FedDAD: Solving the Islanding Problem of SAR Image Aircraft Detection Data

In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and the high privacy makes the personal sample set have the characteristics of data silos. Existing data enhancement methods can alleviate the pro...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 14; p. 3620
Main Authors Jia, Zhiwei, Zheng, Haoliang, Wang, Rongjie, Zhou, Wenguang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and the high privacy makes the personal sample set have the characteristics of data silos. Existing data enhancement methods can alleviate the problem of data scarcity through feature reuse, but they are still powerless for data that are not involved in local training. To solve this problem, a new federated learning framework was proposed to solve the problem of data scarcity and data silos through multi-client joint training and model aggregation. The commonly used federal average algorithm is not effective for aircraft detection with unbalanced samples, so a federal distribution average deviation (FedDAD) algorithm, which is more suitable for aircraft detection in SAR images, was designed. Based on label distribution and client model quality, the contribution ratio of each client parameter is adaptively adjusted to optimize the global model. Client models trained through federated cooperation have an advantage in detecting aircraft with unknown scenarios or attitudes while remaining sensitive to local datasets. Based on the YOLOv5s algorithm, the feasibility of federated learning was verified on SAR image aircraft detection datasets and the portability of the FedDAD algorithm on public datasets. In tests based on the YOLOv5s algorithm, FedDAD outperformed FedAvg’s mAP0.5–0.95 on the total test set of two SAR image aircraft detection and far outperformed the local centralized training model.
AbstractList In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and the high privacy makes the personal sample set have the characteristics of data silos. Existing data enhancement methods can alleviate the problem of data scarcity through feature reuse, but they are still powerless for data that are not involved in local training. To solve this problem, a new federated learning framework was proposed to solve the problem of data scarcity and data silos through multi-client joint training and model aggregation. The commonly used federal average algorithm is not effective for aircraft detection with unbalanced samples, so a federal distribution average deviation (FedDAD) algorithm, which is more suitable for aircraft detection in SAR images, was designed. Based on label distribution and client model quality, the contribution ratio of each client parameter is adaptively adjusted to optimize the global model. Client models trained through federated cooperation have an advantage in detecting aircraft with unknown scenarios or attitudes while remaining sensitive to local datasets. Based on the YOLOv5s algorithm, the feasibility of federated learning was verified on SAR image aircraft detection datasets and the portability of the FedDAD algorithm on public datasets. In tests based on the YOLOv5s algorithm, FedDAD outperformed FedAvg’s mAP0.5–0.95 on the total test set of two SAR image aircraft detection and far outperformed the local centralized training model.
Audience Academic
Author Zheng, Haoliang
Wang, Rongjie
Zhou, Wenguang
Jia, Zhiwei
Author_xml – sequence: 1
  givenname: Zhiwei
  surname: Jia
  fullname: Jia, Zhiwei
– sequence: 2
  givenname: Haoliang
  surname: Zheng
  fullname: Zheng, Haoliang
– sequence: 3
  givenname: Rongjie
  surname: Wang
  fullname: Wang, Rongjie
– sequence: 4
  givenname: Wenguang
  surname: Zhou
  fullname: Zhou, Wenguang
BookMark eNpNUU1LHEEQbUQhZvWSX9CQm7Cm-mtm2tvgqlkRDDE5NzX9sfYyO2162kD-va0bEqsOVfV49XjwPpLDKU2ekE8MzoXQ8CXPTDEpGg4H5JhDy5eSa374bv9ATud5C7WEYBrkMbm99m7Vry7oQxp_x2lDy6On63nEyb1e33IaRr-jKdCH_jtd73DjaR-zzRgKXfnibYlpoisseEKOAo6zP_07F-Tn9dWPy6_Lu_ub9WV_t7QSoCzV4FhoG6VBcKaDajovwxAGF1TrOqUcaISu5Uxwjx3jzguHSjrvbMM0V2JB1ntdl3BrnnLcYf5jEkbzBqS8MZhLtKM3AnXDB45BQCObtkM_iDawDrrBKoChan3eaz3l9OvZz8Vs03Oeqn3DOykYSAG6ss73rA1W0TiFVDLa2s7voq0hhFjxvlWa16oRLMjZ_sHmNM_Zh382GZjXrMz_rMQLN5eELw
CitedBy_id crossref_primary_10_1117_1_JEI_33_2_023049
crossref_primary_10_3390_rs15205050
Cites_doi 10.3390/rs14092076
10.3390/rs13071236
10.1016/j.ins.2018.03.061
10.1609/aaai.v34i07.6999
10.1109/TGRS.2020.3027762
10.21552/EDPL/2016/3/4
10.1038/s41598-020-69250-1
10.2307/840330
10.3390/rs14184583
10.3390/rs15102485
10.1016/j.clsr.2017.05.022
10.3390/rs15092364
10.1093/jamia/ocaa341
10.1007/s11263-014-0733-5
10.1109/TGRS.2020.2970841
10.1109/LGRS.2020.2981255
10.1109/JMASS.2023.3258379
10.3390/rs13183650
10.3390/rs10071016
10.1109/TGRS.2019.2920534
10.3390/rs13081586
10.1109/TWC.2019.2961673
10.3390/rs13050910
10.1109/TKDE.2021.3124599
10.3390/rs13152940
10.1109/Radar53847.2021.10028057
10.1109/CVPR.2018.00913
10.1109/IGARSS.2018.8519064
10.3390/rs14092198
10.1109/CVPR.2014.81
10.1109/MCI.2020.2976185
10.1109/MGRS.2013.2248301
10.3390/rs12061015
10.1109/TGRS.2016.2551720
10.1109/CVPR52729.2023.00721
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs15143620
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_3a962b2af3064678aeb37f1808bc500b
A759222214
10_3390_rs15143620
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c400t-5bd1f765903219f568e4fbfbdf57d855d09a0872132ea812de3da54dedc619253
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Tue Oct 22 15:15:26 EDT 2024
Mon Nov 04 14:32:24 EST 2024
Fri Feb 02 04:41:36 EST 2024
Thu Sep 26 18:19:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-5bd1f765903219f568e4fbfbdf57d855d09a0872132ea812de3da54dedc619253
OpenAccessLink https://doaj.org/article/3a962b2af3064678aeb37f1808bc500b
PQID 2843104309
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_3a962b2af3064678aeb37f1808bc500b
proquest_journals_2843104309
gale_infotracacademiconefile_A759222214
crossref_primary_10_3390_rs15143620
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References An (ref_17) 2019; 57
Sheller (ref_33) 2020; 10
ref_14
ref_13
ref_11
ref_52
ref_51
Kang (ref_12) 2021; 60
Chen (ref_19) 2022; 60
Moreira (ref_1) 2013; 1
Yang (ref_6) 2023; 4
ref_16
ref_15
Everingham (ref_50) 2015; 111
Albrecht (ref_28) 2016; 2
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Chen (ref_8) 2016; 54
Guo (ref_10) 2020; 59
ref_36
ref_35
ref_34
Parasol (ref_29) 2018; 34
ref_31
Sarma (ref_32) 2021; 28
Chen (ref_2) 2021; 102
ref_39
ref_38
Yang (ref_43) 2020; 19
ref_37
Gray (ref_30) 1986; 34
Gong (ref_27) 2020; 15
Molan (ref_7) 2020; 58
Zhao (ref_18) 2020; 18
Chen (ref_40) 2018; 451
ref_47
ref_46
ref_45
ref_44
Aono (ref_41) 2017; 13
ref_42
Li (ref_26) 2021; 35
ref_3
ref_49
ref_48
ref_9
ref_5
ref_4
References_xml – ident: ref_13
  doi: 10.3390/rs14092076
– ident: ref_49
– ident: ref_51
– ident: ref_5
  doi: 10.3390/rs13071236
– ident: ref_39
– volume: 451
  start-page: 34
  year: 2018
  ident: ref_40
  article-title: Privacy-preserving ridge regression on distributed data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.03.061
  contributor:
    fullname: Chen
– ident: ref_42
– ident: ref_35
– ident: ref_38
  doi: 10.1609/aaai.v34i07.6999
– volume: 59
  start-page: 7570
  year: 2020
  ident: ref_10
  article-title: Scattering enhanced attention pyramid network for aircraft detection in SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3027762
  contributor:
    fullname: Guo
– volume: 2
  start-page: 287
  year: 2016
  ident: ref_28
  article-title: How the GDPR will change the world
  publication-title: Eur. Data Prot. Law Rev.
  doi: 10.21552/EDPL/2016/3/4
  contributor:
    fullname: Albrecht
– volume: 10
  start-page: 12598
  year: 2020
  ident: ref_33
  article-title: Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69250-1
  contributor:
    fullname: Sheller
– volume: 34
  start-page: 715
  year: 1986
  ident: ref_30
  article-title: General Principles of Civil Law of the People’s Republic of China
  publication-title: Am. J. Comp. Law
  doi: 10.2307/840330
  contributor:
    fullname: Gray
– ident: ref_24
  doi: 10.3390/rs14184583
– ident: ref_22
  doi: 10.3390/rs15102485
– volume: 34
  start-page: 67
  year: 2018
  ident: ref_29
  article-title: The impact of China’s 2016 Cyber Security Law on foreign technology firms, and on China’s big data and Smart City dreams
  publication-title: Comput. Law Secur. Rev.
  doi: 10.1016/j.clsr.2017.05.022
  contributor:
    fullname: Parasol
– ident: ref_31
– ident: ref_52
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_12
  article-title: SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Kang
– ident: ref_23
  doi: 10.3390/rs15092364
– volume: 13
  start-page: 1333
  year: 2017
  ident: ref_41
  article-title: Privacy-preserving deep learning via additively homomorphic encryption
  publication-title: IEEE Trans. Inf. Forensics Secur.
  contributor:
    fullname: Aono
– volume: 28
  start-page: 1259
  year: 2021
  ident: ref_32
  article-title: Federated learning improves site performance in multicenter deep learning without data sharing
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocaa341
  contributor:
    fullname: Sarma
– ident: ref_45
– volume: 111
  start-page: 98
  year: 2015
  ident: ref_50
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
  contributor:
    fullname: Everingham
– volume: 58
  start-page: 4967
  year: 2020
  ident: ref_7
  article-title: Modeling InSAR phase and SAR intensity changes induced by soil moisture
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2970841
  contributor:
    fullname: Molan
– volume: 18
  start-page: 662
  year: 2020
  ident: ref_18
  article-title: Pyramid attention dilated network for aircraft detection in SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2981255
  contributor:
    fullname: Zhao
– volume: 102
  start-page: 102425
  year: 2021
  ident: ref_2
  article-title: Employing deep learning for automatic river bridge detection from SAR images based on adaptively effective feature fusion
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Chen
– ident: ref_34
– ident: ref_47
– volume: 4
  start-page: 221
  year: 2023
  ident: ref_6
  article-title: Deep Learning-Based Mask-Cut Method for InSAR Phase-Unwraping
  publication-title: IEEE J. Miniaturization Air Space Syst.
  doi: 10.1109/JMASS.2023.3258379
  contributor:
    fullname: Yang
– ident: ref_21
  doi: 10.3390/rs13183650
– ident: ref_16
  doi: 10.3390/rs10071016
– volume: 57
  start-page: 8333
  year: 2019
  ident: ref_17
  article-title: DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2920534
  contributor:
    fullname: An
– ident: ref_4
  doi: 10.3390/rs13081586
– volume: 19
  start-page: 2022
  year: 2020
  ident: ref_43
  article-title: Federated learning via over-the-air computation
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2961673
  contributor:
    fullname: Yang
– ident: ref_37
– ident: ref_20
  doi: 10.3390/rs13050910
– ident: ref_44
– volume: 35
  start-page: 3347
  year: 2021
  ident: ref_26
  article-title: A survey on federated learning systems: Vision, hype and reality for data privacy and protection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3124599
  contributor:
    fullname: Li
– ident: ref_11
  doi: 10.3390/rs13152940
– ident: ref_9
  doi: 10.1109/Radar53847.2021.10028057
– ident: ref_36
  doi: 10.1109/CVPR.2018.00913
– ident: ref_14
  doi: 10.1109/IGARSS.2018.8519064
– ident: ref_25
  doi: 10.3390/rs14092198
– ident: ref_46
– ident: ref_15
  doi: 10.1109/CVPR.2014.81
– volume: 15
  start-page: 49
  year: 2020
  ident: ref_27
  article-title: A survey on differentially private machine learning
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2020.2976185
  contributor:
    fullname: Gong
– volume: 60
  start-page: 1
  year: 2022
  ident: ref_19
  article-title: Geospatial transformer is what you need for aircraft detection in SAR Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Chen
– volume: 1
  start-page: 6
  year: 2013
  ident: ref_1
  article-title: A tutorial on synthetic aperture radar
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2013.2248301
  contributor:
    fullname: Moreira
– ident: ref_3
  doi: 10.3390/rs12061015
– volume: 54
  start-page: 4806
  year: 2016
  ident: ref_8
  article-title: Target classification using the deep convolutional networks for SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2551720
  contributor:
    fullname: Chen
– ident: ref_48
  doi: 10.1109/CVPR52729.2023.00721
SSID ssj0000331904
Score 2.400757
Snippet In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 3620
SubjectTerms Accuracy
Aircraft
Aircraft detection
Airports
Algorithms
Artificial intelligence
Artificial satellites in remote sensing
Collaboration
Datasets
Deep learning
federated learning
Flying-machines
Machine learning
Medical research
Object recognition
Personal information
Privacy
Radar imaging
Remote sensing
Scarcity
Synthetic aperture radar
synthetic aperture radar (SAR) images
Training
YOLO
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKOcCl4ikWWmSpSJyiOvGbC0q73T4kEKJU6s3yEyqVTZtND_x7PIm35UKvSQ7ReDzzfWPPfAh9CDwkSpOveGxExQRtKsusrqKw3GfI6zWDfucvX8XxOTu94Bel4LYq1yrXMXEM1KHzUCPfy2E0IxFGif58fVOBahScrhYJjUfocd1ICeRLLY7uaiyEZgcjbJpKSjO73-tXNSAEAfLe_-ShcVz__4LymGkWz9BWgYi4ndb0OdqIyxfoSVEr__XnJTpdxDBv55_wWXcF9QCcQRyGtR07VPC3SSMGdwmftd_xye8cMnB72fvepgHP4zDevlriuR3sK3S-OPxxcFwVTYTK5902VNyFOknBNaE51iQuVGTJJRcSl0FxHoi2RGVaR5toc_IOkQbLWYjBA1Xi9DXaXHbL-AZhD9ney6STVCwJZ5WycM6alJTCCT1Du2sLmetp9IXJlAHsaO7tOEP7YLy7L2Bc9fig63-a4v2GWi0a19gEfCenR5spvEy1Isp5ToiboY9gegObauitt6U3IP8ojKcyreQ6A5mmZjO0vV4dU3bbytz7xtuHX79DT0Eufrpuu402h_427mRQMbj3o-f8BcPOyPI
  priority: 102
  providerName: ProQuest
Title FedDAD: Solving the Islanding Problem of SAR Image Aircraft Detection Data
URI https://www.proquest.com/docview/2843104309
https://doaj.org/article/3a962b2af3064678aeb37f1808bc500b
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLagHOCCyksslNVIIHGKOpt5ZKa3tNulVKKqWir1NpqnQIJdlIYD_752ksJeEBeuUQ6WPWN_X2J_BniXVCpClFipXOtKalFXXnpbZe1VRMgbraR5509n-uRKnl6r661VX9QTNsoDj47bF97qOtS-EFTGzOqR_TVlYbgJUXEehuzL7RaZGnKwwKPF5ahHKpDX73c3C8IGmhZ7b1WgQaj_b-l4qDGrXXg8gUPWjkY9gXt5_RQeTnvKv_x6BqernJbt8oBdbr7RlwCG8I1RVIfZFHY-bodhm8Iu2wv28TsmC9Z-7WLnS8-WuR_6rtZs6Xv_HK5Wx5-PTqppG0IV8Z71lQppURqtLBeYZYrSJssSSkhFNckolbj13CChE3X2WLZTFskrmXKKRJKUeAE76806vwQWqc7HptjSGFl08MZ4-sNaTNPooO0M3t55yP0YRS8ckgXyo_vjxxkckvN-v0FC1cMDDJ-bwuf-Fb4ZvCfXO7pOfeejn6YC0FASpnJtoyxCmHohZ7B3Fx033bMbh8UV8akU3L76H9a8hke0Tn5sx92Dnb77md8g6OjDHO6b1Yc5PDg8Pju_mA-n7RaJ-9Oj
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHMqlKi-xUMASSJyieuNH4l5QYFm2pa0QbaXeLD8LEt2UbHrov2cm8bZc4JrkEM3zm7FnPkLeBRkS58kXMpaqEIqXhRVWF1FZ6QHyei1w3vnoWC3OxMG5PM8Nt1W-VrmOiUOgDq3HHvkuhFFAIoIz_eHqd4GsUXi6mik07pMHgkOuxknx-ZfbHgvjYGBMjFtJOVT3u91qighBIb33X3loWNf_r6A8ZJr5NtnKEJE2o04fkXtx-ZhsZrbyHzdPyME8hlkz26Mn7S_sB1AAcRR1O0yo0G8jRwxtEz1pvtP9SwgZtPnZ-c6mns5iP9y-WtKZ7e1Tcjb_fPppUWROhMKDt_WFdGGaKiU14xBrklR1FMklF5KsQi1lYNqyGso6XkYLyTtEHqwUIQaPpZLkz8jGsl3G54R6zPa-SjpVtUjK2bq2eM6a6qpSTukJebuWkLkaV18YKBlQjuZOjhPyEYV3-wWuqx4etN2FydZvuNWqdKVNWO9AerRQwldpWrPaecmYm5D3KHqDTtV31ts8GwA_iuupTFNJDUCmnIoJ2Vlrx2RvW5k723jx_9dvyObi9OjQHO4ff31JHiJ1_Hj1dods9N11fAUAo3evByv6Az9Ny9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSMAF8VQXClgCiVO03vgRmwsKhNAWqCpKpd4sxw9Agk3JhgP_npnE23KBa5JDNJ7HN-OZ-Qh5HmRInCdfyFiqQiheFk44U0TlpAfI643AeeePR2r_VByeybPc_7TJbZVbnzg56tB7rJEvwY0CEhGcmWXKbRHHTfvq_GeBDFJ405rpNK6SaxAVFWq4bt9d1FsYB2VjYt5QyiHTXw6bFaIFhVTff8WkaXX_vxz0FHXa2-RWhou0ns_3DrkS13fJjcxc_vX3PXLYxtDUzUt60n_H2gAFQEfxnKdpFXo888XQPtGT-hM9-AHug9bfBj-4NNImjlMn1po2bnT3yWn79vOb_SLzIxQeLG8sZBdWqVLSMA5-J0mlo0hd6kKSVdBSBmYc05Di8TI6COQh8uCkCDF4TJskf0B21v067hLqMfL7KplUaZFU57R2eOeadFWpTpkFebaVkD2f12BYSB9QjvZSjgvyGoV38QWurp4e9MMXmy3BcmdU2ZUuYe4DodJBOl-llWa685KxbkFeoOgtGtg4OO_ynAD8KK6qsnUlDYCaciUWZG97OjZb3sZe6snD_79-Sq6DAtkPB0fvH5GbyCI_d-HukZ1x-BUfA9YYuyeTEv0B4SvQEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FedDAD%3A+Solving+the+Islanding+Problem+of+SAR+Image+Aircraft+Detection+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jia%2C+Zhiwei&rft.au=Zheng%2C+Haoliang&rft.au=Wang%2C+Rongjie&rft.au=Zhou%2C+Wenguang&rft.date=2023-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=14&rft.spage=3620&rft_id=info:doi/10.3390%2Frs15143620&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15143620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon