Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction

[Display omitted] •An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2 mmol g−1 h−1.•Photothermal heating and light-promotion contribute to the high activity.•The introduction of Ga enhances the formation of key i...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 298; p. 120519
Main Authors Deng, Bowen, Song, Hui, Peng, Kang, Li, Qian, Ye, Jinhua
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.12.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2 mmol g−1 h−1.•Photothermal heating and light-promotion contribute to the high activity.•The introduction of Ga enhances the formation of key intermediates. Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon emissions, but it remains a great challenge in achieving high conversion efficiency due to the limited sunlight capturing capacity and lack of highly efficient catalysts. Herein, we report a Ga-Cu/CeO2 catalyst synthesized by direct pyrolysis of the Ga and Cu-containing Ce-metal-organic frameworks for efficient photothermal catalytic CO2 hydrogenation. Because of the highly dispersed Ga and Cu species in CeO2, the optimized catalyst 10Cu5Ga/CeO2 (10 wt% Cu and 5 wt% Ga) achieved a CO production rate of 111.2 mmol g−1 h−1 with nearly 100 % selectivity under full solar spectrum irradiation, which is superior to most reported Cu and other earth-abundant metals-based photothermal catalysts. Mechanism studies demonstrated that the synergy of photothermal heating/conversion and light-promotion contributed to the substantially increased CO production. In situ DRIFTS results revealed that the introduction of Ga enhanced the formation of formate species, the key intermediates in CO2 hydrogenation, and light irradiation facilitated the decomposition of formate species to carbonyl, thus enhancing CO production. This work provides a potential strategy towards the synthesis of efficient catalysts for photothermal CO2 reduction.
AbstractList Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon emissions, but it remains a great challenge in achieving high conversion efficiency due to the limited sunlight capturing capacity and lack of highly efficient catalysts. Herein, we report a Ga-Cu/CeO2 catalyst synthesized by direct pyrolysis of the Ga and Cu-containing Ce-metal-organic frameworks for efficient photothermal catalytic CO2 hydrogenation. Because of the highly dispersed Ga and Cu species in CeO2, the optimized catalyst 10Cu5Ga/CeO2 (10 wt% Cu and 5 wt% Ga) achieved a CO production rate of 111.2 mmol g−1 h−1 with nearly 100 % selectivity under full solar spectrum irradiation, which is superior to most reported Cu and other earth-abundant metals-based photothermal catalysts. Mechanism studies demonstrated that the synergy of photothermal heating/conversion and light-promotion contributed to the substantially increased CO production. In situ DRIFTS results revealed that the introduction of Ga enhanced the formation of formate species, the key intermediates in CO2 hydrogenation, and light irradiation facilitated the decomposition of formate species to carbonyl, thus enhancing CO production. This work provides a potential strategy towards the synthesis of efficient catalysts for photothermal CO2 reduction.
[Display omitted] •An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2 mmol g−1 h−1.•Photothermal heating and light-promotion contribute to the high activity.•The introduction of Ga enhances the formation of key intermediates. Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon emissions, but it remains a great challenge in achieving high conversion efficiency due to the limited sunlight capturing capacity and lack of highly efficient catalysts. Herein, we report a Ga-Cu/CeO2 catalyst synthesized by direct pyrolysis of the Ga and Cu-containing Ce-metal-organic frameworks for efficient photothermal catalytic CO2 hydrogenation. Because of the highly dispersed Ga and Cu species in CeO2, the optimized catalyst 10Cu5Ga/CeO2 (10 wt% Cu and 5 wt% Ga) achieved a CO production rate of 111.2 mmol g−1 h−1 with nearly 100 % selectivity under full solar spectrum irradiation, which is superior to most reported Cu and other earth-abundant metals-based photothermal catalysts. Mechanism studies demonstrated that the synergy of photothermal heating/conversion and light-promotion contributed to the substantially increased CO production. In situ DRIFTS results revealed that the introduction of Ga enhanced the formation of formate species, the key intermediates in CO2 hydrogenation, and light irradiation facilitated the decomposition of formate species to carbonyl, thus enhancing CO production. This work provides a potential strategy towards the synthesis of efficient catalysts for photothermal CO2 reduction.
ArticleNumber 120519
Author Li, Qian
Ye, Jinhua
Deng, Bowen
Peng, Kang
Song, Hui
Author_xml – sequence: 1
  givenname: Bowen
  surname: Deng
  fullname: Deng, Bowen
  organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
– sequence: 2
  givenname: Hui
  surname: Song
  fullname: Song, Hui
  email: SONG.Hui@nims.go.jp
  organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
– sequence: 3
  givenname: Kang
  surname: Peng
  fullname: Peng, Kang
  organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
– sequence: 4
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
– sequence: 5
  givenname: Jinhua
  orcidid: 0000-0002-8105-8903
  surname: Ye
  fullname: Ye, Jinhua
  email: Jinhua.YE@nims.go.jp
  organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
BookMark eNqFkE1LAzEQhoNUsH78Aw8LnrdOkma760GQRatQ6UXPIU0mbep2U7Nppf_elPXkQU8Dw_u8wzznZND6Fgm5pjCiQIvb9UhttYqLEQNGR5SBoNUJGdJywnNelnxAhlCxIud8ws_IedetAYBxVg7J5hWjanIflqp1OrNBbfDLh4_cYHB7NNlU5fXutsY5y9IJ1Ry6mFkfspVbrppDhtY67bCN2Xblo48rDBvV_ERjaqwTGNDsdHS-vSSnVjUdXv3MC_L-9PhWP-ez-fSlfpjlegwQ8wKogoKPQYgFcl7YypYVgtXcTARObAFFxU1hOJhKLbQQSlBNF1akHS058gty0_dug__cYRfl2u9Cm05KJkrGWEqJlBr3KR181wW0chvcRoWDpCCPYuVa9mLlUazsxSbs7hemXVTH92JQrvkPvu9hTO_vHQbZHfVpNC6gjtJ493fBNy-YmLk
CitedBy_id crossref_primary_10_1039_D4MA00271G
crossref_primary_10_1016_j_apsusc_2023_156433
crossref_primary_10_1021_acs_inorgchem_2c03336
crossref_primary_10_1016_j_jcis_2024_11_031
crossref_primary_10_1016_j_apsusc_2023_157360
crossref_primary_10_1016_j_ces_2024_120099
crossref_primary_10_1016_j_apcatb_2022_122262
crossref_primary_10_1016_j_cej_2024_154701
crossref_primary_10_1002_advs_202103926
crossref_primary_10_1016_j_apcatb_2024_124167
crossref_primary_10_1016_j_apcatb_2024_124045
crossref_primary_10_1002_cssc_202101950
crossref_primary_10_1016_j_apsusc_2022_155339
crossref_primary_10_1016_j_ceramint_2022_08_143
crossref_primary_10_1016_j_cej_2023_144289
crossref_primary_10_1002_ange_202204880
crossref_primary_10_1002_aenm_202300071
crossref_primary_10_3390_molecules29163882
crossref_primary_10_1016_j_jece_2023_110324
crossref_primary_10_1016_j_matchemphys_2023_128417
crossref_primary_10_1039_D3TA00110E
crossref_primary_10_1002_adfm_202500339
crossref_primary_10_1002_anie_202204880
crossref_primary_10_1002_anie_202218115
crossref_primary_10_1002_aesr_202200004
crossref_primary_10_1007_s10854_024_12561_0
crossref_primary_10_1021_acssuschemeng_4c06883
crossref_primary_10_1002_ange_202305251
crossref_primary_10_1002_adma_202312093
crossref_primary_10_1016_j_cej_2025_161609
crossref_primary_10_1016_j_cej_2025_160529
crossref_primary_10_1021_acsnano_2c09025
crossref_primary_10_1002_ange_202218115
crossref_primary_10_26599_NR_2025_94906998
crossref_primary_10_1016_j_cej_2023_148195
crossref_primary_10_1021_acssuschemeng_3c05215
crossref_primary_10_1016_j_apcatb_2023_123058
crossref_primary_10_1016_j_jclepro_2023_139542
crossref_primary_10_3390_catal12101101
crossref_primary_10_1002_anie_202305251
crossref_primary_10_1021_acs_iecr_4c02853
crossref_primary_10_1002_aenm_202500988
crossref_primary_10_1002_smll_202402952
crossref_primary_10_1016_j_rser_2024_114615
crossref_primary_10_1039_D4QI00002A
crossref_primary_10_1002_cssc_202301405
crossref_primary_10_1016_j_cej_2022_137034
crossref_primary_10_1038_s41467_024_45516_4
crossref_primary_10_1016_j_apcata_2023_119537
crossref_primary_10_1016_j_xcrp_2024_102227
crossref_primary_10_20517_energymater_2024_227
crossref_primary_10_1016_j_fuel_2023_129817
crossref_primary_10_1002_ange_202318166
crossref_primary_10_1016_j_apsusc_2022_155546
crossref_primary_10_1007_s12598_024_03182_x
crossref_primary_10_1016_j_apcatb_2023_122531
crossref_primary_10_1039_D4EN00973H
crossref_primary_10_1016_j_cclet_2022_04_018
crossref_primary_10_1016_j_jcis_2025_02_154
crossref_primary_10_1002_ejic_202200316
crossref_primary_10_1038_s41598_025_92007_7
crossref_primary_10_1039_D3YA00315A
crossref_primary_10_1016_j_ccr_2024_216395
crossref_primary_10_1016_j_fuel_2024_133949
crossref_primary_10_1016_j_cej_2024_152283
crossref_primary_10_1039_D4TA04387A
crossref_primary_10_1002_anie_202318166
crossref_primary_10_1016_j_seppur_2024_130388
crossref_primary_10_1016_j_cej_2022_138016
crossref_primary_10_1002_smtd_202201532
crossref_primary_10_1016_j_apsusc_2023_157713
crossref_primary_10_1016_j_apcatb_2024_124246
crossref_primary_10_1016_j_jece_2025_116291
crossref_primary_10_1016_j_apsusc_2024_160747
crossref_primary_10_1016_j_fuel_2025_134905
crossref_primary_10_1002_solr_202200493
crossref_primary_10_3390_molecules29225338
crossref_primary_10_1039_D4EE00783B
crossref_primary_10_1021_acsanm_2c00101
crossref_primary_10_1007_s40843_022_2388_0
crossref_primary_10_1016_j_mcat_2024_114078
crossref_primary_10_1016_j_apcatb_2023_122471
crossref_primary_10_1016_j_jclepro_2024_141849
crossref_primary_10_1021_acsami_4c14280
crossref_primary_10_1016_j_ijhydene_2023_05_253
crossref_primary_10_1021_acs_jpcc_4c07093
crossref_primary_10_1039_D2TA00933A
crossref_primary_10_1016_j_apcatb_2022_121903
crossref_primary_10_1016_j_fuproc_2022_107617
crossref_primary_10_1016_j_cattod_2024_114702
crossref_primary_10_1016_j_apcatb_2024_124819
crossref_primary_10_1021_acsanm_4c00805
crossref_primary_10_1039_D3CY01298K
crossref_primary_10_1016_j_carbon_2024_119079
crossref_primary_10_1016_j_clay_2024_107488
crossref_primary_10_1021_acsami_4c04803
crossref_primary_10_1016_j_apcatb_2021_120905
crossref_primary_10_15541_jim20210458
crossref_primary_10_1016_j_seppur_2024_126932
crossref_primary_10_1039_D4CY01271B
crossref_primary_10_1039_D4TC04203D
crossref_primary_10_1039_D4CS00574K
Cites_doi 10.1021/acscatal.0c01311
10.1021/jacs.7b05362
10.1016/j.apcatb.2021.120053
10.1021/acsami.0c11576
10.1021/acscatal.8b04219
10.1021/acsami.7b13043
10.1002/anie.201916049
10.1021/ja066834k
10.1021/ja504753g
10.1039/D0EE01882A
10.1002/cctc.201701384
10.1039/C9CS00920E
10.1038/s41929-019-0343-2
10.1021/acscatal.8b04060
10.1039/D0CS00357C
10.1016/j.ccr.2019.02.001
10.1016/j.cattod.2017.04.022
10.1021/jacs.7b00058
10.1016/j.cej.2020.125485
10.1021/acscatal.0c01584
10.1021/jacs.6b10205
10.1021/jacs.9b08030
10.1038/srep41207
10.1038/s41467-017-00055-z
10.1126/science.aat6967
10.1021/jacs.0c09599
10.1002/adma.201903915
10.1021/acscatal.0c02930
10.1039/C9CC00297A
10.1016/j.jcat.2004.06.012
10.1006/jcat.2001.3461
10.1038/s41929-020-00544-3
10.1021/acs.chemrev.9b00723
10.1039/C5CP00540J
10.1126/science.aat7918
10.1038/s41467-019-13638-9
10.1021/acscatal.9b03935
10.1038/s41929-019-0338-z
10.1021/acsnano.6b05416
10.1002/cctc.201901879
10.1039/C8EE02790K
10.1021/acs.jpcc.8b03596
10.1021/acscatal.0c03806
10.1002/anie.202001701
10.1021/acs.chemrev.5b00603
10.1021/acscatal.8b00474
10.1126/science.aam5776
10.1021/jacs.6b11027
10.1016/j.apcatb.2020.118965
10.1002/adma.201600305
10.1016/S0926-860X(02)00425-8
10.1039/C7CY01021D
10.1038/s41467-020-18943-2
10.1016/j.cattod.2011.04.054
10.1007/s10562-020-03130-1
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Dec 5, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 5, 2021
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2021.120519
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2021_120519
S0926337321006457
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-601a0634055be336f9f89e0fc3d75e7f60693d6d30d9abc55a51c1bf5d6d183e3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 05:53:33 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Tue Jul 01 04:35:14 EDT 2025
Sat Mar 02 16:00:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MOF precursor
Highly dispersed
Photothermal catalysis
CO2 reduction
Ga-Cu/CeO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-601a0634055be336f9f89e0fc3d75e7f60693d6d30d9abc55a51c1bf5d6d183e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8105-8903
PQID 2582221835
PQPubID 2045281
ParticipantIDs proquest_journals_2582221835
crossref_primary_10_1016_j_apcatb_2021_120519
crossref_citationtrail_10_1016_j_apcatb_2021_120519
elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-05
PublicationDateYYYYMMDD 2021-12-05
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Mehla, Kandjani, Babarao, Lee, Periasamy, Wilson, Ramakrishna, Bhargava (bib0195) 2021; 14
Jiang, Nie, Guo, Song, Chen (bib0010) 2020; 120
Kattel, Liu, Chen (bib0270) 2017; 139
Murugan, Ramaswamy (bib0230) 2007; 129
Chen, Li, Zhang, Li, Cai, Chen, Jia (bib0155) 2020; 12
An, Zhang, Cheng, Ji, Wang, Lin (bib0140) 2017; 139
Chen, Gao, Zhao, Li, Waterhouse, Shi, Zhao, Zhang, Shang, Sheng, Zhang, Wen, Wu, Tung, Zhang (bib0250) 2018; 30
Podrojková, Sans, Oriňak, Oriňaková (bib0055) 2020; 12
Choi, Kim, Rungtaweevoranit, Trickett, Barmanbek, Alshammari, Yang, Yaghi (bib0075) 2017; 139
Kong, Jiang, Rui, Liu, Xian, Ji, Ji (bib0100) 2020; 397
Pernicone, Fantinel, Baldan, Riello, Pinna (bib0215) 2003; 240
Meng, Liu, Ouyang, Xu, Wang, Zhao, Ye (bib0035) 2016; 28
Ghoussoub, Xia, Duchesne, Segal, Ozin (bib0060) 2019; 12
Ye, Ding, Gong, Argyle, Zhong, Wang, Russell, Xu, Russell, Li, Fan, Yao (bib0045) 2019; 10
Hoch, O’Brien, Jelle, Sandhel, Perovic, Mims, Ozin (bib0260) 2016; 10
Ham, Baek, Shin, Bae (bib0175) 2018; 9
Zhu, Tian, Ford, Chen, Xu, Han, Wachs (bib0125) 2020; 10
Zimmer, Tschöpe, Birringer (bib0200) 2002; 205
Robatjazi, Zhao, Swearer, Hogan, Zhou, Alabastri, McClain, Nordlander, Halas (bib0235) 2017; 8
Cui, Zhang, Hu, Bu (bib0150) 2019; 387
Qi, Song, Ouyang, Liang, Ning, Zhang, Ye (bib0265) 2020; 32
Chatterjee, Gierach, Sutton, Feely, Crisp, Eldering, Gunson, O’Dell, Stephens, Schimel (bib0015) 2017; 358
Collins, Baltanas, Bonivardi (bib0275) 2004; 226
Li, Yang, Ren, Wang, Zhu, Xu (bib0205) 2020; 150
Choi, Sang, Hong, Yoon, Son, Lee, Kim, Kim (bib0120) 2017; 7
Luo, Song, Philo, Oshikiri, Kako, Ye (bib0080) 2020; 272
Jia, Wang, Lu, O’Brien, Ghoussoub, Duchesne, Zheng, Li, Qiao, Wang, Gu, Jelle, Dong, Wang, Ghuman, Wood, Qian, Shao, Qiu, Ye, Zhu, Lu, Zhang, Helmy, Singh, Kherani, Perovic, Ozin (bib0040) 2017; 4
Yang, Pang, Sulmonetti, Su, Lee, Hwang, Jones (bib0130) 2018; 8
Liu, Ramírez de la Piscina, Toyir, Homs (bib0210) 2017; 296
Montini, Melchionna, Monai, Fornasiero (bib0165) 2016; 116
Medina, Figueroa, Manrique, Rodríguez Pereira, Srinivasan, Bravo-Suárez, Baldovino Medrano, Jiménez, Karelovic (bib0170) 2017; 7
Xu, Hong, Sui, Zhu, Zhang, Luo (bib0065) 2020; 1
Mateo, Cerrillo, Durini, Gascon (bib0095) 2021; 50
Nelson, Nguyen, Glezakou, Rousseau, Szanyi (bib0285) 2019; 2
Li, Yang, Ma, Lei, Cheng, Rui (bib0090) 2021; 291
Finos, Collins, Blanco, del Rio, Cíes, Bernal, Bonivardi (bib0280) 2012; 180
Ra, Kim, Kim, Lee, An, Lee (bib0005) 2020; 10
Song, Meng, Dao, Zhou, Liu, Shi, Zhang, Nagao, Kako, Ye (bib0070) 2018; 10
Li, Chen, Ayvalı, Suo, Zheng, Teixeira, Ye, Zou, O’Hare, Tsang (bib0180) 2018; 8
Kim, Yuan, McClure, Frei (bib0220) 2014; 136
Yang, Wang, Zheng, He, Zhan, Lu, Tian, Fang, Tong (bib0085) 2016; 138
Mishra, Krishna, T. C, Aggarwal, Kaur, Singh, Gupta (bib0225) 2015; 17
Kang, Liu, Wang, Li, Ren, Li, Pan, Li, Zong, Liu, Frenkel, Zhang (bib0105) 2020; 59
Li, Cui, Liu, Dai (bib0190) 2018; 10
Li, Lu, Chen, Duchesne, Jelle, Xia, Wood, Ulmer, Ozin (bib0240) 2019; 141
Tan, Xie, Ng, Abdullah, Tang, Bedford, Taylor, Aguey-Zinsou, Amal, Scott (bib0290) 2020; 3
Yu, Jin, Easa, Lu, Yang, Liu, Xing, Shi (bib0245) 2019; 55
Wang, Tian, Li, Li, Chen, Liu, Li, Muhetaer, Li, Wang, Gu, Ma, Xu (bib0160) 2020; 59
Zhou, Swearer, Zhang, Robatjazi, Zhao, Henderson, Dong, Christopher, Carter, Nordlander, Halas (bib0185) 2018; 362
Ager, Lapkin (bib0020) 2018; 360
Chang, Zhang, Cheng, Lu (bib0025) 2019; 10
Lin, Yao, Liu, Zhang, Li, Vovchok, Martínez-Arias, Castañeda, Lin, Senanayake, Su, Ma, Rodriguez (bib0135) 2018; 122
Guo, Duchesne, Wang, Song, Xia, Ulmer, Sun, Dong, Loh, Kherani, Du, Zhu, Huang, Zhang, Ozin (bib0115) 2020; 10
Vovchok, Zhang, Hwang, Jiao, Zhang, Liu, Senanayake, Rodriguez (bib0110) 2020; 10
Kong, Jiang, Xiong (bib0030) 2020; 49
Wan, Zhou, Wang, Wood, Wang, Duchesne, Guo, Yan, Xia, Li, Jelle, Ulmer, Jia, Li, Sun, Ozin (bib0050) 2019; 2
Wang, He, Huang, Mao, Wang, Li (bib0145) 2020; 142
Xu, Duchesne, Wang, Tavasoli, Jelle, Xia, Liao, Kuang, Ozin (bib0255) 2020; 11
Hoch (10.1016/j.apcatb.2021.120519_bib0260) 2016; 10
Liu (10.1016/j.apcatb.2021.120519_bib0210) 2017; 296
Chen (10.1016/j.apcatb.2021.120519_bib0155) 2020; 12
Ham (10.1016/j.apcatb.2021.120519_bib0175) 2018; 9
Robatjazi (10.1016/j.apcatb.2021.120519_bib0235) 2017; 8
Finos (10.1016/j.apcatb.2021.120519_bib0280) 2012; 180
Kattel (10.1016/j.apcatb.2021.120519_bib0270) 2017; 139
Mateo (10.1016/j.apcatb.2021.120519_bib0095) 2021; 50
Zhu (10.1016/j.apcatb.2021.120519_bib0125) 2020; 10
Ghoussoub (10.1016/j.apcatb.2021.120519_bib0060) 2019; 12
Li (10.1016/j.apcatb.2021.120519_bib0240) 2019; 141
Guo (10.1016/j.apcatb.2021.120519_bib0115) 2020; 10
Luo (10.1016/j.apcatb.2021.120519_bib0080) 2020; 272
Nelson (10.1016/j.apcatb.2021.120519_bib0285) 2019; 2
Kim (10.1016/j.apcatb.2021.120519_bib0220) 2014; 136
Montini (10.1016/j.apcatb.2021.120519_bib0165) 2016; 116
Chen (10.1016/j.apcatb.2021.120519_bib0250) 2018; 30
Cui (10.1016/j.apcatb.2021.120519_bib0150) 2019; 387
Pernicone (10.1016/j.apcatb.2021.120519_bib0215) 2003; 240
Yu (10.1016/j.apcatb.2021.120519_bib0245) 2019; 55
Jia (10.1016/j.apcatb.2021.120519_bib0040) 2017; 4
Li (10.1016/j.apcatb.2021.120519_bib0180) 2018; 8
Murugan (10.1016/j.apcatb.2021.120519_bib0230) 2007; 129
Medina (10.1016/j.apcatb.2021.120519_bib0170) 2017; 7
Zimmer (10.1016/j.apcatb.2021.120519_bib0200) 2002; 205
Qi (10.1016/j.apcatb.2021.120519_bib0265) 2020; 32
Meng (10.1016/j.apcatb.2021.120519_bib0035) 2016; 28
Jiang (10.1016/j.apcatb.2021.120519_bib0010) 2020; 120
Kong (10.1016/j.apcatb.2021.120519_bib0100) 2020; 397
An (10.1016/j.apcatb.2021.120519_bib0140) 2017; 139
Ager (10.1016/j.apcatb.2021.120519_bib0020) 2018; 360
Wan (10.1016/j.apcatb.2021.120519_bib0050) 2019; 2
Kong (10.1016/j.apcatb.2021.120519_bib0030) 2020; 49
Wang (10.1016/j.apcatb.2021.120519_bib0145) 2020; 142
Ra (10.1016/j.apcatb.2021.120519_bib0005) 2020; 10
Wang (10.1016/j.apcatb.2021.120519_bib0160) 2020; 59
Choi (10.1016/j.apcatb.2021.120519_bib0075) 2017; 139
Chang (10.1016/j.apcatb.2021.120519_bib0025) 2019; 10
Li (10.1016/j.apcatb.2021.120519_bib0090) 2021; 291
Mehla (10.1016/j.apcatb.2021.120519_bib0195) 2021; 14
Mishra (10.1016/j.apcatb.2021.120519_bib0225) 2015; 17
Kang (10.1016/j.apcatb.2021.120519_bib0105) 2020; 59
Yang (10.1016/j.apcatb.2021.120519_bib0130) 2018; 8
Xu (10.1016/j.apcatb.2021.120519_bib0255) 2020; 11
Tan (10.1016/j.apcatb.2021.120519_bib0290) 2020; 3
Li (10.1016/j.apcatb.2021.120519_bib0190) 2018; 10
Lin (10.1016/j.apcatb.2021.120519_bib0135) 2018; 122
Podrojková (10.1016/j.apcatb.2021.120519_bib0055) 2020; 12
Collins (10.1016/j.apcatb.2021.120519_bib0275) 2004; 226
Vovchok (10.1016/j.apcatb.2021.120519_bib0110) 2020; 10
Xu (10.1016/j.apcatb.2021.120519_bib0065) 2020; 1
Ye (10.1016/j.apcatb.2021.120519_bib0045) 2019; 10
Li (10.1016/j.apcatb.2021.120519_bib0205) 2020; 150
Chatterjee (10.1016/j.apcatb.2021.120519_bib0015) 2017; 358
Choi (10.1016/j.apcatb.2021.120519_bib0120) 2017; 7
Song (10.1016/j.apcatb.2021.120519_bib0070) 2018; 10
Zhou (10.1016/j.apcatb.2021.120519_bib0185) 2018; 362
Yang (10.1016/j.apcatb.2021.120519_bib0085) 2016; 138
References_xml – volume: 8
  start-page: 4390
  year: 2018
  end-page: 4401
  ident: bib0180
  article-title: CO
  publication-title: ACS Catal.
– volume: 28
  start-page: 6781
  year: 2016
  end-page: 6803
  ident: bib0035
  article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis
  publication-title: Adv. Mater.
– volume: 205
  start-page: 339
  year: 2002
  end-page: 345
  ident: bib0200
  article-title: Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst
  publication-title: J. Catal.
– volume: 10
  start-page: 10216
  year: 2020
  end-page: 10228
  ident: bib0110
  article-title: Deciphering dynamic structural and mechanistic complexity in Cu/CeO2/ZSM-5 catalysts for the reverse water-gas shift reaction
  publication-title: ACS Catal.
– volume: 55
  start-page: 4178
  year: 2019
  end-page: 4181
  ident: bib0245
  article-title: Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal–support interactions for the RWGS reaction
  publication-title: Chem. Commun.
– volume: 240
  start-page: 199
  year: 2003
  end-page: 206
  ident: bib0215
  article-title: On the measurement of copper surface area by oxygen chemisorption
  publication-title: Appl. Catal. A
– volume: 360
  start-page: 707
  year: 2018
  ident: bib0020
  article-title: Chemical storage of renewable energy
  publication-title: Science
– volume: 358
  year: 2017
  ident: bib0015
  article-title: Influence of El Niño on atmospheric CO
  publication-title: Science
– volume: 397
  start-page: 125485
  year: 2020
  ident: bib0100
  article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation
  publication-title: Chem. Eng. J.
– volume: 272
  year: 2020
  ident: bib0080
  article-title: Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 9017
  year: 2016
  end-page: 9025
  ident: bib0260
  article-title: Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels
  publication-title: ACS Nano
– volume: 120
  start-page: 7984
  year: 2020
  end-page: 8034
  ident: bib0010
  article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis
  publication-title: Chem. Rev.
– volume: 2
  start-page: 889
  year: 2019
  end-page: 898
  ident: bib0050
  article-title: Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide
  publication-title: Nat. Catal.
– volume: 11
  start-page: 5149
  year: 2020
  ident: bib0255
  article-title: High-performance light-driven heterogeneous CO
  publication-title: Nat. Commun.
– volume: 291
  start-page: 120053
  year: 2021
  ident: bib0090
  article-title: Selectively recombining the photoinduced charges in bandgap-broken Ag
  publication-title: Appl. Catal. B
– volume: 150
  start-page: 2045
  year: 2020
  end-page: 2055
  ident: bib0205
  article-title: Effect of Ce doping on catalytic performance of Cu/TiO
  publication-title: Catal. Lett.
– volume: 12
  start-page: 1802
  year: 2020
  end-page: 1825
  ident: bib0055
  article-title: Recent developments in the modelling of heterogeneous catalysts for CO
  publication-title: ChemCatChem
– volume: 14
  start-page: 320
  year: 2021
  end-page: 352
  ident: bib0195
  article-title: Porous crystalline frameworks for thermocatalytic CO
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  ident: bib0265
  article-title: Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In
  publication-title: Adv. Mater.
– volume: 50
  start-page: 2173
  year: 2021
  end-page: 2210
  ident: bib0095
  article-title: Fundamentals and applications of photo-thermal catalysis
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 1122
  year: 2019
  end-page: 1142
  ident: bib0060
  article-title: Principles of photothermal gas-phase heterogeneous CO
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 408
  year: 2018
  end-page: 416
  ident: bib0070
  article-title: Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138
  start-page: 16204
  year: 2016
  end-page: 16207
  ident: bib0085
  article-title: Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance
  publication-title: J. Am. Chem. Soc.
– volume: 180
  start-page: 9
  year: 2012
  end-page: 18
  ident: bib0280
  article-title: Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium–gallium mixed oxides
  publication-title: Catal. Today
– volume: 8
  start-page: 12056
  year: 2018
  end-page: 12066
  ident: bib0130
  article-title: Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO
  publication-title: ACS Catal.
– volume: 129
  start-page: 3062
  year: 2007
  end-page: 3063
  ident: bib0230
  article-title: Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 619
  year: 2018
  end-page: 624
  ident: bib0190
  article-title: Insight into the synergism between copper species and surface defects influenced by copper content over copper/ceria catalysts for the hydrogenation of carbonate
  publication-title: ChemCatChem
– volume: 226
  start-page: 410
  year: 2004
  end-page: 421
  ident: bib0275
  article-title: An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/-GaO
  publication-title: J. Catal.
– volume: 141
  start-page: 14991
  year: 2019
  end-page: 14996
  ident: bib0240
  article-title: Cu atoms on nanowire Pd/H
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 13668
  year: 2020
  end-page: 13681
  ident: bib0115
  article-title: High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO
  publication-title: ACS Catal.
– volume: 387
  start-page: 79
  year: 2019
  end-page: 120
  ident: bib0150
  article-title: Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO
  publication-title: Coord. Chem. Rev.
– volume: 136
  start-page: 11034
  year: 2014
  end-page: 11042
  ident: bib0220
  article-title: Light induced carbon dioxide reduction by water at binuclear ZrOCoII unit coupled to Ir oxide nanocluster catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 916
  year: 2019
  end-page: 924
  ident: bib0285
  article-title: Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis
  publication-title: Nat. Catal.
– volume: 362
  start-page: 69
  year: 2018
  ident: bib0185
  article-title: Quantifying hot carrier and thermal contributions in plasmonic photocatalysis
  publication-title: Science
– volume: 139
  start-page: 356
  year: 2017
  end-page: 362
  ident: bib0075
  article-title: Plasmon-enhanced photocatalytic CO
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 12909
  year: 2020
  end-page: 12916
  ident: bib0105
  article-title: Photo-thermo catalytic oxidation over a TiO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 17
  start-page: 15201
  year: 2015
  end-page: 15208
  ident: bib0225
  article-title: Pit assisted oxygen chemisorption on GaN surfaces
  publication-title: Phys. Chem. Chem. Phys.
– volume: 116
  start-page: 5987
  year: 2016
  end-page: 6041
  ident: bib0165
  article-title: Fundamentals and catalytic applications of CeO
  publication-title: Chem. Rev.
– volume: 49
  start-page: 6579
  year: 2020
  end-page: 6591
  ident: bib0030
  article-title: Photocatalytic CO
  publication-title: Chem. Soc. Rev.
– volume: 142
  start-page: 19339
  year: 2020
  end-page: 19345
  ident: bib0145
  article-title: Photoinduction of Cu single atoms decorated on UiO-66-NH
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 613
  year: 2019
  end-page: 631
  ident: bib0025
  article-title: Application of ceria in CO
  publication-title: ACS Catal.
– volume: 59
  start-page: 8203
  year: 2020
  end-page: 8209
  ident: bib0160
  article-title: A photoactivated Cu-CeO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 7857
  year: 2020
  end-page: 7863
  ident: bib0125
  article-title: Nature of reactive oxygen intermediates on copper-promoted iron–chromium oxide catalysts during CO
  publication-title: ACS Catal.
– volume: 7
  start-page: 3375
  year: 2017
  end-page: 3387
  ident: bib0170
  article-title: Catalytic consequences of Ga promotion on Cu for CO
  publication-title: Catal. Sci. Technol.
– volume: 8
  start-page: 27
  year: 2017
  ident: bib0235
  article-title: Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles
  publication-title: Nat. Commun.
– volume: 1
  year: 2020
  ident: bib0065
  article-title: Standalone solar carbon-based fuel production based on semiconductors
  publication-title: Cell Rep. Phys. Sci.
– volume: 10
  start-page: 11318
  year: 2020
  end-page: 11345
  ident: bib0005
  article-title: Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives
  publication-title: ACS Catal.
– volume: 30
  year: 2018
  ident: bib0250
  article-title: Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO
  publication-title: Adv. Mater.
– volume: 9
  start-page: 679
  year: 2018
  end-page: 690
  ident: bib0175
  article-title: Roles of structural promoters for direct CO
  publication-title: ACS Catal.
– volume: 139
  start-page: 9739
  year: 2017
  end-page: 9754
  ident: bib0270
  article-title: Tuning selectivity of CO
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1034
  year: 2020
  end-page: 1043
  ident: bib0290
  article-title: Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction
  publication-title: Nat. Catal.
– volume: 10
  start-page: 5698
  year: 2019
  ident: bib0045
  article-title: CO
  publication-title: Nat. Commun.
– volume: 7
  start-page: 41207
  year: 2017
  ident: bib0120
  article-title: Catalytic behavior of metal catalysts in high-temperature RWGS reaction: in-situ FT-IR experiments and first-principles calculations
  publication-title: Sci. Rep.
– volume: 139
  start-page: 3834
  year: 2017
  end-page: 3840
  ident: bib0140
  article-title: Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2
  publication-title: J. Am. Chem. Soc.
– volume: 122
  start-page: 12934
  year: 2018
  end-page: 12943
  ident: bib0135
  article-title: In situ characterization of Cu/CeO
  publication-title: J. Phys. Chem. C
– volume: 4
  year: 2017
  ident: bib0040
  article-title: Photothermal catalyst engineering: hydrogenation of gaseous CO
  publication-title: Adv. Sci. (Weinh)
– volume: 12
  start-page: 39304
  year: 2020
  end-page: 39317
  ident: bib0155
  article-title: MOF-templated preparation of highly dispersed Co/Al
  publication-title: ACS Appl. Mater. Interfaces
– volume: 296
  start-page: 181
  year: 2017
  end-page: 186
  ident: bib0210
  article-title: CO
  publication-title: Catal. Today
– volume: 10
  start-page: 7857
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0125
  article-title: Nature of reactive oxygen intermediates on copper-promoted iron–chromium oxide catalysts during CO2 activation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01311
– volume: 139
  start-page: 9739
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0270
  article-title: Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05362
– volume: 291
  start-page: 120053
  year: 2021
  ident: 10.1016/j.apcatb.2021.120519_bib0090
  article-title: Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120053
– volume: 12
  start-page: 39304
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0155
  article-title: MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11576
– volume: 8
  start-page: 12056
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0130
  article-title: Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO2 to CO under mild conditions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04219
– volume: 10
  start-page: 408
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0070
  article-title: Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13043
– volume: 59
  start-page: 8203
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0160
  article-title: A photoactivated Cu-CeO2 catalyst with Cu-[O]-Ce active species designed through MOF crystal engineering
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201916049
– volume: 129
  start-page: 3062
  year: 2007
  ident: 10.1016/j.apcatb.2021.120519_bib0230
  article-title: Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja066834k
– volume: 136
  start-page: 11034
  year: 2014
  ident: 10.1016/j.apcatb.2021.120519_bib0220
  article-title: Light induced carbon dioxide reduction by water at binuclear ZrOCoII unit coupled to Ir oxide nanocluster catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504753g
– volume: 14
  start-page: 320
  year: 2021
  ident: 10.1016/j.apcatb.2021.120519_bib0195
  article-title: Porous crystalline frameworks for thermocatalytic CO2 reduction: an emerging paradigm
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01882A
– volume: 10
  start-page: 619
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0190
  article-title: Insight into the synergism between copper species and surface defects influenced by copper content over copper/ceria catalysts for the hydrogenation of carbonate
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201701384
– volume: 49
  start-page: 6579
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0030
  article-title: Photocatalytic CO2 conversion: what can we learn from conventional COx hydrogenation?
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00920E
– volume: 2
  start-page: 916
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0285
  article-title: Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0343-2
– volume: 9
  start-page: 679
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0175
  article-title: Roles of structural promoters for direct CO2 hydrogenation to dimethyl ether over ordered mesoporous bifunctional Cu/M–Al2O3 (M = Ga or Zn)
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04060
– volume: 50
  start-page: 2173
  year: 2021
  ident: 10.1016/j.apcatb.2021.120519_bib0095
  article-title: Fundamentals and applications of photo-thermal catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00357C
– volume: 387
  start-page: 79
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0150
  article-title: Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.02.001
– volume: 296
  start-page: 181
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0210
  article-title: CO2reduction over Cu-ZnGaMO (M = Al, Zr) catalysts prepared by a sol-gel method: unique performance for the RWGS reaction
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.04.022
– volume: 139
  start-page: 3834
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0140
  article-title: Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00058
– volume: 397
  start-page: 125485
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0100
  article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125485
– volume: 10
  start-page: 10216
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0110
  article-title: Deciphering dynamic structural and mechanistic complexity in Cu/CeO2/ZSM-5 catalysts for the reverse water-gas shift reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01584
– volume: 138
  start-page: 16204
  year: 2016
  ident: 10.1016/j.apcatb.2021.120519_bib0085
  article-title: Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10205
– volume: 141
  start-page: 14991
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0240
  article-title: Cu atoms on nanowire Pd/HyWO3-x bronzes enhance the solar reverse water gas shift reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08030
– volume: 7
  start-page: 41207
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0120
  article-title: Catalytic behavior of metal catalysts in high-temperature RWGS reaction: in-situ FT-IR experiments and first-principles calculations
  publication-title: Sci. Rep.
  doi: 10.1038/srep41207
– volume: 8
  start-page: 27
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0235
  article-title: Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00055-z
– volume: 362
  start-page: 69
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0185
  article-title: Quantifying hot carrier and thermal contributions in plasmonic photocatalysis
  publication-title: Science
  doi: 10.1126/science.aat6967
– volume: 142
  start-page: 19339
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0145
  article-title: Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09599
– volume: 32
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0265
  article-title: Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903915
– volume: 10
  start-page: 11318
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0005
  article-title: Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02930
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0250
  article-title: Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons
  publication-title: Adv. Mater.
– volume: 4
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0040
  article-title: Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity
  publication-title: Adv. Sci. (Weinh)
– volume: 55
  start-page: 4178
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0245
  article-title: Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal–support interactions for the RWGS reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00297A
– volume: 226
  start-page: 410
  year: 2004
  ident: 10.1016/j.apcatb.2021.120519_bib0275
  article-title: An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/-GaO
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.06.012
– volume: 205
  start-page: 339
  year: 2002
  ident: 10.1016/j.apcatb.2021.120519_bib0200
  article-title: Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst
  publication-title: J. Catal.
  doi: 10.1006/jcat.2001.3461
– volume: 3
  start-page: 1034
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0290
  article-title: Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00544-3
– volume: 120
  start-page: 7984
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0010
  article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00723
– volume: 1
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0065
  article-title: Standalone solar carbon-based fuel production based on semiconductors
  publication-title: Cell Rep. Phys. Sci.
– volume: 17
  start-page: 15201
  year: 2015
  ident: 10.1016/j.apcatb.2021.120519_bib0225
  article-title: Pit assisted oxygen chemisorption on GaN surfaces
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP00540J
– volume: 360
  start-page: 707
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0020
  article-title: Chemical storage of renewable energy
  publication-title: Science
  doi: 10.1126/science.aat7918
– volume: 10
  start-page: 5698
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0045
  article-title: CO2 hydrogenation to high-value products via heterogeneous catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13638-9
– volume: 10
  start-page: 613
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0025
  article-title: Application of ceria in CO2 conversion catalysis
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03935
– volume: 2
  start-page: 889
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0050
  article-title: Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0338-z
– volume: 10
  start-page: 9017
  year: 2016
  ident: 10.1016/j.apcatb.2021.120519_bib0260
  article-title: Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05416
– volume: 12
  start-page: 1802
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0055
  article-title: Recent developments in the modelling of heterogeneous catalysts for CO2 conversion to chemicals
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901879
– volume: 12
  start-page: 1122
  year: 2019
  ident: 10.1016/j.apcatb.2021.120519_bib0060
  article-title: Principles of photothermal gas-phase heterogeneous CO2 catalysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02790K
– volume: 122
  start-page: 12934
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0135
  article-title: In situ characterization of Cu/CeO2 nanocatalysts for CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03596
– volume: 10
  start-page: 13668
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0115
  article-title: High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03806
– volume: 59
  start-page: 12909
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0105
  article-title: Photo-thermo catalytic oxidation over a TiO2 -WO3 -supported platinum catalyst
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202001701
– volume: 116
  start-page: 5987
  year: 2016
  ident: 10.1016/j.apcatb.2021.120519_bib0165
  article-title: Fundamentals and catalytic applications of CeO2-based materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00603
– volume: 8
  start-page: 4390
  year: 2018
  ident: 10.1016/j.apcatb.2021.120519_bib0180
  article-title: CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00474
– volume: 358
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0015
  article-title: Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission
  publication-title: Science
  doi: 10.1126/science.aam5776
– volume: 139
  start-page: 356
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0075
  article-title: Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11027
– volume: 272
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0080
  article-title: Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118965
– volume: 28
  start-page: 6781
  year: 2016
  ident: 10.1016/j.apcatb.2021.120519_bib0035
  article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600305
– volume: 240
  start-page: 199
  year: 2003
  ident: 10.1016/j.apcatb.2021.120519_bib0215
  article-title: On the measurement of copper surface area by oxygen chemisorption
  publication-title: Appl. Catal. A
  doi: 10.1016/S0926-860X(02)00425-8
– volume: 7
  start-page: 3375
  year: 2017
  ident: 10.1016/j.apcatb.2021.120519_bib0170
  article-title: Catalytic consequences of Ga promotion on Cu for CO2 hydrogenation to methanol
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01021D
– volume: 11
  start-page: 5149
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0255
  article-title: High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18943-2
– volume: 180
  start-page: 9
  year: 2012
  ident: 10.1016/j.apcatb.2021.120519_bib0280
  article-title: Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium–gallium mixed oxides
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.04.054
– volume: 150
  start-page: 2045
  year: 2020
  ident: 10.1016/j.apcatb.2021.120519_bib0205
  article-title: Effect of Ce doping on catalytic performance of Cu/TiO2 for CO oxidation
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-020-03130-1
SSID ssj0002328
Score 2.6395607
Snippet [Display omitted] •An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2...
Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120519
SubjectTerms Carbon dioxide
Carbonyl compounds
Carbonyls
Catalysts
Catalytic converters
Cerium oxides
Chemical energy
Chemical synthesis
CO2 reduction
Copper
Ga-Cu/CeO2
Gallium
Highly dispersed
Hydrogenation
Intermediates
Irradiation
Light irradiation
Metal-organic frameworks
Metals
MOF precursor
Photothermal catalysis
Photothermal conversion
Pyrolysis
Radiation
Selectivity
Solar energy
Solar energy conversion
Species
Title Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction
URI https://dx.doi.org/10.1016/j.apcatb.2021.120519
https://www.proquest.com/docview/2582221835
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hGIABQaHiLQ-sbpM4TvBYRYUCAgaoxGYlfogiKBVNkbrw2zk7CS8JITHGunMSn333XXIPgCNbmDBVJqYqDxhFi6ep4ErTJLLOYFuR-F4El1fJYBif3_G7BciaXBgXVlnr_kqne21dj3Tr1exORqPuTSCihLHUJaG4omsuozyOU7fLO2-fYR6IGLw2RmLqqJv0OR_jlU9UXhboJUZhJ4wcmvnNPP1Q1N76nKzDWg0bSa96sg1YMOMWLGdNt7YWrH4pLNiCdv8zfw3Z6gM83YSnS4MDtOrlpIhtQrOoRs5Xo8lpTrNZNzPXEfFfdubTkiCuJa6s8eOcGF9xAmclk_vn0mdvPeENKlJ8NpIh44srB-sEvgXDk_5tNqB1xwWq8CyXFL2zHDELgjheGMYSK-yxMIFVTKfcpBa9HcF0olmgRV4oznMeqrCwHMdQNxjWhsXx89hsA2FGcKYia1PhfjYWiDTiwKZBoovAoB-1A6xZaKnqcuSuK8ajbOLOHmQlHunEIyvx7AD94JpU5Tj-oE8bGcpv20qixfiDc78RuayP9VRG3OEpfFO----J92DFXfmQGL4Pi-XLzBwgsCmLQ79zD2Gpd3YxuHoH98j3cA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4VGIABQQFRnh5YTZO4TvCIIqBAWwZAYrMSPwQIStUGJBZ-O2cnoYCEkFgdn5P4fHffJfcA2Le5CRNlOlRlAaNo8TQVXGkaR9YZbCti34ugP4i7N53zW37bgLTOhXFhlZXuL3W619bVSLvazfbo_r59FYgoZixxSSiu6FoyA3MdFF_XxuDgfRrngZDBq2OcTd30On_OB3llI5UVObqJUXgQRg7O_Gaffmhqb35OlmGpwo3kqHy0FWiYYRPm07pdWxMWv1QWbML68TSBDckqCZ6swlPf4AAtmzkpYuvYLKqR8tVocprR9KWdmsuI-E87b5OCILAlrq7x4xsxvuQErkpGd8-FT996whuUU_HZSIqEY1cP1nF8DW5Ojq_TLq1aLlCFwlxQdM8yBC2I4nhuGIutsIfCBFYxnXCTWHR3BNOxZoEWWa44z3iowtxyHEPlYNg6zA6fh2YDCDOCMxVZmwj3tzFHqNEJbBLEOg8MOlItYPVGS1XVI3dtMR5lHXj2IEv2SMceWbKnBfSTalTW4_hjflLzUH47VxJNxh-U2zXLZSXXExlxB6jwTfnmvxfeg_nudb8ne2eDiy1YcFd8fAzfhtli_GJ2EOUU-a4_xR-bX_j-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-organic+framework-derived+Ga-Cu%2FCeO2+catalyst+for+highly+efficient+photothermal+catalytic+CO2+reduction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Deng%2C+Bowen&rft.au=Song%2C+Hui&rft.au=Peng%2C+Kang&rft.au=Li%2C+Qian&rft.date=2021-12-05&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=298&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120519&rft.externalDocID=S0926337321006457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon