Reaction dynamics of the D+ + H2 system. A comparison of theoretical approaches

The dynamics of the deuteron-proton exchange D + + H 2 → HD + H + reaction on its ground 1 1 A ′ potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statist...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 12; no. 39; pp. 12591 - 1263
Main Authors Jambrina, P. G, Alvariño, J. M, Aoiz, F. J, Herrero, Víctor J, Sáez-Rábanos, Vicente
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.10.2010
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/c0cp00311e

Cover

Abstract The dynamics of the deuteron-proton exchange D + + H 2 → HD + H + reaction on its ground 1 1 A ′ potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J , up to J max 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H + + D 2 → HD + D + isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H + + D 2 ( v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the Gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H + + D 2 reaction. The dynamics of the D + + H 2 exchange reaction has been theoretically studied using quantum mechanical, quasiclassical and statistical approaches.
AbstractList The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2) reaction.The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2) reaction.
The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J, up to J(max) ≈ 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H(+) + D(2) → HD + D(+) isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H(+) + D(2) (v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H(+) + D(2) reaction.
The dynamics of the deuteron-proton exchange D + + H 2 → HD + H + reaction on its ground 1 1 A ′ potential energy surface has been the subject of a theoretical study for collision energies below 1.5 eV. The results obtained with three theoretical approaches: quasi-classical trajectory (QCT), statistical quasi-classical trajectory (SQCT), and accurate time-independent quantum mechanical (QM) calculations are compared in the range of collision energies from 5 meV to 0.2 eV. The QM calculations included all total angular momentum quantum numbers, J , up to J max 40 and all the Coriolis couplings. For higher collision energies, the comparison was restricted to the QCT and SQCT results given the enormous computational cost implied in the QM calculations. Reaction cross sections as a function of collision energy (excitation functions) for various initial rovibrational states have been determined and compared with the corresponding results for the endothermic H + + D 2 → HD + D + isotopic variant. The excitation function for the title reaction decays monotonically with collision energy as expected for an exothermic reaction without a barrier, in contrast to the behaviour observed in the mentioned H + + D 2 ( v = 0, j ≤ 3). Reaction probabilities as a function of J (opacity functions) at several collision energies calculated with the different approaches were also examined and important differences between them were found. The effect of using the Gaussian binning procedure that preserves, to a large extent, the zero point energy, as compared to the standard histogram binning in the QCT calculations, is also examined. At low collision energy, the best agreement with the accurate QM results is given by the SQCT data, although they tend to overestimate the reactivity. The deviations from the statistical behaviour of the QCT data at higher energies are remarkable. Nevertheless, on the whole, the title reaction can be deemed more statistical than the H + + D 2 reaction. The dynamics of the D + + H 2 exchange reaction has been theoretically studied using quantum mechanical, quasiclassical and statistical approaches.
Author Alvariño, J. M
Aoiz, F. J
Sáez-Rábanos, Vicente
Jambrina, P. G
Herrero, Víctor J
AuthorAffiliation Facultad de Química
Departamento de Química Física
ETS Ingenieros de Montes
Instituto de Estructura de la Materia (CSIC)
Departamento de Química y Bioquímica
Universidad de Salamanca
Facultad de Ciencias Químicas
Grupo de Dinámica Molecular
Universidad Politécnica
Universidad Complutense
AuthorAffiliation_xml – name: Facultad de Ciencias Químicas
– name: Grupo de Dinámica Molecular
– name: Universidad de Salamanca
– name: Departamento de Química y Bioquímica
– name: Instituto de Estructura de la Materia (CSIC)
– name: Departamento de Química Física
– name: ETS Ingenieros de Montes
– name: Universidad Complutense
– name: Universidad Politécnica
– name: Facultad de Química
Author_xml – sequence: 1
  givenname: P. G
  surname: Jambrina
  fullname: Jambrina, P. G
– sequence: 2
  givenname: J. M
  surname: Alvariño
  fullname: Alvariño, J. M
– sequence: 3
  givenname: F. J
  surname: Aoiz
  fullname: Aoiz, F. J
– sequence: 4
  givenname: Víctor J
  surname: Herrero
  fullname: Herrero, Víctor J
– sequence: 5
  givenname: Vicente
  surname: Sáez-Rábanos
  fullname: Sáez-Rábanos, Vicente
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23356337$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20725673$$D View this record in MEDLINE/PubMed
BookMark eNp90c1LLDEMAPAiirrqxbtSD_JAWU2_pjNH8b2ngiCInku3k2JlvmxnD_vfW9nVBRFPDfSXhCQTstn1HRJyyOCCgaguHbgBQDCGG2SXyUJMKyjl5lesix0ySekVAJhiYpvscNBcFVrskodHtG4MfUfrRWfb4BLtPR1fkP49p-f0ltO0SCO2F_SKur4dbAwp46XpI47B2YbaYYi9dS-Y9smWt03Cg9W7R57__3u6vp3eP9zcXV_dT50EGKfKltoBK2zFS1DecqmVL3U5q1CrquIei7rWoNDpukAmpPQcS8m55DMpoRZ75M-ybm78Nsc0mjYkh01jO-znyWhVlFkrnuXxSs5nLdZmiKG1cWE-d5DB6QrYlIfx0XYupLUTQhVC6Oxg6VzsU4rojQuj_djdGG1oDAPzcQ6zPkdOOfuW8ln1R3yyxDG5L7f-N0Ptszn6zYh30kWc9g
CitedBy_id crossref_primary_10_1021_jp3124549
crossref_primary_10_1021_jp5035739
crossref_primary_10_1039_C7SC05489K
crossref_primary_10_1103_PhysRevA_91_030701
crossref_primary_10_1021_acs_jpca_7b08941
crossref_primary_10_1063_5_0042967
crossref_primary_10_1039_D1CP02564C
crossref_primary_10_1063_1_4816638
crossref_primary_10_1080_0144235X_2014_943470
crossref_primary_10_1016_j_comptc_2011_11_001
crossref_primary_10_1016_j_cplett_2021_138493
crossref_primary_10_1021_acs_jpca_4c02243
crossref_primary_10_1063_1_4861759
crossref_primary_10_1080_0144235X_2012_752905
crossref_primary_10_1021_jp210992g
crossref_primary_10_1007_s00214_014_1527_0
crossref_primary_10_1039_C9CP02798J
crossref_primary_10_1039_c1cp20426b
crossref_primary_10_1021_jp305612t
crossref_primary_10_1063_1_4936144
crossref_primary_10_1021_acs_jpca_5b09660
crossref_primary_10_1016_j_chemphys_2022_111588
crossref_primary_10_1021_acs_jpca_9b06212
crossref_primary_10_1039_c2cp41049d
crossref_primary_10_1021_jp501446y
crossref_primary_10_1039_c2cp23479c
crossref_primary_10_1039_C8CP05398G
crossref_primary_10_1063_1_4761894
Cites_doi 10.1021/jp057182+
10.1063/1.1418252
10.1063/1.1527014
10.1063/1.2118567
10.1063/1.480539
10.1086/306473
10.1063/1.1672881
10.1021/jp063815o
10.1039/B206379B
10.1063/1.443123
10.1021/jp0451391
10.1139/v69-681
10.1063/1.1336566
10.1039/df9674400014
10.1063/1.2566770
10.1063/1.1675788
10.1039/a803469i
10.1238/Physica.Topical.096a00072
10.1063/1.1674939
10.1016/0301-0104(80)85010-5
10.1039/a909040a
10.1039/b007096n
10.1016/S0010-4655(00)00167-3
10.1063/1.469686
10.1063/1.3129343
10.1063/1.472047
10.1103/PhysRevA.77.032505
10.1063/1.3183538
10.1039/B919914D
10.1063/1.1630023
10.1063/1.463804
10.1086/152681
10.1063/1.2831505
10.1021/jp050461c
10.1063/1.1535437
10.1063/1.1503070
10.1021/jp9038946
10.1063/1.2336224
10.1016/S0032-0633(02)00095-8
10.1063/1.480835
10.1021/jp0520401
10.1063/1.1998807
10.1063/1.2969812
10.1086/181222
10.1039/ft9949002303
10.1063/1.2358350
10.1063/1.2774982
10.1063/1.1562159
10.1086/181199
10.1063/1.1681826
10.1021/j100407a012
10.1063/1.463514
10.1016/0301-0104(85)80163-4
10.1063/1.2801858
10.1039/a807824f
10.1063/1.2812555
10.1016/j.cplett.2007.10.098
10.1063/1.1674676
10.1016/j.cplett.2009.02.049
10.1016/0301-0104(87)85083-8
10.1063/1.1681242
10.1063/1.442168
10.1016/S0009-2614(97)00881-6
10.1063/1.2723067
10.1063/1.467397
10.1016/0301-0104(87)80149-0
10.1016/j.cpc.2008.05.004
10.1063/1.1628218
10.1016/j.cplett.2004.08.068
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1039/c0cp00311e
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 1263
ExternalDocumentID 20725673
23356337
10_1039_c0cp00311e
c0cp00311e
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
IQODW
NPM
7X8
ID FETCH-LOGICAL-c400t-5a87c016a92805fa2475f878b9e75992fe6dd705ec7d6e1344f2e842242b440d3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 09:40:07 EDT 2025
Mon Jul 21 05:52:55 EDT 2025
Mon Jul 21 09:13:27 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Tue Jul 01 02:53:15 EDT 2025
Thu May 30 17:32:13 EDT 2019
Thu May 19 04:22:13 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Keywords Histogram
Reaction probability
Exothermic reaction
Excitation function
Theoretical study
Cross section (collision)
Dynamics
Angular momentum
Potential energy surfaces
Classical trajectory
Calculation
Collision energy
Opacity
Chemical reactivity
Proton exchange
Comparative study
Quantum number
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-5a87c016a92805fa2475f878b9e75992fe6dd705ec7d6e1344f2e842242b440d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10261/74631
PMID 20725673
PQID 756822452
PQPubID 23479
PageCount 13
ParticipantIDs crossref_citationtrail_10_1039_c0cp00311e
pascalfrancis_primary_23356337
rsc_primary_c0cp00311e
pubmed_primary_20725673
crossref_primary_10_1039_c0cp00311e
proquest_miscellaneous_756822452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-21
PublicationDateYYYYMMDD 2010-10-21
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-21
  day: 21
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2010
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (c0cp00311e-(cit29)/*[position()=1]) 2002; T96
Herbst (c0cp00311e-(cit46)/*[position()=1]) 2001; 30
Aoiz (c0cp00311e-(cit61)/*[position()=1]) 2006; 110
Hollmann (c0cp00311e-(cit44)/*[position()=1]) 2002; 9
Skouteris (c0cp00311e-(cit67)/*[position()=1]) 2000; 133
Bañares (c0cp00311e-(cit74)/*[position()=1]) 2003; 118
Cuervo-Reyes (c0cp00311e-(cit55)/*[position()=1]) 2002; 4
Bonnet (c0cp00311e-(cit72)/*[position()=1]) 1997; 277
Watson (c0cp00311e-(cit64)/*[position()=1]) 1973; 182
Schlier (c0cp00311e-(cit19)/*[position()=1]) 1987; 111
Rackham (c0cp00311e-(cit62)/*[position()=1]) 2003; 119
Chu (c0cp00311e-(cit31)/*[position()=1]) 2005; 109
Hankel (c0cp00311e-(cit69)/*[position()=1]) 2008; 179
Viegas (c0cp00311e-(cit38)/*[position()=1]) 2008; 77
Villinger (c0cp00311e-(cit16)/*[position()=1]) 1982; 76
González-Lenzana (c0cp00311e-(cit75)/*[position()=1]) 2009; 131
Méndez (c0cp00311e-(cit45)/*[position()=1]) 2006; 110
Ichihara (c0cp00311e-(cit23)/*[position()=1]) 1996; 105
Dumont (c0cp00311e-(cit52)/*[position()=1]) 1986; 90
Krenos (c0cp00311e-(cit11)/*[position()=1]) 1974; 60
Chajia (c0cp00311e-(cit24)/*[position()=1]) 1999; 1
Aoiz (c0cp00311e-(cit37)/*[position()=1]) 2007; 127
Csizmadia (c0cp00311e-(cit6)/*[position()=1]) 1969; 47
Song (c0cp00311e-(cit33)/*[position()=1]) 2005; 123
Hankel (c0cp00311e-(cit68)/*[position()=1]) 2006; 125
Viegas (c0cp00311e-(cit57)/*[position()=1]) 2004; 120
Aoiz (c0cp00311e-(cit71)/*[position()=1]) 1998; 94
Herbst (c0cp00311e-(cit47)/*[position()=1]) 2005; 109
Watson (c0cp00311e-(cit48)/*[position()=1]) 1973; 181
Jambrina (c0cp00311e-(cit42)/*[position()=1]) 2009; 130
Gerlich (c0cp00311e-(cit50)/*[position()=1]) 2002; 50
Aoiz (c0cp00311e-(cit63)/*[position()=1]) 2008; 129
Gerlich (c0cp00311e-(cit20)/*[position()=1]) 1992; 82
Aoiz (c0cp00311e-(cit70)/*[position()=1]) 1992; 97
Dashevskaya (c0cp00311e-(cit5)/*[position()=1]) 2003; 118
Schlier (c0cp00311e-(cit17)/*[position()=1]) 1985; 95
Krenos (c0cp00311e-(cit7)/*[position()=1]) 1970; 52
Preston (c0cp00311e-(cit8)/*[position()=1]) 1971; 54
Schlier (c0cp00311e-(cit18)/*[position()=1]) 1987; 113
Millar (c0cp00311e-(cit51)/*[position()=1]) 2005; 46
Amaran (c0cp00311e-(cit60)/*[position()=1]) 2008; 128
Ichihara (c0cp00311e-(cit22)/*[position()=1]) 1995; 103
Smith (c0cp00311e-(cit3)/*[position()=1]) 1992; 97
Berblinger (c0cp00311e-(cit53)/*[position()=1]) 1994; 101
Takayanagi (c0cp00311e-(cit25)/*[position()=1]) 2000; 112
Sanz (c0cp00311e-(cit26)/*[position()=1]) 2001; 114
Kamisaka (c0cp00311e-(cit28)/*[position()=1]) 2002; 116
Stancil (c0cp00311e-(cit66)/*[position()=1]) 1998; 509
Zanchet (c0cp00311e-(cit40)/*[position()=1]) 2009; 113
Troe (c0cp00311e-(cit4)/*[position()=1]) 1994; 90
González-Lenzana (c0cp00311e-(cit34)/*[position()=1]) 2006; 125
Amaran (c0cp00311e-(cit59)/*[position()=1]) 2007; 127
Gerlich (c0cp00311e-(cit13)/*[position()=1]) 1980; 47
Henchman (c0cp00311e-(cit15)/*[position()=1]) 1981; 75
Holliday (c0cp00311e-(cit10)/*[position()=1]) 1971; 54
Aoiz (c0cp00311e-(cit36)/*[position()=1]) 2007; 126
Jambrina (c0cp00311e-(cit43)/*[position()=1]) 2010; 12
Saieswari (c0cp00311e-(cit58)/*[position()=1]) 2007; 449
Chapman (c0cp00311e-(cit21)/*[position()=1]) 1992; 82
Ushakov (c0cp00311e-(cit54)/*[position()=1]) 2001; 3
Carmona-Novillo (c0cp00311e-(cit39)/*[position()=1]) 2008; 128
Cernei (c0cp00311e-(cit56)/*[position()=1]) 2003; 118
Aguado (c0cp00311e-(cit27)/*[position()=1]) 2000; 112
Light (c0cp00311e-(cit1)/*[position()=1]) 1967; 44
González-Lenzana (c0cp00311e-(cit30)/*[position()=1]) 2005; 123
Tully (c0cp00311e-(cit9)/*[position()=1]) 1971; 55
Bonnet (c0cp00311e-(cit73)/*[position()=1]) 2004; 397
Viegas (c0cp00311e-(cit35)/*[position()=1]) 2007; 126
Watson (c0cp00311e-(cit49)/*[position()=1]) 1974; 188
Lu (c0cp00311e-(cit32)/*[position()=1]) 2005; 109
Chu (c0cp00311e-(cit41)/*[position()=1]) 2009; 471
Dalgarno (c0cp00311e-(cit65)/*[position()=1]) 1973; 14
Ochs (c0cp00311e-(cit12)/*[position()=1]) 1974; 61
References_xml – issn: 1982
  end-page: 304
  publication-title: Symposium on Atomic and surface Physics
  doi: Gerlich
– issn: 1974
  publication-title: Theory of Elementary Atomic and Molecular Processes in Gases
  doi: Nikitin
– volume: 110
  start-page: 6060
  year: 2006
  ident: c0cp00311e-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp057182+
– volume: 116
  start-page: 654
  year: 2002
  ident: c0cp00311e-(cit28)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1418252
– volume: 118
  start-page: 565
  year: 2003
  ident: c0cp00311e-(cit74)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1527014
– volume: 123
  start-page: 194309
  year: 2005
  ident: c0cp00311e-(cit30)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2118567
– volume: 112
  start-page: 1240
  year: 2000
  ident: c0cp00311e-(cit27)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480539
– volume: 509
  start-page: 1
  year: 1998
  ident: c0cp00311e-(cit66)/*[position()=1]
  publication-title: Astrophys. J.
  doi: 10.1086/306473
– volume: 52
  start-page: 5961
  year: 1970
  ident: c0cp00311e-(cit7)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1672881
– volume: 110
  start-page: 12546
  year: 2006
  ident: c0cp00311e-(cit61)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp063815o
– volume: 4
  start-page: 6012
  year: 2002
  ident: c0cp00311e-(cit55)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B206379B
– volume: 14
  start-page: 77
  year: 1973
  ident: c0cp00311e-(cit65)/*[position()=1]
  publication-title: Astrophys Lett.
– volume: 76
  start-page: 1590
  year: 1982
  ident: c0cp00311e-(cit16)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443123
– volume: 109
  start-page: 2050
  year: 2005
  ident: c0cp00311e-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0451391
– volume: 47
  start-page: 4097
  year: 1969
  ident: c0cp00311e-(cit6)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/v69-681
– volume: 114
  start-page: 2182
  year: 2001
  ident: c0cp00311e-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1336566
– volume: 44
  start-page: 14
  year: 1967
  ident: c0cp00311e-(cit1)/*[position()=1]
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9674400014
– volume: 126
  start-page: 074309
  year: 2007
  ident: c0cp00311e-(cit35)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2566770
– volume: 55
  start-page: 562
  year: 1971
  ident: c0cp00311e-(cit9)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1675788
– volume: 94
  start-page: 2483
  year: 1998
  ident: c0cp00311e-(cit71)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/a803469i
– volume: T96
  start-page: 72
  year: 2002
  ident: c0cp00311e-(cit29)/*[position()=1]
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.096a00072
– volume: 54
  start-page: 1058
  year: 1971
  ident: c0cp00311e-(cit10)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674939
– volume: 47
  start-page: 245
  year: 1980
  ident: c0cp00311e-(cit13)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)85010-5
– volume: 30
  start-page: 168
  year: 2001
  ident: c0cp00311e-(cit46)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/a909040a
– volume: 3
  start-page: 63
  year: 2001
  ident: c0cp00311e-(cit54)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b007096n
– volume: 133
  start-page: 128
  year: 2000
  ident: c0cp00311e-(cit67)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(00)00167-3
– volume: 103
  start-page: 2109
  year: 1995
  ident: c0cp00311e-(cit22)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469686
– volume: 130
  start-page: 184303
  year: 2009
  ident: c0cp00311e-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3129343
– volume: 46
  start-page: 2.29
  year: 2005
  ident: c0cp00311e-(cit51)/*[position()=1]
  publication-title: Astrophys. Geophys.
– volume: 105
  start-page: 1857
  year: 1996
  ident: c0cp00311e-(cit23)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472047
– volume: 77
  start-page: 032505
  year: 2008
  ident: c0cp00311e-(cit38)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.77.032505
– volume: 131
  start-page: 044315
  year: 2009
  ident: c0cp00311e-(cit75)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3183538
– volume: 12
  start-page: 1102
  year: 2010
  ident: c0cp00311e-(cit43)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B919914D
– volume: 120
  start-page: 253
  year: 2004
  ident: c0cp00311e-(cit57)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1630023
– volume: 97
  start-page: 5451
  year: 1992
  ident: c0cp00311e-(cit3)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463804
– volume: 188
  start-page: 35
  year: 1974
  ident: c0cp00311e-(cit49)/*[position()=1]
  publication-title: Astrophys. J.
  doi: 10.1086/152681
– volume: 128
  start-page: 064301
  year: 2008
  ident: c0cp00311e-(cit60)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2831505
– volume: 109
  start-page: 4017
  year: 2005
  ident: c0cp00311e-(cit47)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp050461c
– volume: 118
  start-page: 2637
  year: 2003
  ident: c0cp00311e-(cit56)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1535437
– volume: 9
  start-page: 4330
  year: 2002
  ident: c0cp00311e-(cit44)/*[position()=1]
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1503070
– volume: 113
  start-page: 14488
  year: 2009
  ident: c0cp00311e-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9038946
– volume: 125
  start-page: 094314
  year: 2006
  ident: c0cp00311e-(cit34)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2336224
– volume: 50
  start-page: 1287
  year: 2002
  ident: c0cp00311e-(cit50)/*[position()=1]
  publication-title: Planet. Space Sci.
  doi: 10.1016/S0032-0633(02)00095-8
– volume: 112
  start-page: 2615
  year: 2000
  ident: c0cp00311e-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480835
– volume: 109
  start-page: 6683
  year: 2005
  ident: c0cp00311e-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0520401
– volume: 123
  start-page: 074314
  year: 2005
  ident: c0cp00311e-(cit33)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1998807
– volume: 129
  start-page: 094305
  year: 2008
  ident: c0cp00311e-(cit63)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2969812
– volume: 182
  start-page: L73
  year: 1973
  ident: c0cp00311e-(cit64)/*[position()=1]
  publication-title: Astrophys. J.
  doi: 10.1086/181222
– volume: 90
  start-page: 2303
  year: 1994
  ident: c0cp00311e-(cit4)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/ft9949002303
– volume: 125
  start-page: 164303
  year: 2006
  ident: c0cp00311e-(cit68)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2358350
– volume: 127
  start-page: 174109
  year: 2007
  ident: c0cp00311e-(cit37)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2774982
– volume: 118
  start-page: 7313
  year: 2003
  ident: c0cp00311e-(cit5)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1562159
– volume: 181
  start-page: L129
  year: 1973
  ident: c0cp00311e-(cit48)/*[position()=1]
  publication-title: Astrophys. J.
  doi: 10.1086/181199
– volume: 82
  start-page: 423
  year: 1992
  ident: c0cp00311e-(cit21)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 61
  start-page: 4930
  year: 1974
  ident: c0cp00311e-(cit12)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681826
– volume: 90
  start-page: 3509
  year: 1986
  ident: c0cp00311e-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100407a012
– volume: 97
  start-page: 7423
  year: 1992
  ident: c0cp00311e-(cit70)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463514
– volume: 95
  start-page: 401
  year: 1985
  ident: c0cp00311e-(cit17)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(85)80163-4
– volume: 127
  start-page: 214304
  year: 2007
  ident: c0cp00311e-(cit59)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2801858
– volume: 1
  start-page: 1205
  year: 1999
  ident: c0cp00311e-(cit24)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a807824f
– volume: 128
  start-page: 014304
  year: 2008
  ident: c0cp00311e-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2812555
– volume: 449
  start-page: 358
  year: 2007
  ident: c0cp00311e-(cit58)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.10.098
– volume: 54
  start-page: 4297
  year: 1971
  ident: c0cp00311e-(cit8)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1674676
– volume: 471
  start-page: 222
  year: 2009
  ident: c0cp00311e-(cit41)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2009.02.049
– volume: 111
  start-page: 401
  year: 1987
  ident: c0cp00311e-(cit19)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(87)85083-8
– volume: 60
  start-page: 1634
  year: 1974
  ident: c0cp00311e-(cit11)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681242
– volume: 75
  start-page: 1201
  year: 1981
  ident: c0cp00311e-(cit15)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442168
– volume: 277
  start-page: 183
  year: 1997
  ident: c0cp00311e-(cit72)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)00881-6
– volume: 126
  start-page: 161101
  year: 2007
  ident: c0cp00311e-(cit36)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2723067
– volume: 101
  start-page: 4750
  year: 1994
  ident: c0cp00311e-(cit53)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467397
– volume: 82
  start-page: 1
  year: 1992
  ident: c0cp00311e-(cit20)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 113
  start-page: 211
  year: 1987
  ident: c0cp00311e-(cit18)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(87)80149-0
– volume: 179
  start-page: 569
  year: 2008
  ident: c0cp00311e-(cit69)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2008.05.004
– volume: 119
  start-page: 12895
  year: 2003
  ident: c0cp00311e-(cit62)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1628218
– volume: 397
  start-page: 106
  year: 2004
  ident: c0cp00311e-(cit73)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.08.068
SSID ssj0001513
Score 2.1409833
Snippet The dynamics of the deuteron-proton exchange D + + H 2 → HD + H + reaction on its ground 1 1 A ′ potential energy surface has been the subject of a theoretical...
The dynamics of the deuteron-proton exchange D(+) + H(2) → HD + H(+) reaction on its ground 1(1)A' potential energy surface has been the subject of a...
SourceID proquest
pubmed
pascalfrancis
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12591
SubjectTerms Chemistry
Exact sciences and technology
General and physical chemistry
Title Reaction dynamics of the D+ + H2 system. A comparison of theoretical approaches
URI https://www.ncbi.nlm.nih.gov/pubmed/20725673
https://www.proquest.com/docview/756822452
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgewAJIX4NMmCyBDygKsW1HTt-zNpNZUJQoQ7tLUocR0IabdR2PPDXc47tpIUiAQ-NItuJFX_Xy-XOdx9Cr5nQlJKCxLJmIuaay1gpw2OTipEo4KVQmHaX70cxveQXV8lV78xps0s25VD_2JtX8j-oQhvgarNk_wHZ7qbQAOeALxwBYTj-FcafjWf6rhyv_DpE_Cdv6OnA_qbU12oeggbQ25yDOymMobK431DojdVZwFAHVjh3ZpucR2TdehRm43GXJXbR5oC5RLNZT9yVXX-HmW1U_nTkYj29GzZbfm292Od9iGpqVivjMnC-tKH8iY0t-H7vo7D7PUjsEp-HxulVLlisiGOD6xQv3RIwV9LIq1GwuhyH128KnjBbH1UT3Vh1NDLbg-CJm28t1JRIMOUcR8ov5bRD1210SKW0kf3D7Gz-_kP3-gYTiIU6tky966eydaP9xTtGzL2mWMPC144IZd-XCtgtq8An09ot8wfovv_gwJmTnofollk8QnfGAdHH6FOQIhykCC9rDNKBJwM8wFOKvQThDPcS5McECcK9BD1Bl-dn8_E09jQbsQYFvomTIpUaLP9C0ZQkdUG5TOpUpqUyMlGK1kZUlSSJ0bISZsQ4r6lJOdh-tOScVOwIHSyWC_MMYQb9wnIqGw6HhKrUOjtILYSqaKl0hN6Gdcu1r0FvqVCu83YvBFN5v9wRetWNbVzllb2jTnaWvxtKGUsEYzJCOOCRw8LacFixMMubdS4TYbdQJzRCTx1O_cUe5wgdAXBd8_a0x_s78qaqj_94v-fobv_3eIEONqsb8xKM2k154sXwJ0Iwmgg
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reaction+dynamics+of+the+D%2B+%2B+H2+system.+A+comparison+of+theoretical+approaches&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Jambrina%2C+P+G&rft.au=Alvari%C3%B1o%2C+J+M&rft.au=Aoiz%2C+F+J&rft.au=Herrero%2C+V%C3%ADctor+J&rft.date=2010-10-21&rft.eissn=1463-9084&rft.volume=12&rft.issue=39&rft.spage=12591&rft_id=info:doi/10.1039%2Fc0cp00311e&rft_id=info%3Apmid%2F20725673&rft.externalDocID=20725673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon