The Tully-Fisher relation in dense groups at z ∼ 0.7 in the MAGIC survey
Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts. Aims. The aim of our project is to get new insights...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 647; p. A152 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Heidelberg
EDP Sciences
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 1432-0746 |
DOI | 10.1051/0004-6361/202038818 |
Cover
Loading…
Abstract | Context.
Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts.
Aims.
The aim of our project is to get new insights into the role of environment in the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR).
Methods.
We study a sample of galaxies in eight groups, over-dense by a factor larger than 25 with respect to the average projected density, spanning a redshift range of 0.5 <
z
< 0.8 and located in ten pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [O
II
]
λ
λ
3727,3729 emission line doublet signal-to-noise ratio, bulge-to-disk ratio, and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies.
Results.
We show that this selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Similar to other studies, we find that including the velocity dispersion in the velocity budget mainly affects galaxies with low rotation velocities, reduces the scatter in the relation, increases its slope, and decreases its zero-point. Including gas masses is more significant for low-mass galaxies due to a larger gas fraction, and thus decreases the slope and increases the zero-point of the relation. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, regardless of the kinematics estimator used. This can be interpreted as a decrease in either stellar mass by ∼0.05 − 0.3 dex or an increase in rotation velocity by ∼0.02 − 0.06 dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease in star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together, with their relative contribution depending on the mass regime. |
---|---|
AbstractList | Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts.Aims. The aim of our project is to get new insights into the role of environment in the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR).Methods. We study a sample of galaxies in eight groups, over-dense by a factor larger than 25 with respect to the average projected density, spanning a redshift range of 0.5 < z < 0.8 and located in ten pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [O II]λλ3727,3729 emission line doublet signal-to-noise ratio, bulge-to-disk ratio, and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies.Results. We show that this selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Similar to other studies, we find that including the velocity dispersion in the velocity budget mainly affects galaxies with low rotation velocities, reduces the scatter in the relation, increases its slope, and decreases its zero-point. Including gas masses is more significant for low-mass galaxies due to a larger gas fraction, and thus decreases the slope and increases the zero-point of the relation. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, regardless of the kinematics estimator used. This can be interpreted as a decrease in either stellar mass by ∼0.05 − 0.3 dex or an increase in rotation velocity by ∼0.02 − 0.06 dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease in star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together, with their relative contribution depending on the mass regime. Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and consequently reducing their star-forming capacity earlier than their isolated counterparts. Aims. The aim of our project is to get new insights into the role of environment in the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR). Methods. We study a sample of galaxies in eight groups, over-dense by a factor larger than 25 with respect to the average projected density, spanning a redshift range of 0.5 < z < 0.8 and located in ten pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [O II ] λ λ 3727,3729 emission line doublet signal-to-noise ratio, bulge-to-disk ratio, and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies. Results. We show that this selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Similar to other studies, we find that including the velocity dispersion in the velocity budget mainly affects galaxies with low rotation velocities, reduces the scatter in the relation, increases its slope, and decreases its zero-point. Including gas masses is more significant for low-mass galaxies due to a larger gas fraction, and thus decreases the slope and increases the zero-point of the relation. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, regardless of the kinematics estimator used. This can be interpreted as a decrease in either stellar mass by ∼0.05 − 0.3 dex or an increase in rotation velocity by ∼0.02 − 0.06 dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease in star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together, with their relative contribution depending on the mass regime. |
Author | Contini, Thierry Finley, Hayley Mercier, Wilfried Abril-Melgarejo, Valentina Amram, Philippe Epinat, Benoît Ventou, Emmy Michel-Dansac, Léo Krajnović, Davor Pineda, Juan C. B. Boogaard, Leindert A. Mahler, Guillaume Brinchmann, Jarle Richard, Johan |
Author_xml | – sequence: 1 givenname: Valentina orcidid: 0000-0002-2764-6069 surname: Abril-Melgarejo fullname: Abril-Melgarejo, Valentina – sequence: 2 givenname: Benoît orcidid: 0000-0002-2470-5756 surname: Epinat fullname: Epinat, Benoît – sequence: 3 givenname: Wilfried surname: Mercier fullname: Mercier, Wilfried – sequence: 4 givenname: Thierry orcidid: 0000-0003-0275-938X surname: Contini fullname: Contini, Thierry – sequence: 5 givenname: Leindert A. orcidid: 0000-0002-3952-8588 surname: Boogaard fullname: Boogaard, Leindert A. – sequence: 6 givenname: Jarle surname: Brinchmann fullname: Brinchmann, Jarle – sequence: 7 givenname: Hayley surname: Finley fullname: Finley, Hayley – sequence: 8 givenname: Léo surname: Michel-Dansac fullname: Michel-Dansac, Léo – sequence: 9 givenname: Emmy surname: Ventou fullname: Ventou, Emmy – sequence: 10 givenname: Philippe surname: Amram fullname: Amram, Philippe – sequence: 11 givenname: Davor orcidid: 0000-0002-0470-6540 surname: Krajnović fullname: Krajnović, Davor – sequence: 12 givenname: Guillaume orcidid: 0000-0003-3266-2001 surname: Mahler fullname: Mahler, Guillaume – sequence: 13 givenname: Juan C. B. orcidid: 0000-0003-3144-5080 surname: Pineda fullname: Pineda, Juan C. B. – sequence: 14 givenname: Johan orcidid: 0000-0001-5492-1049 surname: Richard fullname: Richard, Johan |
BackLink | https://hal.science/hal-03185770$$DView record in HAL |
BookMark | eNp9kb1u2zAQx4kgAWIneYIsBDJ1UHL8kESNhtE0AVxkcecDJZ9tBorkkpIBd8rQoQ_Vp8mThIpad-vCL_x-xN3_puy0aRti7FrArYBU3AGATjKViTsJEpQxwpywidBKJpDr7JRNjsQ5m4bwHK9SGDVhT8st8WVf14fk3oUtee6ptp1rG-4avqImEN_4tt8Fbjv-g7-9_nz79TuucJsPRBf1r7Mvj3Meer-nwyU7W9s60NWf_YJ9u_-8nD8ki6cIzRZJpQG6JANNFWSVKpVQVlOZqVyrtTJVEcsiAyBKAbTSVQ6l0NYWqsyFhlQTrMo0VxdMjf_WjjaErS8d7iW21o3nvt6grbAklDIzqJQ0crA-jdbW1rjz7sX6w4fzMFvg8AZKmDTPYS8iezOyO99-7yl0-Nz2volNoUwlRC4tZKSKkap8G4KnNVau-8iv89bVKACHCeGQPw7543FC_3o4un9L-p_1DihTkqM |
CitedBy_id | crossref_primary_10_1051_0004_6361_202243110 crossref_primary_10_1051_0004_6361_202244131 crossref_primary_10_1051_0004_6361_202141762 crossref_primary_10_1051_0004_6361_202348038 crossref_primary_10_1051_0004_6361_202348667 crossref_primary_10_1051_0004_6361_202348832 crossref_primary_10_1051_0004_6361_202040225 crossref_primary_10_1051_0004_6361_202346700 crossref_primary_10_1093_mnras_stad3599 crossref_primary_10_1103_PhysRevD_110_043509 crossref_primary_10_1093_mnras_stab2654 crossref_primary_10_1051_0004_6361_202451607 crossref_primary_10_1051_0004_6361_202142179 |
Cites_doi | 10.1088/0004-637X/725/2/2324 10.1086/305588 10.3847/0004-637X/831/2/149 10.1051/0004-6361/201936133 10.1051/0004-6361/201629064 10.1086/319728 10.1093/mnras/stt663 10.1109/MCSE.2007.55 10.1086/519522 10.1146/annurev.astro.36.1.189 10.1093/mnras/stw129 10.1051/0004-6361/201730833 10.1086/115487 10.3847/1538-4357/aa61a0 10.1051/0004-6361/201118453 10.1111/j.1365-2966.2009.15688.x 10.1093/mnras/sty2876 10.3847/1538-4357/ab27cc 10.1051/0004-6361/201630165 10.1051/0004-6361/201935527 10.1093/mnras/stv1298 10.1051/0004-6361/200911831 10.3847/1538-4357/aa740c 10.1051/aas:1996164 10.1086/500691 10.1093/mnras/stz342 10.1016/j.ascom.2016.03.001 10.1093/mnras/stt469 10.1093/mnras/stt1020 10.1093/mnras/sty3203 10.1051/0004-6361/201731195 10.1051/0004-6361/200911995 10.1051/0004-6361/202037855 10.1017/pasa.2015.33 10.1093/mnras/stw936 10.1088/0004-637X/799/2/209 10.1051/0004-6361:20079313 10.1086/308692 10.1088/0004-637X/753/2/121 10.3847/0004-637X/830/2/83 10.1093/mnras/stx1366 10.3847/1538-4357/aa7558 10.1086/520086 10.1086/432968 10.1086/117895 10.1088/0004-637X/736/2/104 10.1086/516585 10.1086/312628 10.1051/0004-6361/201630252 10.1051/0004-6361/200912081 10.1088/0004-637X/767/1/39 10.1111/j.1365-2966.2010.17406.x 10.1051/0004-6361:20078625 10.1051/0004-6361/201117711 10.1088/0004-637X/753/1/74 10.1088/0004-637X/712/2/833 10.1111/j.1365-2966.2011.19559.x 10.1051/0004-6361/201935869 10.1093/mnras/278.1.27 10.1086/516584 10.1088/0004-637X/779/2/139 10.1086/376392 10.1093/mnras/stw474 10.1088/0004-637X/697/2/1842 10.1093/mnras/stu1450 10.3847/2041-8205/816/1/L14 10.1038/nature07648 10.1051/0004-6361/201015465 10.3847/1538-4357/aaa4b4 10.1093/mnras/sty2794 10.1111/j.1365-2966.2011.19169.x 10.1051/0004-6361/201730905 10.1086/167900 10.1088/0004-637X/745/2/106 10.1051/0004-6361/201833136 10.1086/508924 10.1088/0004-637X/777/2/116 10.1093/mnras/stu1375 10.1086/508921 10.1051/0004-6361/201731877 10.1093/mnras/279.3.L47 10.1086/516582 10.1088/0004-637X/697/1/115 10.1093/mnras/stu2635 10.1088/0004-637X/746/2/188 10.1086/516591 10.1088/0004-637X/700/1/221 10.1086/340952 10.3847/0067-0049/224/2/24 10.1051/0004-6361/200912213 10.1051/0004-6361/200913168 10.1051/0004-6361/201425419 10.1111/j.1365-2966.2009.15953.x 10.1093/mnras/sty3465 10.1146/annurev-astro-081811-125615 10.1051/0004-6361/201527866 10.1088/0004-6256/135/5/1738 10.1111/j.1365-2966.2011.19415.x 10.1088/0004-637X/721/1/193 |
ContentType | Journal Article Web Resource |
Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FD H8D L7M 1XC VOOES Q33 |
DOI | 10.1051/0004-6361/202038818 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_332827 oai_HAL_hal_03185770v1 10_1051_0004_6361_202038818 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M 1XC VOOES Q33 |
ID | FETCH-LOGICAL-c400t-604ec06c3b313a4eb63743f38c9183e8001b10ed4c70b14aa93b714054e0db573 |
ISSN | 0004-6361 1432-0746 |
IngestDate | Fri Jul 18 15:31:48 EDT 2025 Wed Aug 20 06:52:04 EDT 2025 Mon Jun 30 04:54:06 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Tue Jul 01 03:53:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | galaxies: groups: general galaxies: kinematics and dynamics galaxies: evolution galaxies: high-redshift |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-604ec06c3b313a4eb63743f38c9183e8001b10ed4c70b14aa93b714054e0db573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 scopus-id:2-s2.0-85103505626 |
ORCID | 0000-0002-2764-6069 0000-0002-3952-8588 0000-0001-5492-1049 0000-0002-2470-5756 0000-0002-0470-6540 0000-0003-3144-5080 0000-0003-0275-938X 0000-0003-3266-2001 0000-0001-5657-4837 0000-0003-4359-8797 |
OpenAccessLink | https://hal.science/hal-03185770 |
PQID | 2520185592 |
PQPubID | 1796397 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_332827 hal_primary_oai_HAL_hal_03185770v1 proquest_journals_2520185592 crossref_citationtrail_10_1051_0004_6361_202038818 crossref_primary_10_1051_0004_6361_202038818 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2021 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Guérou (R36) 2017; 608 Vergani (R97) 2012; 546 Knobel (R45) 2012; 753 Chabrier (R18) 2003; 115 Hinton (R37) 2016; 15 Tully (R93) 1977; 500 Matharu (R57) 2019; 484 Pelliccia (R65) 2017; 599 Conroy (R20) 2010; 712 Laigle (R49) 2016; 224 Persic (R70) 1996; 281 Hunter (R39) 2007; 9 Masters (R56) 2008; 135 McGaugh (R58) 2005; 632 Torres-Flores (R92) 2013; 432 Epinat (R30) 2018; 609 Kriek (R47) 2009; 700 Reyes (R74) 2011; 417 Weiner (R99) 2006; 653 Boselli (R11) 2019; 631 Huertas-Company (R38) 2008; 478 Torres-Flores (R91) 2011; 416 Wetzel (R100) 2013; 432 Lemaux (R52) 2012; 745 Madau (R53) 2014; 52 Puech (R72) 2008; 484 Tiley (R89) 2019; 482 Weilbacher (R98) 2020; 641 Grützbauch (R35) 2011; 418 Scarlata (R77) 2007; 172 Bryant (R12) 2015; 447 Böhm (R8) 2020; 633 Cassata (R16) 2007; 172 Kennicutt (R43) 1998; 36 Bertin (R6) 1996; 117 Juneau (R41) 2011; 736 Williams (R101) 2010; 409 Wisnioski (R102) 2015; 799 Calzetti (R14) 2000; 533 Dekel (R25) 2009; 457 Peng (R68) 2010; 721 Epinat (R28) 2010; 401 Maltby (R54) 2010; 402 Masters (R55) 2006; 653 Boggs (R7) 1990; 112 Sorce (R83) 2014; 444 Epinat (R29) 2012; 539 Cardelli (R15) 1989; 345 Gnerucci (R32) 2011; 528 Contini (R22) 2016; 591 Lamareille (R50) 2010; 509 Koekemoer (R46) 2007; 172 Simons (R80) 2015; 452 Burkert (R13) 2010; 725 McGaugh (R59) 2000; 533 Tomczak (R90) 2019; 484 Muzzin (R62) 2012; 746 Inami (R40) 2017; 608 Gómez-López (R33) 2019; 631 Robotham (R75) 2015; 32 R64 Conselice (R21) 2016; 830 Peng (R67) 2002; 124 Gozaliasl (R34) 2019; 483 Miller (R61) 2012; 753 Wuyts (R103) 2016; 831 Epinat (R26) 2008; 390 Turner (R94) 2017; 471 Epinat (R27) 2009; 504 Tasca (R87) 2009; 503 Muzzin (R63) 2013; 767 Boogaard (R9) 2018; 619 Kennicutt (R42) 1998; 498 Puech (R73) 2010; 510 Bacon (R2) 2015; 575 Pizagno (R71) 2007; 134 Sobral (R82) 2013; 779 Tacconi (R86) 2018; 853 Lelli (R51) 2016; 816 Scoville (R79) 2017; 837 Übler (R96) 2019; 880 Bacon (R3) 2017; 608 Simons (R81) 2017; 843 Abraham (R1) 1996; 279 Cresci (R23) 2009; 697 Pérez-Martínez (R69) 2017; 605 Meurer (R60) 1996; 111 Stott (R85) 2016; 457 Beers (R4) 1990; 100 Cucciati (R24) 2010; 520 Boselli (R10) 2006; 118 Fernández Lorenzo (R31) 2013; 434 Pelliccia (R66) 2019; 482 Kuchner (R48) 2017; 604 Cebrián (R17) 2014; 444 Sargent (R76) 2007; 172 Knobel (R44) 2009; 697 Bell (R5) 2001; 550 Scoville (R78) 2007; 172 Soto (R84) 2016; 458 Tiley (R88) 2016; 460 Übler (R95) 2017; 842 Cibinel (R19) 2013; 777 |
References_xml | – volume: 725 start-page: 2324 year: 2010 ident: R13 publication-title: ApJ doi: 10.1088/0004-637X/725/2/2324 – volume: 498 start-page: 541 year: 1998 ident: R42 publication-title: ApJ doi: 10.1086/305588 – volume: 831 start-page: 149 year: 2016 ident: R103 publication-title: ApJ doi: 10.3847/0004-637X/831/2/149 – volume: 631 start-page: A114 year: 2019 ident: R11 publication-title: A&A doi: 10.1051/0004-6361/201936133 – volume: 599 start-page: A25 year: 2017 ident: R65 publication-title: A&A doi: 10.1051/0004-6361/201629064 – volume: 550 start-page: 212 year: 2001 ident: R5 publication-title: ApJ doi: 10.1086/319728 – volume: 432 start-page: 3085 year: 2013 ident: R92 publication-title: MNRAS doi: 10.1093/mnras/stt663 – volume: 9 start-page: 90 year: 2007 ident: R39 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 134 start-page: 945 year: 2007 ident: R71 publication-title: AJ doi: 10.1086/519522 – volume: 500 start-page: 105 year: 1977 ident: R93 publication-title: A&A – volume: 36 start-page: 189 year: 1998 ident: R43 publication-title: ARA&A doi: 10.1146/annurev.astro.36.1.189 – volume: 457 start-page: 1888 year: 2016 ident: R85 publication-title: MNRAS doi: 10.1093/mnras/stw129 – volume: 608 start-page: A1 year: 2017 ident: R3 publication-title: A&A doi: 10.1051/0004-6361/201730833 – volume: 100 start-page: 32 year: 1990 ident: R4 publication-title: AJ doi: 10.1086/115487 – volume: 837 start-page: 150 year: 2017 ident: R79 publication-title: ApJ doi: 10.3847/1538-4357/aa61a0 – volume: 546 start-page: A118 year: 2012 ident: R97 publication-title: A&A doi: 10.1051/0004-6361/201118453 – volume: 401 start-page: 2113 year: 2010 ident: R28 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15688.x – volume: 482 start-page: 3514 year: 2019 ident: R66 publication-title: MNRAS doi: 10.1093/mnras/sty2876 – volume: 880 start-page: 48 year: 2019 ident: R96 publication-title: ApJ doi: 10.3847/1538-4357/ab27cc – volume: 605 start-page: A127 year: 2017 ident: R69 publication-title: A&A doi: 10.1051/0004-6361/201630165 – volume: 633 start-page: A131 year: 2020 ident: R8 publication-title: A&A doi: 10.1051/0004-6361/201935527 – volume: 452 start-page: 986 year: 2015 ident: R80 publication-title: MNRAS doi: 10.1093/mnras/stv1298 – volume: 520 start-page: A42 year: 2010 ident: R24 publication-title: A&A doi: 10.1051/0004-6361/200911831 – volume: 843 start-page: 46 year: 2017 ident: R81 publication-title: ApJ doi: 10.3847/1538-4357/aa740c – volume: 117 start-page: 393 year: 1996 ident: R6 publication-title: A&AS doi: 10.1051/aas:1996164 – volume: 118 start-page: 517 year: 2006 ident: R10 publication-title: PASP doi: 10.1086/500691 – volume: 484 start-page: 4695 year: 2019 ident: R90 publication-title: MNRAS doi: 10.1093/mnras/stz342 – volume: 15 start-page: 61 year: 2016 ident: R37 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2016.03.001 – volume: 432 start-page: 336 year: 2013 ident: R100 publication-title: MNRAS doi: 10.1093/mnras/stt469 – volume: 434 start-page: 325 year: 2013 ident: R31 publication-title: MNRAS doi: 10.1093/mnras/stt1020 – volume: 483 start-page: 3545 year: 2019 ident: R34 publication-title: MNRAS doi: 10.1093/mnras/sty3203 – volume: 608 start-page: A2 year: 2017 ident: R40 publication-title: A&A doi: 10.1051/0004-6361/201731195 – volume: 504 start-page: 789 year: 2009 ident: R27 publication-title: A&A doi: 10.1051/0004-6361/200911995 – volume: 390 start-page: 466 year: 2008 ident: R26 publication-title: MNRAS – volume: 641 start-page: A28 year: 2020 ident: R98 publication-title: A&A doi: 10.1051/0004-6361/202037855 – volume: 32 start-page: e033 year: 2015 ident: R75 publication-title: PASA doi: 10.1017/pasa.2015.33 – volume: 460 start-page: 103 year: 2016 ident: R88 publication-title: MNRAS doi: 10.1093/mnras/stw936 – volume: 799 start-page: 209 year: 2015 ident: R102 publication-title: ApJ doi: 10.1088/0004-637X/799/2/209 – volume: 484 start-page: 173 year: 2008 ident: R72 publication-title: A&A doi: 10.1051/0004-6361:20079313 – volume: 533 start-page: 682 year: 2000 ident: R14 publication-title: ApJ doi: 10.1086/308692 – volume: 753 start-page: 121 year: 2012 ident: R45 publication-title: ApJ doi: 10.1088/0004-637X/753/2/121 – volume: 830 start-page: 83 year: 2016 ident: R21 publication-title: ApJ doi: 10.3847/0004-637X/830/2/83 – volume: 471 start-page: 1280 year: 2017 ident: R94 publication-title: MNRAS doi: 10.1093/mnras/stx1366 – volume: 842 start-page: 121 year: 2017 ident: R95 publication-title: ApJ doi: 10.3847/1538-4357/aa7558 – volume: 172 start-page: 196 year: 2007 ident: R46 publication-title: ApJS doi: 10.1086/520086 – volume: 632 start-page: 859 year: 2005 ident: R58 publication-title: ApJ doi: 10.1086/432968 – volume: 111 start-page: 1551 year: 1996 ident: R60 publication-title: AJ doi: 10.1086/117895 – volume: 736 start-page: 104 year: 2011 ident: R41 publication-title: ApJ doi: 10.1088/0004-637X/736/2/104 – volume: 172 start-page: 1 year: 2007 ident: R78 publication-title: ApJS doi: 10.1086/516585 – volume: 533 start-page: L99 year: 2000 ident: R59 publication-title: ApJ doi: 10.1086/312628 – volume: 604 start-page: A54 year: 2017 ident: R48 publication-title: A&A doi: 10.1051/0004-6361/201630252 – volume: 510 start-page: A68 year: 2010 ident: R73 publication-title: A&A doi: 10.1051/0004-6361/200912081 – volume: 767 start-page: 39 year: 2013 ident: R63 publication-title: ApJ doi: 10.1088/0004-637X/767/1/39 – volume: 409 start-page: 1330 year: 2010 ident: R101 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17406.x – volume: 478 start-page: 971 year: 2008 ident: R38 publication-title: A&A doi: 10.1051/0004-6361:20078625 – volume: 539 start-page: A92 year: 2012 ident: R29 publication-title: A&A doi: 10.1051/0004-6361/201117711 – volume: 753 start-page: 74 year: 2012 ident: R61 publication-title: ApJ doi: 10.1088/0004-637X/753/1/74 – volume: 712 start-page: 833 year: 2010 ident: R20 publication-title: ApJ doi: 10.1088/0004-637X/712/2/833 – volume: 418 start-page: 938 year: 2011 ident: R35 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19559.x – volume: 631 start-page: A71 year: 2019 ident: R33 publication-title: A&A doi: 10.1051/0004-6361/201935869 – volume: 281 start-page: 27 year: 1996 ident: R70 publication-title: MNRAS doi: 10.1093/mnras/278.1.27 – volume: 172 start-page: 434 year: 2007 ident: R76 publication-title: ApJS doi: 10.1086/516584 – volume: 779 start-page: 139 year: 2013 ident: R82 publication-title: ApJ doi: 10.1088/0004-637X/779/2/139 – volume: 115 start-page: 763 year: 2003 ident: R18 publication-title: PASP doi: 10.1086/376392 – volume: 458 start-page: 3210 year: 2016 ident: R84 publication-title: MNRAS doi: 10.1093/mnras/stw474 – volume: 697 start-page: 1842 year: 2009 ident: R44 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1842 – volume: 444 start-page: 527 year: 2014 ident: R83 publication-title: MNRAS doi: 10.1093/mnras/stu1450 – volume: 816 start-page: L14 year: 2016 ident: R51 publication-title: ApJ doi: 10.3847/2041-8205/816/1/L14 – volume: 457 start-page: 451 year: 2009 ident: R25 publication-title: Nature doi: 10.1038/nature07648 – volume: 528 start-page: A88 year: 2011 ident: R32 publication-title: A&A doi: 10.1051/0004-6361/201015465 – volume: 853 start-page: 179 year: 2018 ident: R86 publication-title: ApJ doi: 10.3847/1538-4357/aaa4b4 – volume: 482 start-page: 2166 year: 2019 ident: R89 publication-title: MNRAS doi: 10.1093/mnras/sty2794 – volume: 416 start-page: 1936 year: 2011 ident: R91 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19169.x – volume: 608 start-page: A5 year: 2017 ident: R36 publication-title: A&A doi: 10.1051/0004-6361/201730905 – ident: R64 – volume: 345 start-page: 245 year: 1989 ident: R15 publication-title: ApJ doi: 10.1086/167900 – volume: 745 start-page: 106 year: 2012 ident: R52 publication-title: ApJ doi: 10.1088/0004-637X/745/2/106 – volume: 619 start-page: A27 year: 2018 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201833136 – volume: 653 start-page: 861 year: 2006 ident: R55 publication-title: ApJ doi: 10.1086/508924 – volume: 777 start-page: 116 year: 2013 ident: R19 publication-title: ApJ doi: 10.1088/0004-637X/777/2/116 – volume: 444 start-page: 682 year: 2014 ident: R17 publication-title: MNRAS doi: 10.1093/mnras/stu1375 – volume: 653 start-page: 1027 year: 2006 ident: R99 publication-title: ApJ doi: 10.1086/508921 – volume: 609 start-page: A40 year: 2018 ident: R30 publication-title: A&A doi: 10.1051/0004-6361/201731877 – volume: 279 start-page: L47 year: 1996 ident: R1 publication-title: MNRAS doi: 10.1093/mnras/279.3.L47 – volume: 172 start-page: 406 year: 2007 ident: R77 publication-title: ApJS doi: 10.1086/516582 – volume: 112 start-page: 186 year: 1990 ident: R7 publication-title: Contem. Math. – volume: 697 start-page: 115 year: 2009 ident: R23 publication-title: ApJ doi: 10.1088/0004-637X/697/1/115 – volume: 447 start-page: 2857 year: 2015 ident: R12 publication-title: MNRAS doi: 10.1093/mnras/stu2635 – volume: 746 start-page: 188 year: 2012 ident: R62 publication-title: ApJ doi: 10.1088/0004-637X/746/2/188 – volume: 172 start-page: 270 year: 2007 ident: R16 publication-title: ApJS doi: 10.1086/516591 – volume: 700 start-page: 221 year: 2009 ident: R47 publication-title: ApJ doi: 10.1088/0004-637X/700/1/221 – volume: 124 start-page: 266 year: 2002 ident: R67 publication-title: AJ doi: 10.1086/340952 – volume: 224 start-page: 24 year: 2016 ident: R49 publication-title: ApJS doi: 10.3847/0067-0049/224/2/24 – volume: 503 start-page: 379 year: 2009 ident: R87 publication-title: A&A doi: 10.1051/0004-6361/200912213 – volume: 509 start-page: A53 year: 2010 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/200913168 – volume: 575 start-page: A75 year: 2015 ident: R2 publication-title: A&A doi: 10.1051/0004-6361/201425419 – volume: 402 start-page: 282 year: 2010 ident: R54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15953.x – volume: 484 start-page: 595 year: 2019 ident: R57 publication-title: MNRAS doi: 10.1093/mnras/sty3465 – volume: 52 start-page: 415 year: 2014 ident: R53 publication-title: ARA&A doi: 10.1146/annurev-astro-081811-125615 – volume: 591 start-page: A49 year: 2016 ident: R22 publication-title: A&A doi: 10.1051/0004-6361/201527866 – volume: 135 start-page: 1738 year: 2008 ident: R56 publication-title: AJ doi: 10.1088/0004-6256/135/5/1738 – volume: 417 start-page: 2347 year: 2011 ident: R74 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19415.x – volume: 721 start-page: 193 year: 2010 ident: R68 publication-title: ApJ doi: 10.1088/0004-637X/721/1/193 |
RestrictionsOnAccess | open access |
SSID | ssj0002183 |
Score | 2.4705472 |
SecondaryResourceType | review_article |
Snippet | Context.
Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and... Context. Galaxies in dense environments are subject to interactions and mechanisms that directly affect their evolution by lowering their gas fractions and... |
SourceID | liege hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | A152 |
SubjectTerms | Astrophysics Astrophysics - Astrophysics of Galaxies Aérospatiale, astronomie & astrophysique Baryons Cosmology and Extra-Galactic Astrophysics Density Dispersion Galactic rotation Galaxies galaxies: evolution galaxies: groups: general galaxies: high-redshift galaxies: kinematics and dynamics Kinematics Mass distribution Outliers (statistics) Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Red shift Sciences of the Universe Signal to noise ratio Space science, astronomy & astrophysics Star & galaxy formation Star formation Stellar evolution Stellar mass Tully-Fisher relation |
Title | The Tully-Fisher relation in dense groups at z ∼ 0.7 in the MAGIC survey |
URI | https://www.proquest.com/docview/2520185592 https://hal.science/hal-03185770 http://orbi.ulg.ac.be/handle/2268/332827 |
Volume | 647 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbSVkhcEBRQAwVZCLiUTffhfeS4rUoDIsAhRb1ZtteBoLCp8pLIAXHgwD_hT_Br-kuYsR2TUFRRLpbXcibRfpPxvE3I40TmVSa0DrJKsYBVQqEcDINUxbpdsSiPKnTod19nnRP28jQ9bTR-rGQtzaaypRZ_rSv5H1RhDXDFKtkrIOuJwgLMAV8YAWEY_xnjHtiQnwN7g7mrTLHZiyBQJnrPVG1MsGRxsecSGwpmJsWTg0O_ErbyZcZjtzwGZCaz8Xw95FtO0Gs--mQbNgl8sm4R47e1bbNW_QpyPBgGXY2lIvqjcci-E3jEufu6jRp_Bg_mFDjQ9cjE7I98Gk4X74KyDAWiqw8mfeUDJiMkM7AJTrDHpTI750W8kr3lBTILssT2Y29pK4NZggmxzjPphHRm-3I6MVtGtu3tBfkPIsYmTFqqWO6CodaicEJ-rd_2H-egz040cfk0wrg840iGeyIbZCsGewSvyjh-8cUf-ahnWjvLfu-yvVUa7fu1fU9kTQXa-IAJuFtDTJG4oA8YJad3k9xw1gktLavdIg1db5Mdjzx9SssV3LfJtbd2dpu8AV6kq7xIl7xIBzU1vEgtL1IxpQt6_vXb-fefMALn4Q7gPGo4j1rOu0NOnh_1DjuBu6wjUHAMTIMsZFqFmUpkEiWCaZkloJz2k0K14eVosEsiGYW6YioPZcSEaIOYAOs-ZTqsZJond8lmPar1DqFhFQmJfRNZ1mdpGwiIvs6F6hexZjpTTRIv3x9XrpM9Xqgy5Jcg1yTP_IfObCOXy7c_AmD8TmzC3ilfcVzDYzDN83AeAU2DGx-N5YDPY7PNzGfD91woLjUH86bgSRIXcd4ku0t4uZMiEx6noIIXYNfH9672C--T67__Ubtkczqe6QegIE_lQ8OcvwAPv6xZ |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Tully-Fisher+relation+in+dense+groups+at+z+%E2%80%84%E2%88%BC%E2%80%840.7+in+the+MAGIC+survey&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Abril-Melgarejo%2C+Valentina&rft.au=Epinat%2C+Beno%C3%AEt&rft.au=Mercier%2C+Wilfried&rft.au=Contini%2C+Thierry&rft.date=2021-03-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=647&rft.spage=A152&rft_id=info:doi/10.1051%2F0004-6361%2F202038818&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202038818 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |