467A-(cit38)/*[position()=1]) 2016; 28
References_xml – volume: 12
  start-page: 1010
  year: 2011
  ident: C8CP06467A-(cit24)/*[position()=1]
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2011.03.024
– volume: 57
  start-page: 1
  year: 2018
  ident: C8CP06467A-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201712460
– volume: 26
  start-page: 3767
  year: 2014
  ident: C8CP06467A-(cit62)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306242
– volume: 30
  start-page: 1704263
  year: 2018
  ident: C8CP06467A-(cit63)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704263
– volume: 42
  start-page: 1698
  year: 1979
  ident: C8CP06467A-(cit45)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.1698
– volume: 16
  start-page: 123
  year: 2013
  ident: C8CP06467A-(cit12)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.04.005
– volume: 138
  start-page: 164905
  year: 2013
  ident: C8CP06467A-(cit23)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4802764
– volume: 36
  start-page: 491
  year: 2018
  ident: C8CP06467A-(cit41)/*[position()=1]
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201800015
– volume: 201
  start-page: 1152
  year: 2004
  ident: C8CP06467A-(cit19)/*[position()=1]
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200404339
– volume: 46
  start-page: 1156
  year: 1981
  ident: C8CP06467A-(cit30)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.1156
– volume: 103
  start-page: 210401
  year: 2009
  ident: C8CP06467A-(cit66)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.210401
– volume: 45
  start-page: 1216
  year: 1999
  ident: C8CP06467A-(cit65)/*[position()=1]
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.761271
– volume: 361
  start-page: 1094
  year: 2018
  ident: C8CP06467A-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aat2612
– volume: 30
  start-page: 1803166
  year: 2018
  ident: C8CP06467A-(cit15)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803166
– volume: 7
  start-page: 1700855
  year: 2017
  ident: C8CP06467A-(cit29)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700855
– volume: 9
  start-page: 413
  year: 2018
  ident: C8CP06467A-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b03224
– volume: 11
  start-page: 2569
  year: 2018
  ident: C8CP06467A-(cit50)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01546E
– volume: 103
  start-page: 036402
  year: 2009
  ident: C8CP06467A-(cit33)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.036402
– volume: 56
  start-page: 13503
  year: 2017
  ident: C8CP06467A-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201707678
– volume: 8
  start-page: 1702166
  year: 2018
  ident: C8CP06467A-(cit51)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702166
– volume: 28
  start-page: 8483
  year: 2016
  ident: C8CP06467A-(cit64)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602387
– volume: 94
  start-page: 075305
  year: 2016
  ident: C8CP06467A-(cit37)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.075305
– volume: 16
  start-page: 17072
  year: 2014
  ident: C8CP06467A-(cit57)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP02184C
– volume: 27
  start-page: 1170
  year: 2015
  ident: C8CP06467A-(cit1)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404317
– volume: 134
  start-page: 244116
  year: 2011
  ident: C8CP06467A-(cit53)/*[position()=2]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3604561
– volume: 28
  start-page: 6178
  year: 2016
  ident: C8CP06467A-(cit38)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02222
– volume: 74
  start-page: 224304
  year: 2006
  ident: C8CP06467A-(cit56)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.224304
– volume: 29
  start-page: 1703344
  year: 2017
  ident: C8CP06467A-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703344
– volume: 54
  start-page: 554
  year: 1938
  ident: C8CP06467A-(cit60)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.54.554
– volume: 10
  start-page: 1243
  year: 2017
  ident: C8CP06467A-(cit7)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00619E
– volume: 5
  start-page: 5653
  year: 2012
  ident: C8CP06467A-(cit61)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03071c
– volume: 26
  start-page: 7224
  year: 2014
  ident: C8CP06467A-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402473
– volume: 114
  start-page: 128701
  year: 2015
  ident: C8CP06467A-(cit35)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.128701
– volume: 101
  start-page: 196403
  year: 2008
  ident: C8CP06467A-(cit20)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.196403
– volume: 29
  start-page: 7543
  year: 2017
  ident: C8CP06467A-(cit47)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02536
– volume: 65
  start-page: 094304
  year: 2002
  ident: C8CP06467A-(cit55)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.65.094304
– volume: 75
  start-page: 115327
  year: 2007
  ident: C8CP06467A-(cit27)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.115327
– volume: 15
  start-page: 093022
  year: 2013
  ident: C8CP06467A-(cit67)/*[position()=1]
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/9/093022
– volume: 1
  start-page: 16089
  year: 2016
  ident: C8CP06467A-(cit28)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.89
– volume: 138
  start-page: 1240
  year: 2016
  ident: C8CP06467A-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10735
– volume: 42
  start-page: 1691
  year: 2009
  ident: C8CP06467A-(cit21)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900099h
– volume: 376
  start-page: 498
  year: 1995
  ident: C8CP06467A-(cit16)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/376498a0
– volume: 114
  start-page: 247003
  year: 2015
  ident: C8CP06467A-(cit36)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.247003
– volume: 121
  start-page: 10317
  year: 2017
  ident: C8CP06467A-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b02368
– volume: 126
  start-page: 021103
  year: 2007
  ident: C8CP06467A-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2431358
– volume: 11
  start-page: 12473
  year: 2017
  ident: C8CP06467A-(cit68)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06575
– volume: 122
  start-page: 214719
  year: 2005
  ident: C8CP06467A-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1924540
– volume: 7
  start-page: 27586
  year: 2015
  ident: C8CP06467A-(cit39)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b08531
– volume: 28
  start-page: 1884
  year: 2016
  ident: C8CP06467A-(cit6)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504629
– volume: 135
  start-page: 224901
  year: 2011
  ident: C8CP06467A-(cit59)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3665392
– volume: 42
  start-page: 1779
  year: 2009
  ident: C8CP06467A-(cit22)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800269u
– volume: 29
  start-page: 1703906
  year: 2017
  ident: C8CP06467A-(cit7)/*[position()=2]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703906
– volume: 2
  start-page: 3013
  year: 2011
  ident: C8CP06467A-(cit34)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2012403
– volume: 20
  start-page: 1367
  year: 1987
  ident: C8CP06467A-(cit17)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/20/11/005
– volume: 100
  start-page: 196602
  year: 2008
  ident: C8CP06467A-(cit31)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.196602
– volume: 28
  start-page: 1802004
  year: 2018
  ident: C8CP06467A-(cit5)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802004
– volume: 21
  start-page: 377
  year: 2018
  ident: C8CP06467A-(cit14)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.02.003
– volume: 149
  start-page: 194902
  year: 2018
  ident: C8CP06467A-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5052656
– volume: 50
  start-page: 14702
  year: 1994
  ident: C8CP06467A-(cit18)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.14702
– volume: 17
  start-page: 119
  year: 2018
  ident: C8CP06467A-(cit3)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 51
  start-page: 434
  year: 2018
  ident: C8CP06467A-(cit7)/*[position()=3]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.081
– volume: 105
  start-page: 266602
  year: 2010
  ident: C8CP06467A-(cit32)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.266602
– volume: 139
  start-page: 5085
  year: 2017
  ident: C8CP06467A-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12826
– volume: 7
  start-page: 25352
  year: 2015
  ident: C8CP06467A-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07605
– volume: 138
  start-page: 10935
  year: 2016
  ident: C8CP06467A-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04822
– volume: 132
  start-page: 081101
  year: 2010
  ident: C8CP06467A-(cit53)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3328107
– volume: 8
  start-page: 610
  year: 2015
  ident: C8CP06467A-(cit1)/*[position()=2]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03424D
– volume: 7
  start-page: 13651
  year: 2016
  ident: C8CP06467A-(cit46)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13651
– volume: 49
  start-page: 2424
  year: 2016
  ident: C8CP06467A-(cit13)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00347
– volume: 7
  start-page: 4830
  year: 2016
  ident: C8CP06467A-(cit42)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02400
– volume: 59
  start-page: 2893
  year: 1990
  ident: C8CP06467A-(cit54)/*[position()=1]
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.59.2893
SSID ssj0001513
Score 2.3053718
Snippet All-polymer solar cells have made substantial achievements in recent years, offering numerous unsettled subjects for mechanical researchers. In order to...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2755
SubjectTerms Charge transfer
Coherence
Dependence
Photovoltaic cells
Polarons
Polymers
Quantum phenomena
Solar cells
Title Charge-transfer state dynamics in all-polymer solar cells: formation, dissociation and decoherence
URI https://www.ncbi.nlm.nih.gov/pubmed/30666324
https://www.proquest.com/docview/2172811560
https://www.proquest.com/docview/2179404305
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BK0EviFchpSAjuKASSNZ5cltFRaVCaA9bqZwix3Zg0TYb2u0Bfj0zdpyEdpGASzayvYni7_N4xvbMALwUguRhJnylFQXV5hM_j6PaT4SKEpnmFBCGTlt8So5OouPT-HQ4xG68S9bVG_lzo1_J_6CKZYgrecn-A7L9Q7EA7xFfvCLCeP0rjGmv_Iv210b5pLDMpDkeKJtk3hx0Fcul366WP86olqzYA1qpN8fgerdF6mXalncwmf0EhWbpV-sKONZfZw5W6RLF2TsqsoskF2aRYVYUs4Ex3Zr08UJ8dzOlOedr5P_i26In12dhy8RqvBpBDlCh21jRVoJGCffzwOZ9cyLWOkF3VIrH8jK1QXqvCfKAUxxUmckWdaYkFeNG-BntmYGUk_XFrRP2lbDZruombE_SlHbwt6eH8w8f-2kaVR3u4tXy_O3wqh245f78u7JyzQJBfeTc5Ykx-sj8LtzpDAk2tay4Bzd0cx9uFw6WB1BdYQcz7GCOHWzRsBE7mGEHM-x4x3puvGZjZjBkBhsx4yGcvD-cF0d-l1HDlyir134S1lUSxYGIpUKzigeBznAIJzXPonqiFSnvYaykCnMp0JLhUYJ9o4JIKEE_fBe2mlWjHwPLBKfFglTGNjxWTm7MkypOQ4WzRqU9eOW6rpRduHnKerIszbEHnpdFVsxMj089eNG3bW2QlY2t9h0CZTcIL0qTXy2kcAAePO-rsaepv0SjV5emTR6Z2HYePLLI9a9xSHuwi1D2xQMbPNjbXFG2qt774_OewM4wPPZha31-qZ-i-rqunnVE_AVpHJnO
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge-transfer+state+dynamics+in+all-polymer+solar+cells%3A+formation%2C+dissociation+and+decoherence&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Huang%2C+Jiaqing&rft.au=Mo%2C+Yijie&rft.au=Yao%2C+Yao&rft.date=2019-01-30&rft.eissn=1463-9084&rft.volume=21&rft.issue=5&rft.spage=2755&rft_id=info:doi/10.1039%2Fc8cp06467a&rft_id=info%3Apmid%2F30666324&rft.externalDocID=30666324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon