A stochastic configuration network based on chaotic sparrow search algorithm

Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale data regression and classification problems. However, the accuracy of the SCN is affected by the assignation and selection of some network p...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 220; p. 106924
Main Authors Zhang, Chenglong, Ding, Shifei
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 23.05.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale data regression and classification problems. However, the accuracy of the SCN is affected by the assignation and selection of some network parameters significantly Sparrow search algorithm (SSA) is a new meta-heuristic algorithm that simulates the foraging and anti-predation behavior of sparrow population. In this paper, a stochastic configuration network based on chaotic sparrow search algorithm is first introduced, termed as CSSA-SCN. Firstly, chaotic sparrow search algorithm (CSSA) is designed which mainly utilizes logistic mapping, self-adaptive hyper-parameters, mutation operator to enhance the global optimization capability of SSA; Secondly, as the performance of SCN is related to regularization parameter r and scale factor λ of weights and biases, then CSSA is employed to give better parameters for SCN automatically; Finally, 13 benchmark functions and several datasets are used to evaluate the performance of CSSA and CSSA-SCN respectively. Experimental results demonstrate the feasibility and validity of CSSA-SCN compared with SCN and other contrast algorithms.
AbstractList Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale data regression and classification problems. However, the accuracy of the SCN is affected by the assignation and selection of some network parameters significantly Sparrow search algorithm (SSA) is a new meta-heuristic algorithm that simulates the foraging and anti-predation behavior of sparrow population. In this paper, a stochastic configuration network based on chaotic sparrow search algorithm is first introduced, termed as CSSA-SCN. Firstly, chaotic sparrow search algorithm (CSSA) is designed which mainly utilizes logistic mapping, self-adaptive hyper-parameters, mutation operator to enhance the global optimization capability of SSA; Secondly, as the performance of SCN is related to regularization parameter r and scale factor λ of weights and biases, then CSSA is employed to give better parameters for SCN automatically; Finally, 13 benchmark functions and several datasets are used to evaluate the performance of CSSA and CSSA-SCN respectively. Experimental results demonstrate the feasibility and validity of CSSA-SCN compared with SCN and other contrast algorithms.
ArticleNumber 106924
Author Ding, Shifei
Zhang, Chenglong
Author_xml – sequence: 1
  givenname: Chenglong
  surname: Zhang
  fullname: Zhang, Chenglong
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Shifei
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNqFkM1OwzAQhC1UJNrCG3CIxDll7SRNwgGpqviTKnGBs-VsNq3TNi62S9W3xyWcOMBppdU3szszYoPOdMTYNYcJBz69bSfrzrijmwgQPKympUjP2JAXuYjzFMoBG0KZQZxDxi_YyLkWAITgxZAtZpHzBlfKeY0Rmq7Ry71VXpsu6sgfjF1HlXJUR2ERMHPC3E5Zaw6RI2VxFanN0ljtV9tLdt6ojaOrnzlm748Pb_PnePH69DKfLWJMAXycqaJGxAbrkhQm4ReCvCTR1NioaYqQCF5hTklGDQCnKi-yhKcVFwmvyhSTMbvpfXfWfOzJedmave3CSSkywTkXkJaBuusptMY5S41E7b-Teav0RnKQp_ZkK_v25Kk92bcXxOkv8c7qrbLH_2T3vYxC_E9NVjrU1CHV2hJ6WRv9t8EXRLSPHQ
CitedBy_id crossref_primary_10_3390_s23229146
crossref_primary_10_1088_1402_4896_acff2c
crossref_primary_10_1038_s41598_025_86298_z
crossref_primary_10_1016_j_rineng_2024_102985
crossref_primary_10_1155_2023_6579699
crossref_primary_10_3233_JIFS_223443
crossref_primary_10_1109_TCC_2022_3216541
crossref_primary_10_1016_j_saa_2022_120967
crossref_primary_10_1063_5_0213886
crossref_primary_10_20965_jaciii_2025_p0241
crossref_primary_10_3390_en15145174
crossref_primary_10_1016_j_sna_2024_115434
crossref_primary_10_1016_j_jhazmat_2024_134309
crossref_primary_10_1016_j_cscm_2023_e02766
crossref_primary_10_1063_5_0077044
crossref_primary_10_1016_j_asoc_2021_108008
crossref_primary_10_1088_1361_6501_acf681
crossref_primary_10_3390_machines11010010
crossref_primary_10_1007_s00521_021_06751_8
crossref_primary_10_1016_j_jhydrol_2025_133026
crossref_primary_10_1109_ACCESS_2024_3365552
crossref_primary_10_1109_ACCESS_2021_3099169
crossref_primary_10_1007_s10489_022_03870_0
crossref_primary_10_7717_peerj_cs_1382
crossref_primary_10_1007_s11629_023_8083_9
crossref_primary_10_3389_fenvs_2022_909682
crossref_primary_10_1088_2631_8695_adb37a
crossref_primary_10_1007_s10489_021_02701_y
crossref_primary_10_1109_TCDS_2022_3192536
crossref_primary_10_1007_s12065_023_00852_0
crossref_primary_10_3390_app13148446
crossref_primary_10_1177_14759217231170723
crossref_primary_10_1016_j_prime_2024_100420
crossref_primary_10_3390_machines10090729
crossref_primary_10_1177_03019233241246343
crossref_primary_10_3934_mbe_2023324
crossref_primary_10_3390_pr10091691
crossref_primary_10_3390_en15218059
crossref_primary_10_1007_s10845_024_02463_7
crossref_primary_10_3390_math10111803
crossref_primary_10_1016_j_optlastec_2022_108529
crossref_primary_10_1063_5_0108340
crossref_primary_10_3390_math11224634
crossref_primary_10_3389_fenrg_2024_1427614
crossref_primary_10_3390_s22166064
crossref_primary_10_1007_s13042_023_01788_8
crossref_primary_10_1177_0309524X241237964
crossref_primary_10_1080_00207721_2023_2293687
crossref_primary_10_1016_j_swevo_2024_101603
crossref_primary_10_1155_2022_1036913
crossref_primary_10_3934_math_202411310
crossref_primary_10_1016_j_heliyon_2023_e14784
crossref_primary_10_1007_s10064_024_03941_1
crossref_primary_10_3390_app12073388
crossref_primary_10_1155_2021_3946958
crossref_primary_10_3389_fenrg_2023_1174910
crossref_primary_10_1002_qre_3496
crossref_primary_10_1007_s42979_023_02382_z
crossref_primary_10_1007_s11837_023_06019_7
crossref_primary_10_1016_j_jksuci_2023_04_001
crossref_primary_10_3233_JIFS_222395
crossref_primary_10_1155_2022_4882521
crossref_primary_10_3390_atmos12070894
crossref_primary_10_1007_s42235_024_00556_w
crossref_primary_10_1007_s11042_023_15494_8
crossref_primary_10_1016_j_ins_2024_121495
crossref_primary_10_1016_j_knosys_2023_111276
crossref_primary_10_1364_AO_462436
crossref_primary_10_1007_s11277_023_10319_1
crossref_primary_10_1016_j_inffus_2024_102721
crossref_primary_10_3390_w16233390
crossref_primary_10_1038_s41598_024_68964_w
crossref_primary_10_1002_ese3_1620
crossref_primary_10_1007_s42835_022_01101_7
crossref_primary_10_1016_j_energy_2022_126283
crossref_primary_10_1016_j_oceaneng_2024_119364
crossref_primary_10_3389_fenrg_2022_1028423
crossref_primary_10_1016_j_ins_2024_121140
crossref_primary_10_1155_2021_9915420
crossref_primary_10_1155_2021_6505253
crossref_primary_10_3233_JIFS_222930
crossref_primary_10_1016_j_oceaneng_2023_115920
crossref_primary_10_1080_21642583_2022_2140723
crossref_primary_10_1016_j_cie_2023_109425
crossref_primary_10_1155_2022_8171164
crossref_primary_10_1109_TNNLS_2023_3289798
crossref_primary_10_1007_s00500_022_07004_z
crossref_primary_10_1007_s11042_023_14977_y
crossref_primary_10_3233_JIFS_234357
crossref_primary_10_1016_j_engappai_2024_108375
crossref_primary_10_1021_acs_iecr_4c02809
crossref_primary_10_1016_j_asoc_2022_108469
crossref_primary_10_1016_j_jksuci_2024_102255
crossref_primary_10_3390_sym13091579
crossref_primary_10_1038_s41598_023_33615_z
crossref_primary_10_1109_ACCESS_2024_3373554
crossref_primary_10_1007_s12652_022_04420_9
crossref_primary_10_1016_j_techfore_2024_123634
crossref_primary_10_1007_s11356_021_17020_5
crossref_primary_10_1007_s40948_022_00400_7
crossref_primary_10_3390_s22228787
crossref_primary_10_1016_j_energy_2023_128776
crossref_primary_10_3389_fmed_2023_1106717
crossref_primary_10_1109_TII_2024_3438234
crossref_primary_10_1109_TPAMI_2022_3225461
crossref_primary_10_3390_app12147332
crossref_primary_10_1088_1361_6501_ad2255
crossref_primary_10_1016_j_eswa_2024_124789
crossref_primary_10_1016_j_psep_2024_05_027
crossref_primary_10_2478_amns_2023_2_00277
crossref_primary_10_1002_dac_70047
crossref_primary_10_3934_mbe_2024155
crossref_primary_10_1016_j_epsr_2023_109222
crossref_primary_10_1016_j_conbuildmat_2022_126583
crossref_primary_10_1155_2021_5158304
crossref_primary_10_1007_s40436_021_00366_x
crossref_primary_10_1007_s11227_024_06916_x
crossref_primary_10_1109_TIM_2022_3228003
crossref_primary_10_1007_s11356_022_21277_9
crossref_primary_10_1007_s10489_024_05555_2
crossref_primary_10_1016_j_eswa_2022_118414
crossref_primary_10_1007_s00521_023_08256_y
crossref_primary_10_3390_su14020853
crossref_primary_10_1007_s10064_023_03331_z
crossref_primary_10_1016_j_ymssp_2024_111646
crossref_primary_10_1007_s00500_022_06741_5
crossref_primary_10_1093_jcde_qwac101
crossref_primary_10_3390_app112311192
crossref_primary_10_1016_j_asr_2022_01_043
crossref_primary_10_1007_s10489_021_02972_5
crossref_primary_10_1016_j_cherd_2022_06_001
crossref_primary_10_1016_j_compag_2023_107767
crossref_primary_10_3934_math_20241310
crossref_primary_10_1016_j_aej_2024_09_084
crossref_primary_10_1155_2022_3680419
crossref_primary_10_1109_ACCESS_2021_3106269
crossref_primary_10_1007_s10586_024_04348_z
crossref_primary_10_3390_biomimetics9090576
crossref_primary_10_3390_ma17235727
crossref_primary_10_3390_biomimetics10040195
crossref_primary_10_2166_ws_2021_419
crossref_primary_10_1016_j_ins_2024_121831
crossref_primary_10_3233_JIFS_223827
crossref_primary_10_1007_s00500_023_09373_5
crossref_primary_10_1109_ACCESS_2021_3093313
crossref_primary_10_1109_ACCESS_2022_3204798
crossref_primary_10_1007_s10462_023_10549_6
crossref_primary_10_1109_ACCESS_2023_3327707
crossref_primary_10_1115_1_4064189
crossref_primary_10_1177_15501477211073037
crossref_primary_10_3390_atmos14111612
crossref_primary_10_1063_5_0099474
crossref_primary_10_3934_era_2024093
crossref_primary_10_1080_21642583_2024_2314481
crossref_primary_10_3390_e24040478
crossref_primary_10_1016_j_istruc_2024_107669
crossref_primary_10_3390_su15086571
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_3390_e24121788
crossref_primary_10_1016_j_ins_2024_121840
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_1016_j_apenergy_2023_122613
crossref_primary_10_1016_j_sna_2024_115982
crossref_primary_10_1016_j_advengsoft_2024_103635
crossref_primary_10_3390_math11091977
crossref_primary_10_1016_j_eswa_2023_122991
crossref_primary_10_1016_j_ipm_2021_102854
crossref_primary_10_1016_j_measurement_2024_115238
crossref_primary_10_3390_app122311951
crossref_primary_10_1080_21681015_2021_1972478
crossref_primary_10_1109_ACCESS_2023_3347611
crossref_primary_10_1007_s11227_024_06799_y
crossref_primary_10_1142_S0218127424502055
crossref_primary_10_1155_2022_2475460
crossref_primary_10_1007_s11063_023_11422_x
crossref_primary_10_1007_s13042_024_02152_0
crossref_primary_10_1080_08839514_2022_2073719
crossref_primary_10_1088_1361_6501_ad56b2
crossref_primary_10_1016_j_knosys_2023_110464
crossref_primary_10_1016_j_knosys_2024_112249
crossref_primary_10_1016_j_eswa_2023_121597
crossref_primary_10_3390_biomimetics7040144
crossref_primary_10_1016_j_knosys_2022_108403
crossref_primary_10_1002_cpe_8101
crossref_primary_10_1155_2022_8799429
crossref_primary_10_3390_biomimetics8030321
crossref_primary_10_1007_s11042_023_16219_7
crossref_primary_10_3390_sym15020316
crossref_primary_10_1155_2022_4546135
crossref_primary_10_1016_j_apenergy_2021_117815
crossref_primary_10_1016_j_apenergy_2023_122071
crossref_primary_10_1016_j_est_2024_110983
crossref_primary_10_3390_app13052878
crossref_primary_10_3390_electronics12030672
crossref_primary_10_3934_mbe_2023553
crossref_primary_10_1016_j_knosys_2022_109050
crossref_primary_10_1007_s11831_022_09804_w
crossref_primary_10_1007_s00202_024_02821_x
crossref_primary_10_1007_s10489_022_03562_9
crossref_primary_10_1109_ACCESS_2021_3129255
crossref_primary_10_1371_journal_pone_0295690
crossref_primary_10_2166_wst_2023_308
crossref_primary_10_1007_s11831_023_09887_z
crossref_primary_10_3390_biomimetics9050270
crossref_primary_10_1016_j_asoc_2022_109702
crossref_primary_10_1016_j_measurement_2024_114485
crossref_primary_10_3390_pr11061725
crossref_primary_10_1016_j_knosys_2022_110117
crossref_primary_10_3390_app14125020
crossref_primary_10_3390_machines10060469
crossref_primary_10_1016_j_neucom_2024_127278
crossref_primary_10_3390_min12111388
crossref_primary_10_3390_a16100473
crossref_primary_10_3934_mbe_2023767
crossref_primary_10_3390_machines10100847
crossref_primary_10_1002_spe_3125
crossref_primary_10_1016_j_cie_2023_109498
crossref_primary_10_1016_j_knosys_2022_108626
crossref_primary_10_1007_s12652_022_03703_5
crossref_primary_10_1016_j_comnet_2022_109554
crossref_primary_10_1088_1361_6501_ad9ca6
crossref_primary_10_51764_smutgd_1542508
crossref_primary_10_1016_j_measurement_2022_111967
crossref_primary_10_1177_1045389X241300727
crossref_primary_10_1016_j_isatra_2024_01_028
crossref_primary_10_3390_app13158600
crossref_primary_10_3233_JIFS_231114
crossref_primary_10_1016_j_undsp_2023_09_014
crossref_primary_10_3390_aerospace10080714
crossref_primary_10_1007_s42401_022_00171_9
crossref_primary_10_1016_j_jpowsour_2025_236469
crossref_primary_10_1016_j_ins_2024_121402
crossref_primary_10_1109_ACCESS_2023_3293191
crossref_primary_10_1108_RS_10_2023_0037
crossref_primary_10_1049_gtd2_12855
Cites_doi 10.3390/en12224283
10.1016/j.ins.2019.02.066
10.1016/j.ins.2017.07.003
10.1007/s10489-020-01676-6
10.1016/j.knosys.2015.12.022
10.1007/s00500-019-03952-1
10.1109/TII.2019.2954351
10.1109/TNNLS.2020.2967816
10.1117/1.OE.58.2.026105
10.1016/j.engappai.2020.103731
10.1016/j.eswa.2020.113377
10.1109/TII.2017.2760915
10.1109/TCYB.2019.2925883
10.1016/j.ins.2019.04.022
10.1016/j.swevo.2012.09.002
10.1016/j.ins.2017.05.047
10.1016/j.neucom.2018.05.002
10.1109/TSMC.2019.2956121
10.1109/TCYB.2017.2734043
10.1016/j.neunet.2013.06.011
10.1109/TII.2019.2919268
10.1016/j.ins.2016.12.007
10.1016/j.ins.2018.09.026
10.1016/j.istruc.2020.07.058
10.1109/ACCESS.2019.2907012
10.1016/j.eswa.2020.113698
10.1016/j.asoc.2017.06.033
10.1016/j.engappai.2019.103300
10.1016/j.knosys.2019.01.015
10.1007/s00521-015-1870-7
10.1080/21642583.2019.1708830
10.3390/en11113040
10.1016/j.neucom.2016.12.039
10.1016/j.asoc.2015.10.034
10.1016/j.knosys.2015.07.006
10.1016/j.ins.2019.04.055
10.1016/j.asoc.2019.03.012
10.1016/j.neucom.2020.02.029
10.1016/j.neucom.2020.05.075
10.1016/j.neucom.2017.12.030
10.1016/j.ins.2019.02.042
10.3390/s19153293
10.1016/j.ins.2019.01.062
10.1109/TFUZZ.2019.2959997
10.1109/ACCESS.2019.2941182
10.1016/j.engappai.2019.08.025
10.1007/s00521-020-05178-x
10.1016/j.advengsoft.2016.01.008
10.1109/TNNLS.2018.2846646
10.1016/j.neucom.2018.07.080
10.1109/CEC.2018.8477769
10.1016/j.advengsoft.2020.102804
10.1016/j.eswa.2018.04.028
10.1007/s00521-020-05364-x
10.1007/s12293-017-0248-z
10.1016/j.ins.2020.02.058
10.1016/j.ins.2020.05.112
10.1109/ACCESS.2019.2918753
10.1016/j.eswa.2020.113216
10.1016/j.future.2020.03.055
10.1007/s11432-014-5269-3
10.1016/j.ins.2019.02.041
10.1016/j.engappai.2019.103330
10.1016/j.eswa.2020.113396
10.1016/j.advengsoft.2013.12.007
10.1007/s00521-020-04771-4
10.1016/j.asej.2019.10.004
10.1109/72.623214
10.1007/s00521-019-04453-w
10.1109/TCYB.2014.2322602
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. May 23, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. May 23, 2021
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2021.106924
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2021_106924
S0950705121001878
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
7SC
8FD
E3H
EFKBS
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-5a8dcccfcd9eac3000e079e2fdcfa64c0321bc7e35ef001eb785314b1231b94c3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 04:37:58 EDT 2025
Tue Jul 01 04:38:01 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Fri Feb 23 02:47:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparrow search algorithm
Stochastic configuration network
Optimization
Chaotic
Logistic mapping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-5a8dcccfcd9eac3000e079e2fdcfa64c0321bc7e35ef001eb785314b1231b94c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2521112049
PQPubID 2035257
ParticipantIDs proquest_journals_2521112049
crossref_citationtrail_10_1016_j_knosys_2021_106924
crossref_primary_10_1016_j_knosys_2021_106924
elsevier_sciencedirect_doi_10_1016_j_knosys_2021_106924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-23
PublicationDateYYYYMMDD 2021-05-23
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-23
  day: 23
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Lu, Ding (b6) 2020; 16
Tyukin, Prokhorov (b72) 2009
Mirjalili, Lewis (b34) 2016; 95
Li, Wang (b16) 2021; 51
Zhu, Feng, Wang (b19) 2019; 487
Zhang, Zhang, Wei (b58) 2019; 12
Wang, Dai, Ma (b24) 2020; 394
Ibrahim, Abd Elaziz, Lu (b65) 2018; 108
L. Zhao, S. Zou, M. Huang, Distributed regularized stochastic configuration networks via the elastic net, Neural Comput. Appl.
Yan, Jia (b52) 2018; 313
Deng, Huang, Xu (b74) 2015; 58
Li, Tao, Li (b20) 2019; 488
Lei, Gao, Gupta (b67) 2020; 152
Wang, Xu, Chau (b69) 2020; 150
Qu, Feng, Zhang (b9) 2019; 19
Wang, Cui (b7) 2017; 417
Pan, Luan, Gao (b23) 2020; 8
Tian, Yuan, Qu (b17) 2019; 58
Muthiah-Nakarajan, NoelSchool (b42) 2016; 38
.
Faramarzi, Heidarinejad, Mirjalili (b35) 2020; 152
Hansen (b28) 2008
Xue, Shen (b64) 2020; 8
Gao, Zhou, Wang (b56) 2019; 30
Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary Computation, 1999.
Ai, Wang (b15) 2020; 540
Cai, Alalibo, Cao (b11) 2018; 11
Xu, Chen, Luo (b70) 2019; 492
Mohamed, Hassan, Hemeida (b33) 2020; 11
Nayak, Dash, Majhi (b57) 2018; 282
Cui, Zhang, Li (b3) 2018; 14
Słowik, Cpałka, Łapa (b51) 2020; 28
Mirjalili, Mirjalili, Lewis (b27) 2014; 69
Sulaiman, Mustaffa, Saari (b46) 2020; 87
Wang, Li (b1) 2017; 47
Haghnegahdar, Wang (b60) 2020; 32
S. Gao, Y. Yu, Y. Wang, Chaotic Local Search-Based Differential Evolution Algorithms for Optimization, IEEE Trans. Syst. Man Cybern. Syst.
Han, Jiang, Ling (b55) 2019; 335
Huang, Huang, Wang (b22) 2020; 16
Wang, Wang (b25) 2020; 32
Lu, Ding (b12) 2019; 486
Li, Wang (b75) 2017; 382–383
Wang, Li (b4) 2017; 412
Mirjalili (b32) 2015; 89
Moosavi, Bardsiri (b45) 2019; 86
Das, Mukherjee, Das (b40) 2020; 146
Kwok, Yeung (b73) 1997; 8
N.V.R.R. Goluguri, K.S. Devi, P. Srinivasan, Rice-net: an efficient artificial fish swarm optimization applied deep convolutional neural network model for identifying the Oryza sativa diseases, Neural Comput. Appl.
Yapici, Cetinkaya (b47) 2019; 78
Tang, Zhang, Zhou (b62) 2017; 234
Lu, Ding, Dai (b8) 2020; 31
Mirjalili (b29) 2015; 96
Houssein, Saad, Hashim (b38) 2020; 94
Cheng, Jin (b41) 2015; 45
Gao, Xie, Zhang (b54) 2020; 50
Mirjalili, Lewis (b71) 2013; 9
Wang, Gao, Yu (b68) 2019; 11
Zhang, Ding, Sun (b53) 2020; 410
Kaveh, Khanzadi, Moghaddam (b48) 2020; 27
Wang, Li (b10) 2017
Li, Chen, Wang (b37) 2020; 111
Arteaga, Marrero (b2) 2013; 46
Lin, Qin, Qu (b63) 2019; 172
Li, Huang, Wang (b5) 2019; 473
J. Pierezan, L.D. Coelho, Coyote Optimization Algorithm: A new meta-heuristic for global optimization problems, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2018.
Dai, Li, Zhou (b18) 2019; 484
Shabani, Asgarian, Salido (b39) 2020; 161
Abdullah, Rashid (b49) 2019; 7
Zhang, Li, Li (b21) 2020; 522
Zhao, Zhang, Wang (b43) 2020; 87
Łapa, Cpałka, Zalasiński (b50) 2019; 7
Ansal (b59) 2020; 24
Pratama, Wang (b13) 2019; 495
Zhao, Wang, Zhang (b44) 2019; 7
Nematollahi, Foroughi, Rahiminejad (b36) 2017; 59
Mirjalili, Mirjalili, Hatamlou (b31) 2016; 27
Ansal (10.1016/j.knosys.2021.106924_b59) 2020; 24
Shabani (10.1016/j.knosys.2021.106924_b39) 2020; 161
Zhang (10.1016/j.knosys.2021.106924_b58) 2019; 12
Mohamed (10.1016/j.knosys.2021.106924_b33) 2020; 11
Mirjalili (10.1016/j.knosys.2021.106924_b27) 2014; 69
Mirjalili (10.1016/j.knosys.2021.106924_b29) 2015; 96
10.1016/j.knosys.2021.106924_b30
Wang (10.1016/j.knosys.2021.106924_b24) 2020; 394
Qu (10.1016/j.knosys.2021.106924_b9) 2019; 19
Wang (10.1016/j.knosys.2021.106924_b10) 2017
Kaveh (10.1016/j.knosys.2021.106924_b48) 2020; 27
Lin (10.1016/j.knosys.2021.106924_b63) 2019; 172
Mirjalili (10.1016/j.knosys.2021.106924_b32) 2015; 89
Lu (10.1016/j.knosys.2021.106924_b6) 2020; 16
Mirjalili (10.1016/j.knosys.2021.106924_b34) 2016; 95
Zhang (10.1016/j.knosys.2021.106924_b21) 2020; 522
Dai (10.1016/j.knosys.2021.106924_b18) 2019; 484
Lu (10.1016/j.knosys.2021.106924_b8) 2020; 31
Tyukin (10.1016/j.knosys.2021.106924_b72) 2009
Haghnegahdar (10.1016/j.knosys.2021.106924_b60) 2020; 32
Han (10.1016/j.knosys.2021.106924_b55) 2019; 335
Nematollahi (10.1016/j.knosys.2021.106924_b36) 2017; 59
Gao (10.1016/j.knosys.2021.106924_b56) 2019; 30
Wang (10.1016/j.knosys.2021.106924_b4) 2017; 412
Cai (10.1016/j.knosys.2021.106924_b11) 2018; 11
Łapa (10.1016/j.knosys.2021.106924_b50) 2019; 7
Cui (10.1016/j.knosys.2021.106924_b3) 2018; 14
Yan (10.1016/j.knosys.2021.106924_b52) 2018; 313
Li (10.1016/j.knosys.2021.106924_b20) 2019; 488
Nayak (10.1016/j.knosys.2021.106924_b57) 2018; 282
Deng (10.1016/j.knosys.2021.106924_b74) 2015; 58
Muthiah-Nakarajan (10.1016/j.knosys.2021.106924_b42) 2016; 38
Xu (10.1016/j.knosys.2021.106924_b70) 2019; 492
Houssein (10.1016/j.knosys.2021.106924_b38) 2020; 94
Li (10.1016/j.knosys.2021.106924_b16) 2021; 51
Ai (10.1016/j.knosys.2021.106924_b15) 2020; 540
Kwok (10.1016/j.knosys.2021.106924_b73) 1997; 8
Cheng (10.1016/j.knosys.2021.106924_b41) 2015; 45
Lu (10.1016/j.knosys.2021.106924_b12) 2019; 486
Huang (10.1016/j.knosys.2021.106924_b22) 2020; 16
Li (10.1016/j.knosys.2021.106924_b37) 2020; 111
Sulaiman (10.1016/j.knosys.2021.106924_b46) 2020; 87
Wang (10.1016/j.knosys.2021.106924_b68) 2019; 11
10.1016/j.knosys.2021.106924_b14
Tian (10.1016/j.knosys.2021.106924_b17) 2019; 58
Zhao (10.1016/j.knosys.2021.106924_b44) 2019; 7
Pratama (10.1016/j.knosys.2021.106924_b13) 2019; 495
Zhang (10.1016/j.knosys.2021.106924_b53) 2020; 410
Yapici (10.1016/j.knosys.2021.106924_b47) 2019; 78
Xue (10.1016/j.knosys.2021.106924_b64) 2020; 8
Zhu (10.1016/j.knosys.2021.106924_b19) 2019; 487
Tang (10.1016/j.knosys.2021.106924_b62) 2017; 234
Das (10.1016/j.knosys.2021.106924_b40) 2020; 146
Abdullah (10.1016/j.knosys.2021.106924_b49) 2019; 7
Ibrahim (10.1016/j.knosys.2021.106924_b65) 2018; 108
Słowik (10.1016/j.knosys.2021.106924_b51) 2020; 28
Pan (10.1016/j.knosys.2021.106924_b23) 2020; 8
Li (10.1016/j.knosys.2021.106924_b5) 2019; 473
Hansen (10.1016/j.knosys.2021.106924_b28) 2008
Moosavi (10.1016/j.knosys.2021.106924_b45) 2019; 86
Wang (10.1016/j.knosys.2021.106924_b69) 2020; 150
10.1016/j.knosys.2021.106924_b26
Zhao (10.1016/j.knosys.2021.106924_b43) 2020; 87
Lei (10.1016/j.knosys.2021.106924_b67) 2020; 152
Mirjalili (10.1016/j.knosys.2021.106924_b71) 2013; 9
Gao (10.1016/j.knosys.2021.106924_b54) 2020; 50
10.1016/j.knosys.2021.106924_b66
Arteaga (10.1016/j.knosys.2021.106924_b2) 2013; 46
Wang (10.1016/j.knosys.2021.106924_b1) 2017; 47
Li (10.1016/j.knosys.2021.106924_b75) 2017; 382–383
10.1016/j.knosys.2021.106924_b61
Wang (10.1016/j.knosys.2021.106924_b7) 2017; 417
Wang (10.1016/j.knosys.2021.106924_b25) 2020; 32
Mirjalili (10.1016/j.knosys.2021.106924_b31) 2016; 27
Faramarzi (10.1016/j.knosys.2021.106924_b35) 2020; 152
References_xml – volume: 488
  start-page: 1
  year: 2019
  end-page: 12
  ident: b20
  article-title: Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism
  publication-title: Inform. Sci.
– volume: 161
  year: 2020
  ident: b39
  article-title: Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems
  publication-title: Expert Syst. Appl.
– volume: 150
  year: 2020
  ident: b69
  article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b31
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– volume: 8
  year: 2020
  ident: b23
  article-title: FPGA-based implementation of stochastic configuration network for robotic grasping recognition
  publication-title: IEEE Access
– volume: 28
  start-page: 1125
  year: 2020
  end-page: 1139
  ident: b51
  article-title: Multipopulation nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 540
  start-page: 1
  year: 2020
  end-page: 16
  ident: b15
  article-title: Distributed stochastic configuration networks with cooperative learning paradigm
  publication-title: Inform. Sci.
– volume: 8
  start-page: 1131
  year: 1997
  end-page: 1148
  ident: b73
  article-title: Objective functions for training new hidden units in constructive neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b27
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 47
  start-page: 3466
  year: 2017
  end-page: 3479
  ident: b1
  article-title: Stochastic configuration networks: Fundamentals and algorithms
  publication-title: IEEE Trans. Cybern.
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b32
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 473
  start-page: 73
  year: 2019
  end-page: 86
  ident: b5
  article-title: Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression
  publication-title: Inform. Sci.
– volume: 38
  start-page: 771
  year: 2016
  end-page: 787
  ident: b42
  article-title: Galactic swarm optimization: A new global optimization meta-heuristic inspired by galactic motion
  publication-title: Appl. Soft Comput.
– reference: L. Zhao, S. Zou, M. Huang, Distributed regularized stochastic configuration networks via the elastic net, Neural Comput. Appl.
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b64
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– volume: 11
  start-page: 3040
  year: 2018
  ident: b11
  article-title: Hybrid approach for detecting and classifying power quality disturbances based on the variational mode decomposition and deep stochastic configuration network
  publication-title: Energies
– volume: 146
  year: 2020
  ident: b40
  article-title: Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems
  publication-title: Adv. Eng. Softw.
– volume: 58
  year: 2015
  ident: b74
  article-title: Extreme learning machines: new trends and applications
  publication-title: Sci. China Inf. Sci.
– reference: N.V.R.R. Goluguri, K.S. Devi, P. Srinivasan, Rice-net: an efficient artificial fish swarm optimization applied deep convolutional neural network model for identifying the Oryza sativa diseases, Neural Comput. Appl.
– volume: 484
  start-page: 367
  year: 2019
  end-page: 386
  ident: b18
  article-title: Stochastic configuration networks with block increments for data modeling in process industries
  publication-title: Inform. Sci.
– volume: 87
  year: 2020
  ident: b46
  article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 417
  start-page: 55
  year: 2017
  end-page: 71
  ident: b7
  article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics
  publication-title: Inform. Sci.
– volume: 59
  start-page: 596
  year: 2017
  end-page: 621
  ident: b36
  article-title: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization
  publication-title: Appl. Soft Comput.
– volume: 78
  start-page: 545
  year: 2019
  end-page: 568
  ident: b47
  article-title: A new meta-heuristic optimizer: Pathfinder algorithm
  publication-title: Appl. Soft Comput.
– volume: 51
  start-page: 359
  year: 2021
  end-page: 372
  ident: b16
  article-title: 2-d stochastic configuration networks for image data analytics
  publication-title: IEEE Trans. Cybern.
– reference: Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary Computation, 1999.
– volume: 486
  start-page: 119
  year: 2019
  end-page: 132
  ident: b12
  article-title: Construction of prediction intervals for carbon residual of crude oil based on deep stochastic configuration networks
  publication-title: Inform. Sci.
– volume: 50
  start-page: 2312
  year: 2020
  end-page: 2327
  ident: b54
  article-title: Twin support vector machine based on improved artificial fish swarm algorithm with application to flame recognition
  publication-title: Appl. Intell.
– reference: J. Pierezan, L.D. Coelho, Coyote Optimization Algorithm: A new meta-heuristic for global optimization problems, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2018.
– volume: 495
  start-page: 150
  year: 2019
  end-page: 174
  ident: b13
  article-title: Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
  publication-title: Inform. Sci.
– volume: 313
  start-page: 47
  year: 2018
  end-page: 64
  ident: b52
  article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing
  publication-title: Neurocomputing
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b34
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 94
  year: 2020
  ident: b38
  article-title: Lévy flight distribution: A new meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 492
  start-page: 181
  year: 2019
  end-page: 203
  ident: b70
  article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization
  publication-title: Inform. Sci.
– volume: 86
  start-page: 165
  year: 2019
  end-page: 181
  ident: b45
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 30
  start-page: 601
  year: 2019
  end-page: 614
  ident: b56
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 96
  start-page: 120
  year: 2015
  end-page: 133
  ident: b29
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 32
  start-page: 13625
  year: 2020
  end-page: 13638
  ident: b25
  article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks
  publication-title: Neural Comput. Appl.
– volume: 410
  start-page: 185
  year: 2020
  end-page: 201
  ident: b53
  article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task
  publication-title: Neurocomputing
– volume: 412
  start-page: 210
  year: 2017
  end-page: 222
  ident: b4
  article-title: Robust stochastic configuration networks with kernel density estimation for uncertain data regression
  publication-title: Inform. Sci.
– volume: 27
  start-page: 1722
  year: 2020
  end-page: 1739
  ident: b48
  article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method
  publication-title: Structures
– volume: 7
  year: 2019
  ident: b50
  article-title: Algorithm based on population with a flexible search mechanism
  publication-title: IEEE Access
– volume: 14
  start-page: 1846
  year: 2018
  end-page: 1855
  ident: b3
  article-title: Received signal strength based indoor positioning using a random vector functional link network
  publication-title: IEEE Trans. Ind. Inf.
– volume: 31
  start-page: 5426
  year: 2020
  end-page: 5440
  ident: b8
  article-title: Ensemble stochastic configuration networks for estimating prediction intervals: A simultaneous robust training algorithm and its application
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b37
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst. Int. J. eSci.
– volume: 487
  start-page: 77
  year: 2019
  end-page: 83
  ident: b19
  article-title: A further study on the inequality constraints in stochastic configuration networks
  publication-title: Inform. Sci.
– volume: 12
  start-page: 4283
  year: 2019
  ident: b58
  article-title: Carbon price forecasting based on multi-resolution singular value decomposition and extreme learning machine optimized by the moth-flame optimization algorithm considering energy and economic factors
  publication-title: Energies
– volume: 32
  start-page: 9427
  year: 2020
  end-page: 9441
  ident: b60
  article-title: A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection
  publication-title: Neural Comput. Appl.
– volume: 19
  start-page: 3293
  year: 2019
  ident: b9
  article-title: Ensemble learning with stochastic configuration network for noisy optical fiber vibration signal recognition
  publication-title: Sensors
– volume: 87
  year: 2020
  ident: b43
  article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
– volume: 7
  start-page: 43473
  year: 2019
  end-page: 43486
  ident: b49
  article-title: Fitness dependent optimizer: Inspired by the bee swarming reproductive process
  publication-title: IEEE Access
– volume: 45
  start-page: 191
  year: 2015
  end-page: 204
  ident: b41
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
– volume: 16
  start-page: 373
  year: 2020
  end-page: 383
  ident: b22
  article-title: Stochastic configuration networks based adaptive storage replica management for power big data processing
  publication-title: IEEE Trans. Ind. Inf.
– volume: 7
  start-page: 73182
  year: 2019
  end-page: 73206
  ident: b44
  article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization
  publication-title: IEEE Access
– volume: 16
  start-page: 5099
  year: 2020
  end-page: 5109
  ident: b6
  article-title: Mixed-distribution-based robust stochastic configuration networks for prediction interval construction
  publication-title: IEEE Trans. Ind. Inf.
– year: 2008
  ident: b28
  article-title: Covariance matrix adaptation evolution strategy
  publication-title: Parallel Problem Solving from Nature (PPSN X), International Conference Dortmund
– volume: 108
  start-page: 1
  year: 2018
  end-page: 27
  ident: b65
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
– reference: S. Gao, Y. Yu, Y. Wang, Chaotic Local Search-Based Differential Evolution Algorithms for Optimization, IEEE Trans. Syst. Man Cybern. Syst.
– volume: 11
  start-page: 65
  year: 2019
  end-page: 87
  ident: b68
  article-title: The discovery of population interaction with a power law distribution in brain storm optimization
  publication-title: Memetic Comput.
– volume: 382–383
  start-page: 170
  year: 2017
  end-page: 178
  ident: b75
  article-title: Insights into randomized algorithms for neural networks: practical issues and common pitfalls
  publication-title: Inform. Sci.
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b71
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 172
  start-page: 1
  year: 2019
  end-page: 14
  ident: b63
  article-title: Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 293
  year: 2020
  end-page: 308
  ident: b33
  article-title: Parasitism-predation algorithm (PPA): A novel approach for feature selection
  publication-title: Ain Shams Eng. J.
– volume: 152
  start-page: 113377
  year: 2020
  ident: b35
  publication-title: Expert Syst. Appl.
– reference: .
– volume: 58
  year: 2019
  ident: b17
  article-title: Intrusion signal classification using stochastic configuration network with variable increments of hidden nodes
  publication-title: Opt. Eng.
– year: 2017
  ident: b10
  article-title: Deep stochastic configuration networks with universal approximation property
  publication-title: 2018 International Joint Conference on Neural Networks
– volume: 522
  start-page: 259
  year: 2020
  end-page: 274
  ident: b21
  article-title: Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism
  publication-title: Inform. Sci.
– volume: 46
  start-page: 299
  year: 2013
  end-page: 305
  ident: b2
  article-title: Universal approximation by radial basis function networks of delsarte translates
  publication-title: Neural Netw.
– year: 2009
  ident: b72
  article-title: Feasibility of random basis function approximators for modeling and control
  publication-title: International Conference on Control Applications
– volume: 394
  start-page: 61
  year: 2020
  end-page: 69
  ident: b24
  article-title: Driving amount based stochastic configuration network for industrial process modeling
  publication-title: Neurocomputing
– volume: 234
  start-page: 1
  year: 2017
  end-page: 10
  ident: b62
  article-title: Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition
  publication-title: Neurocomputing
– volume: 335
  start-page: 261
  year: 2019
  end-page: 273
  ident: b55
  article-title: A survey on meta-heuristic optimization for random single-hidden layer feedforward neural network
  publication-title: Neurocomputing
– volume: 24
  start-page: 1171
  year: 2020
  end-page: 1184
  ident: b59
  article-title: ALO-optimized artificial neural network-controlled dynamic voltage restorer for compensation of voltage issues in distribution system
  publication-title: Soft Comput.
– volume: 282
  start-page: 232
  year: 2018
  end-page: 247
  ident: b57
  article-title: Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection
  publication-title: Neurocomputing
– volume: 152
  year: 2020
  ident: b67
  article-title: An aggregative learning gravitational search algorithm with self-adaptive gravitational constants
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 4283
  issue: 22
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b58
  article-title: Carbon price forecasting based on multi-resolution singular value decomposition and extreme learning machine optimized by the moth-flame optimization algorithm considering energy and economic factors
  publication-title: Energies
  doi: 10.3390/en12224283
– volume: 487
  start-page: 77
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b19
  article-title: A further study on the inequality constraints in stochastic configuration networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.066
– ident: 10.1016/j.knosys.2021.106924_b26
– volume: 417
  start-page: 55
  year: 2017
  ident: 10.1016/j.knosys.2021.106924_b7
  article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.07.003
– volume: 50
  start-page: 2312
  issue: 8
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b54
  article-title: Twin support vector machine based on improved artificial fish swarm algorithm with application to flame recognition
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01676-6
– volume: 96
  start-page: 120
  year: 2015
  ident: 10.1016/j.knosys.2021.106924_b29
  article-title: SCA: A Sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 24
  start-page: 1171
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b59
  article-title: ALO-optimized artificial neural network-controlled dynamic voltage restorer for compensation of voltage issues in distribution system
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03952-1
– volume: 16
  start-page: 5099
  issue: 8
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b6
  article-title: Mixed-distribution-based robust stochastic configuration networks for prediction interval construction
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2954351
– volume: 31
  start-page: 5426
  issue: 12
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b8
  article-title: Ensemble stochastic configuration networks for estimating prediction intervals: A simultaneous robust training algorithm and its application
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2967816
– volume: 58
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b17
  article-title: Intrusion signal classification using stochastic configuration network with variable increments of hidden nodes
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.58.2.026105
– volume: 94
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b38
  article-title: Lévy flight distribution: A new meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103731
– volume: 152
  start-page: 113377
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b35
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 14
  start-page: 1846
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2021.106924_b3
  article-title: Received signal strength based indoor positioning using a random vector functional link network
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2760915
– volume: 51
  start-page: 359
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2021.106924_b16
  article-title: 2-d stochastic configuration networks for image data analytics
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2925883
– volume: 492
  start-page: 181
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b70
  article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.04.022
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.knosys.2021.106924_b71
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 412
  start-page: 210
  year: 2017
  ident: 10.1016/j.knosys.2021.106924_b4
  article-title: Robust stochastic configuration networks with kernel density estimation for uncertain data regression
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.05.047
– volume: 313
  start-page: 47
  year: 2018
  ident: 10.1016/j.knosys.2021.106924_b52
  article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.002
– ident: 10.1016/j.knosys.2021.106924_b66
  doi: 10.1109/TSMC.2019.2956121
– volume: 47
  start-page: 3466
  issue: 10
  year: 2017
  ident: 10.1016/j.knosys.2021.106924_b1
  article-title: Stochastic configuration networks: Fundamentals and algorithms
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2734043
– volume: 46
  start-page: 299
  year: 2013
  ident: 10.1016/j.knosys.2021.106924_b2
  article-title: Universal approximation by radial basis function networks of delsarte translates
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.06.011
– volume: 16
  start-page: 373
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b22
  article-title: Stochastic configuration networks based adaptive storage replica management for power big data processing
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2919268
– volume: 382–383
  start-page: 170
  year: 2017
  ident: 10.1016/j.knosys.2021.106924_b75
  article-title: Insights into randomized algorithms for neural networks: practical issues and common pitfalls
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.12.007
– volume: 473
  start-page: 73
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b5
  article-title: Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.09.026
– volume: 27
  start-page: 1722
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b48
  article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.07.058
– volume: 7
  start-page: 43473
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b49
  article-title: Fitness dependent optimizer: Inspired by the bee swarming reproductive process
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907012
– volume: 161
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b39
  article-title: Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113698
– volume: 59
  start-page: 596
  year: 2017
  ident: 10.1016/j.knosys.2021.106924_b36
  article-title: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.033
– volume: 87
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b43
  article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103300
– volume: 172
  start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b63
  article-title: Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.01.015
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2021.106924_b31
  article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b64
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 11
  start-page: 3040
  issue: 11
  year: 2018
  ident: 10.1016/j.knosys.2021.106924_b11
  article-title: Hybrid approach for detecting and classifying power quality disturbances based on the variational mode decomposition and deep stochastic configuration network
  publication-title: Energies
  doi: 10.3390/en11113040
– volume: 234
  start-page: 1
  year: 2017
  ident: 10.1016/j.knosys.2021.106924_b62
  article-title: Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.039
– volume: 38
  start-page: 771
  year: 2016
  ident: 10.1016/j.knosys.2021.106924_b42
  article-title: Galactic swarm optimization: A new global optimization meta-heuristic inspired by galactic motion
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.034
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.knosys.2021.106924_b32
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 495
  start-page: 150
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b13
  article-title: Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.04.055
– volume: 78
  start-page: 545
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b47
  article-title: A new meta-heuristic optimizer: Pathfinder algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.03.012
– volume: 394
  start-page: 61
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b24
  article-title: Driving amount based stochastic configuration network for industrial process modeling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.029
– volume: 410
  start-page: 185
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b53
  article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.075
– volume: 282
  start-page: 232
  year: 2018
  ident: 10.1016/j.knosys.2021.106924_b57
  article-title: Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.030
– volume: 486
  start-page: 119
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b12
  article-title: Construction of prediction intervals for carbon residual of crude oil based on deep stochastic configuration networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.042
– volume: 19
  start-page: 3293
  issue: 15
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b9
  article-title: Ensemble learning with stochastic configuration network for noisy optical fiber vibration signal recognition
  publication-title: Sensors
  doi: 10.3390/s19153293
– volume: 484
  start-page: 367
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b18
  article-title: Stochastic configuration networks with block increments for data modeling in process industries
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.01.062
– volume: 28
  start-page: 1125
  issue: 6
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b51
  article-title: Multipopulation nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2959997
– year: 2008
  ident: 10.1016/j.knosys.2021.106924_b28
  article-title: Covariance matrix adaptation evolution strategy
– volume: 7
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b50
  article-title: Algorithm based on population with a flexible search mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941182
– volume: 86
  start-page: 165
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b45
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.025
– ident: 10.1016/j.knosys.2021.106924_b14
  doi: 10.1007/s00521-020-05178-x
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.knosys.2021.106924_b34
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 30
  start-page: 601
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b56
  article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2846646
– volume: 335
  start-page: 261
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b55
  article-title: A survey on meta-heuristic optimization for random single-hidden layer feedforward neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.080
– ident: 10.1016/j.knosys.2021.106924_b30
  doi: 10.1109/CEC.2018.8477769
– volume: 146
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b40
  article-title: Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2020.102804
– year: 2017
  ident: 10.1016/j.knosys.2021.106924_b10
  article-title: Deep stochastic configuration networks with universal approximation property
– volume: 108
  start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2021.106924_b65
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.028
– ident: 10.1016/j.knosys.2021.106924_b61
  doi: 10.1007/s00521-020-05364-x
– volume: 11
  start-page: 65
  issue: 1
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b68
  article-title: The discovery of population interaction with a power law distribution in brain storm optimization
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-017-0248-z
– volume: 522
  start-page: 259
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b21
  article-title: Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.02.058
– volume: 540
  start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b15
  article-title: Distributed stochastic configuration networks with cooperative learning paradigm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.05.112
– volume: 7
  start-page: 73182
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b44
  article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2918753
– volume: 150
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b69
  article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113216
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b37
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst. Int. J. eSci.
  doi: 10.1016/j.future.2020.03.055
– volume: 58
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2021.106924_b74
  article-title: Extreme learning machines: new trends and applications
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-014-5269-3
– volume: 488
  start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2021.106924_b20
  article-title: Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.02.041
– volume: 87
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b46
  article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103330
– volume: 152
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b67
  article-title: An aggregative learning gravitational search algorithm with self-adaptive gravitational constants
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113396
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.knosys.2021.106924_b27
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 32
  start-page: 13625
  issue: 17
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b25
  article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04771-4
– volume: 11
  start-page: 293
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b33
  article-title: Parasitism-predation algorithm (PPA): A novel approach for feature selection
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2019.10.004
– volume: 8
  start-page: 1131
  issue: 5
  year: 1997
  ident: 10.1016/j.knosys.2021.106924_b73
  article-title: Objective functions for training new hidden units in constructive neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.623214
– volume: 32
  start-page: 9427
  issue: 13
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b60
  article-title: A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04453-w
– volume: 8
  year: 2020
  ident: 10.1016/j.knosys.2021.106924_b23
  article-title: FPGA-based implementation of stochastic configuration network for robotic grasping recognition
  publication-title: IEEE Access
– year: 2009
  ident: 10.1016/j.knosys.2021.106924_b72
  article-title: Feasibility of random basis function approximators for modeling and control
– volume: 45
  start-page: 191
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2021.106924_b41
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2322602
SSID ssj0002218
Score 2.6787589
Snippet Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106924
SubjectTerms Algorithms
Chaotic
Configurations
Global optimization
Heuristic methods
Logistic mapping
Mutation
Optimization
Parameters
Performance evaluation
Regularization
Search algorithms
Sparrow search algorithm
Stochastic configuration network
Title A stochastic configuration network based on chaotic sparrow search algorithm
URI https://dx.doi.org/10.1016/j.knosys.2021.106924
https://www.proquest.com/docview/2521112049
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409eLFt_FRmz14XQvLAuXYNDb11Ys26Y2wA7TVCk2lBy_-dmdg0WhimnghYRkIzOObWTIPxi4TmXro6KSQAJ7A-B9NCt2uULb23TSKI5BUnPww8oZjdTtxJw3Wr2thKK3SYH-F6SVam5WO4WZnOZ93HjE4QH11qQMWTZajgl-lfNLyq4_vNA8py398RCyIui6fK3O8XrL87Z2adksbl7xAqr_c0y-gLr3PYI_tmLCR96o322eNJDtgu_VIBm4s9JDd9zhGczCLqP0yx71uOp-uKyHzrMr45uS4Yo4LSJYTGYIKdWLkldbzaDHNV_Ni9nrExoPrp_5QmIEJAtAUC-FG3RgAUogDxFMHvz6x_ADFEUMaeQosR9oa_MRxkxR5lmgfnbWtNHovWwcKnGPWzPIsOWFcWqCiQNkWdAGPdhS4OpCu9nELZKXaP2VOzacQTDdxGmqxCOu0seew4m5I3A0r7p4y8XXXsuqmsYHer0UQ_tCKEAF_w52tWmKhsUq8jrEKxpe4KTr794PP2TadUQKBdFqsWazWyQXGJYVul4rXZlu9m7vh6BMEs-Lr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjXjjAcbQxHGSZmBAQNVCYYFK3Ux8caA80qoUIRb-FH-Qc-KAQEJISCwZHNuyPl--7xyd7wB2NM9CEjrucMTQIf-fPimSXUd4KgqyJE2Qm8vJZ-dhsyNOukF3DN6quzAmrNJyf8npBVvblppFszbo9WoX5ByQvQYmA5apLFe3kZWn-uWZzm2P-60j2uRdzhvHl4dNx5YWcJCMduQEST1FxAzTmJjHJ17QbhTTwlPMklCg63NPYaT9QGc0u1YRyZonFPG8p2KBPs07DpOC6MKUTdh7_Ywr4bz4qWhW55jlVff1iqCyu7z_-GKyhHOPmsKYi5_08JsyFHLXmIMZ66eygxKKeRjT-QLMVjUgmKWERWgfMHIf8SYx-Z4ZHa6z3vVTaVUsL0PMmVHKlFEDdeubbsRiJvUjK6Fkyf11f9gb3TwsQedfYFyGibyf6xVg3EWRxMJzsY709JI4UDEPVERnLjdT0Sr4FU4SbfpyU0XjXlZxareyRFcadGWJ7io4H6MGZfqOX_pH1RbIL2YoSWF-GblR7Zi0NEDvyTkih5ZOYWt_nngbppqXZ23Zbp2frsO0eWOiF7i_AROj4ZPeJKdopLYKI2Rw9d9W_w4tgh_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+configuration+network+based+on+chaotic+sparrow+search+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Zhang%2C+Chenglong&rft.au=Ding%2C+Shifei&rft.date=2021-05-23&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=220&rft_id=info:doi/10.1016%2Fj.knosys.2021.106924&rft.externalDocID=S0950705121001878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon