The Tully-Fisher relation in dense groups at z  ∼ 0.7 in the MAGIC survey

Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts. Aims. The aim of our project is to get new insights...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 647; p. A152
Main Authors Abril-Melgarejo, Valentina, Epinat, Benoît, Mercier, Wilfried, Contini, Thierry, Boogaard, Leindert A., Brinchmann, Jarle, Finley, Hayley, Michel-Dansac, Léo, Ventou, Emmy, Amram, Philippe, Krajnović, Davor, Mahler, Guillaume, Pineda, Juan C. B., Richard, Johan
Format Journal Article Web Resource
LanguageEnglish
Published Heidelberg EDP Sciences 01.03.2021
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
1432-0746
DOI10.1051/0004-6361/202038818

Cover

Loading…
Abstract Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts. Aims. The aim of our project is to get new insights into the role of environment in the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR). Methods. We study a sample of galaxies in eight groups, over-dense by a factor larger than 25 with respect to the average projected density, spanning a redshift range of 0.5 <  z  < 0.8 and located in ten pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [O  II ] λ λ 3727,3729 emission line doublet signal-to-noise ratio, bulge-to-disk ratio, and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies. Results. We show that this selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Similar to other studies, we find that including the velocity dispersion in the velocity budget mainly affects galaxies with low rotation velocities, reduces the scatter in the relation, increases its slope, and decreases its zero-point. Including gas masses is more significant for low-mass galaxies due to a larger gas fraction, and thus decreases the slope and increases the zero-point of the relation. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, regardless of the kinematics estimator used. This can be interpreted as a decrease in either stellar mass by ∼0.05 − 0.3 dex or an increase in rotation velocity by ∼0.02 − 0.06 dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease in star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together, with their relative contribution depending on the mass regime.
AbstractList Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts.Aims. The aim of our project is to get new insights into the role of environment in the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR).Methods. We study a sample of galaxies in eight groups, over-dense by a factor larger than 25 with respect to the average projected density, spanning a redshift range of 0.5 < z < 0.8 and located in ten pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [O II]λλ3727,3729 emission line doublet signal-to-noise ratio, bulge-to-disk ratio, and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies.Results. We show that this selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Similar to other studies, we find that including the velocity dispersion in the velocity budget mainly affects galaxies with low rotation velocities, reduces the scatter in the relation, increases its slope, and decreases its zero-point. Including gas masses is more significant for low-mass galaxies due to a larger gas fraction, and thus decreases the slope and increases the zero-point of the relation. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, regardless of the kinematics estimator used. This can be interpreted as a decrease in either stellar mass by ∼0.05 − 0.3 dex or an increase in rotation velocity by ∼0.02 − 0.06 dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease in star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together, with their relative contribution depending on the mass regime.
Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts. Aims. The aim of our project is to get new insights into the role of environment in the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR). Methods. We study a sample of galaxies in eight groups, over-dense by a factor larger than 25 with respect to the average projected density, spanning a redshift range of 0.5 <  z  < 0.8 and located in ten pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [O  II ] λ λ 3727,3729 emission line doublet signal-to-noise ratio, bulge-to-disk ratio, and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies. Results. We show that this selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Similar to other studies, we find that including the velocity dispersion in the velocity budget mainly affects galaxies with low rotation velocities, reduces the scatter in the relation, increases its slope, and decreases its zero-point. Including gas masses is more significant for low-mass galaxies due to a larger gas fraction, and thus decreases the slope and increases the zero-point of the relation. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, regardless of the kinematics estimator used. This can be interpreted as a decrease in either stellar mass by ∼0.05 − 0.3 dex or an increase in rotation velocity by ∼0.02 − 0.06 dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease in star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together, with their relative contribution depending on the mass regime.
Author Contini, Thierry
Finley, Hayley
Mercier, Wilfried
Abril-Melgarejo, Valentina
Amram, Philippe
Epinat, Benoît
Ventou, Emmy
Michel-Dansac, Léo
Krajnović, Davor
Pineda, Juan C. B.
Boogaard, Leindert A.
Mahler, Guillaume
Brinchmann, Jarle
Richard, Johan
Author_xml – sequence: 1
  givenname: Valentina
  orcidid: 0000-0002-2764-6069
  surname: Abril-Melgarejo
  fullname: Abril-Melgarejo, Valentina
– sequence: 2
  givenname: Benoît
  orcidid: 0000-0002-2470-5756
  surname: Epinat
  fullname: Epinat, Benoît
– sequence: 3
  givenname: Wilfried
  surname: Mercier
  fullname: Mercier, Wilfried
– sequence: 4
  givenname: Thierry
  orcidid: 0000-0003-0275-938X
  surname: Contini
  fullname: Contini, Thierry
– sequence: 5
  givenname: Leindert A.
  orcidid: 0000-0002-3952-8588
  surname: Boogaard
  fullname: Boogaard, Leindert A.
– sequence: 6
  givenname: Jarle
  surname: Brinchmann
  fullname: Brinchmann, Jarle
– sequence: 7
  givenname: Hayley
  surname: Finley
  fullname: Finley, Hayley
– sequence: 8
  givenname: Léo
  surname: Michel-Dansac
  fullname: Michel-Dansac, Léo
– sequence: 9
  givenname: Emmy
  surname: Ventou
  fullname: Ventou, Emmy
– sequence: 10
  givenname: Philippe
  surname: Amram
  fullname: Amram, Philippe
– sequence: 11
  givenname: Davor
  orcidid: 0000-0002-0470-6540
  surname: Krajnović
  fullname: Krajnović, Davor
– sequence: 12
  givenname: Guillaume
  orcidid: 0000-0003-3266-2001
  surname: Mahler
  fullname: Mahler, Guillaume
– sequence: 13
  givenname: Juan C. B.
  orcidid: 0000-0003-3144-5080
  surname: Pineda
  fullname: Pineda, Juan C. B.
– sequence: 14
  givenname: Johan
  orcidid: 0000-0001-5492-1049
  surname: Richard
  fullname: Richard, Johan
BackLink https://hal.science/hal-03185770$$DView record in HAL
BookMark eNp9kb1u2zAQx4kgAWIneYIsBDJ1UHL8kESNhtE0AVxkcecDJZ9tBorkkpIBd8rQoQ_Vp8mThIpad-vCL_x-xN3_puy0aRti7FrArYBU3AGATjKViTsJEpQxwpywidBKJpDr7JRNjsQ5m4bwHK9SGDVhT8st8WVf14fk3oUtee6ptp1rG-4avqImEN_4tt8Fbjv-g7-9_nz79TuucJsPRBf1r7Mvj3Meer-nwyU7W9s60NWf_YJ9u_-8nD8ki6cIzRZJpQG6JANNFWSVKpVQVlOZqVyrtTJVEcsiAyBKAbTSVQ6l0NYWqsyFhlQTrMo0VxdMjf_WjjaErS8d7iW21o3nvt6grbAklDIzqJQ0crA-jdbW1rjz7sX6w4fzMFvg8AZKmDTPYS8iezOyO99-7yl0-Nz2volNoUwlRC4tZKSKkap8G4KnNVau-8iv89bVKACHCeGQPw7543FC_3o4un9L-p_1DihTkqM
CitedBy_id crossref_primary_10_1051_0004_6361_202243110
crossref_primary_10_1051_0004_6361_202244131
crossref_primary_10_1051_0004_6361_202141762
crossref_primary_10_1051_0004_6361_202348038
crossref_primary_10_1051_0004_6361_202348667
crossref_primary_10_1051_0004_6361_202348832
crossref_primary_10_1051_0004_6361_202040225
crossref_primary_10_1051_0004_6361_202346700
crossref_primary_10_1093_mnras_stad3599
crossref_primary_10_1103_PhysRevD_110_043509
crossref_primary_10_1093_mnras_stab2654
crossref_primary_10_1051_0004_6361_202451607
crossref_primary_10_1051_0004_6361_202142179
Cites_doi 10.1088/0004-637X/725/2/2324
10.1086/305588
10.3847/0004-637X/831/2/149
10.1051/0004-6361/201936133
10.1051/0004-6361/201629064
10.1086/319728
10.1093/mnras/stt663
10.1109/MCSE.2007.55
10.1086/519522
10.1146/annurev.astro.36.1.189
10.1093/mnras/stw129
10.1051/0004-6361/201730833
10.1086/115487
10.3847/1538-4357/aa61a0
10.1051/0004-6361/201118453
10.1111/j.1365-2966.2009.15688.x
10.1093/mnras/sty2876
10.3847/1538-4357/ab27cc
10.1051/0004-6361/201630165
10.1051/0004-6361/201935527
10.1093/mnras/stv1298
10.1051/0004-6361/200911831
10.3847/1538-4357/aa740c
10.1051/aas:1996164
10.1086/500691
10.1093/mnras/stz342
10.1016/j.ascom.2016.03.001
10.1093/mnras/stt469
10.1093/mnras/stt1020
10.1093/mnras/sty3203
10.1051/0004-6361/201731195
10.1051/0004-6361/200911995
10.1051/0004-6361/202037855
10.1017/pasa.2015.33
10.1093/mnras/stw936
10.1088/0004-637X/799/2/209
10.1051/0004-6361:20079313
10.1086/308692
10.1088/0004-637X/753/2/121
10.3847/0004-637X/830/2/83
10.1093/mnras/stx1366
10.3847/1538-4357/aa7558
10.1086/520086
10.1086/432968
10.1086/117895
10.1088/0004-637X/736/2/104
10.1086/516585
10.1086/312628
10.1051/0004-6361/201630252
10.1051/0004-6361/200912081
10.1088/0004-637X/767/1/39
10.1111/j.1365-2966.2010.17406.x
10.1051/0004-6361:20078625
10.1051/0004-6361/201117711
10.1088/0004-637X/753/1/74
10.1088/0004-637X/712/2/833
10.1111/j.1365-2966.2011.19559.x
10.1051/0004-6361/201935869
10.1093/mnras/278.1.27
10.1086/516584
10.1088/0004-637X/779/2/139
10.1086/376392
10.1093/mnras/stw474
10.1088/0004-637X/697/2/1842
10.1093/mnras/stu1450
10.3847/2041-8205/816/1/L14
10.1038/nature07648
10.1051/0004-6361/201015465
10.3847/1538-4357/aaa4b4
10.1093/mnras/sty2794
10.1111/j.1365-2966.2011.19169.x
10.1051/0004-6361/201730905
10.1086/167900
10.1088/0004-637X/745/2/106
10.1051/0004-6361/201833136
10.1086/508924
10.1088/0004-637X/777/2/116
10.1093/mnras/stu1375
10.1086/508921
10.1051/0004-6361/201731877
10.1093/mnras/279.3.L47
10.1086/516582
10.1088/0004-637X/697/1/115
10.1093/mnras/stu2635
10.1088/0004-637X/746/2/188
10.1086/516591
10.1088/0004-637X/700/1/221
10.1086/340952
10.3847/0067-0049/224/2/24
10.1051/0004-6361/200912213
10.1051/0004-6361/200913168
10.1051/0004-6361/201425419
10.1111/j.1365-2966.2009.15953.x
10.1093/mnras/sty3465
10.1146/annurev-astro-081811-125615
10.1051/0004-6361/201527866
10.1088/0004-6256/135/5/1738
10.1111/j.1365-2966.2011.19415.x
10.1088/0004-637X/721/1/193
ContentType Journal Article
Web Resource
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
Q33
DOI 10.1051/0004-6361/202038818
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID oai_orbi_ulg_ac_be_2268_332827
oai_HAL_hal_03185770v1
10_1051_0004_6361_202038818
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
1XC
VOOES
Q33
ID FETCH-LOGICAL-c400t-604ec06c3b313a4eb63743f38c9183e8001b10ed4c70b14aa93b714054e0db573
ISSN 0004-6361
1432-0746
IngestDate Fri Jul 18 15:31:48 EDT 2025
Wed Aug 20 06:52:04 EDT 2025
Mon Jun 30 04:54:06 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Tue Jul 01 03:53:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords galaxies: groups: general
galaxies: kinematics and dynamics
galaxies: evolution
galaxies: high-redshift
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-604ec06c3b313a4eb63743f38c9183e8001b10ed4c70b14aa93b714054e0db573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
scopus-id:2-s2.0-85103505626
ORCID 0000-0002-2764-6069
0000-0002-3952-8588
0000-0001-5492-1049
0000-0002-2470-5756
0000-0002-0470-6540
0000-0003-3144-5080
0000-0003-0275-938X
0000-0003-3266-2001
0000-0001-5657-4837
0000-0003-4359-8797
OpenAccessLink https://hal.science/hal-03185770
PQID 2520185592
PQPubID 1796397
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_332827
hal_primary_oai_HAL_hal_03185770v1
proquest_journals_2520185592
crossref_citationtrail_10_1051_0004_6361_202038818
crossref_primary_10_1051_0004_6361_202038818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2021
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Guérou (R36) 2017; 608
Vergani (R97) 2012; 546
Knobel (R45) 2012; 753
Chabrier (R18) 2003; 115
Hinton (R37) 2016; 15
Tully (R93) 1977; 500
Matharu (R57) 2019; 484
Pelliccia (R65) 2017; 599
Conroy (R20) 2010; 712
Laigle (R49) 2016; 224
Persic (R70) 1996; 281
Hunter (R39) 2007; 9
Masters (R56) 2008; 135
McGaugh (R58) 2005; 632
Torres-Flores (R92) 2013; 432
Epinat (R30) 2018; 609
Kriek (R47) 2009; 700
Reyes (R74) 2011; 417
Weiner (R99) 2006; 653
Boselli (R11) 2019; 631
Huertas-Company (R38) 2008; 478
Torres-Flores (R91) 2011; 416
Wetzel (R100) 2013; 432
Lemaux (R52) 2012; 745
Madau (R53) 2014; 52
Puech (R72) 2008; 484
Tiley (R89) 2019; 482
Weilbacher (R98) 2020; 641
Grützbauch (R35) 2011; 418
Scarlata (R77) 2007; 172
Bryant (R12) 2015; 447
Böhm (R8) 2020; 633
Cassata (R16) 2007; 172
Kennicutt (R43) 1998; 36
Bertin (R6) 1996; 117
Juneau (R41) 2011; 736
Williams (R101) 2010; 409
Wisnioski (R102) 2015; 799
Calzetti (R14) 2000; 533
Dekel (R25) 2009; 457
Peng (R68) 2010; 721
Epinat (R28) 2010; 401
Maltby (R54) 2010; 402
Masters (R55) 2006; 653
Boggs (R7) 1990; 112
Sorce (R83) 2014; 444
Epinat (R29) 2012; 539
Cardelli (R15) 1989; 345
Gnerucci (R32) 2011; 528
Contini (R22) 2016; 591
Lamareille (R50) 2010; 509
Koekemoer (R46) 2007; 172
Simons (R80) 2015; 452
Burkert (R13) 2010; 725
McGaugh (R59) 2000; 533
Tomczak (R90) 2019; 484
Muzzin (R62) 2012; 746
Inami (R40) 2017; 608
Gómez-López (R33) 2019; 631
Robotham (R75) 2015; 32
R64
Conselice (R21) 2016; 830
Peng (R67) 2002; 124
Gozaliasl (R34) 2019; 483
Miller (R61) 2012; 753
Wuyts (R103) 2016; 831
Epinat (R26) 2008; 390
Turner (R94) 2017; 471
Epinat (R27) 2009; 504
Tasca (R87) 2009; 503
Muzzin (R63) 2013; 767
Boogaard (R9) 2018; 619
Kennicutt (R42) 1998; 498
Puech (R73) 2010; 510
Bacon (R2) 2015; 575
Pizagno (R71) 2007; 134
Sobral (R82) 2013; 779
Tacconi (R86) 2018; 853
Lelli (R51) 2016; 816
Scoville (R79) 2017; 837
Übler (R96) 2019; 880
Bacon (R3) 2017; 608
Simons (R81) 2017; 843
Abraham (R1) 1996; 279
Cresci (R23) 2009; 697
Pérez-Martínez (R69) 2017; 605
Meurer (R60) 1996; 111
Stott (R85) 2016; 457
Beers (R4) 1990; 100
Cucciati (R24) 2010; 520
Boselli (R10) 2006; 118
Fernández Lorenzo (R31) 2013; 434
Pelliccia (R66) 2019; 482
Kuchner (R48) 2017; 604
Cebrián (R17) 2014; 444
Sargent (R76) 2007; 172
Knobel (R44) 2009; 697
Bell (R5) 2001; 550
Scoville (R78) 2007; 172
Soto (R84) 2016; 458
Tiley (R88) 2016; 460
Übler (R95) 2017; 842
Cibinel (R19) 2013; 777
References_xml – volume: 725
  start-page: 2324
  year: 2010
  ident: R13
  publication-title: ApJ
  doi: 10.1088/0004-637X/725/2/2324
– volume: 498
  start-page: 541
  year: 1998
  ident: R42
  publication-title: ApJ
  doi: 10.1086/305588
– volume: 831
  start-page: 149
  year: 2016
  ident: R103
  publication-title: ApJ
  doi: 10.3847/0004-637X/831/2/149
– volume: 631
  start-page: A114
  year: 2019
  ident: R11
  publication-title: A&A
  doi: 10.1051/0004-6361/201936133
– volume: 599
  start-page: A25
  year: 2017
  ident: R65
  publication-title: A&A
  doi: 10.1051/0004-6361/201629064
– volume: 550
  start-page: 212
  year: 2001
  ident: R5
  publication-title: ApJ
  doi: 10.1086/319728
– volume: 432
  start-page: 3085
  year: 2013
  ident: R92
  publication-title: MNRAS
  doi: 10.1093/mnras/stt663
– volume: 9
  start-page: 90
  year: 2007
  ident: R39
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 134
  start-page: 945
  year: 2007
  ident: R71
  publication-title: AJ
  doi: 10.1086/519522
– volume: 500
  start-page: 105
  year: 1977
  ident: R93
  publication-title: A&A
– volume: 36
  start-page: 189
  year: 1998
  ident: R43
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.36.1.189
– volume: 457
  start-page: 1888
  year: 2016
  ident: R85
  publication-title: MNRAS
  doi: 10.1093/mnras/stw129
– volume: 608
  start-page: A1
  year: 2017
  ident: R3
  publication-title: A&A
  doi: 10.1051/0004-6361/201730833
– volume: 100
  start-page: 32
  year: 1990
  ident: R4
  publication-title: AJ
  doi: 10.1086/115487
– volume: 837
  start-page: 150
  year: 2017
  ident: R79
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa61a0
– volume: 546
  start-page: A118
  year: 2012
  ident: R97
  publication-title: A&A
  doi: 10.1051/0004-6361/201118453
– volume: 401
  start-page: 2113
  year: 2010
  ident: R28
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15688.x
– volume: 482
  start-page: 3514
  year: 2019
  ident: R66
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2876
– volume: 880
  start-page: 48
  year: 2019
  ident: R96
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab27cc
– volume: 605
  start-page: A127
  year: 2017
  ident: R69
  publication-title: A&A
  doi: 10.1051/0004-6361/201630165
– volume: 633
  start-page: A131
  year: 2020
  ident: R8
  publication-title: A&A
  doi: 10.1051/0004-6361/201935527
– volume: 452
  start-page: 986
  year: 2015
  ident: R80
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1298
– volume: 520
  start-page: A42
  year: 2010
  ident: R24
  publication-title: A&A
  doi: 10.1051/0004-6361/200911831
– volume: 843
  start-page: 46
  year: 2017
  ident: R81
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa740c
– volume: 117
  start-page: 393
  year: 1996
  ident: R6
  publication-title: A&AS
  doi: 10.1051/aas:1996164
– volume: 118
  start-page: 517
  year: 2006
  ident: R10
  publication-title: PASP
  doi: 10.1086/500691
– volume: 484
  start-page: 4695
  year: 2019
  ident: R90
  publication-title: MNRAS
  doi: 10.1093/mnras/stz342
– volume: 15
  start-page: 61
  year: 2016
  ident: R37
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2016.03.001
– volume: 432
  start-page: 336
  year: 2013
  ident: R100
  publication-title: MNRAS
  doi: 10.1093/mnras/stt469
– volume: 434
  start-page: 325
  year: 2013
  ident: R31
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1020
– volume: 483
  start-page: 3545
  year: 2019
  ident: R34
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3203
– volume: 608
  start-page: A2
  year: 2017
  ident: R40
  publication-title: A&A
  doi: 10.1051/0004-6361/201731195
– volume: 504
  start-page: 789
  year: 2009
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361/200911995
– volume: 390
  start-page: 466
  year: 2008
  ident: R26
  publication-title: MNRAS
– volume: 641
  start-page: A28
  year: 2020
  ident: R98
  publication-title: A&A
  doi: 10.1051/0004-6361/202037855
– volume: 32
  start-page: e033
  year: 2015
  ident: R75
  publication-title: PASA
  doi: 10.1017/pasa.2015.33
– volume: 460
  start-page: 103
  year: 2016
  ident: R88
  publication-title: MNRAS
  doi: 10.1093/mnras/stw936
– volume: 799
  start-page: 209
  year: 2015
  ident: R102
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/209
– volume: 484
  start-page: 173
  year: 2008
  ident: R72
  publication-title: A&A
  doi: 10.1051/0004-6361:20079313
– volume: 533
  start-page: 682
  year: 2000
  ident: R14
  publication-title: ApJ
  doi: 10.1086/308692
– volume: 753
  start-page: 121
  year: 2012
  ident: R45
  publication-title: ApJ
  doi: 10.1088/0004-637X/753/2/121
– volume: 830
  start-page: 83
  year: 2016
  ident: R21
  publication-title: ApJ
  doi: 10.3847/0004-637X/830/2/83
– volume: 471
  start-page: 1280
  year: 2017
  ident: R94
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1366
– volume: 842
  start-page: 121
  year: 2017
  ident: R95
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7558
– volume: 172
  start-page: 196
  year: 2007
  ident: R46
  publication-title: ApJS
  doi: 10.1086/520086
– volume: 632
  start-page: 859
  year: 2005
  ident: R58
  publication-title: ApJ
  doi: 10.1086/432968
– volume: 111
  start-page: 1551
  year: 1996
  ident: R60
  publication-title: AJ
  doi: 10.1086/117895
– volume: 736
  start-page: 104
  year: 2011
  ident: R41
  publication-title: ApJ
  doi: 10.1088/0004-637X/736/2/104
– volume: 172
  start-page: 1
  year: 2007
  ident: R78
  publication-title: ApJS
  doi: 10.1086/516585
– volume: 533
  start-page: L99
  year: 2000
  ident: R59
  publication-title: ApJ
  doi: 10.1086/312628
– volume: 604
  start-page: A54
  year: 2017
  ident: R48
  publication-title: A&A
  doi: 10.1051/0004-6361/201630252
– volume: 510
  start-page: A68
  year: 2010
  ident: R73
  publication-title: A&A
  doi: 10.1051/0004-6361/200912081
– volume: 767
  start-page: 39
  year: 2013
  ident: R63
  publication-title: ApJ
  doi: 10.1088/0004-637X/767/1/39
– volume: 409
  start-page: 1330
  year: 2010
  ident: R101
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17406.x
– volume: 478
  start-page: 971
  year: 2008
  ident: R38
  publication-title: A&A
  doi: 10.1051/0004-6361:20078625
– volume: 539
  start-page: A92
  year: 2012
  ident: R29
  publication-title: A&A
  doi: 10.1051/0004-6361/201117711
– volume: 753
  start-page: 74
  year: 2012
  ident: R61
  publication-title: ApJ
  doi: 10.1088/0004-637X/753/1/74
– volume: 712
  start-page: 833
  year: 2010
  ident: R20
  publication-title: ApJ
  doi: 10.1088/0004-637X/712/2/833
– volume: 418
  start-page: 938
  year: 2011
  ident: R35
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19559.x
– volume: 631
  start-page: A71
  year: 2019
  ident: R33
  publication-title: A&A
  doi: 10.1051/0004-6361/201935869
– volume: 281
  start-page: 27
  year: 1996
  ident: R70
  publication-title: MNRAS
  doi: 10.1093/mnras/278.1.27
– volume: 172
  start-page: 434
  year: 2007
  ident: R76
  publication-title: ApJS
  doi: 10.1086/516584
– volume: 779
  start-page: 139
  year: 2013
  ident: R82
  publication-title: ApJ
  doi: 10.1088/0004-637X/779/2/139
– volume: 115
  start-page: 763
  year: 2003
  ident: R18
  publication-title: PASP
  doi: 10.1086/376392
– volume: 458
  start-page: 3210
  year: 2016
  ident: R84
  publication-title: MNRAS
  doi: 10.1093/mnras/stw474
– volume: 697
  start-page: 1842
  year: 2009
  ident: R44
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/2/1842
– volume: 444
  start-page: 527
  year: 2014
  ident: R83
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1450
– volume: 816
  start-page: L14
  year: 2016
  ident: R51
  publication-title: ApJ
  doi: 10.3847/2041-8205/816/1/L14
– volume: 457
  start-page: 451
  year: 2009
  ident: R25
  publication-title: Nature
  doi: 10.1038/nature07648
– volume: 528
  start-page: A88
  year: 2011
  ident: R32
  publication-title: A&A
  doi: 10.1051/0004-6361/201015465
– volume: 853
  start-page: 179
  year: 2018
  ident: R86
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaa4b4
– volume: 482
  start-page: 2166
  year: 2019
  ident: R89
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2794
– volume: 416
  start-page: 1936
  year: 2011
  ident: R91
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19169.x
– volume: 608
  start-page: A5
  year: 2017
  ident: R36
  publication-title: A&A
  doi: 10.1051/0004-6361/201730905
– ident: R64
– volume: 345
  start-page: 245
  year: 1989
  ident: R15
  publication-title: ApJ
  doi: 10.1086/167900
– volume: 745
  start-page: 106
  year: 2012
  ident: R52
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/2/106
– volume: 619
  start-page: A27
  year: 2018
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361/201833136
– volume: 653
  start-page: 861
  year: 2006
  ident: R55
  publication-title: ApJ
  doi: 10.1086/508924
– volume: 777
  start-page: 116
  year: 2013
  ident: R19
  publication-title: ApJ
  doi: 10.1088/0004-637X/777/2/116
– volume: 444
  start-page: 682
  year: 2014
  ident: R17
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1375
– volume: 653
  start-page: 1027
  year: 2006
  ident: R99
  publication-title: ApJ
  doi: 10.1086/508921
– volume: 609
  start-page: A40
  year: 2018
  ident: R30
  publication-title: A&A
  doi: 10.1051/0004-6361/201731877
– volume: 279
  start-page: L47
  year: 1996
  ident: R1
  publication-title: MNRAS
  doi: 10.1093/mnras/279.3.L47
– volume: 172
  start-page: 406
  year: 2007
  ident: R77
  publication-title: ApJS
  doi: 10.1086/516582
– volume: 112
  start-page: 186
  year: 1990
  ident: R7
  publication-title: Contem. Math.
– volume: 697
  start-page: 115
  year: 2009
  ident: R23
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/1/115
– volume: 447
  start-page: 2857
  year: 2015
  ident: R12
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2635
– volume: 746
  start-page: 188
  year: 2012
  ident: R62
  publication-title: ApJ
  doi: 10.1088/0004-637X/746/2/188
– volume: 172
  start-page: 270
  year: 2007
  ident: R16
  publication-title: ApJS
  doi: 10.1086/516591
– volume: 700
  start-page: 221
  year: 2009
  ident: R47
  publication-title: ApJ
  doi: 10.1088/0004-637X/700/1/221
– volume: 124
  start-page: 266
  year: 2002
  ident: R67
  publication-title: AJ
  doi: 10.1086/340952
– volume: 224
  start-page: 24
  year: 2016
  ident: R49
  publication-title: ApJS
  doi: 10.3847/0067-0049/224/2/24
– volume: 503
  start-page: 379
  year: 2009
  ident: R87
  publication-title: A&A
  doi: 10.1051/0004-6361/200912213
– volume: 509
  start-page: A53
  year: 2010
  ident: R50
  publication-title: A&A
  doi: 10.1051/0004-6361/200913168
– volume: 575
  start-page: A75
  year: 2015
  ident: R2
  publication-title: A&A
  doi: 10.1051/0004-6361/201425419
– volume: 402
  start-page: 282
  year: 2010
  ident: R54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15953.x
– volume: 484
  start-page: 595
  year: 2019
  ident: R57
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3465
– volume: 52
  start-page: 415
  year: 2014
  ident: R53
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125615
– volume: 591
  start-page: A49
  year: 2016
  ident: R22
  publication-title: A&A
  doi: 10.1051/0004-6361/201527866
– volume: 135
  start-page: 1738
  year: 2008
  ident: R56
  publication-title: AJ
  doi: 10.1088/0004-6256/135/5/1738
– volume: 417
  start-page: 2347
  year: 2011
  ident: R74
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19415.x
– volume: 721
  start-page: 193
  year: 2010
  ident: R68
  publication-title: ApJ
  doi: 10.1088/0004-637X/721/1/193
RestrictionsOnAccess open access
SSID ssj0002183
Score 2.4705472
SecondaryResourceType review_article
Snippet Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and...
Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and...
SourceID liege
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage A152
SubjectTerms Astrophysics
Astrophysics - Astrophysics of Galaxies
Aérospatiale, astronomie & astrophysique
Baryons
Cosmology and Extra-Galactic Astrophysics
Density
Dispersion
Galactic rotation
Galaxies
galaxies: evolution
galaxies: groups: general
galaxies: high-redshift
galaxies: kinematics and dynamics
Kinematics
Mass distribution
Outliers (statistics)
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Red shift
Sciences of the Universe
Signal to noise ratio
Space science, astronomy & astrophysics
Star & galaxy formation
Star formation
Stellar evolution
Stellar mass
Tully-Fisher relation
Title The Tully-Fisher relation in dense groups at z  ∼ 0.7 in the MAGIC survey
URI https://www.proquest.com/docview/2520185592
https://hal.science/hal-03185770
http://orbi.ulg.ac.be/handle/2268/332827
Volume 647
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbSVkhcEBRQAwVZCLiUTffhfeS4rUoDIsAhRb1ZtteBoLCp8pLIAXHgwD_hT_Br-kuYsR2TUFRRLpbXcibRfpPxvE3I40TmVSa0DrJKsYBVQqEcDINUxbpdsSiPKnTod19nnRP28jQ9bTR-rGQtzaaypRZ_rSv5H1RhDXDFKtkrIOuJwgLMAV8YAWEY_xnjHtiQnwN7g7mrTLHZiyBQJnrPVG1MsGRxsecSGwpmJsWTg0O_ErbyZcZjtzwGZCaz8Xw95FtO0Gs--mQbNgl8sm4R47e1bbNW_QpyPBgGXY2lIvqjcci-E3jEufu6jRp_Bg_mFDjQ9cjE7I98Gk4X74KyDAWiqw8mfeUDJiMkM7AJTrDHpTI750W8kr3lBTILssT2Y29pK4NZggmxzjPphHRm-3I6MVtGtu3tBfkPIsYmTFqqWO6CodaicEJ-rd_2H-egz040cfk0wrg840iGeyIbZCsGewSvyjh-8cUf-ahnWjvLfu-yvVUa7fu1fU9kTQXa-IAJuFtDTJG4oA8YJad3k9xw1gktLavdIg1db5Mdjzx9SssV3LfJtbd2dpu8AV6kq7xIl7xIBzU1vEgtL1IxpQt6_vXb-fefMALn4Q7gPGo4j1rOu0NOnh_1DjuBu6wjUHAMTIMsZFqFmUpkEiWCaZkloJz2k0K14eVosEsiGYW6YioPZcSEaIOYAOs-ZTqsZJond8lmPar1DqFhFQmJfRNZ1mdpGwiIvs6F6hexZjpTTRIv3x9XrpM9Xqgy5Jcg1yTP_IfObCOXy7c_AmD8TmzC3ilfcVzDYzDN83AeAU2DGx-N5YDPY7PNzGfD91woLjUH86bgSRIXcd4ku0t4uZMiEx6noIIXYNfH9672C--T67__Ubtkczqe6QegIE_lQ8OcvwAPv6xZ
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Tully-Fisher+relation+in+dense+groups+at+z+%E2%80%84%E2%88%BC%E2%80%840.7+in+the+MAGIC+survey&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Abril-Melgarejo%2C+Valentina&rft.au=Epinat%2C+Beno%C3%AEt&rft.au=Mercier%2C+Wilfried&rft.au=Contini%2C+Thierry&rft.date=2021-03-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=647&rft.spage=A152&rft_id=info:doi/10.1051%2F0004-6361%2F202038818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202038818
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon