Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction
[Display omitted] •An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2 mmol g−1 h−1.•Photothermal heating and light-promotion contribute to the high activity.•The introduction of Ga enhances the formation of key i...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 298; p. 120519 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2 mmol g−1 h−1.•Photothermal heating and light-promotion contribute to the high activity.•The introduction of Ga enhances the formation of key intermediates.
Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon emissions, but it remains a great challenge in achieving high conversion efficiency due to the limited sunlight capturing capacity and lack of highly efficient catalysts. Herein, we report a Ga-Cu/CeO2 catalyst synthesized by direct pyrolysis of the Ga and Cu-containing Ce-metal-organic frameworks for efficient photothermal catalytic CO2 hydrogenation. Because of the highly dispersed Ga and Cu species in CeO2, the optimized catalyst 10Cu5Ga/CeO2 (10 wt% Cu and 5 wt% Ga) achieved a CO production rate of 111.2 mmol g−1 h−1 with nearly 100 % selectivity under full solar spectrum irradiation, which is superior to most reported Cu and other earth-abundant metals-based photothermal catalysts. Mechanism studies demonstrated that the synergy of photothermal heating/conversion and light-promotion contributed to the substantially increased CO production. In situ DRIFTS results revealed that the introduction of Ga enhanced the formation of formate species, the key intermediates in CO2 hydrogenation, and light irradiation facilitated the decomposition of formate species to carbonyl, thus enhancing CO production. This work provides a potential strategy towards the synthesis of efficient catalysts for photothermal CO2 reduction. |
---|---|
AbstractList | Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon emissions, but it remains a great challenge in achieving high conversion efficiency due to the limited sunlight capturing capacity and lack of highly efficient catalysts. Herein, we report a Ga-Cu/CeO2 catalyst synthesized by direct pyrolysis of the Ga and Cu-containing Ce-metal-organic frameworks for efficient photothermal catalytic CO2 hydrogenation. Because of the highly dispersed Ga and Cu species in CeO2, the optimized catalyst 10Cu5Ga/CeO2 (10 wt% Cu and 5 wt% Ga) achieved a CO production rate of 111.2 mmol g−1 h−1 with nearly 100 % selectivity under full solar spectrum irradiation, which is superior to most reported Cu and other earth-abundant metals-based photothermal catalysts. Mechanism studies demonstrated that the synergy of photothermal heating/conversion and light-promotion contributed to the substantially increased CO production. In situ DRIFTS results revealed that the introduction of Ga enhanced the formation of formate species, the key intermediates in CO2 hydrogenation, and light irradiation facilitated the decomposition of formate species to carbonyl, thus enhancing CO production. This work provides a potential strategy towards the synthesis of efficient catalysts for photothermal CO2 reduction. [Display omitted] •An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2 mmol g−1 h−1.•Photothermal heating and light-promotion contribute to the high activity.•The introduction of Ga enhances the formation of key intermediates. Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon emissions, but it remains a great challenge in achieving high conversion efficiency due to the limited sunlight capturing capacity and lack of highly efficient catalysts. Herein, we report a Ga-Cu/CeO2 catalyst synthesized by direct pyrolysis of the Ga and Cu-containing Ce-metal-organic frameworks for efficient photothermal catalytic CO2 hydrogenation. Because of the highly dispersed Ga and Cu species in CeO2, the optimized catalyst 10Cu5Ga/CeO2 (10 wt% Cu and 5 wt% Ga) achieved a CO production rate of 111.2 mmol g−1 h−1 with nearly 100 % selectivity under full solar spectrum irradiation, which is superior to most reported Cu and other earth-abundant metals-based photothermal catalysts. Mechanism studies demonstrated that the synergy of photothermal heating/conversion and light-promotion contributed to the substantially increased CO production. In situ DRIFTS results revealed that the introduction of Ga enhanced the formation of formate species, the key intermediates in CO2 hydrogenation, and light irradiation facilitated the decomposition of formate species to carbonyl, thus enhancing CO production. This work provides a potential strategy towards the synthesis of efficient catalysts for photothermal CO2 reduction. |
ArticleNumber | 120519 |
Author | Li, Qian Ye, Jinhua Deng, Bowen Peng, Kang Song, Hui |
Author_xml | – sequence: 1 givenname: Bowen surname: Deng fullname: Deng, Bowen organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan – sequence: 2 givenname: Hui surname: Song fullname: Song, Hui email: SONG.Hui@nims.go.jp organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan – sequence: 3 givenname: Kang surname: Peng fullname: Peng, Kang organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan – sequence: 4 givenname: Qian surname: Li fullname: Li, Qian organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan – sequence: 5 givenname: Jinhua orcidid: 0000-0002-8105-8903 surname: Ye fullname: Ye, Jinhua email: Jinhua.YE@nims.go.jp organization: International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan |
BookMark | eNqFkE1LAzEQhoNUsH78Aw8LnrdOkma760GQRatQ6UXPIU0mbep2U7Nppf_elPXkQU8Dw_u8wzznZND6Fgm5pjCiQIvb9UhttYqLEQNGR5SBoNUJGdJywnNelnxAhlCxIud8ws_IedetAYBxVg7J5hWjanIflqp1OrNBbfDLh4_cYHB7NNlU5fXutsY5y9IJ1Ry6mFkfspVbrppDhtY67bCN2Xblo48rDBvV_ERjaqwTGNDsdHS-vSSnVjUdXv3MC_L-9PhWP-ez-fSlfpjlegwQ8wKogoKPQYgFcl7YypYVgtXcTARObAFFxU1hOJhKLbQQSlBNF1akHS058gty0_dug__cYRfl2u9Cm05KJkrGWEqJlBr3KR181wW0chvcRoWDpCCPYuVa9mLlUazsxSbs7hemXVTH92JQrvkPvu9hTO_vHQbZHfVpNC6gjtJ493fBNy-YmLk |
CitedBy_id | crossref_primary_10_1039_D4MA00271G crossref_primary_10_1016_j_apsusc_2023_156433 crossref_primary_10_1021_acs_inorgchem_2c03336 crossref_primary_10_1016_j_jcis_2024_11_031 crossref_primary_10_1016_j_apsusc_2023_157360 crossref_primary_10_1016_j_ces_2024_120099 crossref_primary_10_1016_j_apcatb_2022_122262 crossref_primary_10_1016_j_cej_2024_154701 crossref_primary_10_1002_advs_202103926 crossref_primary_10_1016_j_apcatb_2024_124167 crossref_primary_10_1016_j_apcatb_2024_124045 crossref_primary_10_1002_cssc_202101950 crossref_primary_10_1016_j_apsusc_2022_155339 crossref_primary_10_1016_j_ceramint_2022_08_143 crossref_primary_10_1016_j_cej_2023_144289 crossref_primary_10_1002_ange_202204880 crossref_primary_10_1002_aenm_202300071 crossref_primary_10_3390_molecules29163882 crossref_primary_10_1016_j_jece_2023_110324 crossref_primary_10_1016_j_matchemphys_2023_128417 crossref_primary_10_1039_D3TA00110E crossref_primary_10_1002_adfm_202500339 crossref_primary_10_1002_anie_202204880 crossref_primary_10_1002_anie_202218115 crossref_primary_10_1002_aesr_202200004 crossref_primary_10_1007_s10854_024_12561_0 crossref_primary_10_1021_acssuschemeng_4c06883 crossref_primary_10_1002_ange_202305251 crossref_primary_10_1002_adma_202312093 crossref_primary_10_1016_j_cej_2025_161609 crossref_primary_10_1016_j_cej_2025_160529 crossref_primary_10_1021_acsnano_2c09025 crossref_primary_10_1002_ange_202218115 crossref_primary_10_26599_NR_2025_94906998 crossref_primary_10_1016_j_cej_2023_148195 crossref_primary_10_1021_acssuschemeng_3c05215 crossref_primary_10_1016_j_apcatb_2023_123058 crossref_primary_10_1016_j_jclepro_2023_139542 crossref_primary_10_3390_catal12101101 crossref_primary_10_1002_anie_202305251 crossref_primary_10_1021_acs_iecr_4c02853 crossref_primary_10_1002_aenm_202500988 crossref_primary_10_1002_smll_202402952 crossref_primary_10_1016_j_rser_2024_114615 crossref_primary_10_1039_D4QI00002A crossref_primary_10_1002_cssc_202301405 crossref_primary_10_1016_j_cej_2022_137034 crossref_primary_10_1038_s41467_024_45516_4 crossref_primary_10_1016_j_apcata_2023_119537 crossref_primary_10_1016_j_xcrp_2024_102227 crossref_primary_10_20517_energymater_2024_227 crossref_primary_10_1016_j_fuel_2023_129817 crossref_primary_10_1002_ange_202318166 crossref_primary_10_1016_j_apsusc_2022_155546 crossref_primary_10_1007_s12598_024_03182_x crossref_primary_10_1016_j_apcatb_2023_122531 crossref_primary_10_1039_D4EN00973H crossref_primary_10_1016_j_cclet_2022_04_018 crossref_primary_10_1016_j_jcis_2025_02_154 crossref_primary_10_1002_ejic_202200316 crossref_primary_10_1038_s41598_025_92007_7 crossref_primary_10_1039_D3YA00315A crossref_primary_10_1016_j_ccr_2024_216395 crossref_primary_10_1016_j_fuel_2024_133949 crossref_primary_10_1016_j_cej_2024_152283 crossref_primary_10_1039_D4TA04387A crossref_primary_10_1002_anie_202318166 crossref_primary_10_1016_j_seppur_2024_130388 crossref_primary_10_1016_j_cej_2022_138016 crossref_primary_10_1002_smtd_202201532 crossref_primary_10_1016_j_apsusc_2023_157713 crossref_primary_10_1016_j_apcatb_2024_124246 crossref_primary_10_1016_j_jece_2025_116291 crossref_primary_10_1016_j_apsusc_2024_160747 crossref_primary_10_1016_j_fuel_2025_134905 crossref_primary_10_1002_solr_202200493 crossref_primary_10_3390_molecules29225338 crossref_primary_10_1039_D4EE00783B crossref_primary_10_1021_acsanm_2c00101 crossref_primary_10_1007_s40843_022_2388_0 crossref_primary_10_1016_j_mcat_2024_114078 crossref_primary_10_1016_j_apcatb_2023_122471 crossref_primary_10_1016_j_jclepro_2024_141849 crossref_primary_10_1021_acsami_4c14280 crossref_primary_10_1016_j_ijhydene_2023_05_253 crossref_primary_10_1021_acs_jpcc_4c07093 crossref_primary_10_1039_D2TA00933A crossref_primary_10_1016_j_apcatb_2022_121903 crossref_primary_10_1016_j_fuproc_2022_107617 crossref_primary_10_1016_j_cattod_2024_114702 crossref_primary_10_1016_j_apcatb_2024_124819 crossref_primary_10_1021_acsanm_4c00805 crossref_primary_10_1039_D3CY01298K crossref_primary_10_1016_j_carbon_2024_119079 crossref_primary_10_1016_j_clay_2024_107488 crossref_primary_10_1021_acsami_4c04803 crossref_primary_10_1016_j_apcatb_2021_120905 crossref_primary_10_15541_jim20210458 crossref_primary_10_1016_j_seppur_2024_126932 crossref_primary_10_1039_D4CY01271B crossref_primary_10_1039_D4TC04203D crossref_primary_10_1039_D4CS00574K |
Cites_doi | 10.1021/acscatal.0c01311 10.1021/jacs.7b05362 10.1016/j.apcatb.2021.120053 10.1021/acsami.0c11576 10.1021/acscatal.8b04219 10.1021/acsami.7b13043 10.1002/anie.201916049 10.1021/ja066834k 10.1021/ja504753g 10.1039/D0EE01882A 10.1002/cctc.201701384 10.1039/C9CS00920E 10.1038/s41929-019-0343-2 10.1021/acscatal.8b04060 10.1039/D0CS00357C 10.1016/j.ccr.2019.02.001 10.1016/j.cattod.2017.04.022 10.1021/jacs.7b00058 10.1016/j.cej.2020.125485 10.1021/acscatal.0c01584 10.1021/jacs.6b10205 10.1021/jacs.9b08030 10.1038/srep41207 10.1038/s41467-017-00055-z 10.1126/science.aat6967 10.1021/jacs.0c09599 10.1002/adma.201903915 10.1021/acscatal.0c02930 10.1039/C9CC00297A 10.1016/j.jcat.2004.06.012 10.1006/jcat.2001.3461 10.1038/s41929-020-00544-3 10.1021/acs.chemrev.9b00723 10.1039/C5CP00540J 10.1126/science.aat7918 10.1038/s41467-019-13638-9 10.1021/acscatal.9b03935 10.1038/s41929-019-0338-z 10.1021/acsnano.6b05416 10.1002/cctc.201901879 10.1039/C8EE02790K 10.1021/acs.jpcc.8b03596 10.1021/acscatal.0c03806 10.1002/anie.202001701 10.1021/acs.chemrev.5b00603 10.1021/acscatal.8b00474 10.1126/science.aam5776 10.1021/jacs.6b11027 10.1016/j.apcatb.2020.118965 10.1002/adma.201600305 10.1016/S0926-860X(02)00425-8 10.1039/C7CY01021D 10.1038/s41467-020-18943-2 10.1016/j.cattod.2011.04.054 10.1007/s10562-020-03130-1 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Dec 5, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Dec 5, 2021 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2021.120519 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2021_120519 S0926337321006457 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-601a0634055be336f9f89e0fc3d75e7f60693d6d30d9abc55a51c1bf5d6d183e3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 05:53:33 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Tue Jul 01 04:35:14 EDT 2025 Sat Mar 02 16:00:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MOF precursor Highly dispersed Photothermal catalysis CO2 reduction Ga-Cu/CeO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-601a0634055be336f9f89e0fc3d75e7f60693d6d30d9abc55a51c1bf5d6d183e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8105-8903 |
PQID | 2582221835 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2582221835 crossref_primary_10_1016_j_apcatb_2021_120519 crossref_citationtrail_10_1016_j_apcatb_2021_120519 elsevier_sciencedirect_doi_10_1016_j_apcatb_2021_120519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-05 |
PublicationDateYYYYMMDD | 2021-12-05 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Mehla, Kandjani, Babarao, Lee, Periasamy, Wilson, Ramakrishna, Bhargava (bib0195) 2021; 14 Jiang, Nie, Guo, Song, Chen (bib0010) 2020; 120 Kattel, Liu, Chen (bib0270) 2017; 139 Murugan, Ramaswamy (bib0230) 2007; 129 Chen, Li, Zhang, Li, Cai, Chen, Jia (bib0155) 2020; 12 An, Zhang, Cheng, Ji, Wang, Lin (bib0140) 2017; 139 Chen, Gao, Zhao, Li, Waterhouse, Shi, Zhao, Zhang, Shang, Sheng, Zhang, Wen, Wu, Tung, Zhang (bib0250) 2018; 30 Podrojková, Sans, Oriňak, Oriňaková (bib0055) 2020; 12 Choi, Kim, Rungtaweevoranit, Trickett, Barmanbek, Alshammari, Yang, Yaghi (bib0075) 2017; 139 Kong, Jiang, Rui, Liu, Xian, Ji, Ji (bib0100) 2020; 397 Pernicone, Fantinel, Baldan, Riello, Pinna (bib0215) 2003; 240 Meng, Liu, Ouyang, Xu, Wang, Zhao, Ye (bib0035) 2016; 28 Ghoussoub, Xia, Duchesne, Segal, Ozin (bib0060) 2019; 12 Ye, Ding, Gong, Argyle, Zhong, Wang, Russell, Xu, Russell, Li, Fan, Yao (bib0045) 2019; 10 Hoch, O’Brien, Jelle, Sandhel, Perovic, Mims, Ozin (bib0260) 2016; 10 Ham, Baek, Shin, Bae (bib0175) 2018; 9 Zhu, Tian, Ford, Chen, Xu, Han, Wachs (bib0125) 2020; 10 Zimmer, Tschöpe, Birringer (bib0200) 2002; 205 Robatjazi, Zhao, Swearer, Hogan, Zhou, Alabastri, McClain, Nordlander, Halas (bib0235) 2017; 8 Cui, Zhang, Hu, Bu (bib0150) 2019; 387 Qi, Song, Ouyang, Liang, Ning, Zhang, Ye (bib0265) 2020; 32 Chatterjee, Gierach, Sutton, Feely, Crisp, Eldering, Gunson, O’Dell, Stephens, Schimel (bib0015) 2017; 358 Collins, Baltanas, Bonivardi (bib0275) 2004; 226 Li, Yang, Ren, Wang, Zhu, Xu (bib0205) 2020; 150 Choi, Sang, Hong, Yoon, Son, Lee, Kim, Kim (bib0120) 2017; 7 Luo, Song, Philo, Oshikiri, Kako, Ye (bib0080) 2020; 272 Jia, Wang, Lu, O’Brien, Ghoussoub, Duchesne, Zheng, Li, Qiao, Wang, Gu, Jelle, Dong, Wang, Ghuman, Wood, Qian, Shao, Qiu, Ye, Zhu, Lu, Zhang, Helmy, Singh, Kherani, Perovic, Ozin (bib0040) 2017; 4 Yang, Pang, Sulmonetti, Su, Lee, Hwang, Jones (bib0130) 2018; 8 Liu, Ramírez de la Piscina, Toyir, Homs (bib0210) 2017; 296 Montini, Melchionna, Monai, Fornasiero (bib0165) 2016; 116 Medina, Figueroa, Manrique, Rodríguez Pereira, Srinivasan, Bravo-Suárez, Baldovino Medrano, Jiménez, Karelovic (bib0170) 2017; 7 Xu, Hong, Sui, Zhu, Zhang, Luo (bib0065) 2020; 1 Mateo, Cerrillo, Durini, Gascon (bib0095) 2021; 50 Nelson, Nguyen, Glezakou, Rousseau, Szanyi (bib0285) 2019; 2 Li, Yang, Ma, Lei, Cheng, Rui (bib0090) 2021; 291 Finos, Collins, Blanco, del Rio, Cíes, Bernal, Bonivardi (bib0280) 2012; 180 Ra, Kim, Kim, Lee, An, Lee (bib0005) 2020; 10 Song, Meng, Dao, Zhou, Liu, Shi, Zhang, Nagao, Kako, Ye (bib0070) 2018; 10 Li, Chen, Ayvalı, Suo, Zheng, Teixeira, Ye, Zou, O’Hare, Tsang (bib0180) 2018; 8 Kim, Yuan, McClure, Frei (bib0220) 2014; 136 Yang, Wang, Zheng, He, Zhan, Lu, Tian, Fang, Tong (bib0085) 2016; 138 Mishra, Krishna, T. C, Aggarwal, Kaur, Singh, Gupta (bib0225) 2015; 17 Kang, Liu, Wang, Li, Ren, Li, Pan, Li, Zong, Liu, Frenkel, Zhang (bib0105) 2020; 59 Li, Cui, Liu, Dai (bib0190) 2018; 10 Li, Lu, Chen, Duchesne, Jelle, Xia, Wood, Ulmer, Ozin (bib0240) 2019; 141 Tan, Xie, Ng, Abdullah, Tang, Bedford, Taylor, Aguey-Zinsou, Amal, Scott (bib0290) 2020; 3 Yu, Jin, Easa, Lu, Yang, Liu, Xing, Shi (bib0245) 2019; 55 Wang, Tian, Li, Li, Chen, Liu, Li, Muhetaer, Li, Wang, Gu, Ma, Xu (bib0160) 2020; 59 Zhou, Swearer, Zhang, Robatjazi, Zhao, Henderson, Dong, Christopher, Carter, Nordlander, Halas (bib0185) 2018; 362 Ager, Lapkin (bib0020) 2018; 360 Chang, Zhang, Cheng, Lu (bib0025) 2019; 10 Lin, Yao, Liu, Zhang, Li, Vovchok, Martínez-Arias, Castañeda, Lin, Senanayake, Su, Ma, Rodriguez (bib0135) 2018; 122 Guo, Duchesne, Wang, Song, Xia, Ulmer, Sun, Dong, Loh, Kherani, Du, Zhu, Huang, Zhang, Ozin (bib0115) 2020; 10 Vovchok, Zhang, Hwang, Jiao, Zhang, Liu, Senanayake, Rodriguez (bib0110) 2020; 10 Kong, Jiang, Xiong (bib0030) 2020; 49 Wan, Zhou, Wang, Wood, Wang, Duchesne, Guo, Yan, Xia, Li, Jelle, Ulmer, Jia, Li, Sun, Ozin (bib0050) 2019; 2 Wang, He, Huang, Mao, Wang, Li (bib0145) 2020; 142 Xu, Duchesne, Wang, Tavasoli, Jelle, Xia, Liao, Kuang, Ozin (bib0255) 2020; 11 Hoch (10.1016/j.apcatb.2021.120519_bib0260) 2016; 10 Liu (10.1016/j.apcatb.2021.120519_bib0210) 2017; 296 Chen (10.1016/j.apcatb.2021.120519_bib0155) 2020; 12 Ham (10.1016/j.apcatb.2021.120519_bib0175) 2018; 9 Robatjazi (10.1016/j.apcatb.2021.120519_bib0235) 2017; 8 Finos (10.1016/j.apcatb.2021.120519_bib0280) 2012; 180 Kattel (10.1016/j.apcatb.2021.120519_bib0270) 2017; 139 Mateo (10.1016/j.apcatb.2021.120519_bib0095) 2021; 50 Zhu (10.1016/j.apcatb.2021.120519_bib0125) 2020; 10 Ghoussoub (10.1016/j.apcatb.2021.120519_bib0060) 2019; 12 Li (10.1016/j.apcatb.2021.120519_bib0240) 2019; 141 Guo (10.1016/j.apcatb.2021.120519_bib0115) 2020; 10 Luo (10.1016/j.apcatb.2021.120519_bib0080) 2020; 272 Nelson (10.1016/j.apcatb.2021.120519_bib0285) 2019; 2 Kim (10.1016/j.apcatb.2021.120519_bib0220) 2014; 136 Montini (10.1016/j.apcatb.2021.120519_bib0165) 2016; 116 Chen (10.1016/j.apcatb.2021.120519_bib0250) 2018; 30 Cui (10.1016/j.apcatb.2021.120519_bib0150) 2019; 387 Pernicone (10.1016/j.apcatb.2021.120519_bib0215) 2003; 240 Yu (10.1016/j.apcatb.2021.120519_bib0245) 2019; 55 Jia (10.1016/j.apcatb.2021.120519_bib0040) 2017; 4 Li (10.1016/j.apcatb.2021.120519_bib0180) 2018; 8 Murugan (10.1016/j.apcatb.2021.120519_bib0230) 2007; 129 Medina (10.1016/j.apcatb.2021.120519_bib0170) 2017; 7 Zimmer (10.1016/j.apcatb.2021.120519_bib0200) 2002; 205 Qi (10.1016/j.apcatb.2021.120519_bib0265) 2020; 32 Meng (10.1016/j.apcatb.2021.120519_bib0035) 2016; 28 Jiang (10.1016/j.apcatb.2021.120519_bib0010) 2020; 120 Kong (10.1016/j.apcatb.2021.120519_bib0100) 2020; 397 An (10.1016/j.apcatb.2021.120519_bib0140) 2017; 139 Ager (10.1016/j.apcatb.2021.120519_bib0020) 2018; 360 Wan (10.1016/j.apcatb.2021.120519_bib0050) 2019; 2 Kong (10.1016/j.apcatb.2021.120519_bib0030) 2020; 49 Wang (10.1016/j.apcatb.2021.120519_bib0145) 2020; 142 Ra (10.1016/j.apcatb.2021.120519_bib0005) 2020; 10 Wang (10.1016/j.apcatb.2021.120519_bib0160) 2020; 59 Choi (10.1016/j.apcatb.2021.120519_bib0075) 2017; 139 Chang (10.1016/j.apcatb.2021.120519_bib0025) 2019; 10 Li (10.1016/j.apcatb.2021.120519_bib0090) 2021; 291 Mehla (10.1016/j.apcatb.2021.120519_bib0195) 2021; 14 Mishra (10.1016/j.apcatb.2021.120519_bib0225) 2015; 17 Kang (10.1016/j.apcatb.2021.120519_bib0105) 2020; 59 Yang (10.1016/j.apcatb.2021.120519_bib0130) 2018; 8 Xu (10.1016/j.apcatb.2021.120519_bib0255) 2020; 11 Tan (10.1016/j.apcatb.2021.120519_bib0290) 2020; 3 Li (10.1016/j.apcatb.2021.120519_bib0190) 2018; 10 Lin (10.1016/j.apcatb.2021.120519_bib0135) 2018; 122 Podrojková (10.1016/j.apcatb.2021.120519_bib0055) 2020; 12 Collins (10.1016/j.apcatb.2021.120519_bib0275) 2004; 226 Vovchok (10.1016/j.apcatb.2021.120519_bib0110) 2020; 10 Xu (10.1016/j.apcatb.2021.120519_bib0065) 2020; 1 Ye (10.1016/j.apcatb.2021.120519_bib0045) 2019; 10 Li (10.1016/j.apcatb.2021.120519_bib0205) 2020; 150 Chatterjee (10.1016/j.apcatb.2021.120519_bib0015) 2017; 358 Choi (10.1016/j.apcatb.2021.120519_bib0120) 2017; 7 Song (10.1016/j.apcatb.2021.120519_bib0070) 2018; 10 Zhou (10.1016/j.apcatb.2021.120519_bib0185) 2018; 362 Yang (10.1016/j.apcatb.2021.120519_bib0085) 2016; 138 |
References_xml | – volume: 8 start-page: 4390 year: 2018 end-page: 4401 ident: bib0180 article-title: CO publication-title: ACS Catal. – volume: 28 start-page: 6781 year: 2016 end-page: 6803 ident: bib0035 article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis publication-title: Adv. Mater. – volume: 205 start-page: 339 year: 2002 end-page: 345 ident: bib0200 article-title: Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst publication-title: J. Catal. – volume: 10 start-page: 10216 year: 2020 end-page: 10228 ident: bib0110 article-title: Deciphering dynamic structural and mechanistic complexity in Cu/CeO2/ZSM-5 catalysts for the reverse water-gas shift reaction publication-title: ACS Catal. – volume: 55 start-page: 4178 year: 2019 end-page: 4181 ident: bib0245 article-title: Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal–support interactions for the RWGS reaction publication-title: Chem. Commun. – volume: 240 start-page: 199 year: 2003 end-page: 206 ident: bib0215 article-title: On the measurement of copper surface area by oxygen chemisorption publication-title: Appl. Catal. A – volume: 360 start-page: 707 year: 2018 ident: bib0020 article-title: Chemical storage of renewable energy publication-title: Science – volume: 358 year: 2017 ident: bib0015 article-title: Influence of El Niño on atmospheric CO publication-title: Science – volume: 397 start-page: 125485 year: 2020 ident: bib0100 article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation publication-title: Chem. Eng. J. – volume: 272 year: 2020 ident: bib0080 article-title: Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 % publication-title: Appl. Catal. B – volume: 10 start-page: 9017 year: 2016 end-page: 9025 ident: bib0260 article-title: Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels publication-title: ACS Nano – volume: 120 start-page: 7984 year: 2020 end-page: 8034 ident: bib0010 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. – volume: 2 start-page: 889 year: 2019 end-page: 898 ident: bib0050 article-title: Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide publication-title: Nat. Catal. – volume: 11 start-page: 5149 year: 2020 ident: bib0255 article-title: High-performance light-driven heterogeneous CO publication-title: Nat. Commun. – volume: 291 start-page: 120053 year: 2021 ident: bib0090 article-title: Selectively recombining the photoinduced charges in bandgap-broken Ag publication-title: Appl. Catal. B – volume: 150 start-page: 2045 year: 2020 end-page: 2055 ident: bib0205 article-title: Effect of Ce doping on catalytic performance of Cu/TiO publication-title: Catal. Lett. – volume: 12 start-page: 1802 year: 2020 end-page: 1825 ident: bib0055 article-title: Recent developments in the modelling of heterogeneous catalysts for CO publication-title: ChemCatChem – volume: 14 start-page: 320 year: 2021 end-page: 352 ident: bib0195 article-title: Porous crystalline frameworks for thermocatalytic CO publication-title: Energy Environ. Sci. – volume: 32 year: 2020 ident: bib0265 article-title: Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In publication-title: Adv. Mater. – volume: 50 start-page: 2173 year: 2021 end-page: 2210 ident: bib0095 article-title: Fundamentals and applications of photo-thermal catalysis publication-title: Chem. Soc. Rev. – volume: 12 start-page: 1122 year: 2019 end-page: 1142 ident: bib0060 article-title: Principles of photothermal gas-phase heterogeneous CO publication-title: Energy Environ. Sci. – volume: 10 start-page: 408 year: 2018 end-page: 416 ident: bib0070 article-title: Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 138 start-page: 16204 year: 2016 end-page: 16207 ident: bib0085 article-title: Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance publication-title: J. Am. Chem. Soc. – volume: 180 start-page: 9 year: 2012 end-page: 18 ident: bib0280 article-title: Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium–gallium mixed oxides publication-title: Catal. Today – volume: 8 start-page: 12056 year: 2018 end-page: 12066 ident: bib0130 article-title: Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO publication-title: ACS Catal. – volume: 129 start-page: 3062 year: 2007 end-page: 3063 ident: bib0230 article-title: Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 619 year: 2018 end-page: 624 ident: bib0190 article-title: Insight into the synergism between copper species and surface defects influenced by copper content over copper/ceria catalysts for the hydrogenation of carbonate publication-title: ChemCatChem – volume: 226 start-page: 410 year: 2004 end-page: 421 ident: bib0275 article-title: An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/-GaO publication-title: J. Catal. – volume: 141 start-page: 14991 year: 2019 end-page: 14996 ident: bib0240 article-title: Cu atoms on nanowire Pd/H publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 13668 year: 2020 end-page: 13681 ident: bib0115 article-title: High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO publication-title: ACS Catal. – volume: 387 start-page: 79 year: 2019 end-page: 120 ident: bib0150 article-title: Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO publication-title: Coord. Chem. Rev. – volume: 136 start-page: 11034 year: 2014 end-page: 11042 ident: bib0220 article-title: Light induced carbon dioxide reduction by water at binuclear ZrOCoII unit coupled to Ir oxide nanocluster catalyst publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 916 year: 2019 end-page: 924 ident: bib0285 article-title: Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis publication-title: Nat. Catal. – volume: 362 start-page: 69 year: 2018 ident: bib0185 article-title: Quantifying hot carrier and thermal contributions in plasmonic photocatalysis publication-title: Science – volume: 139 start-page: 356 year: 2017 end-page: 362 ident: bib0075 article-title: Plasmon-enhanced photocatalytic CO publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 12909 year: 2020 end-page: 12916 ident: bib0105 article-title: Photo-thermo catalytic oxidation over a TiO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 17 start-page: 15201 year: 2015 end-page: 15208 ident: bib0225 article-title: Pit assisted oxygen chemisorption on GaN surfaces publication-title: Phys. Chem. Chem. Phys. – volume: 116 start-page: 5987 year: 2016 end-page: 6041 ident: bib0165 article-title: Fundamentals and catalytic applications of CeO publication-title: Chem. Rev. – volume: 49 start-page: 6579 year: 2020 end-page: 6591 ident: bib0030 article-title: Photocatalytic CO publication-title: Chem. Soc. Rev. – volume: 142 start-page: 19339 year: 2020 end-page: 19345 ident: bib0145 article-title: Photoinduction of Cu single atoms decorated on UiO-66-NH publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 613 year: 2019 end-page: 631 ident: bib0025 article-title: Application of ceria in CO publication-title: ACS Catal. – volume: 59 start-page: 8203 year: 2020 end-page: 8209 ident: bib0160 article-title: A photoactivated Cu-CeO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 7857 year: 2020 end-page: 7863 ident: bib0125 article-title: Nature of reactive oxygen intermediates on copper-promoted iron–chromium oxide catalysts during CO publication-title: ACS Catal. – volume: 7 start-page: 3375 year: 2017 end-page: 3387 ident: bib0170 article-title: Catalytic consequences of Ga promotion on Cu for CO publication-title: Catal. Sci. Technol. – volume: 8 start-page: 27 year: 2017 ident: bib0235 article-title: Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles publication-title: Nat. Commun. – volume: 1 year: 2020 ident: bib0065 article-title: Standalone solar carbon-based fuel production based on semiconductors publication-title: Cell Rep. Phys. Sci. – volume: 10 start-page: 11318 year: 2020 end-page: 11345 ident: bib0005 article-title: Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives publication-title: ACS Catal. – volume: 30 year: 2018 ident: bib0250 article-title: Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO publication-title: Adv. Mater. – volume: 9 start-page: 679 year: 2018 end-page: 690 ident: bib0175 article-title: Roles of structural promoters for direct CO publication-title: ACS Catal. – volume: 139 start-page: 9739 year: 2017 end-page: 9754 ident: bib0270 article-title: Tuning selectivity of CO publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1034 year: 2020 end-page: 1043 ident: bib0290 article-title: Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction publication-title: Nat. Catal. – volume: 10 start-page: 5698 year: 2019 ident: bib0045 article-title: CO publication-title: Nat. Commun. – volume: 7 start-page: 41207 year: 2017 ident: bib0120 article-title: Catalytic behavior of metal catalysts in high-temperature RWGS reaction: in-situ FT-IR experiments and first-principles calculations publication-title: Sci. Rep. – volume: 139 start-page: 3834 year: 2017 end-page: 3840 ident: bib0140 article-title: Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 publication-title: J. Am. Chem. Soc. – volume: 122 start-page: 12934 year: 2018 end-page: 12943 ident: bib0135 article-title: In situ characterization of Cu/CeO publication-title: J. Phys. Chem. C – volume: 4 year: 2017 ident: bib0040 article-title: Photothermal catalyst engineering: hydrogenation of gaseous CO publication-title: Adv. Sci. (Weinh) – volume: 12 start-page: 39304 year: 2020 end-page: 39317 ident: bib0155 article-title: MOF-templated preparation of highly dispersed Co/Al publication-title: ACS Appl. Mater. Interfaces – volume: 296 start-page: 181 year: 2017 end-page: 186 ident: bib0210 article-title: CO publication-title: Catal. Today – volume: 10 start-page: 7857 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0125 article-title: Nature of reactive oxygen intermediates on copper-promoted iron–chromium oxide catalysts during CO2 activation publication-title: ACS Catal. doi: 10.1021/acscatal.0c01311 – volume: 139 start-page: 9739 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0270 article-title: Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05362 – volume: 291 start-page: 120053 year: 2021 ident: 10.1016/j.apcatb.2021.120519_bib0090 article-title: Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120053 – volume: 12 start-page: 39304 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0155 article-title: MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11576 – volume: 8 start-page: 12056 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0130 article-title: Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO2 to CO under mild conditions publication-title: ACS Catal. doi: 10.1021/acscatal.8b04219 – volume: 10 start-page: 408 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0070 article-title: Light-enhanced carbon dioxide activation and conversion by effective plasmonic coupling effect of Pt and Au nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13043 – volume: 59 start-page: 8203 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0160 article-title: A photoactivated Cu-CeO2 catalyst with Cu-[O]-Ce active species designed through MOF crystal engineering publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201916049 – volume: 129 start-page: 3062 year: 2007 ident: 10.1016/j.apcatb.2021.120519_bib0230 article-title: Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene publication-title: J. Am. Chem. Soc. doi: 10.1021/ja066834k – volume: 136 start-page: 11034 year: 2014 ident: 10.1016/j.apcatb.2021.120519_bib0220 article-title: Light induced carbon dioxide reduction by water at binuclear ZrOCoII unit coupled to Ir oxide nanocluster catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504753g – volume: 14 start-page: 320 year: 2021 ident: 10.1016/j.apcatb.2021.120519_bib0195 article-title: Porous crystalline frameworks for thermocatalytic CO2 reduction: an emerging paradigm publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01882A – volume: 10 start-page: 619 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0190 article-title: Insight into the synergism between copper species and surface defects influenced by copper content over copper/ceria catalysts for the hydrogenation of carbonate publication-title: ChemCatChem doi: 10.1002/cctc.201701384 – volume: 49 start-page: 6579 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0030 article-title: Photocatalytic CO2 conversion: what can we learn from conventional COx hydrogenation? publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00920E – volume: 2 start-page: 916 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0285 article-title: Carboxyl intermediate formation via an in situ-generated metastable active site during water-gas shift catalysis publication-title: Nat. Catal. doi: 10.1038/s41929-019-0343-2 – volume: 9 start-page: 679 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0175 article-title: Roles of structural promoters for direct CO2 hydrogenation to dimethyl ether over ordered mesoporous bifunctional Cu/M–Al2O3 (M = Ga or Zn) publication-title: ACS Catal. doi: 10.1021/acscatal.8b04060 – volume: 50 start-page: 2173 year: 2021 ident: 10.1016/j.apcatb.2021.120519_bib0095 article-title: Fundamentals and applications of photo-thermal catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00357C – volume: 387 start-page: 79 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0150 article-title: Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.001 – volume: 296 start-page: 181 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0210 article-title: CO2reduction over Cu-ZnGaMO (M = Al, Zr) catalysts prepared by a sol-gel method: unique performance for the RWGS reaction publication-title: Catal. Today doi: 10.1016/j.cattod.2017.04.022 – volume: 139 start-page: 3834 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0140 article-title: Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00058 – volume: 397 start-page: 125485 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0100 article-title: Photothermocatalytic synergistic oxidation: an effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125485 – volume: 10 start-page: 10216 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0110 article-title: Deciphering dynamic structural and mechanistic complexity in Cu/CeO2/ZSM-5 catalysts for the reverse water-gas shift reaction publication-title: ACS Catal. doi: 10.1021/acscatal.0c01584 – volume: 138 start-page: 16204 year: 2016 ident: 10.1016/j.apcatb.2021.120519_bib0085 article-title: Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10205 – volume: 141 start-page: 14991 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0240 article-title: Cu atoms on nanowire Pd/HyWO3-x bronzes enhance the solar reverse water gas shift reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08030 – volume: 7 start-page: 41207 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0120 article-title: Catalytic behavior of metal catalysts in high-temperature RWGS reaction: in-situ FT-IR experiments and first-principles calculations publication-title: Sci. Rep. doi: 10.1038/srep41207 – volume: 8 start-page: 27 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0235 article-title: Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles publication-title: Nat. Commun. doi: 10.1038/s41467-017-00055-z – volume: 362 start-page: 69 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0185 article-title: Quantifying hot carrier and thermal contributions in plasmonic photocatalysis publication-title: Science doi: 10.1126/science.aat6967 – volume: 142 start-page: 19339 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0145 article-title: Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09599 – volume: 32 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0265 article-title: Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies publication-title: Adv. Mater. doi: 10.1002/adma.201903915 – volume: 10 start-page: 11318 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0005 article-title: Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives publication-title: ACS Catal. doi: 10.1021/acscatal.0c02930 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0250 article-title: Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons publication-title: Adv. Mater. – volume: 4 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0040 article-title: Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity publication-title: Adv. Sci. (Weinh) – volume: 55 start-page: 4178 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0245 article-title: Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal–support interactions for the RWGS reaction publication-title: Chem. Commun. doi: 10.1039/C9CC00297A – volume: 226 start-page: 410 year: 2004 ident: 10.1016/j.apcatb.2021.120519_bib0275 article-title: An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/-GaO publication-title: J. Catal. doi: 10.1016/j.jcat.2004.06.012 – volume: 205 start-page: 339 year: 2002 ident: 10.1016/j.apcatb.2021.120519_bib0200 article-title: Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst publication-title: J. Catal. doi: 10.1006/jcat.2001.3461 – volume: 3 start-page: 1034 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0290 article-title: Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction publication-title: Nat. Catal. doi: 10.1038/s41929-020-00544-3 – volume: 120 start-page: 7984 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0010 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00723 – volume: 1 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0065 article-title: Standalone solar carbon-based fuel production based on semiconductors publication-title: Cell Rep. Phys. Sci. – volume: 17 start-page: 15201 year: 2015 ident: 10.1016/j.apcatb.2021.120519_bib0225 article-title: Pit assisted oxygen chemisorption on GaN surfaces publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP00540J – volume: 360 start-page: 707 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0020 article-title: Chemical storage of renewable energy publication-title: Science doi: 10.1126/science.aat7918 – volume: 10 start-page: 5698 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0045 article-title: CO2 hydrogenation to high-value products via heterogeneous catalysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13638-9 – volume: 10 start-page: 613 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0025 article-title: Application of ceria in CO2 conversion catalysis publication-title: ACS Catal. doi: 10.1021/acscatal.9b03935 – volume: 2 start-page: 889 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0050 article-title: Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide publication-title: Nat. Catal. doi: 10.1038/s41929-019-0338-z – volume: 10 start-page: 9017 year: 2016 ident: 10.1016/j.apcatb.2021.120519_bib0260 article-title: Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels publication-title: ACS Nano doi: 10.1021/acsnano.6b05416 – volume: 12 start-page: 1802 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0055 article-title: Recent developments in the modelling of heterogeneous catalysts for CO2 conversion to chemicals publication-title: ChemCatChem doi: 10.1002/cctc.201901879 – volume: 12 start-page: 1122 year: 2019 ident: 10.1016/j.apcatb.2021.120519_bib0060 article-title: Principles of photothermal gas-phase heterogeneous CO2 catalysis publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02790K – volume: 122 start-page: 12934 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0135 article-title: In situ characterization of Cu/CeO2 nanocatalysts for CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03596 – volume: 10 start-page: 13668 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0115 article-title: High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction publication-title: ACS Catal. doi: 10.1021/acscatal.0c03806 – volume: 59 start-page: 12909 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0105 article-title: Photo-thermo catalytic oxidation over a TiO2 -WO3 -supported platinum catalyst publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202001701 – volume: 116 start-page: 5987 year: 2016 ident: 10.1016/j.apcatb.2021.120519_bib0165 article-title: Fundamentals and catalytic applications of CeO2-based materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00603 – volume: 8 start-page: 4390 year: 2018 ident: 10.1016/j.apcatb.2021.120519_bib0180 article-title: CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors publication-title: ACS Catal. doi: 10.1021/acscatal.8b00474 – volume: 358 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0015 article-title: Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission publication-title: Science doi: 10.1126/science.aam5776 – volume: 139 start-page: 356 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0075 article-title: Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11027 – volume: 272 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0080 article-title: Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 % publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118965 – volume: 28 start-page: 6781 year: 2016 ident: 10.1016/j.apcatb.2021.120519_bib0035 article-title: Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201600305 – volume: 240 start-page: 199 year: 2003 ident: 10.1016/j.apcatb.2021.120519_bib0215 article-title: On the measurement of copper surface area by oxygen chemisorption publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(02)00425-8 – volume: 7 start-page: 3375 year: 2017 ident: 10.1016/j.apcatb.2021.120519_bib0170 article-title: Catalytic consequences of Ga promotion on Cu for CO2 hydrogenation to methanol publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01021D – volume: 11 start-page: 5149 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0255 article-title: High-performance light-driven heterogeneous CO2 catalysis with near-unity selectivity on metal phosphides publication-title: Nat. Commun. doi: 10.1038/s41467-020-18943-2 – volume: 180 start-page: 9 year: 2012 ident: 10.1016/j.apcatb.2021.120519_bib0280 article-title: Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium–gallium mixed oxides publication-title: Catal. Today doi: 10.1016/j.cattod.2011.04.054 – volume: 150 start-page: 2045 year: 2020 ident: 10.1016/j.apcatb.2021.120519_bib0205 article-title: Effect of Ce doping on catalytic performance of Cu/TiO2 for CO oxidation publication-title: Catal. Lett. doi: 10.1007/s10562-020-03130-1 |
SSID | ssj0002328 |
Score | 2.6395607 |
Snippet | [Display omitted]
•An efficient catalyst has been synthesized via MOF-templated method.•Photothermal catalytic CO production rate of Ga-Cu/CeO2 reaches 111.2... Photothermal catalytic CO2 reduction is an attractive process to efficiently convert solar energy into chemical energy with mitigation of global carbon... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120519 |
SubjectTerms | Carbon dioxide Carbonyl compounds Carbonyls Catalysts Catalytic converters Cerium oxides Chemical energy Chemical synthesis CO2 reduction Copper Ga-Cu/CeO2 Gallium Highly dispersed Hydrogenation Intermediates Irradiation Light irradiation Metal-organic frameworks Metals MOF precursor Photothermal catalysis Photothermal conversion Pyrolysis Radiation Selectivity Solar energy Solar energy conversion Species |
Title | Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction |
URI | https://dx.doi.org/10.1016/j.apcatb.2021.120519 https://www.proquest.com/docview/2582221835 |
Volume | 298 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4hGIABQaHiLQ-sbpM4TvBYRYUCAgaoxGYlfogiKBVNkbrw2zk7CS8JITHGunMSn333XXIPgCNbmDBVJqYqDxhFi6ep4ErTJLLOYFuR-F4El1fJYBif3_G7BciaXBgXVlnr_kqne21dj3Tr1exORqPuTSCihLHUJaG4omsuozyOU7fLO2-fYR6IGLw2RmLqqJv0OR_jlU9UXhboJUZhJ4wcmvnNPP1Q1N76nKzDWg0bSa96sg1YMOMWLGdNt7YWrH4pLNiCdv8zfw3Z6gM83YSnS4MDtOrlpIhtQrOoRs5Xo8lpTrNZNzPXEfFfdubTkiCuJa6s8eOcGF9xAmclk_vn0mdvPeENKlJ8NpIh44srB-sEvgXDk_5tNqB1xwWq8CyXFL2zHDELgjheGMYSK-yxMIFVTKfcpBa9HcF0olmgRV4oznMeqrCwHMdQNxjWhsXx89hsA2FGcKYia1PhfjYWiDTiwKZBoovAoB-1A6xZaKnqcuSuK8ajbOLOHmQlHunEIyvx7AD94JpU5Tj-oE8bGcpv20qixfiDc78RuayP9VRG3OEpfFO----J92DFXfmQGL4Pi-XLzBwgsCmLQ79zD2Gpd3YxuHoH98j3cA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4VGIABQQFRnh5YTZO4TvCIIqBAWwZAYrMSPwQIStUGJBZ-O2cnoYCEkFgdn5P4fHffJfcA2Le5CRNlOlRlAaNo8TQVXGkaR9YZbCti34ugP4i7N53zW37bgLTOhXFhlZXuL3W619bVSLvazfbo_r59FYgoZixxSSiu6FoyA3MdFF_XxuDgfRrngZDBq2OcTd30On_OB3llI5UVObqJUXgQRg7O_Gaffmhqb35OlmGpwo3kqHy0FWiYYRPm07pdWxMWv1QWbML68TSBDckqCZ6swlPf4AAtmzkpYuvYLKqR8tVocprR9KWdmsuI-E87b5OCILAlrq7x4xsxvuQErkpGd8-FT996whuUU_HZSIqEY1cP1nF8DW5Ojq_TLq1aLlCFwlxQdM8yBC2I4nhuGIutsIfCBFYxnXCTWHR3BNOxZoEWWa44z3iowtxyHEPlYNg6zA6fh2YDCDOCMxVZmwj3tzFHqNEJbBLEOg8MOlItYPVGS1XVI3dtMR5lHXj2IEv2SMceWbKnBfSTalTW4_hjflLzUH47VxJNxh-U2zXLZSXXExlxB6jwTfnmvxfeg_nudb8ne2eDiy1YcFd8fAzfhtli_GJ2EOUU-a4_xR-bX_j- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-organic+framework-derived+Ga-Cu%2FCeO2+catalyst+for+highly+efficient+photothermal+catalytic+CO2+reduction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Deng%2C+Bowen&rft.au=Song%2C+Hui&rft.au=Peng%2C+Kang&rft.au=Li%2C+Qian&rft.date=2021-12-05&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=298&rft_id=info:doi/10.1016%2Fj.apcatb.2021.120519&rft.externalDocID=S0926337321006457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |