Reaction dynamics of the D+ + H2 system. A comparison of theoretical approaches
The dynamics of the deuteron-proton exchange D + + H 2 → HD + H + reaction on its ground 1 1 A ′ potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statist...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 12; no. 39; pp. 12591 - 1263 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.10.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/c0cp00311e |
Cover
Abstract | The dynamics of the deuteron-proton exchange D
+
+ H
2
→ HD + H
+
reaction on its ground 1
1
A
′ potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers,
J
, up to
J
max
40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H
+
+ D
2
→ HD + D
+
isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H
+
+ D
2
(
v
= 0,
j
≤ 3). Reaction probabilities as a function of
J
(opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the Gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H
+
+ D
2
reaction.
The dynamics of the D
+
+ H
2
exchange reaction has been theoretically studied using quantum mechanical, quasiclassical and statistical approaches. |
---|---|
AbstractList | The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2) reaction.The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2) reaction. The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2) reaction. The dynamics of the deuteron-proton exchange D + + H 2 → HD + H + reaction on its ground 1 1 A ′ potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J , up to J max 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H + + D 2 → HD + D + isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H + + D 2 ( v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the Gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H + + D 2 reaction. The dynamics of the D + + H 2 exchange reaction has been theoretically studied using quantum mechanical, quasiclassical and statistical approaches. |
Author | Alvariño, J. M Aoiz, F. J Sáez-Rábanos, Vicente Jambrina, P. G Herrero, Víctor J |
AuthorAffiliation | Facultad de Química Departamento de Química Física ETS Ingenieros de Montes Instituto de Estructura de la Materia (CSIC) Departamento de Química y Bioquímica Universidad de Salamanca Facultad de Ciencias Químicas Grupo de Dinámica Molecular Universidad Politécnica Universidad Complutense |
AuthorAffiliation_xml | – name: Facultad de Ciencias Químicas – name: Grupo de Dinámica Molecular – name: Universidad de Salamanca – name: Departamento de Química y Bioquímica – name: Instituto de Estructura de la Materia (CSIC) – name: Departamento de Química Física – name: ETS Ingenieros de Montes – name: Universidad Complutense – name: Universidad Politécnica – name: Facultad de Química |
Author_xml | – sequence: 1 givenname: P. G surname: Jambrina fullname: Jambrina, P. G – sequence: 2 givenname: J. M surname: Alvariño fullname: Alvariño, J. M – sequence: 3 givenname: F. J surname: Aoiz fullname: Aoiz, F. J – sequence: 4 givenname: Víctor J surname: Herrero fullname: Herrero, Víctor J – sequence: 5 givenname: Vicente surname: Sáez-Rábanos fullname: Sáez-Rábanos, Vicente |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23356337$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20725673$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1LLDEMAPAiirrqxbtSD_JAWU2_pjNH8b2ngiCInku3k2JlvmxnD_vfW9nVBRFPDfSXhCQTstn1HRJyyOCCgaguHbgBQDCGG2SXyUJMKyjl5lesix0ySekVAJhiYpvscNBcFVrskodHtG4MfUfrRWfb4BLtPR1fkP49p-f0ltO0SCO2F_SKur4dbAwp46XpI47B2YbaYYi9dS-Y9smWt03Cg9W7R57__3u6vp3eP9zcXV_dT50EGKfKltoBK2zFS1DecqmVL3U5q1CrquIei7rWoNDpukAmpPQcS8m55DMpoRZ75M-ybm78Nsc0mjYkh01jO-znyWhVlFkrnuXxSs5nLdZmiKG1cWE-d5DB6QrYlIfx0XYupLUTQhVC6Oxg6VzsU4rojQuj_djdGG1oDAPzcQ6zPkdOOfuW8ln1R3yyxDG5L7f-N0Ptszn6zYh30kWc9g |
CitedBy_id | crossref_primary_10_1021_jp3124549 crossref_primary_10_1021_jp5035739 crossref_primary_10_1039_C7SC05489K crossref_primary_10_1103_PhysRevA_91_030701 crossref_primary_10_1021_acs_jpca_7b08941 crossref_primary_10_1063_5_0042967 crossref_primary_10_1039_D1CP02564C crossref_primary_10_1063_1_4816638 crossref_primary_10_1080_0144235X_2014_943470 crossref_primary_10_1016_j_comptc_2011_11_001 crossref_primary_10_1016_j_cplett_2021_138493 crossref_primary_10_1021_acs_jpca_4c02243 crossref_primary_10_1063_1_4861759 crossref_primary_10_1080_0144235X_2012_752905 crossref_primary_10_1021_jp210992g crossref_primary_10_1007_s00214_014_1527_0 crossref_primary_10_1039_C9CP02798J crossref_primary_10_1039_c1cp20426b crossref_primary_10_1021_jp305612t crossref_primary_10_1063_1_4936144 crossref_primary_10_1021_acs_jpca_5b09660 crossref_primary_10_1016_j_chemphys_2022_111588 crossref_primary_10_1021_acs_jpca_9b06212 crossref_primary_10_1039_c2cp41049d crossref_primary_10_1021_jp501446y crossref_primary_10_1039_c2cp23479c crossref_primary_10_1039_C8CP05398G crossref_primary_10_1063_1_4761894 |
Cites_doi | 10.1021/jp057182+ 10.1063/1.1418252 10.1063/1.1527014 10.1063/1.2118567 10.1063/1.480539 10.1086/306473 10.1063/1.1672881 10.1021/jp063815o 10.1039/B206379B 10.1063/1.443123 10.1021/jp0451391 10.1139/v69-681 10.1063/1.1336566 10.1039/df9674400014 10.1063/1.2566770 10.1063/1.1675788 10.1039/a803469i 10.1238/Physica.Topical.096a00072 10.1063/1.1674939 10.1016/0301-0104(80)85010-5 10.1039/a909040a 10.1039/b007096n 10.1016/S0010-4655(00)00167-3 10.1063/1.469686 10.1063/1.3129343 10.1063/1.472047 10.1103/PhysRevA.77.032505 10.1063/1.3183538 10.1039/B919914D 10.1063/1.1630023 10.1063/1.463804 10.1086/152681 10.1063/1.2831505 10.1021/jp050461c 10.1063/1.1535437 10.1063/1.1503070 10.1021/jp9038946 10.1063/1.2336224 10.1016/S0032-0633(02)00095-8 10.1063/1.480835 10.1021/jp0520401 10.1063/1.1998807 10.1063/1.2969812 10.1086/181222 10.1039/ft9949002303 10.1063/1.2358350 10.1063/1.2774982 10.1063/1.1562159 10.1086/181199 10.1063/1.1681826 10.1021/j100407a012 10.1063/1.463514 10.1016/0301-0104(85)80163-4 10.1063/1.2801858 10.1039/a807824f 10.1063/1.2812555 10.1016/j.cplett.2007.10.098 10.1063/1.1674676 10.1016/j.cplett.2009.02.049 10.1016/0301-0104(87)85083-8 10.1063/1.1681242 10.1063/1.442168 10.1016/S0009-2614(97)00881-6 10.1063/1.2723067 10.1063/1.467397 10.1016/0301-0104(87)80149-0 10.1016/j.cpc.2008.05.004 10.1063/1.1628218 10.1016/j.cplett.2004.08.068 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 |
DOI | 10.1039/c0cp00311e |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 1263 |
ExternalDocumentID | 20725673 23356337 10_1039_c0cp00311e c0cp00311e |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG IQODW NPM 7X8 |
ID | FETCH-LOGICAL-c400t-5a87c016a92805fa2475f878b9e75992fe6dd705ec7d6e1344f2e842242b440d3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 09:40:07 EDT 2025 Mon Jul 21 05:52:55 EDT 2025 Mon Jul 21 09:13:27 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Tue Jul 01 02:53:15 EDT 2025 Thu May 30 17:32:13 EDT 2019 Thu May 19 04:22:13 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Keywords | Histogram Reaction probability Exothermic reaction Excitation function Theoretical study Cross section (collision) Dynamics Angular momentum Potential energy surfaces Classical trajectory Calculation Collision energy Opacity Chemical reactivity Proton exchange Comparative study Quantum number |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-5a87c016a92805fa2475f878b9e75992fe6dd705ec7d6e1344f2e842242b440d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10261/74631 |
PMID | 20725673 |
PQID | 756822452 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1039_c0cp00311e pascalfrancis_primary_23356337 rsc_primary_c0cp00311e pubmed_primary_20725673 crossref_primary_10_1039_c0cp00311e proquest_miscellaneous_756822452 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-10-21 |
PublicationDateYYYYMMDD | 2010-10-21 |
PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2010 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (c0cp00311e-(cit29)/*[position()=1]) 2002; T96 Herbst (c0cp00311e-(cit46)/*[position()=1]) 2001; 30 Aoiz (c0cp00311e-(cit61)/*[position()=1]) 2006; 110 Hollmann (c0cp00311e-(cit44)/*[position()=1]) 2002; 9 Skouteris (c0cp00311e-(cit67)/*[position()=1]) 2000; 133 Bañares (c0cp00311e-(cit74)/*[position()=1]) 2003; 118 Cuervo-Reyes (c0cp00311e-(cit55)/*[position()=1]) 2002; 4 Bonnet (c0cp00311e-(cit72)/*[position()=1]) 1997; 277 Watson (c0cp00311e-(cit64)/*[position()=1]) 1973; 182 Schlier (c0cp00311e-(cit19)/*[position()=1]) 1987; 111 Rackham (c0cp00311e-(cit62)/*[position()=1]) 2003; 119 Chu (c0cp00311e-(cit31)/*[position()=1]) 2005; 109 Hankel (c0cp00311e-(cit69)/*[position()=1]) 2008; 179 Viegas (c0cp00311e-(cit38)/*[position()=1]) 2008; 77 Villinger (c0cp00311e-(cit16)/*[position()=1]) 1982; 76 González-Lenzana (c0cp00311e-(cit75)/*[position()=1]) 2009; 131 Méndez (c0cp00311e-(cit45)/*[position()=1]) 2006; 110 Ichihara (c0cp00311e-(cit23)/*[position()=1]) 1996; 105 Dumont (c0cp00311e-(cit52)/*[position()=1]) 1986; 90 Krenos (c0cp00311e-(cit11)/*[position()=1]) 1974; 60 Chajia (c0cp00311e-(cit24)/*[position()=1]) 1999; 1 Aoiz (c0cp00311e-(cit37)/*[position()=1]) 2007; 127 Csizmadia (c0cp00311e-(cit6)/*[position()=1]) 1969; 47 Song (c0cp00311e-(cit33)/*[position()=1]) 2005; 123 Hankel (c0cp00311e-(cit68)/*[position()=1]) 2006; 125 Viegas (c0cp00311e-(cit57)/*[position()=1]) 2004; 120 Aoiz (c0cp00311e-(cit71)/*[position()=1]) 1998; 94 Herbst (c0cp00311e-(cit47)/*[position()=1]) 2005; 109 Watson (c0cp00311e-(cit48)/*[position()=1]) 1973; 181 Jambrina (c0cp00311e-(cit42)/*[position()=1]) 2009; 130 Gerlich (c0cp00311e-(cit50)/*[position()=1]) 2002; 50 Aoiz (c0cp00311e-(cit63)/*[position()=1]) 2008; 129 Gerlich (c0cp00311e-(cit20)/*[position()=1]) 1992; 82 Aoiz (c0cp00311e-(cit70)/*[position()=1]) 1992; 97 Dashevskaya (c0cp00311e-(cit5)/*[position()=1]) 2003; 118 Schlier (c0cp00311e-(cit17)/*[position()=1]) 1985; 95 Krenos (c0cp00311e-(cit7)/*[position()=1]) 1970; 52 Preston (c0cp00311e-(cit8)/*[position()=1]) 1971; 54 Schlier (c0cp00311e-(cit18)/*[position()=1]) 1987; 113 Millar (c0cp00311e-(cit51)/*[position()=1]) 2005; 46 Amaran (c0cp00311e-(cit60)/*[position()=1]) 2008; 128 Ichihara (c0cp00311e-(cit22)/*[position()=1]) 1995; 103 Smith (c0cp00311e-(cit3)/*[position()=1]) 1992; 97 Berblinger (c0cp00311e-(cit53)/*[position()=1]) 1994; 101 Takayanagi (c0cp00311e-(cit25)/*[position()=1]) 2000; 112 Sanz (c0cp00311e-(cit26)/*[position()=1]) 2001; 114 Kamisaka (c0cp00311e-(cit28)/*[position()=1]) 2002; 116 Stancil (c0cp00311e-(cit66)/*[position()=1]) 1998; 509 Zanchet (c0cp00311e-(cit40)/*[position()=1]) 2009; 113 Troe (c0cp00311e-(cit4)/*[position()=1]) 1994; 90 González-Lenzana (c0cp00311e-(cit34)/*[position()=1]) 2006; 125 Amaran (c0cp00311e-(cit59)/*[position()=1]) 2007; 127 Gerlich (c0cp00311e-(cit13)/*[position()=1]) 1980; 47 Henchman (c0cp00311e-(cit15)/*[position()=1]) 1981; 75 Holliday (c0cp00311e-(cit10)/*[position()=1]) 1971; 54 Aoiz (c0cp00311e-(cit36)/*[position()=1]) 2007; 126 Jambrina (c0cp00311e-(cit43)/*[position()=1]) 2010; 12 Saieswari (c0cp00311e-(cit58)/*[position()=1]) 2007; 449 Chapman (c0cp00311e-(cit21)/*[position()=1]) 1992; 82 Ushakov (c0cp00311e-(cit54)/*[position()=1]) 2001; 3 Carmona-Novillo (c0cp00311e-(cit39)/*[position()=1]) 2008; 128 Cernei (c0cp00311e-(cit56)/*[position()=1]) 2003; 118 Aguado (c0cp00311e-(cit27)/*[position()=1]) 2000; 112 Light (c0cp00311e-(cit1)/*[position()=1]) 1967; 44 González-Lenzana (c0cp00311e-(cit30)/*[position()=1]) 2005; 123 Tully (c0cp00311e-(cit9)/*[position()=1]) 1971; 55 Bonnet (c0cp00311e-(cit73)/*[position()=1]) 2004; 397 Viegas (c0cp00311e-(cit35)/*[position()=1]) 2007; 126 Watson (c0cp00311e-(cit49)/*[position()=1]) 1974; 188 Lu (c0cp00311e-(cit32)/*[position()=1]) 2005; 109 Chu (c0cp00311e-(cit41)/*[position()=1]) 2009; 471 Dalgarno (c0cp00311e-(cit65)/*[position()=1]) 1973; 14 Ochs (c0cp00311e-(cit12)/*[position()=1]) 1974; 61 |
References_xml | – issn: 1982 end-page: 304 publication-title: Symposium on Atomic and surface Physics doi: Gerlich – issn: 1974 publication-title: Theory of Elementary Atomic and Molecular Processes in Gases doi: Nikitin – volume: 110 start-page: 6060 year: 2006 ident: c0cp00311e-(cit45)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp057182+ – volume: 116 start-page: 654 year: 2002 ident: c0cp00311e-(cit28)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1418252 – volume: 118 start-page: 565 year: 2003 ident: c0cp00311e-(cit74)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1527014 – volume: 123 start-page: 194309 year: 2005 ident: c0cp00311e-(cit30)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2118567 – volume: 112 start-page: 1240 year: 2000 ident: c0cp00311e-(cit27)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.480539 – volume: 509 start-page: 1 year: 1998 ident: c0cp00311e-(cit66)/*[position()=1] publication-title: Astrophys. J. doi: 10.1086/306473 – volume: 52 start-page: 5961 year: 1970 ident: c0cp00311e-(cit7)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1672881 – volume: 110 start-page: 12546 year: 2006 ident: c0cp00311e-(cit61)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp063815o – volume: 4 start-page: 6012 year: 2002 ident: c0cp00311e-(cit55)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B206379B – volume: 14 start-page: 77 year: 1973 ident: c0cp00311e-(cit65)/*[position()=1] publication-title: Astrophys Lett. – volume: 76 start-page: 1590 year: 1982 ident: c0cp00311e-(cit16)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.443123 – volume: 109 start-page: 2050 year: 2005 ident: c0cp00311e-(cit31)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp0451391 – volume: 47 start-page: 4097 year: 1969 ident: c0cp00311e-(cit6)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/v69-681 – volume: 114 start-page: 2182 year: 2001 ident: c0cp00311e-(cit26)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1336566 – volume: 44 start-page: 14 year: 1967 ident: c0cp00311e-(cit1)/*[position()=1] publication-title: Discuss. Faraday Soc. doi: 10.1039/df9674400014 – volume: 126 start-page: 074309 year: 2007 ident: c0cp00311e-(cit35)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2566770 – volume: 55 start-page: 562 year: 1971 ident: c0cp00311e-(cit9)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1675788 – volume: 94 start-page: 2483 year: 1998 ident: c0cp00311e-(cit71)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/a803469i – volume: T96 start-page: 72 year: 2002 ident: c0cp00311e-(cit29)/*[position()=1] publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.096a00072 – volume: 54 start-page: 1058 year: 1971 ident: c0cp00311e-(cit10)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1674939 – volume: 47 start-page: 245 year: 1980 ident: c0cp00311e-(cit13)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)85010-5 – volume: 30 start-page: 168 year: 2001 ident: c0cp00311e-(cit46)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/a909040a – volume: 3 start-page: 63 year: 2001 ident: c0cp00311e-(cit54)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b007096n – volume: 133 start-page: 128 year: 2000 ident: c0cp00311e-(cit67)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(00)00167-3 – volume: 103 start-page: 2109 year: 1995 ident: c0cp00311e-(cit22)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.469686 – volume: 130 start-page: 184303 year: 2009 ident: c0cp00311e-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3129343 – volume: 46 start-page: 2.29 year: 2005 ident: c0cp00311e-(cit51)/*[position()=1] publication-title: Astrophys. Geophys. – volume: 105 start-page: 1857 year: 1996 ident: c0cp00311e-(cit23)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.472047 – volume: 77 start-page: 032505 year: 2008 ident: c0cp00311e-(cit38)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.77.032505 – volume: 131 start-page: 044315 year: 2009 ident: c0cp00311e-(cit75)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3183538 – volume: 12 start-page: 1102 year: 2010 ident: c0cp00311e-(cit43)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B919914D – volume: 120 start-page: 253 year: 2004 ident: c0cp00311e-(cit57)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1630023 – volume: 97 start-page: 5451 year: 1992 ident: c0cp00311e-(cit3)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.463804 – volume: 188 start-page: 35 year: 1974 ident: c0cp00311e-(cit49)/*[position()=1] publication-title: Astrophys. J. doi: 10.1086/152681 – volume: 128 start-page: 064301 year: 2008 ident: c0cp00311e-(cit60)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2831505 – volume: 109 start-page: 4017 year: 2005 ident: c0cp00311e-(cit47)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp050461c – volume: 118 start-page: 2637 year: 2003 ident: c0cp00311e-(cit56)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1535437 – volume: 9 start-page: 4330 year: 2002 ident: c0cp00311e-(cit44)/*[position()=1] publication-title: Phys. Plasmas doi: 10.1063/1.1503070 – volume: 113 start-page: 14488 year: 2009 ident: c0cp00311e-(cit40)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp9038946 – volume: 125 start-page: 094314 year: 2006 ident: c0cp00311e-(cit34)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2336224 – volume: 50 start-page: 1287 year: 2002 ident: c0cp00311e-(cit50)/*[position()=1] publication-title: Planet. Space Sci. doi: 10.1016/S0032-0633(02)00095-8 – volume: 112 start-page: 2615 year: 2000 ident: c0cp00311e-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.480835 – volume: 109 start-page: 6683 year: 2005 ident: c0cp00311e-(cit32)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp0520401 – volume: 123 start-page: 074314 year: 2005 ident: c0cp00311e-(cit33)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1998807 – volume: 129 start-page: 094305 year: 2008 ident: c0cp00311e-(cit63)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2969812 – volume: 182 start-page: L73 year: 1973 ident: c0cp00311e-(cit64)/*[position()=1] publication-title: Astrophys. J. doi: 10.1086/181222 – volume: 90 start-page: 2303 year: 1994 ident: c0cp00311e-(cit4)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/ft9949002303 – volume: 125 start-page: 164303 year: 2006 ident: c0cp00311e-(cit68)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2358350 – volume: 127 start-page: 174109 year: 2007 ident: c0cp00311e-(cit37)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2774982 – volume: 118 start-page: 7313 year: 2003 ident: c0cp00311e-(cit5)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1562159 – volume: 181 start-page: L129 year: 1973 ident: c0cp00311e-(cit48)/*[position()=1] publication-title: Astrophys. J. doi: 10.1086/181199 – volume: 82 start-page: 423 year: 1992 ident: c0cp00311e-(cit21)/*[position()=1] publication-title: Adv. Chem. Phys. – volume: 61 start-page: 4930 year: 1974 ident: c0cp00311e-(cit12)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1681826 – volume: 90 start-page: 3509 year: 1986 ident: c0cp00311e-(cit52)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100407a012 – volume: 97 start-page: 7423 year: 1992 ident: c0cp00311e-(cit70)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.463514 – volume: 95 start-page: 401 year: 1985 ident: c0cp00311e-(cit17)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(85)80163-4 – volume: 127 start-page: 214304 year: 2007 ident: c0cp00311e-(cit59)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2801858 – volume: 1 start-page: 1205 year: 1999 ident: c0cp00311e-(cit24)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a807824f – volume: 128 start-page: 014304 year: 2008 ident: c0cp00311e-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2812555 – volume: 449 start-page: 358 year: 2007 ident: c0cp00311e-(cit58)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.10.098 – volume: 54 start-page: 4297 year: 1971 ident: c0cp00311e-(cit8)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1674676 – volume: 471 start-page: 222 year: 2009 ident: c0cp00311e-(cit41)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2009.02.049 – volume: 111 start-page: 401 year: 1987 ident: c0cp00311e-(cit19)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(87)85083-8 – volume: 60 start-page: 1634 year: 1974 ident: c0cp00311e-(cit11)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1681242 – volume: 75 start-page: 1201 year: 1981 ident: c0cp00311e-(cit15)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.442168 – volume: 277 start-page: 183 year: 1997 ident: c0cp00311e-(cit72)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)00881-6 – volume: 126 start-page: 161101 year: 2007 ident: c0cp00311e-(cit36)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2723067 – volume: 101 start-page: 4750 year: 1994 ident: c0cp00311e-(cit53)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.467397 – volume: 82 start-page: 1 year: 1992 ident: c0cp00311e-(cit20)/*[position()=1] publication-title: Adv. Chem. Phys. – volume: 113 start-page: 211 year: 1987 ident: c0cp00311e-(cit18)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(87)80149-0 – volume: 179 start-page: 569 year: 2008 ident: c0cp00311e-(cit69)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2008.05.004 – volume: 119 start-page: 12895 year: 2003 ident: c0cp00311e-(cit62)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1628218 – volume: 397 start-page: 106 year: 2004 ident: c0cp00311e-(cit73)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.08.068 |
SSID | ssj0001513 |
Score | 2.1409833 |
Snippet | The dynamics of the deuteron-proton exchange D
+
+ H
2
→ HD + H
+
reaction on its ground 1
1
A
′ potential energy surface has been the subject of a theoretical... The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a... |
SourceID | proquest pubmed pascalfrancis crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12591 |
SubjectTerms | Chemistry Exact sciences and technology General and physical chemistry |
Title | Reaction dynamics of the D+ + H2 system. A comparison of theoretical approaches |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20725673 https://www.proquest.com/docview/756822452 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgewAJIX4NMmCyBDygKsW1HTt-zNpNZUJQoQ7tLUocR0IabdR2PPDXc47tpIUiAQ-NItuJFX_Xy-XOdx9Cr5nQlJKCxLJmIuaay1gpw2OTipEo4KVQmHaX70cxveQXV8lV78xps0s25VD_2JtX8j-oQhvgarNk_wHZ7qbQAOeALxwBYTj-FcafjWf6rhyv_DpE_Cdv6OnA_qbU12oeggbQ25yDOymMobK431DojdVZwFAHVjh3ZpucR2TdehRm43GXJXbR5oC5RLNZT9yVXX-HmW1U_nTkYj29GzZbfm292Od9iGpqVivjMnC-tKH8iY0t-H7vo7D7PUjsEp-HxulVLlisiGOD6xQv3RIwV9LIq1GwuhyH128KnjBbH1UT3Vh1NDLbg-CJm28t1JRIMOUcR8ov5bRD1210SKW0kf3D7Gz-_kP3-gYTiIU6tky966eydaP9xTtGzL2mWMPC144IZd-XCtgtq8An09ot8wfovv_gwJmTnofollk8QnfGAdHH6FOQIhykCC9rDNKBJwM8wFOKvQThDPcS5McECcK9BD1Bl-dn8_E09jQbsQYFvomTIpUaLP9C0ZQkdUG5TOpUpqUyMlGK1kZUlSSJ0bISZsQ4r6lJOdh-tOScVOwIHSyWC_MMYQb9wnIqGw6HhKrUOjtILYSqaKl0hN6Gdcu1r0FvqVCu83YvBFN5v9wRetWNbVzllb2jTnaWvxtKGUsEYzJCOOCRw8LacFixMMubdS4TYbdQJzRCTx1O_cUe5wgdAXBd8_a0x_s78qaqj_94v-fobv_3eIEONqsb8xKM2k154sXwJ0Iwmgg |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+dynamics+of+the+D%2B+%2B+H2+system.+A+comparison+of+theoretical+approaches&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Jambrina%2C+P+G&rft.au=Alvari%C3%B1o%2C+J+M&rft.au=Aoiz%2C+F+J&rft.au=Herrero%2C+V%C3%ADctor+J&rft.date=2010-10-21&rft.eissn=1463-9084&rft.volume=12&rft.issue=39&rft.spage=12591&rft_id=info:doi/10.1039%2Fc0cp00311e&rft_id=info%3Apmid%2F20725673&rft.externalDocID=20725673 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |