FedDAD: Solving the Islanding Problem of SAR Image Aircraft Detection Data
In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and the high privacy makes the personal sample set have the characteristics of data silos. Existing data enhancement methods can alleviate the pro...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 14; p. 3620 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and the high privacy makes the personal sample set have the characteristics of data silos. Existing data enhancement methods can alleviate the problem of data scarcity through feature reuse, but they are still powerless for data that are not involved in local training. To solve this problem, a new federated learning framework was proposed to solve the problem of data scarcity and data silos through multi-client joint training and model aggregation. The commonly used federal average algorithm is not effective for aircraft detection with unbalanced samples, so a federal distribution average deviation (FedDAD) algorithm, which is more suitable for aircraft detection in SAR images, was designed. Based on label distribution and client model quality, the contribution ratio of each client parameter is adaptively adjusted to optimize the global model. Client models trained through federated cooperation have an advantage in detecting aircraft with unknown scenarios or attitudes while remaining sensitive to local datasets. Based on the YOLOv5s algorithm, the feasibility of federated learning was verified on SAR image aircraft detection datasets and the portability of the FedDAD algorithm on public datasets. In tests based on the YOLOv5s algorithm, FedDAD outperformed FedAvg’s mAP0.5–0.95 on the total test set of two SAR image aircraft detection and far outperformed the local centralized training model. |
---|---|
AbstractList | In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and the high privacy makes the personal sample set have the characteristics of data silos. Existing data enhancement methods can alleviate the problem of data scarcity through feature reuse, but they are still powerless for data that are not involved in local training. To solve this problem, a new federated learning framework was proposed to solve the problem of data scarcity and data silos through multi-client joint training and model aggregation. The commonly used federal average algorithm is not effective for aircraft detection with unbalanced samples, so a federal distribution average deviation (FedDAD) algorithm, which is more suitable for aircraft detection in SAR images, was designed. Based on label distribution and client model quality, the contribution ratio of each client parameter is adaptively adjusted to optimize the global model. Client models trained through federated cooperation have an advantage in detecting aircraft with unknown scenarios or attitudes while remaining sensitive to local datasets. Based on the YOLOv5s algorithm, the feasibility of federated learning was verified on SAR image aircraft detection datasets and the portability of the FedDAD algorithm on public datasets. In tests based on the YOLOv5s algorithm, FedDAD outperformed FedAvg’s mAP0.5–0.95 on the total test set of two SAR image aircraft detection and far outperformed the local centralized training model. |
Audience | Academic |
Author | Zheng, Haoliang Wang, Rongjie Zhou, Wenguang Jia, Zhiwei |
Author_xml | – sequence: 1 givenname: Zhiwei surname: Jia fullname: Jia, Zhiwei – sequence: 2 givenname: Haoliang surname: Zheng fullname: Zheng, Haoliang – sequence: 3 givenname: Rongjie surname: Wang fullname: Wang, Rongjie – sequence: 4 givenname: Wenguang surname: Zhou fullname: Zhou, Wenguang |
BookMark | eNpNUU1LHEEQbUQhZvWSX9CQm7Cm-mtm2tvgqlkRDDE5NzX9sfYyO2162kD-va0bEqsOVfV49XjwPpLDKU2ekE8MzoXQ8CXPTDEpGg4H5JhDy5eSa374bv9ATud5C7WEYBrkMbm99m7Vry7oQxp_x2lDy6On63nEyb1e33IaRr-jKdCH_jtd73DjaR-zzRgKXfnibYlpoisseEKOAo6zP_07F-Tn9dWPy6_Lu_ub9WV_t7QSoCzV4FhoG6VBcKaDajovwxAGF1TrOqUcaISu5Uxwjx3jzguHSjrvbMM0V2JB1ntdl3BrnnLcYf5jEkbzBqS8MZhLtKM3AnXDB45BQCObtkM_iDawDrrBKoChan3eaz3l9OvZz8Vs03Oeqn3DOykYSAG6ss73rA1W0TiFVDLa2s7voq0hhFjxvlWa16oRLMjZ_sHmNM_Zh382GZjXrMz_rMQLN5eELw |
CitedBy_id | crossref_primary_10_1117_1_JEI_33_2_023049 crossref_primary_10_3390_rs15205050 |
Cites_doi | 10.3390/rs14092076 10.3390/rs13071236 10.1016/j.ins.2018.03.061 10.1609/aaai.v34i07.6999 10.1109/TGRS.2020.3027762 10.21552/EDPL/2016/3/4 10.1038/s41598-020-69250-1 10.2307/840330 10.3390/rs14184583 10.3390/rs15102485 10.1016/j.clsr.2017.05.022 10.3390/rs15092364 10.1093/jamia/ocaa341 10.1007/s11263-014-0733-5 10.1109/TGRS.2020.2970841 10.1109/LGRS.2020.2981255 10.1109/JMASS.2023.3258379 10.3390/rs13183650 10.3390/rs10071016 10.1109/TGRS.2019.2920534 10.3390/rs13081586 10.1109/TWC.2019.2961673 10.3390/rs13050910 10.1109/TKDE.2021.3124599 10.3390/rs13152940 10.1109/Radar53847.2021.10028057 10.1109/CVPR.2018.00913 10.1109/IGARSS.2018.8519064 10.3390/rs14092198 10.1109/CVPR.2014.81 10.1109/MCI.2020.2976185 10.1109/MGRS.2013.2248301 10.3390/rs12061015 10.1109/TGRS.2016.2551720 10.1109/CVPR52729.2023.00721 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs15143620 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) (PQ_SDU_P3) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_3a962b2af3064678aeb37f1808bc500b A759222214 10_3390_rs15143620 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c400t-5bd1f765903219f568e4fbfbdf57d855d09a0872132ea812de3da54dedc619253 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:15:26 EDT 2024 Mon Nov 04 14:32:24 EST 2024 Fri Feb 02 04:41:36 EST 2024 Thu Sep 26 18:19:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-5bd1f765903219f568e4fbfbdf57d855d09a0872132ea812de3da54dedc619253 |
OpenAccessLink | https://doaj.org/article/3a962b2af3064678aeb37f1808bc500b |
PQID | 2843104309 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3a962b2af3064678aeb37f1808bc500b proquest_journals_2843104309 gale_infotracacademiconefile_A759222214 crossref_primary_10_3390_rs15143620 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | An (ref_17) 2019; 57 Sheller (ref_33) 2020; 10 ref_14 ref_13 ref_11 ref_52 ref_51 Kang (ref_12) 2021; 60 Chen (ref_19) 2022; 60 Moreira (ref_1) 2013; 1 Yang (ref_6) 2023; 4 ref_16 ref_15 Everingham (ref_50) 2015; 111 Albrecht (ref_28) 2016; 2 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 Chen (ref_8) 2016; 54 Guo (ref_10) 2020; 59 ref_36 ref_35 ref_34 Parasol (ref_29) 2018; 34 ref_31 Sarma (ref_32) 2021; 28 Chen (ref_2) 2021; 102 ref_39 ref_38 Yang (ref_43) 2020; 19 ref_37 Gray (ref_30) 1986; 34 Gong (ref_27) 2020; 15 Molan (ref_7) 2020; 58 Zhao (ref_18) 2020; 18 Chen (ref_40) 2018; 451 ref_47 ref_46 ref_45 ref_44 Aono (ref_41) 2017; 13 ref_42 Li (ref_26) 2021; 35 ref_3 ref_49 ref_48 ref_9 ref_5 ref_4 |
References_xml | – ident: ref_13 doi: 10.3390/rs14092076 – ident: ref_49 – ident: ref_51 – ident: ref_5 doi: 10.3390/rs13071236 – ident: ref_39 – volume: 451 start-page: 34 year: 2018 ident: ref_40 article-title: Privacy-preserving ridge regression on distributed data publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.03.061 contributor: fullname: Chen – ident: ref_42 – ident: ref_35 – ident: ref_38 doi: 10.1609/aaai.v34i07.6999 – volume: 59 start-page: 7570 year: 2020 ident: ref_10 article-title: Scattering enhanced attention pyramid network for aircraft detection in SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3027762 contributor: fullname: Guo – volume: 2 start-page: 287 year: 2016 ident: ref_28 article-title: How the GDPR will change the world publication-title: Eur. Data Prot. Law Rev. doi: 10.21552/EDPL/2016/3/4 contributor: fullname: Albrecht – volume: 10 start-page: 12598 year: 2020 ident: ref_33 article-title: Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data publication-title: Sci. Rep. doi: 10.1038/s41598-020-69250-1 contributor: fullname: Sheller – volume: 34 start-page: 715 year: 1986 ident: ref_30 article-title: General Principles of Civil Law of the People’s Republic of China publication-title: Am. J. Comp. Law doi: 10.2307/840330 contributor: fullname: Gray – ident: ref_24 doi: 10.3390/rs14184583 – ident: ref_22 doi: 10.3390/rs15102485 – volume: 34 start-page: 67 year: 2018 ident: ref_29 article-title: The impact of China’s 2016 Cyber Security Law on foreign technology firms, and on China’s big data and Smart City dreams publication-title: Comput. Law Secur. Rev. doi: 10.1016/j.clsr.2017.05.022 contributor: fullname: Parasol – ident: ref_31 – ident: ref_52 – volume: 60 start-page: 1 year: 2021 ident: ref_12 article-title: SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Kang – ident: ref_23 doi: 10.3390/rs15092364 – volume: 13 start-page: 1333 year: 2017 ident: ref_41 article-title: Privacy-preserving deep learning via additively homomorphic encryption publication-title: IEEE Trans. Inf. Forensics Secur. contributor: fullname: Aono – volume: 28 start-page: 1259 year: 2021 ident: ref_32 article-title: Federated learning improves site performance in multicenter deep learning without data sharing publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa341 contributor: fullname: Sarma – ident: ref_45 – volume: 111 start-page: 98 year: 2015 ident: ref_50 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 contributor: fullname: Everingham – volume: 58 start-page: 4967 year: 2020 ident: ref_7 article-title: Modeling InSAR phase and SAR intensity changes induced by soil moisture publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2970841 contributor: fullname: Molan – volume: 18 start-page: 662 year: 2020 ident: ref_18 article-title: Pyramid attention dilated network for aircraft detection in SAR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2981255 contributor: fullname: Zhao – volume: 102 start-page: 102425 year: 2021 ident: ref_2 article-title: Employing deep learning for automatic river bridge detection from SAR images based on adaptively effective feature fusion publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Chen – ident: ref_34 – ident: ref_47 – volume: 4 start-page: 221 year: 2023 ident: ref_6 article-title: Deep Learning-Based Mask-Cut Method for InSAR Phase-Unwraping publication-title: IEEE J. Miniaturization Air Space Syst. doi: 10.1109/JMASS.2023.3258379 contributor: fullname: Yang – ident: ref_21 doi: 10.3390/rs13183650 – ident: ref_16 doi: 10.3390/rs10071016 – volume: 57 start-page: 8333 year: 2019 ident: ref_17 article-title: DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2920534 contributor: fullname: An – ident: ref_4 doi: 10.3390/rs13081586 – volume: 19 start-page: 2022 year: 2020 ident: ref_43 article-title: Federated learning via over-the-air computation publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2961673 contributor: fullname: Yang – ident: ref_37 – ident: ref_20 doi: 10.3390/rs13050910 – ident: ref_44 – volume: 35 start-page: 3347 year: 2021 ident: ref_26 article-title: A survey on federated learning systems: Vision, hype and reality for data privacy and protection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3124599 contributor: fullname: Li – ident: ref_11 doi: 10.3390/rs13152940 – ident: ref_9 doi: 10.1109/Radar53847.2021.10028057 – ident: ref_36 doi: 10.1109/CVPR.2018.00913 – ident: ref_14 doi: 10.1109/IGARSS.2018.8519064 – ident: ref_25 doi: 10.3390/rs14092198 – ident: ref_46 – ident: ref_15 doi: 10.1109/CVPR.2014.81 – volume: 15 start-page: 49 year: 2020 ident: ref_27 article-title: A survey on differentially private machine learning publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2020.2976185 contributor: fullname: Gong – volume: 60 start-page: 1 year: 2022 ident: ref_19 article-title: Geospatial transformer is what you need for aircraft detection in SAR Imagery publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Chen – volume: 1 start-page: 6 year: 2013 ident: ref_1 article-title: A tutorial on synthetic aperture radar publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2013.2248301 contributor: fullname: Moreira – ident: ref_3 doi: 10.3390/rs12061015 – volume: 54 start-page: 4806 year: 2016 ident: ref_8 article-title: Target classification using the deep convolutional networks for SAR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2551720 contributor: fullname: Chen – ident: ref_48 doi: 10.1109/CVPR52729.2023.00721 |
SSID | ssj0000331904 |
Score | 2.400757 |
Snippet | In aircraft feature detection, the difficulty of acquiring Synthetic Aperture Radar (SAR) images leads to the scarcity of some types of aircraft samples, and... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 3620 |
SubjectTerms | Accuracy Aircraft Aircraft detection Airports Algorithms Artificial intelligence Artificial satellites in remote sensing Collaboration Datasets Deep learning federated learning Flying-machines Machine learning Medical research Object recognition Personal information Privacy Radar imaging Remote sensing Scarcity Synthetic aperture radar synthetic aperture radar (SAR) images Training YOLO |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKOcCl4ikWWmSpSJyiOvGbC0q73T4kEKJU6s3yEyqVTZtND_x7PIm35UKvSQ7ReDzzfWPPfAh9CDwkSpOveGxExQRtKsusrqKw3GfI6zWDfucvX8XxOTu94Bel4LYq1yrXMXEM1KHzUCPfy2E0IxFGif58fVOBahScrhYJjUfocd1ICeRLLY7uaiyEZgcjbJpKSjO73-tXNSAEAfLe_-ShcVz__4LymGkWz9BWgYi4ndb0OdqIyxfoSVEr__XnJTpdxDBv55_wWXcF9QCcQRyGtR07VPC3SSMGdwmftd_xye8cMnB72fvepgHP4zDevlriuR3sK3S-OPxxcFwVTYTK5902VNyFOknBNaE51iQuVGTJJRcSl0FxHoi2RGVaR5toc_IOkQbLWYjBA1Xi9DXaXHbL-AZhD9ney6STVCwJZ5WycM6alJTCCT1Du2sLmetp9IXJlAHsaO7tOEP7YLy7L2Bc9fig63-a4v2GWi0a19gEfCenR5spvEy1Isp5ToiboY9gegObauitt6U3IP8ojKcyreQ6A5mmZjO0vV4dU3bbytz7xtuHX79DT0Eufrpuu402h_427mRQMbj3o-f8BcPOyPI priority: 102 providerName: ProQuest |
Title | FedDAD: Solving the Islanding Problem of SAR Image Aircraft Detection Data |
URI | https://www.proquest.com/docview/2843104309 https://doaj.org/article/3a962b2af3064678aeb37f1808bc500b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9RADLagHOCCyksslNVIIHGKOpt5ZKa3tNulVKKqWir1NpqnQIJdlIYD_752ksJeEBeuUQ6WPWN_X2J_BniXVCpClFipXOtKalFXXnpbZe1VRMgbraR5509n-uRKnl6r661VX9QTNsoDj47bF97qOtS-EFTGzOqR_TVlYbgJUXEehuzL7RaZGnKwwKPF5ahHKpDX73c3C8IGmhZ7b1WgQaj_b-l4qDGrXXg8gUPWjkY9gXt5_RQeTnvKv_x6BqernJbt8oBdbr7RlwCG8I1RVIfZFHY-bodhm8Iu2wv28TsmC9Z-7WLnS8-WuR_6rtZs6Xv_HK5Wx5-PTqppG0IV8Z71lQppURqtLBeYZYrSJssSSkhFNckolbj13CChE3X2WLZTFskrmXKKRJKUeAE76806vwQWqc7HptjSGFl08MZ4-sNaTNPooO0M3t55yP0YRS8ckgXyo_vjxxkckvN-v0FC1cMDDJ-bwuf-Fb4ZvCfXO7pOfeejn6YC0FASpnJtoyxCmHohZ7B3Fx033bMbh8UV8akU3L76H9a8hke0Tn5sx92Dnb77md8g6OjDHO6b1Yc5PDg8Pju_mA-n7RaJ-9Oj |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHMqlKi-xUMASSJyieuNH4l5QYFm2pa0QbaXeLD8LEt2UbHrov2cm8bZc4JrkEM3zm7FnPkLeBRkS58kXMpaqEIqXhRVWF1FZ6QHyei1w3vnoWC3OxMG5PM8Nt1W-VrmOiUOgDq3HHvkuhFFAIoIz_eHqd4GsUXi6mik07pMHgkOuxknx-ZfbHgvjYGBMjFtJOVT3u91qighBIb33X3loWNf_r6A8ZJr5NtnKEJE2o04fkXtx-ZhsZrbyHzdPyME8hlkz26Mn7S_sB1AAcRR1O0yo0G8jRwxtEz1pvtP9SwgZtPnZ-c6mns5iP9y-WtKZ7e1Tcjb_fPppUWROhMKDt_WFdGGaKiU14xBrklR1FMklF5KsQi1lYNqyGso6XkYLyTtEHqwUIQaPpZLkz8jGsl3G54R6zPa-SjpVtUjK2bq2eM6a6qpSTukJebuWkLkaV18YKBlQjuZOjhPyEYV3-wWuqx4etN2FydZvuNWqdKVNWO9AerRQwldpWrPaecmYm5D3KHqDTtV31ts8GwA_iuupTFNJDUCmnIoJ2Vlrx2RvW5k723jx_9dvyObi9OjQHO4ff31JHiJ1_Hj1dods9N11fAUAo3evByv6Az9Ny9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSMAF8VQXClgCiVO03vgRmwsKhNAWqCpKpd4sxw9Agk3JhgP_npnE23KBa5JDNJ7HN-OZ-Qh5HmRInCdfyFiqQiheFk44U0TlpAfI643AeeePR2r_VByeybPc_7TJbZVbnzg56tB7rJEvwY0CEhGcmWXKbRHHTfvq_GeBDFJ405rpNK6SaxAVFWq4bt9d1FsYB2VjYt5QyiHTXw6bFaIFhVTff8WkaXX_vxz0FHXa2-RWhou0ns_3DrkS13fJjcxc_vX3PXLYxtDUzUt60n_H2gAFQEfxnKdpFXo888XQPtGT-hM9-AHug9bfBj-4NNImjlMn1po2bnT3yWn79vOb_SLzIxQeLG8sZBdWqVLSMA5-J0mlo0hd6kKSVdBSBmYc05Di8TI6COQh8uCkCDF4TJskf0B21v067hLqMfL7KplUaZFU57R2eOeadFWpTpkFebaVkD2f12BYSB9QjvZSjgvyGoV38QWurp4e9MMXmy3BcmdU2ZUuYe4DodJBOl-llWa685KxbkFeoOgtGtg4OO_ynAD8KK6qsnUlDYCaciUWZG97OjZb3sZe6snD_79-Sq6DAtkPB0fvH5GbyCI_d-HukZ1x-BUfA9YYuyeTEv0B4SvQEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FedDAD%3A+Solving+the+Islanding+Problem+of+SAR+Image+Aircraft+Detection+Data&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jia%2C+Zhiwei&rft.au=Zheng%2C+Haoliang&rft.au=Wang%2C+Rongjie&rft.au=Zhou%2C+Wenguang&rft.date=2023-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=14&rft.spage=3620&rft_id=info:doi/10.3390%2Frs15143620&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs15143620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |