A stochastic configuration network based on chaotic sparrow search algorithm
Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale data regression and classification problems. However, the accuracy of the SCN is affected by the assignation and selection of some network p...
Saved in:
Published in | Knowledge-based systems Vol. 220; p. 106924 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
23.05.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale data regression and classification problems. However, the accuracy of the SCN is affected by the assignation and selection of some network parameters significantly Sparrow search algorithm (SSA) is a new meta-heuristic algorithm that simulates the foraging and anti-predation behavior of sparrow population. In this paper, a stochastic configuration network based on chaotic sparrow search algorithm is first introduced, termed as CSSA-SCN. Firstly, chaotic sparrow search algorithm (CSSA) is designed which mainly utilizes logistic mapping, self-adaptive hyper-parameters, mutation operator to enhance the global optimization capability of SSA; Secondly, as the performance of SCN is related to regularization parameter r and scale factor λ of weights and biases, then CSSA is employed to give better parameters for SCN automatically; Finally, 13 benchmark functions and several datasets are used to evaluate the performance of CSSA and CSSA-SCN respectively. Experimental results demonstrate the feasibility and validity of CSSA-SCN compared with SCN and other contrast algorithms. |
---|---|
AbstractList | Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale data regression and classification problems. However, the accuracy of the SCN is affected by the assignation and selection of some network parameters significantly Sparrow search algorithm (SSA) is a new meta-heuristic algorithm that simulates the foraging and anti-predation behavior of sparrow population. In this paper, a stochastic configuration network based on chaotic sparrow search algorithm is first introduced, termed as CSSA-SCN. Firstly, chaotic sparrow search algorithm (CSSA) is designed which mainly utilizes logistic mapping, self-adaptive hyper-parameters, mutation operator to enhance the global optimization capability of SSA; Secondly, as the performance of SCN is related to regularization parameter r and scale factor λ of weights and biases, then CSSA is employed to give better parameters for SCN automatically; Finally, 13 benchmark functions and several datasets are used to evaluate the performance of CSSA and CSSA-SCN respectively. Experimental results demonstrate the feasibility and validity of CSSA-SCN compared with SCN and other contrast algorithms. |
ArticleNumber | 106924 |
Author | Ding, Shifei Zhang, Chenglong |
Author_xml | – sequence: 1 givenname: Chenglong surname: Zhang fullname: Zhang, Chenglong organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China – sequence: 2 givenname: Shifei surname: Ding fullname: Ding, Shifei email: dingsf@cumt.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China |
BookMark | eNqFkM1OwzAQhC1UJNrCG3CIxDll7SRNwgGpqviTKnGBs-VsNq3TNi62S9W3xyWcOMBppdU3szszYoPOdMTYNYcJBz69bSfrzrijmwgQPKympUjP2JAXuYjzFMoBG0KZQZxDxi_YyLkWAITgxZAtZpHzBlfKeY0Rmq7Ry71VXpsu6sgfjF1HlXJUR2ERMHPC3E5Zaw6RI2VxFanN0ljtV9tLdt6ojaOrnzlm748Pb_PnePH69DKfLWJMAXycqaJGxAbrkhQm4ReCvCTR1NioaYqQCF5hTklGDQCnKi-yhKcVFwmvyhSTMbvpfXfWfOzJedmave3CSSkywTkXkJaBuusptMY5S41E7b-Teav0RnKQp_ZkK_v25Kk92bcXxOkv8c7qrbLH_2T3vYxC_E9NVjrU1CHV2hJ6WRv9t8EXRLSPHQ |
CitedBy_id | crossref_primary_10_3390_s23229146 crossref_primary_10_1088_1402_4896_acff2c crossref_primary_10_1038_s41598_025_86298_z crossref_primary_10_1016_j_rineng_2024_102985 crossref_primary_10_1155_2023_6579699 crossref_primary_10_3233_JIFS_223443 crossref_primary_10_1109_TCC_2022_3216541 crossref_primary_10_1016_j_saa_2022_120967 crossref_primary_10_1063_5_0213886 crossref_primary_10_20965_jaciii_2025_p0241 crossref_primary_10_3390_en15145174 crossref_primary_10_1016_j_sna_2024_115434 crossref_primary_10_1016_j_jhazmat_2024_134309 crossref_primary_10_1016_j_cscm_2023_e02766 crossref_primary_10_1063_5_0077044 crossref_primary_10_1016_j_asoc_2021_108008 crossref_primary_10_1088_1361_6501_acf681 crossref_primary_10_3390_machines11010010 crossref_primary_10_1007_s00521_021_06751_8 crossref_primary_10_1016_j_jhydrol_2025_133026 crossref_primary_10_1109_ACCESS_2024_3365552 crossref_primary_10_1109_ACCESS_2021_3099169 crossref_primary_10_1007_s10489_022_03870_0 crossref_primary_10_7717_peerj_cs_1382 crossref_primary_10_1007_s11629_023_8083_9 crossref_primary_10_3389_fenvs_2022_909682 crossref_primary_10_1088_2631_8695_adb37a crossref_primary_10_1007_s10489_021_02701_y crossref_primary_10_1109_TCDS_2022_3192536 crossref_primary_10_1007_s12065_023_00852_0 crossref_primary_10_3390_app13148446 crossref_primary_10_1177_14759217231170723 crossref_primary_10_1016_j_prime_2024_100420 crossref_primary_10_3390_machines10090729 crossref_primary_10_1177_03019233241246343 crossref_primary_10_3934_mbe_2023324 crossref_primary_10_3390_pr10091691 crossref_primary_10_3390_en15218059 crossref_primary_10_1007_s10845_024_02463_7 crossref_primary_10_3390_math10111803 crossref_primary_10_1016_j_optlastec_2022_108529 crossref_primary_10_1063_5_0108340 crossref_primary_10_3390_math11224634 crossref_primary_10_3389_fenrg_2024_1427614 crossref_primary_10_3390_s22166064 crossref_primary_10_1007_s13042_023_01788_8 crossref_primary_10_1177_0309524X241237964 crossref_primary_10_1080_00207721_2023_2293687 crossref_primary_10_1016_j_swevo_2024_101603 crossref_primary_10_1155_2022_1036913 crossref_primary_10_3934_math_202411310 crossref_primary_10_1016_j_heliyon_2023_e14784 crossref_primary_10_1007_s10064_024_03941_1 crossref_primary_10_3390_app12073388 crossref_primary_10_1155_2021_3946958 crossref_primary_10_3389_fenrg_2023_1174910 crossref_primary_10_1002_qre_3496 crossref_primary_10_1007_s42979_023_02382_z crossref_primary_10_1007_s11837_023_06019_7 crossref_primary_10_1016_j_jksuci_2023_04_001 crossref_primary_10_3233_JIFS_222395 crossref_primary_10_1155_2022_4882521 crossref_primary_10_3390_atmos12070894 crossref_primary_10_1007_s42235_024_00556_w crossref_primary_10_1007_s11042_023_15494_8 crossref_primary_10_1016_j_ins_2024_121495 crossref_primary_10_1016_j_knosys_2023_111276 crossref_primary_10_1364_AO_462436 crossref_primary_10_1007_s11277_023_10319_1 crossref_primary_10_1016_j_inffus_2024_102721 crossref_primary_10_3390_w16233390 crossref_primary_10_1038_s41598_024_68964_w crossref_primary_10_1002_ese3_1620 crossref_primary_10_1007_s42835_022_01101_7 crossref_primary_10_1016_j_energy_2022_126283 crossref_primary_10_1016_j_oceaneng_2024_119364 crossref_primary_10_3389_fenrg_2022_1028423 crossref_primary_10_1016_j_ins_2024_121140 crossref_primary_10_1155_2021_9915420 crossref_primary_10_1155_2021_6505253 crossref_primary_10_3233_JIFS_222930 crossref_primary_10_1016_j_oceaneng_2023_115920 crossref_primary_10_1080_21642583_2022_2140723 crossref_primary_10_1016_j_cie_2023_109425 crossref_primary_10_1155_2022_8171164 crossref_primary_10_1109_TNNLS_2023_3289798 crossref_primary_10_1007_s00500_022_07004_z crossref_primary_10_1007_s11042_023_14977_y crossref_primary_10_3233_JIFS_234357 crossref_primary_10_1016_j_engappai_2024_108375 crossref_primary_10_1021_acs_iecr_4c02809 crossref_primary_10_1016_j_asoc_2022_108469 crossref_primary_10_1016_j_jksuci_2024_102255 crossref_primary_10_3390_sym13091579 crossref_primary_10_1038_s41598_023_33615_z crossref_primary_10_1109_ACCESS_2024_3373554 crossref_primary_10_1007_s12652_022_04420_9 crossref_primary_10_1016_j_techfore_2024_123634 crossref_primary_10_1007_s11356_021_17020_5 crossref_primary_10_1007_s40948_022_00400_7 crossref_primary_10_3390_s22228787 crossref_primary_10_1016_j_energy_2023_128776 crossref_primary_10_3389_fmed_2023_1106717 crossref_primary_10_1109_TII_2024_3438234 crossref_primary_10_1109_TPAMI_2022_3225461 crossref_primary_10_3390_app12147332 crossref_primary_10_1088_1361_6501_ad2255 crossref_primary_10_1016_j_eswa_2024_124789 crossref_primary_10_1016_j_psep_2024_05_027 crossref_primary_10_2478_amns_2023_2_00277 crossref_primary_10_1002_dac_70047 crossref_primary_10_3934_mbe_2024155 crossref_primary_10_1016_j_epsr_2023_109222 crossref_primary_10_1016_j_conbuildmat_2022_126583 crossref_primary_10_1155_2021_5158304 crossref_primary_10_1007_s40436_021_00366_x crossref_primary_10_1007_s11227_024_06916_x crossref_primary_10_1109_TIM_2022_3228003 crossref_primary_10_1007_s11356_022_21277_9 crossref_primary_10_1007_s10489_024_05555_2 crossref_primary_10_1016_j_eswa_2022_118414 crossref_primary_10_1007_s00521_023_08256_y crossref_primary_10_3390_su14020853 crossref_primary_10_1007_s10064_023_03331_z crossref_primary_10_1016_j_ymssp_2024_111646 crossref_primary_10_1007_s00500_022_06741_5 crossref_primary_10_1093_jcde_qwac101 crossref_primary_10_3390_app112311192 crossref_primary_10_1016_j_asr_2022_01_043 crossref_primary_10_1007_s10489_021_02972_5 crossref_primary_10_1016_j_cherd_2022_06_001 crossref_primary_10_1016_j_compag_2023_107767 crossref_primary_10_3934_math_20241310 crossref_primary_10_1016_j_aej_2024_09_084 crossref_primary_10_1155_2022_3680419 crossref_primary_10_1109_ACCESS_2021_3106269 crossref_primary_10_1007_s10586_024_04348_z crossref_primary_10_3390_biomimetics9090576 crossref_primary_10_3390_ma17235727 crossref_primary_10_3390_biomimetics10040195 crossref_primary_10_2166_ws_2021_419 crossref_primary_10_1016_j_ins_2024_121831 crossref_primary_10_3233_JIFS_223827 crossref_primary_10_1007_s00500_023_09373_5 crossref_primary_10_1109_ACCESS_2021_3093313 crossref_primary_10_1109_ACCESS_2022_3204798 crossref_primary_10_1007_s10462_023_10549_6 crossref_primary_10_1109_ACCESS_2023_3327707 crossref_primary_10_1115_1_4064189 crossref_primary_10_1177_15501477211073037 crossref_primary_10_3390_atmos14111612 crossref_primary_10_1063_5_0099474 crossref_primary_10_3934_era_2024093 crossref_primary_10_1080_21642583_2024_2314481 crossref_primary_10_3390_e24040478 crossref_primary_10_1016_j_istruc_2024_107669 crossref_primary_10_3390_su15086571 crossref_primary_10_7717_peerj_cs_1526 crossref_primary_10_3390_e24121788 crossref_primary_10_1016_j_ins_2024_121840 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_1016_j_apenergy_2023_122613 crossref_primary_10_1016_j_sna_2024_115982 crossref_primary_10_1016_j_advengsoft_2024_103635 crossref_primary_10_3390_math11091977 crossref_primary_10_1016_j_eswa_2023_122991 crossref_primary_10_1016_j_ipm_2021_102854 crossref_primary_10_1016_j_measurement_2024_115238 crossref_primary_10_3390_app122311951 crossref_primary_10_1080_21681015_2021_1972478 crossref_primary_10_1109_ACCESS_2023_3347611 crossref_primary_10_1007_s11227_024_06799_y crossref_primary_10_1142_S0218127424502055 crossref_primary_10_1155_2022_2475460 crossref_primary_10_1007_s11063_023_11422_x crossref_primary_10_1007_s13042_024_02152_0 crossref_primary_10_1080_08839514_2022_2073719 crossref_primary_10_1088_1361_6501_ad56b2 crossref_primary_10_1016_j_knosys_2023_110464 crossref_primary_10_1016_j_knosys_2024_112249 crossref_primary_10_1016_j_eswa_2023_121597 crossref_primary_10_3390_biomimetics7040144 crossref_primary_10_1016_j_knosys_2022_108403 crossref_primary_10_1002_cpe_8101 crossref_primary_10_1155_2022_8799429 crossref_primary_10_3390_biomimetics8030321 crossref_primary_10_1007_s11042_023_16219_7 crossref_primary_10_3390_sym15020316 crossref_primary_10_1155_2022_4546135 crossref_primary_10_1016_j_apenergy_2021_117815 crossref_primary_10_1016_j_apenergy_2023_122071 crossref_primary_10_1016_j_est_2024_110983 crossref_primary_10_3390_app13052878 crossref_primary_10_3390_electronics12030672 crossref_primary_10_3934_mbe_2023553 crossref_primary_10_1016_j_knosys_2022_109050 crossref_primary_10_1007_s11831_022_09804_w crossref_primary_10_1007_s00202_024_02821_x crossref_primary_10_1007_s10489_022_03562_9 crossref_primary_10_1109_ACCESS_2021_3129255 crossref_primary_10_1371_journal_pone_0295690 crossref_primary_10_2166_wst_2023_308 crossref_primary_10_1007_s11831_023_09887_z crossref_primary_10_3390_biomimetics9050270 crossref_primary_10_1016_j_asoc_2022_109702 crossref_primary_10_1016_j_measurement_2024_114485 crossref_primary_10_3390_pr11061725 crossref_primary_10_1016_j_knosys_2022_110117 crossref_primary_10_3390_app14125020 crossref_primary_10_3390_machines10060469 crossref_primary_10_1016_j_neucom_2024_127278 crossref_primary_10_3390_min12111388 crossref_primary_10_3390_a16100473 crossref_primary_10_3934_mbe_2023767 crossref_primary_10_3390_machines10100847 crossref_primary_10_1002_spe_3125 crossref_primary_10_1016_j_cie_2023_109498 crossref_primary_10_1016_j_knosys_2022_108626 crossref_primary_10_1007_s12652_022_03703_5 crossref_primary_10_1016_j_comnet_2022_109554 crossref_primary_10_1088_1361_6501_ad9ca6 crossref_primary_10_51764_smutgd_1542508 crossref_primary_10_1016_j_measurement_2022_111967 crossref_primary_10_1177_1045389X241300727 crossref_primary_10_1016_j_isatra_2024_01_028 crossref_primary_10_3390_app13158600 crossref_primary_10_3233_JIFS_231114 crossref_primary_10_1016_j_undsp_2023_09_014 crossref_primary_10_3390_aerospace10080714 crossref_primary_10_1007_s42401_022_00171_9 crossref_primary_10_1016_j_jpowsour_2025_236469 crossref_primary_10_1016_j_ins_2024_121402 crossref_primary_10_1109_ACCESS_2023_3293191 crossref_primary_10_1108_RS_10_2023_0037 crossref_primary_10_1049_gtd2_12855 |
Cites_doi | 10.3390/en12224283 10.1016/j.ins.2019.02.066 10.1016/j.ins.2017.07.003 10.1007/s10489-020-01676-6 10.1016/j.knosys.2015.12.022 10.1007/s00500-019-03952-1 10.1109/TII.2019.2954351 10.1109/TNNLS.2020.2967816 10.1117/1.OE.58.2.026105 10.1016/j.engappai.2020.103731 10.1016/j.eswa.2020.113377 10.1109/TII.2017.2760915 10.1109/TCYB.2019.2925883 10.1016/j.ins.2019.04.022 10.1016/j.swevo.2012.09.002 10.1016/j.ins.2017.05.047 10.1016/j.neucom.2018.05.002 10.1109/TSMC.2019.2956121 10.1109/TCYB.2017.2734043 10.1016/j.neunet.2013.06.011 10.1109/TII.2019.2919268 10.1016/j.ins.2016.12.007 10.1016/j.ins.2018.09.026 10.1016/j.istruc.2020.07.058 10.1109/ACCESS.2019.2907012 10.1016/j.eswa.2020.113698 10.1016/j.asoc.2017.06.033 10.1016/j.engappai.2019.103300 10.1016/j.knosys.2019.01.015 10.1007/s00521-015-1870-7 10.1080/21642583.2019.1708830 10.3390/en11113040 10.1016/j.neucom.2016.12.039 10.1016/j.asoc.2015.10.034 10.1016/j.knosys.2015.07.006 10.1016/j.ins.2019.04.055 10.1016/j.asoc.2019.03.012 10.1016/j.neucom.2020.02.029 10.1016/j.neucom.2020.05.075 10.1016/j.neucom.2017.12.030 10.1016/j.ins.2019.02.042 10.3390/s19153293 10.1016/j.ins.2019.01.062 10.1109/TFUZZ.2019.2959997 10.1109/ACCESS.2019.2941182 10.1016/j.engappai.2019.08.025 10.1007/s00521-020-05178-x 10.1016/j.advengsoft.2016.01.008 10.1109/TNNLS.2018.2846646 10.1016/j.neucom.2018.07.080 10.1109/CEC.2018.8477769 10.1016/j.advengsoft.2020.102804 10.1016/j.eswa.2018.04.028 10.1007/s00521-020-05364-x 10.1007/s12293-017-0248-z 10.1016/j.ins.2020.02.058 10.1016/j.ins.2020.05.112 10.1109/ACCESS.2019.2918753 10.1016/j.eswa.2020.113216 10.1016/j.future.2020.03.055 10.1007/s11432-014-5269-3 10.1016/j.ins.2019.02.041 10.1016/j.engappai.2019.103330 10.1016/j.eswa.2020.113396 10.1016/j.advengsoft.2013.12.007 10.1007/s00521-020-04771-4 10.1016/j.asej.2019.10.004 10.1109/72.623214 10.1007/s00521-019-04453-w 10.1109/TCYB.2014.2322602 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. May 23, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. May 23, 2021 |
DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
DOI | 10.1016/j.knosys.2021.106924 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2021_106924 S0950705121001878 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH UHS WUQ 7SC 8FD E3H EFKBS F2A JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-5a8dcccfcd9eac3000e079e2fdcfa64c0321bc7e35ef001eb785314b1231b94c3 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Fri Jul 25 04:37:58 EDT 2025 Tue Jul 01 04:38:01 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Fri Feb 23 02:47:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sparrow search algorithm Stochastic configuration network Optimization Chaotic Logistic mapping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-5a8dcccfcd9eac3000e079e2fdcfa64c0321bc7e35ef001eb785314b1231b94c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2521112049 |
PQPubID | 2035257 |
ParticipantIDs | proquest_journals_2521112049 crossref_citationtrail_10_1016_j_knosys_2021_106924 crossref_primary_10_1016_j_knosys_2021_106924 elsevier_sciencedirect_doi_10_1016_j_knosys_2021_106924 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-23 |
PublicationDateYYYYMMDD | 2021-05-23 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Lu, Ding (b6) 2020; 16 Tyukin, Prokhorov (b72) 2009 Mirjalili, Lewis (b34) 2016; 95 Li, Wang (b16) 2021; 51 Zhu, Feng, Wang (b19) 2019; 487 Zhang, Zhang, Wei (b58) 2019; 12 Wang, Dai, Ma (b24) 2020; 394 Ibrahim, Abd Elaziz, Lu (b65) 2018; 108 L. Zhao, S. Zou, M. Huang, Distributed regularized stochastic configuration networks via the elastic net, Neural Comput. Appl. Yan, Jia (b52) 2018; 313 Deng, Huang, Xu (b74) 2015; 58 Li, Tao, Li (b20) 2019; 488 Lei, Gao, Gupta (b67) 2020; 152 Wang, Xu, Chau (b69) 2020; 150 Qu, Feng, Zhang (b9) 2019; 19 Wang, Cui (b7) 2017; 417 Pan, Luan, Gao (b23) 2020; 8 Tian, Yuan, Qu (b17) 2019; 58 Muthiah-Nakarajan, NoelSchool (b42) 2016; 38 . Faramarzi, Heidarinejad, Mirjalili (b35) 2020; 152 Hansen (b28) 2008 Xue, Shen (b64) 2020; 8 Gao, Zhou, Wang (b56) 2019; 30 Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. Ai, Wang (b15) 2020; 540 Cai, Alalibo, Cao (b11) 2018; 11 Xu, Chen, Luo (b70) 2019; 492 Mohamed, Hassan, Hemeida (b33) 2020; 11 Nayak, Dash, Majhi (b57) 2018; 282 Cui, Zhang, Li (b3) 2018; 14 Słowik, Cpałka, Łapa (b51) 2020; 28 Mirjalili, Mirjalili, Lewis (b27) 2014; 69 Sulaiman, Mustaffa, Saari (b46) 2020; 87 Wang, Li (b1) 2017; 47 Haghnegahdar, Wang (b60) 2020; 32 S. Gao, Y. Yu, Y. Wang, Chaotic Local Search-Based Differential Evolution Algorithms for Optimization, IEEE Trans. Syst. Man Cybern. Syst. Han, Jiang, Ling (b55) 2019; 335 Huang, Huang, Wang (b22) 2020; 16 Wang, Wang (b25) 2020; 32 Lu, Ding (b12) 2019; 486 Li, Wang (b75) 2017; 382–383 Wang, Li (b4) 2017; 412 Mirjalili (b32) 2015; 89 Moosavi, Bardsiri (b45) 2019; 86 Das, Mukherjee, Das (b40) 2020; 146 Kwok, Yeung (b73) 1997; 8 N.V.R.R. Goluguri, K.S. Devi, P. Srinivasan, Rice-net: an efficient artificial fish swarm optimization applied deep convolutional neural network model for identifying the Oryza sativa diseases, Neural Comput. Appl. Yapici, Cetinkaya (b47) 2019; 78 Tang, Zhang, Zhou (b62) 2017; 234 Lu, Ding, Dai (b8) 2020; 31 Mirjalili (b29) 2015; 96 Houssein, Saad, Hashim (b38) 2020; 94 Cheng, Jin (b41) 2015; 45 Gao, Xie, Zhang (b54) 2020; 50 Mirjalili, Lewis (b71) 2013; 9 Wang, Gao, Yu (b68) 2019; 11 Zhang, Ding, Sun (b53) 2020; 410 Kaveh, Khanzadi, Moghaddam (b48) 2020; 27 Wang, Li (b10) 2017 Li, Chen, Wang (b37) 2020; 111 Arteaga, Marrero (b2) 2013; 46 Lin, Qin, Qu (b63) 2019; 172 Li, Huang, Wang (b5) 2019; 473 J. Pierezan, L.D. Coelho, Coyote Optimization Algorithm: A new meta-heuristic for global optimization problems, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2018. Dai, Li, Zhou (b18) 2019; 484 Shabani, Asgarian, Salido (b39) 2020; 161 Abdullah, Rashid (b49) 2019; 7 Zhang, Li, Li (b21) 2020; 522 Zhao, Zhang, Wang (b43) 2020; 87 Łapa, Cpałka, Zalasiński (b50) 2019; 7 Ansal (b59) 2020; 24 Pratama, Wang (b13) 2019; 495 Zhao, Wang, Zhang (b44) 2019; 7 Nematollahi, Foroughi, Rahiminejad (b36) 2017; 59 Mirjalili, Mirjalili, Hatamlou (b31) 2016; 27 Ansal (10.1016/j.knosys.2021.106924_b59) 2020; 24 Shabani (10.1016/j.knosys.2021.106924_b39) 2020; 161 Zhang (10.1016/j.knosys.2021.106924_b58) 2019; 12 Mohamed (10.1016/j.knosys.2021.106924_b33) 2020; 11 Mirjalili (10.1016/j.knosys.2021.106924_b27) 2014; 69 Mirjalili (10.1016/j.knosys.2021.106924_b29) 2015; 96 10.1016/j.knosys.2021.106924_b30 Wang (10.1016/j.knosys.2021.106924_b24) 2020; 394 Qu (10.1016/j.knosys.2021.106924_b9) 2019; 19 Wang (10.1016/j.knosys.2021.106924_b10) 2017 Kaveh (10.1016/j.knosys.2021.106924_b48) 2020; 27 Lin (10.1016/j.knosys.2021.106924_b63) 2019; 172 Mirjalili (10.1016/j.knosys.2021.106924_b32) 2015; 89 Lu (10.1016/j.knosys.2021.106924_b6) 2020; 16 Mirjalili (10.1016/j.knosys.2021.106924_b34) 2016; 95 Zhang (10.1016/j.knosys.2021.106924_b21) 2020; 522 Dai (10.1016/j.knosys.2021.106924_b18) 2019; 484 Lu (10.1016/j.knosys.2021.106924_b8) 2020; 31 Tyukin (10.1016/j.knosys.2021.106924_b72) 2009 Haghnegahdar (10.1016/j.knosys.2021.106924_b60) 2020; 32 Han (10.1016/j.knosys.2021.106924_b55) 2019; 335 Nematollahi (10.1016/j.knosys.2021.106924_b36) 2017; 59 Gao (10.1016/j.knosys.2021.106924_b56) 2019; 30 Wang (10.1016/j.knosys.2021.106924_b4) 2017; 412 Cai (10.1016/j.knosys.2021.106924_b11) 2018; 11 Łapa (10.1016/j.knosys.2021.106924_b50) 2019; 7 Cui (10.1016/j.knosys.2021.106924_b3) 2018; 14 Yan (10.1016/j.knosys.2021.106924_b52) 2018; 313 Li (10.1016/j.knosys.2021.106924_b20) 2019; 488 Nayak (10.1016/j.knosys.2021.106924_b57) 2018; 282 Deng (10.1016/j.knosys.2021.106924_b74) 2015; 58 Muthiah-Nakarajan (10.1016/j.knosys.2021.106924_b42) 2016; 38 Xu (10.1016/j.knosys.2021.106924_b70) 2019; 492 Houssein (10.1016/j.knosys.2021.106924_b38) 2020; 94 Li (10.1016/j.knosys.2021.106924_b16) 2021; 51 Ai (10.1016/j.knosys.2021.106924_b15) 2020; 540 Kwok (10.1016/j.knosys.2021.106924_b73) 1997; 8 Cheng (10.1016/j.knosys.2021.106924_b41) 2015; 45 Lu (10.1016/j.knosys.2021.106924_b12) 2019; 486 Huang (10.1016/j.knosys.2021.106924_b22) 2020; 16 Li (10.1016/j.knosys.2021.106924_b37) 2020; 111 Sulaiman (10.1016/j.knosys.2021.106924_b46) 2020; 87 Wang (10.1016/j.knosys.2021.106924_b68) 2019; 11 10.1016/j.knosys.2021.106924_b14 Tian (10.1016/j.knosys.2021.106924_b17) 2019; 58 Zhao (10.1016/j.knosys.2021.106924_b44) 2019; 7 Pratama (10.1016/j.knosys.2021.106924_b13) 2019; 495 Zhang (10.1016/j.knosys.2021.106924_b53) 2020; 410 Yapici (10.1016/j.knosys.2021.106924_b47) 2019; 78 Xue (10.1016/j.knosys.2021.106924_b64) 2020; 8 Zhu (10.1016/j.knosys.2021.106924_b19) 2019; 487 Tang (10.1016/j.knosys.2021.106924_b62) 2017; 234 Das (10.1016/j.knosys.2021.106924_b40) 2020; 146 Abdullah (10.1016/j.knosys.2021.106924_b49) 2019; 7 Ibrahim (10.1016/j.knosys.2021.106924_b65) 2018; 108 Słowik (10.1016/j.knosys.2021.106924_b51) 2020; 28 Pan (10.1016/j.knosys.2021.106924_b23) 2020; 8 Li (10.1016/j.knosys.2021.106924_b5) 2019; 473 Hansen (10.1016/j.knosys.2021.106924_b28) 2008 Moosavi (10.1016/j.knosys.2021.106924_b45) 2019; 86 Wang (10.1016/j.knosys.2021.106924_b69) 2020; 150 10.1016/j.knosys.2021.106924_b26 Zhao (10.1016/j.knosys.2021.106924_b43) 2020; 87 Lei (10.1016/j.knosys.2021.106924_b67) 2020; 152 Mirjalili (10.1016/j.knosys.2021.106924_b71) 2013; 9 Gao (10.1016/j.knosys.2021.106924_b54) 2020; 50 10.1016/j.knosys.2021.106924_b66 Arteaga (10.1016/j.knosys.2021.106924_b2) 2013; 46 Wang (10.1016/j.knosys.2021.106924_b1) 2017; 47 Li (10.1016/j.knosys.2021.106924_b75) 2017; 382–383 10.1016/j.knosys.2021.106924_b61 Wang (10.1016/j.knosys.2021.106924_b7) 2017; 417 Wang (10.1016/j.knosys.2021.106924_b25) 2020; 32 Mirjalili (10.1016/j.knosys.2021.106924_b31) 2016; 27 Faramarzi (10.1016/j.knosys.2021.106924_b35) 2020; 152 |
References_xml | – volume: 488 start-page: 1 year: 2019 end-page: 12 ident: b20 article-title: Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism publication-title: Inform. Sci. – volume: 161 year: 2020 ident: b39 article-title: Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems publication-title: Expert Syst. Appl. – volume: 150 year: 2020 ident: b69 article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation publication-title: Expert Syst. Appl. – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b31 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – volume: 8 year: 2020 ident: b23 article-title: FPGA-based implementation of stochastic configuration network for robotic grasping recognition publication-title: IEEE Access – volume: 28 start-page: 1125 year: 2020 end-page: 1139 ident: b51 article-title: Multipopulation nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems publication-title: IEEE Trans. Fuzzy Syst. – volume: 540 start-page: 1 year: 2020 end-page: 16 ident: b15 article-title: Distributed stochastic configuration networks with cooperative learning paradigm publication-title: Inform. Sci. – volume: 8 start-page: 1131 year: 1997 end-page: 1148 ident: b73 article-title: Objective functions for training new hidden units in constructive neural networks publication-title: IEEE Trans. Neural Netw. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b27 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 47 start-page: 3466 year: 2017 end-page: 3479 ident: b1 article-title: Stochastic configuration networks: Fundamentals and algorithms publication-title: IEEE Trans. Cybern. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b32 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 473 start-page: 73 year: 2019 end-page: 86 ident: b5 article-title: Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression publication-title: Inform. Sci. – volume: 38 start-page: 771 year: 2016 end-page: 787 ident: b42 article-title: Galactic swarm optimization: A new global optimization meta-heuristic inspired by galactic motion publication-title: Appl. Soft Comput. – reference: L. Zhao, S. Zou, M. Huang, Distributed regularized stochastic configuration networks via the elastic net, Neural Comput. Appl. – volume: 8 start-page: 22 year: 2020 end-page: 34 ident: b64 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. – volume: 11 start-page: 3040 year: 2018 ident: b11 article-title: Hybrid approach for detecting and classifying power quality disturbances based on the variational mode decomposition and deep stochastic configuration network publication-title: Energies – volume: 146 year: 2020 ident: b40 article-title: Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems publication-title: Adv. Eng. Softw. – volume: 58 year: 2015 ident: b74 article-title: Extreme learning machines: new trends and applications publication-title: Sci. China Inf. Sci. – reference: N.V.R.R. Goluguri, K.S. Devi, P. Srinivasan, Rice-net: an efficient artificial fish swarm optimization applied deep convolutional neural network model for identifying the Oryza sativa diseases, Neural Comput. Appl. – volume: 484 start-page: 367 year: 2019 end-page: 386 ident: b18 article-title: Stochastic configuration networks with block increments for data modeling in process industries publication-title: Inform. Sci. – volume: 87 year: 2020 ident: b46 article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 417 start-page: 55 year: 2017 end-page: 71 ident: b7 article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics publication-title: Inform. Sci. – volume: 59 start-page: 596 year: 2017 end-page: 621 ident: b36 article-title: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization publication-title: Appl. Soft Comput. – volume: 78 start-page: 545 year: 2019 end-page: 568 ident: b47 article-title: A new meta-heuristic optimizer: Pathfinder algorithm publication-title: Appl. Soft Comput. – volume: 51 start-page: 359 year: 2021 end-page: 372 ident: b16 article-title: 2-d stochastic configuration networks for image data analytics publication-title: IEEE Trans. Cybern. – reference: Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the 1999 Congress on Evolutionary Computation, 1999. – volume: 486 start-page: 119 year: 2019 end-page: 132 ident: b12 article-title: Construction of prediction intervals for carbon residual of crude oil based on deep stochastic configuration networks publication-title: Inform. Sci. – volume: 50 start-page: 2312 year: 2020 end-page: 2327 ident: b54 article-title: Twin support vector machine based on improved artificial fish swarm algorithm with application to flame recognition publication-title: Appl. Intell. – reference: J. Pierezan, L.D. Coelho, Coyote Optimization Algorithm: A new meta-heuristic for global optimization problems, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2018. – volume: 495 start-page: 150 year: 2019 end-page: 174 ident: b13 article-title: Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams publication-title: Inform. Sci. – volume: 313 start-page: 47 year: 2018 end-page: 64 ident: b52 article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing publication-title: Neurocomputing – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b34 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 94 year: 2020 ident: b38 article-title: Lévy flight distribution: A new meta-heuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 492 start-page: 181 year: 2019 end-page: 203 ident: b70 article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization publication-title: Inform. Sci. – volume: 86 start-page: 165 year: 2019 end-page: 181 ident: b45 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. – volume: 30 start-page: 601 year: 2019 end-page: 614 ident: b56 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 96 start-page: 120 year: 2015 end-page: 133 ident: b29 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 32 start-page: 13625 year: 2020 end-page: 13638 ident: b25 article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks publication-title: Neural Comput. Appl. – volume: 410 start-page: 185 year: 2020 end-page: 201 ident: b53 article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task publication-title: Neurocomputing – volume: 412 start-page: 210 year: 2017 end-page: 222 ident: b4 article-title: Robust stochastic configuration networks with kernel density estimation for uncertain data regression publication-title: Inform. Sci. – volume: 27 start-page: 1722 year: 2020 end-page: 1739 ident: b48 article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method publication-title: Structures – volume: 7 year: 2019 ident: b50 article-title: Algorithm based on population with a flexible search mechanism publication-title: IEEE Access – volume: 14 start-page: 1846 year: 2018 end-page: 1855 ident: b3 article-title: Received signal strength based indoor positioning using a random vector functional link network publication-title: IEEE Trans. Ind. Inf. – volume: 31 start-page: 5426 year: 2020 end-page: 5440 ident: b8 article-title: Ensemble stochastic configuration networks for estimating prediction intervals: A simultaneous robust training algorithm and its application publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b37 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. Int. J. eSci. – volume: 487 start-page: 77 year: 2019 end-page: 83 ident: b19 article-title: A further study on the inequality constraints in stochastic configuration networks publication-title: Inform. Sci. – volume: 12 start-page: 4283 year: 2019 ident: b58 article-title: Carbon price forecasting based on multi-resolution singular value decomposition and extreme learning machine optimized by the moth-flame optimization algorithm considering energy and economic factors publication-title: Energies – volume: 32 start-page: 9427 year: 2020 end-page: 9441 ident: b60 article-title: A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection publication-title: Neural Comput. Appl. – volume: 19 start-page: 3293 year: 2019 ident: b9 article-title: Ensemble learning with stochastic configuration network for noisy optical fiber vibration signal recognition publication-title: Sensors – volume: 87 year: 2020 ident: b43 article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. – volume: 7 start-page: 43473 year: 2019 end-page: 43486 ident: b49 article-title: Fitness dependent optimizer: Inspired by the bee swarming reproductive process publication-title: IEEE Access – volume: 45 start-page: 191 year: 2015 end-page: 204 ident: b41 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. – volume: 16 start-page: 373 year: 2020 end-page: 383 ident: b22 article-title: Stochastic configuration networks based adaptive storage replica management for power big data processing publication-title: IEEE Trans. Ind. Inf. – volume: 7 start-page: 73182 year: 2019 end-page: 73206 ident: b44 article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization publication-title: IEEE Access – volume: 16 start-page: 5099 year: 2020 end-page: 5109 ident: b6 article-title: Mixed-distribution-based robust stochastic configuration networks for prediction interval construction publication-title: IEEE Trans. Ind. Inf. – year: 2008 ident: b28 article-title: Covariance matrix adaptation evolution strategy publication-title: Parallel Problem Solving from Nature (PPSN X), International Conference Dortmund – volume: 108 start-page: 1 year: 2018 end-page: 27 ident: b65 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. – reference: S. Gao, Y. Yu, Y. Wang, Chaotic Local Search-Based Differential Evolution Algorithms for Optimization, IEEE Trans. Syst. Man Cybern. Syst. – volume: 11 start-page: 65 year: 2019 end-page: 87 ident: b68 article-title: The discovery of population interaction with a power law distribution in brain storm optimization publication-title: Memetic Comput. – volume: 382–383 start-page: 170 year: 2017 end-page: 178 ident: b75 article-title: Insights into randomized algorithms for neural networks: practical issues and common pitfalls publication-title: Inform. Sci. – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b71 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 172 start-page: 1 year: 2019 end-page: 14 ident: b63 article-title: Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm publication-title: Knowl.-Based Syst. – volume: 11 start-page: 293 year: 2020 end-page: 308 ident: b33 article-title: Parasitism-predation algorithm (PPA): A novel approach for feature selection publication-title: Ain Shams Eng. J. – volume: 152 start-page: 113377 year: 2020 ident: b35 publication-title: Expert Syst. Appl. – reference: . – volume: 58 year: 2019 ident: b17 article-title: Intrusion signal classification using stochastic configuration network with variable increments of hidden nodes publication-title: Opt. Eng. – year: 2017 ident: b10 article-title: Deep stochastic configuration networks with universal approximation property publication-title: 2018 International Joint Conference on Neural Networks – volume: 522 start-page: 259 year: 2020 end-page: 274 ident: b21 article-title: Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism publication-title: Inform. Sci. – volume: 46 start-page: 299 year: 2013 end-page: 305 ident: b2 article-title: Universal approximation by radial basis function networks of delsarte translates publication-title: Neural Netw. – year: 2009 ident: b72 article-title: Feasibility of random basis function approximators for modeling and control publication-title: International Conference on Control Applications – volume: 394 start-page: 61 year: 2020 end-page: 69 ident: b24 article-title: Driving amount based stochastic configuration network for industrial process modeling publication-title: Neurocomputing – volume: 234 start-page: 1 year: 2017 end-page: 10 ident: b62 article-title: Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition publication-title: Neurocomputing – volume: 335 start-page: 261 year: 2019 end-page: 273 ident: b55 article-title: A survey on meta-heuristic optimization for random single-hidden layer feedforward neural network publication-title: Neurocomputing – volume: 24 start-page: 1171 year: 2020 end-page: 1184 ident: b59 article-title: ALO-optimized artificial neural network-controlled dynamic voltage restorer for compensation of voltage issues in distribution system publication-title: Soft Comput. – volume: 282 start-page: 232 year: 2018 end-page: 247 ident: b57 article-title: Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection publication-title: Neurocomputing – volume: 152 year: 2020 ident: b67 article-title: An aggregative learning gravitational search algorithm with self-adaptive gravitational constants publication-title: Expert Syst. Appl. – volume: 12 start-page: 4283 issue: 22 year: 2019 ident: 10.1016/j.knosys.2021.106924_b58 article-title: Carbon price forecasting based on multi-resolution singular value decomposition and extreme learning machine optimized by the moth-flame optimization algorithm considering energy and economic factors publication-title: Energies doi: 10.3390/en12224283 – volume: 487 start-page: 77 year: 2019 ident: 10.1016/j.knosys.2021.106924_b19 article-title: A further study on the inequality constraints in stochastic configuration networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.066 – ident: 10.1016/j.knosys.2021.106924_b26 – volume: 417 start-page: 55 year: 2017 ident: 10.1016/j.knosys.2021.106924_b7 article-title: Stochastic configuration networks ensemble with heterogeneous features for large-scale data analytics publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.07.003 – volume: 50 start-page: 2312 issue: 8 year: 2020 ident: 10.1016/j.knosys.2021.106924_b54 article-title: Twin support vector machine based on improved artificial fish swarm algorithm with application to flame recognition publication-title: Appl. Intell. doi: 10.1007/s10489-020-01676-6 – volume: 96 start-page: 120 year: 2015 ident: 10.1016/j.knosys.2021.106924_b29 article-title: SCA: A Sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 24 start-page: 1171 issue: 2 year: 2020 ident: 10.1016/j.knosys.2021.106924_b59 article-title: ALO-optimized artificial neural network-controlled dynamic voltage restorer for compensation of voltage issues in distribution system publication-title: Soft Comput. doi: 10.1007/s00500-019-03952-1 – volume: 16 start-page: 5099 issue: 8 year: 2020 ident: 10.1016/j.knosys.2021.106924_b6 article-title: Mixed-distribution-based robust stochastic configuration networks for prediction interval construction publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2954351 – volume: 31 start-page: 5426 issue: 12 year: 2020 ident: 10.1016/j.knosys.2021.106924_b8 article-title: Ensemble stochastic configuration networks for estimating prediction intervals: A simultaneous robust training algorithm and its application publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2967816 – volume: 58 issue: 2 year: 2019 ident: 10.1016/j.knosys.2021.106924_b17 article-title: Intrusion signal classification using stochastic configuration network with variable increments of hidden nodes publication-title: Opt. Eng. doi: 10.1117/1.OE.58.2.026105 – volume: 94 year: 2020 ident: 10.1016/j.knosys.2021.106924_b38 article-title: Lévy flight distribution: A new meta-heuristic algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103731 – volume: 152 start-page: 113377 year: 2020 ident: 10.1016/j.knosys.2021.106924_b35 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 14 start-page: 1846 issue: 5 year: 2018 ident: 10.1016/j.knosys.2021.106924_b3 article-title: Received signal strength based indoor positioning using a random vector functional link network publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2760915 – volume: 51 start-page: 359 issue: 1 year: 2021 ident: 10.1016/j.knosys.2021.106924_b16 article-title: 2-d stochastic configuration networks for image data analytics publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2925883 – volume: 492 start-page: 181 year: 2019 ident: 10.1016/j.knosys.2021.106924_b70 article-title: Enhanced Moth-flame optimizer with mutation strategy for global optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.04.022 – volume: 9 start-page: 1 year: 2013 ident: 10.1016/j.knosys.2021.106924_b71 article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.09.002 – volume: 412 start-page: 210 year: 2017 ident: 10.1016/j.knosys.2021.106924_b4 article-title: Robust stochastic configuration networks with kernel density estimation for uncertain data regression publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.05.047 – volume: 313 start-page: 47 year: 2018 ident: 10.1016/j.knosys.2021.106924_b52 article-title: A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.002 – ident: 10.1016/j.knosys.2021.106924_b66 doi: 10.1109/TSMC.2019.2956121 – volume: 47 start-page: 3466 issue: 10 year: 2017 ident: 10.1016/j.knosys.2021.106924_b1 article-title: Stochastic configuration networks: Fundamentals and algorithms publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2734043 – volume: 46 start-page: 299 year: 2013 ident: 10.1016/j.knosys.2021.106924_b2 article-title: Universal approximation by radial basis function networks of delsarte translates publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.06.011 – volume: 16 start-page: 373 issue: 1 year: 2020 ident: 10.1016/j.knosys.2021.106924_b22 article-title: Stochastic configuration networks based adaptive storage replica management for power big data processing publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2919268 – volume: 382–383 start-page: 170 year: 2017 ident: 10.1016/j.knosys.2021.106924_b75 article-title: Insights into randomized algorithms for neural networks: practical issues and common pitfalls publication-title: Inform. Sci. doi: 10.1016/j.ins.2016.12.007 – volume: 473 start-page: 73 year: 2019 ident: 10.1016/j.knosys.2021.106924_b5 article-title: Robust stochastic configuration networks with maximum correntropy criterion for uncertain data regression publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.09.026 – volume: 27 start-page: 1722 year: 2020 ident: 10.1016/j.knosys.2021.106924_b48 article-title: Billiards-inspired optimization algorithm; a new meta-heuristic method publication-title: Structures doi: 10.1016/j.istruc.2020.07.058 – volume: 7 start-page: 43473 year: 2019 ident: 10.1016/j.knosys.2021.106924_b49 article-title: Fitness dependent optimizer: Inspired by the bee swarming reproductive process publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2907012 – volume: 161 year: 2020 ident: 10.1016/j.knosys.2021.106924_b39 article-title: Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113698 – volume: 59 start-page: 596 year: 2017 ident: 10.1016/j.knosys.2021.106924_b36 article-title: A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.033 – volume: 87 year: 2020 ident: 10.1016/j.knosys.2021.106924_b43 article-title: Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103300 – volume: 172 start-page: 1 year: 2019 ident: 10.1016/j.knosys.2021.106924_b63 article-title: Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.01.015 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.knosys.2021.106924_b31 article-title: Multi-verse optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 8 start-page: 22 issue: 1 year: 2020 ident: 10.1016/j.knosys.2021.106924_b64 article-title: A novel swarm intelligence optimization approach: sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – volume: 11 start-page: 3040 issue: 11 year: 2018 ident: 10.1016/j.knosys.2021.106924_b11 article-title: Hybrid approach for detecting and classifying power quality disturbances based on the variational mode decomposition and deep stochastic configuration network publication-title: Energies doi: 10.3390/en11113040 – volume: 234 start-page: 1 year: 2017 ident: 10.1016/j.knosys.2021.106924_b62 article-title: Hidden-layer visible deep stacking network optimized by PSO for motor imagery EEG recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.039 – volume: 38 start-page: 771 year: 2016 ident: 10.1016/j.knosys.2021.106924_b42 article-title: Galactic swarm optimization: A new global optimization meta-heuristic inspired by galactic motion publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.034 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.knosys.2021.106924_b32 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 495 start-page: 150 year: 2019 ident: 10.1016/j.knosys.2021.106924_b13 article-title: Deep stacked stochastic configuration networks for lifelong learning of non-stationary data streams publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.04.055 – volume: 78 start-page: 545 year: 2019 ident: 10.1016/j.knosys.2021.106924_b47 article-title: A new meta-heuristic optimizer: Pathfinder algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.03.012 – volume: 394 start-page: 61 year: 2020 ident: 10.1016/j.knosys.2021.106924_b24 article-title: Driving amount based stochastic configuration network for industrial process modeling publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.029 – volume: 410 start-page: 185 year: 2020 ident: 10.1016/j.knosys.2021.106924_b53 article-title: A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.05.075 – volume: 282 start-page: 232 year: 2018 ident: 10.1016/j.knosys.2021.106924_b57 article-title: Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.12.030 – volume: 486 start-page: 119 year: 2019 ident: 10.1016/j.knosys.2021.106924_b12 article-title: Construction of prediction intervals for carbon residual of crude oil based on deep stochastic configuration networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.042 – volume: 19 start-page: 3293 issue: 15 year: 2019 ident: 10.1016/j.knosys.2021.106924_b9 article-title: Ensemble learning with stochastic configuration network for noisy optical fiber vibration signal recognition publication-title: Sensors doi: 10.3390/s19153293 – volume: 484 start-page: 367 year: 2019 ident: 10.1016/j.knosys.2021.106924_b18 article-title: Stochastic configuration networks with block increments for data modeling in process industries publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.01.062 – volume: 28 start-page: 1125 issue: 6 year: 2020 ident: 10.1016/j.knosys.2021.106924_b51 article-title: Multipopulation nature-inspired algorithm (MNIA) for the designing of interpretable fuzzy systems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2959997 – year: 2008 ident: 10.1016/j.knosys.2021.106924_b28 article-title: Covariance matrix adaptation evolution strategy – volume: 7 year: 2019 ident: 10.1016/j.knosys.2021.106924_b50 article-title: Algorithm based on population with a flexible search mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941182 – volume: 86 start-page: 165 year: 2019 ident: 10.1016/j.knosys.2021.106924_b45 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – ident: 10.1016/j.knosys.2021.106924_b14 doi: 10.1007/s00521-020-05178-x – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.knosys.2021.106924_b34 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 30 start-page: 601 issue: 2 year: 2019 ident: 10.1016/j.knosys.2021.106924_b56 article-title: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2846646 – volume: 335 start-page: 261 year: 2019 ident: 10.1016/j.knosys.2021.106924_b55 article-title: A survey on meta-heuristic optimization for random single-hidden layer feedforward neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.080 – ident: 10.1016/j.knosys.2021.106924_b30 doi: 10.1109/CEC.2018.8477769 – volume: 146 year: 2020 ident: 10.1016/j.knosys.2021.106924_b40 article-title: Student psychology based optimization algorithm: A new population based optimization algorithm for solving optimization problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2020.102804 – year: 2017 ident: 10.1016/j.knosys.2021.106924_b10 article-title: Deep stochastic configuration networks with universal approximation property – volume: 108 start-page: 1 year: 2018 ident: 10.1016/j.knosys.2021.106924_b65 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.028 – ident: 10.1016/j.knosys.2021.106924_b61 doi: 10.1007/s00521-020-05364-x – volume: 11 start-page: 65 issue: 1 year: 2019 ident: 10.1016/j.knosys.2021.106924_b68 article-title: The discovery of population interaction with a power law distribution in brain storm optimization publication-title: Memetic Comput. doi: 10.1007/s12293-017-0248-z – volume: 522 start-page: 259 year: 2020 ident: 10.1016/j.knosys.2021.106924_b21 article-title: Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.02.058 – volume: 540 start-page: 1 year: 2020 ident: 10.1016/j.knosys.2021.106924_b15 article-title: Distributed stochastic configuration networks with cooperative learning paradigm publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.05.112 – volume: 7 start-page: 73182 year: 2019 ident: 10.1016/j.knosys.2021.106924_b44 article-title: Supply-demand-based optimization: A novel economics-inspired algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918753 – volume: 150 year: 2020 ident: 10.1016/j.knosys.2021.106924_b69 article-title: Yin-yang firefly algorithm based on dimensionally Cauchy mutation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113216 – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.knosys.2021.106924_b37 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. Int. J. eSci. doi: 10.1016/j.future.2020.03.055 – volume: 58 issue: 2 year: 2015 ident: 10.1016/j.knosys.2021.106924_b74 article-title: Extreme learning machines: new trends and applications publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-014-5269-3 – volume: 488 start-page: 1 year: 2019 ident: 10.1016/j.knosys.2021.106924_b20 article-title: Greengage grading using stochastic configuration networks and a semi-supervised feedback mechanism publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.02.041 – volume: 87 year: 2020 ident: 10.1016/j.knosys.2021.106924_b46 article-title: Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103330 – volume: 152 year: 2020 ident: 10.1016/j.knosys.2021.106924_b67 article-title: An aggregative learning gravitational search algorithm with self-adaptive gravitational constants publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113396 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.knosys.2021.106924_b27 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 32 start-page: 13625 issue: 17 year: 2020 ident: 10.1016/j.knosys.2021.106924_b25 article-title: Prediction of component concentrations in sodium aluminate liquor using stochastic configuration networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04771-4 – volume: 11 start-page: 293 issue: 2 year: 2020 ident: 10.1016/j.knosys.2021.106924_b33 article-title: Parasitism-predation algorithm (PPA): A novel approach for feature selection publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2019.10.004 – volume: 8 start-page: 1131 issue: 5 year: 1997 ident: 10.1016/j.knosys.2021.106924_b73 article-title: Objective functions for training new hidden units in constructive neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.623214 – volume: 32 start-page: 9427 issue: 13 year: 2020 ident: 10.1016/j.knosys.2021.106924_b60 article-title: A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04453-w – volume: 8 year: 2020 ident: 10.1016/j.knosys.2021.106924_b23 article-title: FPGA-based implementation of stochastic configuration network for robotic grasping recognition publication-title: IEEE Access – year: 2009 ident: 10.1016/j.knosys.2021.106924_b72 article-title: Feasibility of random basis function approximators for modeling and control – volume: 45 start-page: 191 issue: 2 year: 2015 ident: 10.1016/j.knosys.2021.106924_b41 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2322602 |
SSID | ssj0002218 |
Score | 2.6787589 |
Snippet | Stochastic configuration network (SCN), as a novel incremental generation model with supervisory mechanism, has an excellent superiority in solving large-scale... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106924 |
SubjectTerms | Algorithms Chaotic Configurations Global optimization Heuristic methods Logistic mapping Mutation Optimization Parameters Performance evaluation Regularization Search algorithms Sparrow search algorithm Stochastic configuration network |
Title | A stochastic configuration network based on chaotic sparrow search algorithm |
URI | https://dx.doi.org/10.1016/j.knosys.2021.106924 https://www.proquest.com/docview/2521112049 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409eLFt_FRmz14XQvLAuXYNDb11Ys26Y2wA7TVCk2lBy_-dmdg0WhimnghYRkIzOObWTIPxi4TmXro6KSQAJ7A-B9NCt2uULb23TSKI5BUnPww8oZjdTtxJw3Wr2thKK3SYH-F6SVam5WO4WZnOZ93HjE4QH11qQMWTZajgl-lfNLyq4_vNA8py398RCyIui6fK3O8XrL87Z2adksbl7xAqr_c0y-gLr3PYI_tmLCR96o322eNJDtgu_VIBm4s9JDd9zhGczCLqP0yx71uOp-uKyHzrMr45uS4Yo4LSJYTGYIKdWLkldbzaDHNV_Ni9nrExoPrp_5QmIEJAtAUC-FG3RgAUogDxFMHvz6x_ADFEUMaeQosR9oa_MRxkxR5lmgfnbWtNHovWwcKnGPWzPIsOWFcWqCiQNkWdAGPdhS4OpCu9nELZKXaP2VOzacQTDdxGmqxCOu0seew4m5I3A0r7p4y8XXXsuqmsYHer0UQ_tCKEAF_w52tWmKhsUq8jrEKxpe4KTr794PP2TadUQKBdFqsWazWyQXGJYVul4rXZlu9m7vh6BMEs-Lr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGGDhjXjjAcbQxHGSZmBAQNVCYYFK3Ux8caA80qoUIRb-FH-Qc-KAQEJISCwZHNuyPl--7xyd7wB2NM9CEjrucMTQIf-fPimSXUd4KgqyJE2Qm8vJZ-dhsyNOukF3DN6quzAmrNJyf8npBVvblppFszbo9WoX5ByQvQYmA5apLFe3kZWn-uWZzm2P-60j2uRdzhvHl4dNx5YWcJCMduQEST1FxAzTmJjHJ17QbhTTwlPMklCg63NPYaT9QGc0u1YRyZonFPG8p2KBPs07DpOC6MKUTdh7_Ywr4bz4qWhW55jlVff1iqCyu7z_-GKyhHOPmsKYi5_08JsyFHLXmIMZ66eygxKKeRjT-QLMVjUgmKWERWgfMHIf8SYx-Z4ZHa6z3vVTaVUsL0PMmVHKlFEDdeubbsRiJvUjK6Fkyf11f9gb3TwsQedfYFyGibyf6xVg3EWRxMJzsY709JI4UDEPVERnLjdT0Sr4FU4SbfpyU0XjXlZxareyRFcadGWJ7io4H6MGZfqOX_pH1RbIL2YoSWF-GblR7Zi0NEDvyTkih5ZOYWt_nngbppqXZ23Zbp2frsO0eWOiF7i_AROj4ZPeJKdopLYKI2Rw9d9W_w4tgh_s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+configuration+network+based+on+chaotic+sparrow+search+algorithm&rft.jtitle=Knowledge-based+systems&rft.au=Zhang%2C+Chenglong&rft.au=Ding%2C+Shifei&rft.date=2021-05-23&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=220&rft_id=info:doi/10.1016%2Fj.knosys.2021.106924&rft.externalDocID=S0950705121001878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |