Chlorine-mediated photocatalytic hydrogen production based on triazine covalent organic framework
A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The Cl-ECF exhibited enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channel...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 272; p. 118989 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The Cl-ECF exhibited enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF that can significantly promote photogenerated charge transfer.
[Display omitted]
•A new strategy was developed for synthesis of Cl-intercalated CTF-1.•Cl-C and Cl-N bonds can be formed in the Cl-intercalated CTF-1.•Cl-C and Cl-N covalent bonds can form covalently interlayer channels to promote charge transfer.•The Cl-intercalated CTF-1 show superior photocatalytic hydrogen evolution.
Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven photocatalytic performance for water splitting. Nonetheless, amelioration on the configuration and electronic microstructure of CTFs for enhanced photocatalytic performance is still challenging and anticipated. Herein, we developed a new strategy to synthesize visible-light-driven Cl-intercalated CTF-1 photocatalysts (labeled as Cl-ECF) via a ball-milling exfoliation-assisted acidification method. Many characterizations confirm the formation of Cl-C and Cl-N bonds in the Cl-ECF. The effects of the Cl-intercalation on the crystal structure, microstructure and charge transfer behaviors of CTF-1 were systematically studied by various characterizations and DFT calculation. The results revealed that Cl-ECF exhibited significantly promoted charge transfer, narrowed bandgap and enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF. The as-prepared Cl-ECF shows a hydrogen production rate of 1.296 mmol·g–1 h–1 under visible light irradiation, which is 2.2 times higher than that of CTF-1. This work could provide new insights into the new approach of intercalation modification to improve photocatalytic performance of 2D layered photocatalysts. |
---|---|
AbstractList | Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven photocatalytic performance for water splitting. Nonetheless, amelioration on the configuration and electronic microstructure of CTFs for enhanced photocatalytic performance is still challenging and anticipated. Herein, we developed a new strategy to synthesize visible-light-driven Cl-intercalated CTF-1 photocatalysts (labeled as Cl-ECF) via a ball-milling exfoliation-assisted acidification method. Many characterizations confirm the formation of Cl-C and Cl-N bonds in the Cl-ECF. The effects of the Cl-intercalation on the crystal structure, microstructure and charge transfer behaviors of CTF-1 were systematically studied by various characterizations and DFT calculation. The results revealed that Cl-ECF exhibited significantly promoted charge transfer, narrowed bandgap and enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF. The as-prepared Cl-ECF shows a hydrogen production rate of 1.296 mmol·g–1 h–1 under visible light irradiation, which is 2.2 times higher than that of CTF-1. This work could provide new insights into the new approach of intercalation modification to improve photocatalytic performance of 2D layered photocatalysts. A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The Cl-ECF exhibited enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF that can significantly promote photogenerated charge transfer. [Display omitted] •A new strategy was developed for synthesis of Cl-intercalated CTF-1.•Cl-C and Cl-N bonds can be formed in the Cl-intercalated CTF-1.•Cl-C and Cl-N covalent bonds can form covalently interlayer channels to promote charge transfer.•The Cl-intercalated CTF-1 show superior photocatalytic hydrogen evolution. Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven photocatalytic performance for water splitting. Nonetheless, amelioration on the configuration and electronic microstructure of CTFs for enhanced photocatalytic performance is still challenging and anticipated. Herein, we developed a new strategy to synthesize visible-light-driven Cl-intercalated CTF-1 photocatalysts (labeled as Cl-ECF) via a ball-milling exfoliation-assisted acidification method. Many characterizations confirm the formation of Cl-C and Cl-N bonds in the Cl-ECF. The effects of the Cl-intercalation on the crystal structure, microstructure and charge transfer behaviors of CTF-1 were systematically studied by various characterizations and DFT calculation. The results revealed that Cl-ECF exhibited significantly promoted charge transfer, narrowed bandgap and enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF. The as-prepared Cl-ECF shows a hydrogen production rate of 1.296 mmol·g–1 h–1 under visible light irradiation, which is 2.2 times higher than that of CTF-1. This work could provide new insights into the new approach of intercalation modification to improve photocatalytic performance of 2D layered photocatalysts. |
ArticleNumber | 118989 |
Author | Zheng, Ling-Ling Zou, Jian-Ping Mu, Yi Li, Shuang Wu, Mei-Feng Wang, Dengke Guo, Tao Xing, Qiu-Ju |
Author_xml | – sequence: 1 givenname: Shuang surname: Li fullname: Li, Shuang organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China – sequence: 2 givenname: Mei-Feng surname: Wu fullname: Wu, Mei-Feng email: 635703756@qq.com organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China – sequence: 3 givenname: Tao surname: Guo fullname: Guo, Tao organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China – sequence: 4 givenname: Ling-Ling surname: Zheng fullname: Zheng, Ling-Ling organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China – sequence: 5 givenname: Dengke surname: Wang fullname: Wang, Dengke organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China – sequence: 6 givenname: Yi surname: Mu fullname: Mu, Yi organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China – sequence: 7 givenname: Qiu-Ju surname: Xing fullname: Xing, Qiu-Ju organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China – sequence: 8 givenname: Jian-Ping surname: Zou fullname: Zou, Jian-Ping email: zjp_112@126.com organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China |
BookMark | eNqFkLtOwzAYRi1UJNrCGzBEYk7xJYkdBiRUcZMqscBs_bGd1iW1i-MWlafHVZgYYPLtO5_tM0Ej551B6JLgGcGkul7PYKsgNjOKadoiohb1CRoTwVnOhGAjNMY1rXLGODtDk75fY4wpo2KMYL7qfLDO5BujLUSjs-3KR5_qoDtEq7LVQQe_NC7bBq93Klrvsgb6FEyTGCx8JTpTfg-dcTHzYQkuYW2Ajfn04f0cnbbQ9ebiZ5yit4f71_lTvnh5fJ7fLXJVYBzzUihGay00GGZKDhTSoi4IBlY0leAU2haXnGulaVlXqmxqjtsSOOEYioKxKboaetM7P3amj3Ltd8GlKyVN51VRkoqmVDGkVPB9H0wrt8FuIBwkwfIoU67lIFMeZcpBZsJufmHKRji6iAFs9x98O8AmfX9vTZC9ssapJDwYFaX29u-Cb4oAlew |
CitedBy_id | crossref_primary_10_1016_j_optmat_2023_114742 crossref_primary_10_1246_cl_200834 crossref_primary_10_1016_j_mtchem_2024_102140 crossref_primary_10_1016_j_jcat_2023_115112 crossref_primary_10_1039_D0NJ05037G crossref_primary_10_1039_D1RA07916F crossref_primary_10_1039_D2EN00278G crossref_primary_10_1016_j_cej_2022_137128 crossref_primary_10_3390_polym14071363 crossref_primary_10_1016_j_jece_2025_116253 crossref_primary_10_1016_j_apsusc_2023_158808 crossref_primary_10_1002_cssc_202201943 crossref_primary_10_1016_j_colsurfa_2020_125780 crossref_primary_10_1021_acs_est_2c01781 crossref_primary_10_1039_D3TA04472F crossref_primary_10_1016_j_apsusc_2020_148558 crossref_primary_10_1016_j_cej_2021_129829 crossref_primary_10_1002_solr_202000458 crossref_primary_10_1016_j_jece_2022_108745 crossref_primary_10_1021_acsnano_1c09194 crossref_primary_10_1021_acs_chemmater_1c02697 crossref_primary_10_1016_j_gee_2021_02_001 crossref_primary_10_1016_j_cej_2021_129984 crossref_primary_10_1016_j_apcatb_2023_123321 crossref_primary_10_1002_cssc_202400556 crossref_primary_10_1016_j_jallcom_2021_159565 crossref_primary_10_1016_j_apcatb_2023_123004 crossref_primary_10_1016_j_apsusc_2023_156697 crossref_primary_10_1016_j_apmate_2024_100178 crossref_primary_10_1039_D0TA12122C crossref_primary_10_1039_D0TA12425G crossref_primary_10_1016_j_micromeso_2021_110939 crossref_primary_10_1016_j_jallcom_2022_165794 crossref_primary_10_1007_s12274_024_6779_y crossref_primary_10_1016_j_nanoso_2024_101295 crossref_primary_10_1039_D4SC06496H crossref_primary_10_1016_j_colsurfa_2024_135655 crossref_primary_10_3390_catal11060754 crossref_primary_10_1002_smll_202303632 crossref_primary_10_1016_j_jcat_2024_115859 crossref_primary_10_1039_D2NR04727F crossref_primary_10_1002_smtd_202200265 crossref_primary_10_1016_j_heliyon_2024_e32202 crossref_primary_10_1039_D2NR05341A crossref_primary_10_1039_D3CS00908D crossref_primary_10_1002_smll_202400259 crossref_primary_10_1016_j_jcis_2024_03_102 crossref_primary_10_1016_j_inoche_2024_112486 crossref_primary_10_1016_j_pmatsci_2024_101352 crossref_primary_10_1039_D3CP03983H crossref_primary_10_1002_chem_202101956 crossref_primary_10_1016_j_mssp_2024_108267 crossref_primary_10_1016_j_envres_2025_120901 crossref_primary_10_1016_j_apcatb_2022_121144 crossref_primary_10_1002_aoc_7980 crossref_primary_10_1021_acs_macromol_2c01412 crossref_primary_10_1080_01614940_2022_2041836 crossref_primary_10_1016_j_ijbiomac_2020_12_002 crossref_primary_10_1039_D2CY02013K |
Cites_doi | 10.1002/cssc.201702220 10.1016/j.apsusc.2006.12.077 10.1039/C7TA07387A 10.1016/S1872-2067(17)62936-X 10.1016/j.ijhydene.2019.11.049 10.1002/anie.201907595 10.1016/j.scib.2019.10.015 10.1016/j.apcatb.2018.03.014 10.1039/C7CC01827D 10.1016/j.colsurfa.2015.05.021 10.1016/j.carbon.2005.09.009 10.1016/j.cattod.2016.05.013 10.1016/j.carbon.2015.02.074 10.1016/j.apcatb.2018.10.043 10.1016/j.saa.2012.06.014 10.1016/j.cej.2019.122342 10.1016/j.cej.2019.02.123 10.1002/anie.201905869 10.1016/j.watres.2018.11.077 10.1016/j.cej.2019.02.150 10.1016/j.apcatb.2016.10.002 10.1039/C6TA04711D 10.1007/s12274-017-1651-y 10.1002/adma.200801306 10.1524/zkri.220.5.567.65075 10.1021/acs.accounts.5b00369 10.1039/C5NR00665A 10.1016/j.apcatb.2017.08.086 10.1038/s41467-018-06719-8 10.1039/C8CC09633C 10.1039/C6TA04623A 10.1039/C9SC02340B 10.1016/j.apcatb.2018.08.048 10.1038/nature06016 10.1021/acsami.8b16013 10.1021/nn500606a 10.1039/C8NA00238J 10.1021/acscatal.6b02367 10.1039/C9CC01161G 10.1002/anie.200500064 10.1002/anie.200705710 10.1016/j.apcatb.2016.06.020 10.1039/C7TA01438D 10.1039/C9EN00545E 10.1016/j.cplett.2006.05.054 10.1039/C8NR06691D 10.1016/j.apcatb.2019.117981 10.1039/C6TA01828A 10.1021/am100511x 10.1039/C5TA07408H 10.1016/j.apcatb.2016.10.014 10.1039/C8CC10262G 10.1021/jacs.7b11255 10.1006/jcph.1996.5612 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Sep 5, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Sep 5, 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2020.118989 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2020_118989 S0926337320304045 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c400t-58c329d8dae3e57a2a9d89410a34b6872aff0577dcd2596c5b970f5a7170a4433 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 07:44:03 EDT 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 04:35:05 EDT 2025 Sat Mar 02 16:00:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cl-intercalated H2evolution Triazine-based covalent organic frameworks Photocatalysis Doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-58c329d8dae3e57a2a9d89410a34b6872aff0577dcd2596c5b970f5a7170a4433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2443645162 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2443645162 crossref_primary_10_1016_j_apcatb_2020_118989 crossref_citationtrail_10_1016_j_apcatb_2020_118989 elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_118989 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-05 |
PublicationDateYYYYMMDD | 2020-09-05 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Zhou, Wu, Xing, Li, Liu, Luo, Zou, Luo, Zhang (bib0030) 2018; 220 Wang, Lian, Ma, Zhang, He, Zhong, Li, Huang, Su (bib0085) 2017; 281 Ouyang, Ye, Wu, Xiao, Liu (bib0055) 2018; 14 Huang, Wang, Ma, Ghasimi, Gehrig, Laquai, Landfester, Zhang (bib0025) 2016; 4 Wei, Huang, Gu, Wang, Zeng, Chen, Liu (bib0070) 2018; 231 Dodziuk (bib0190) 2006; 426 Wang, Ouyang, Wang, Zhong, Ma, Liu (bib0090) 2019; 7 Liu, Chen, Wang, Jing, Zhang (bib0255) 2017; 203 Jiao, Hu, Ju, Wang, Gao, Yang, Zhu, Yu, Jiang (bib0115) 2017; 5 Ren, Ng, Liew (bib0195) 2006; 44 Kuhn, Antonietti, Thomas (bib0205) 2008; 47 Liu, Cao, Chen, Zhou (bib0215) 2015; 481 Zhu, Huang, Cao, Lee, Chen, Shen (bib0105) 2019; 258 Wang, Wang, Che, Wang, Li, Li, Zhang, Dong, Qiu (bib0135) 2019; 6 Li, Wang, Xing, Zhou, Liu, Li, Zheng, Ye, Zou (bib0040) 2019; 243 Zhao, Chen, Liu, Jiang, Jiang, Yin, Xiao, Cao (bib0075) 2019; 367 Govindarajan, Karabacak, Periandy, Tanuja (bib0230) 2012; 97 Zhu, Qiao, Peng, Li, Zhang, Zhang, Li, Fan (bib0250) 2017; 5 Zhu, Chen, Cao, Peng, Li, Zhang, Zhang, Fan (bib0155) 2019; 55 Li, Li, Wu, Tian, Yue, Zhu (bib0220) 2019; 10 Dimiev, Tour (bib0140) 2014; 8 Kocer, Akdag, Worley, Acevedo, Broughton, Wu (bib0235) 2010; 2 Cao, Li, Tong, Chen, Yu, Yu, Chen (bib0100) 2018; 28 Pfrommer, Coˆte, Louie, Cohen (bib0200) 1997; 131 S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr 220 (2005) 567-570. Huang, Xiao, He, Zhang, Dong, Du, Zhang (bib0280) 2016; 199 Piras, Fernández-Prieto, De Borggraeve (bib0170) 2019; 1 Jin, Li, Geng, Jiang, Xu, Xu, Jiang (bib0160) 2018 Zhou, Zheng, Wang, Xing, Li, Ye, Xiao, Li, Zou (bib0045) 2019; 55 Fan, Peng, Li, Li, Wang, Zhang, Zhang (bib0210) 2008; 20 Li, Zhu, Gong, Zhang, Peng, Li, Zhang, Fan (bib0150) 2020; 45 Debiemme-Chouvy, Haskouri, Cachet (bib0245) 2007; 253 Pachfule, Acharjya, Roeser, Langenhahn, Schwarze, Schomaecker, Thomas, Schmidt (bib0010) 2018; 140 Kuecken, Acharjya, Zhi, Schwarze, Schomacker, Thomas (bib0020) 2017; 53 Kuecken, Schmidt, Zhi, Thomas (bib0175) 2015; 3 Zou, Chen, Liu, Xing, Dong, Luo, Dai, Xiao, Luo, Crittenden (bib0285) 2019; 150 Zhang, Veder, He, Jiang (bib0265) 2019; 55 Du, Zou, Wang, Wang (bib0145) 2015; 7 Dikin, Stankovich, Zimney, Piner, Dommett, Evmenenko, Nguyen, Ruoff (bib0130) 2007; 448 Jiang, Sun, Bi, Liang, Li, Yu, Wu (bib0060) 2018; 11 Waller, Gandara, Yaghi (bib0015) 2015; 48 Wang, Chen, Wang, Hou, Wang, Ao (bib0035) 2018; 239 Kim, Borse, Choi, Lee (bib0270) 2005; 44 Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0260) 2016; 6 Zhang, Hong, Li, Wang, Huang, Chen, Tu, Yu, Xu, Zhou, Zhang (bib0275) 2019; 5 Jiang, Cao, Hu, Chen (bib0095) 2017; 38 Dong, Meng, Zhang, Tang, Liu, Wang, Wei, Zhang, Bai, Sun (bib0065) 2020; 379 Cheng, Fang, Zhao, Fang, Bi, Liang, Li, Yu, Wu (bib0110) 2018; 10 Bhunia, Esquivel, Dey, Fernández-Terán, Yasutomo, Inagaki, Voort, Janiak (bib0225) 2016; 4 Liu, Zhang, Dong, Reshak, Ye, Pinna, Zeng, Zhang, Huang (bib0125) 2017; 203 Wang, Ye, Li, Zeng, Nie, Dong, Xing, Zou (bib0050) 2020; 260 Li, Fang, Zhang, Bi, He, Wang, Su (bib0080) 2016; 4 Wang, Zeng, Xiong, Wu, Xia, Xie, Zou, Luo (bib0005) 2020; 65 Wang, Li, Zheng, Qin, Li, Ye, Li, Jian-Ping, Zou (bib0180) 2018; 10 Wu, Lin, Shen, Sun, Liu, Wang, Kim (bib0240) 2015; 89 Wang, Shen, Chen, Liu, Zhao (bib0120) 2019; 367 Chen, Zhang, Zhu (bib0165) 2017; 11 Wang (10.1016/j.apcatb.2020.118989_bib0050) 2020; 260 Wang (10.1016/j.apcatb.2020.118989_bib0090) 2019; 7 Wei (10.1016/j.apcatb.2020.118989_bib0070) 2018; 231 Cao (10.1016/j.apcatb.2020.118989_bib0100) 2018; 28 Wang (10.1016/j.apcatb.2020.118989_bib0035) 2018; 239 Zhao (10.1016/j.apcatb.2020.118989_bib0075) 2019; 367 10.1016/j.apcatb.2020.118989_bib0185 Huang (10.1016/j.apcatb.2020.118989_bib0280) 2016; 199 Zou (10.1016/j.apcatb.2020.118989_bib0285) 2019; 150 Wang (10.1016/j.apcatb.2020.118989_bib0120) 2019; 367 Li (10.1016/j.apcatb.2020.118989_bib0080) 2016; 4 Piras (10.1016/j.apcatb.2020.118989_bib0170) 2019; 1 Zhang (10.1016/j.apcatb.2020.118989_bib0265) 2019; 55 Zhou (10.1016/j.apcatb.2020.118989_bib0045) 2019; 55 Zhu (10.1016/j.apcatb.2020.118989_bib0250) 2017; 5 Zhou (10.1016/j.apcatb.2020.118989_bib0030) 2018; 220 Debiemme-Chouvy (10.1016/j.apcatb.2020.118989_bib0245) 2007; 253 Dimiev (10.1016/j.apcatb.2020.118989_bib0140) 2014; 8 Jiang (10.1016/j.apcatb.2020.118989_bib0095) 2017; 38 Kim (10.1016/j.apcatb.2020.118989_bib0270) 2005; 44 Du (10.1016/j.apcatb.2020.118989_bib0145) 2015; 7 Wang (10.1016/j.apcatb.2020.118989_bib0005) 2020; 65 Waller (10.1016/j.apcatb.2020.118989_bib0015) 2015; 48 Zhu (10.1016/j.apcatb.2020.118989_bib0105) 2019; 258 Li (10.1016/j.apcatb.2020.118989_bib0150) 2020; 45 Kuhn (10.1016/j.apcatb.2020.118989_bib0205) 2008; 47 Liu (10.1016/j.apcatb.2020.118989_bib0125) 2017; 203 Dong (10.1016/j.apcatb.2020.118989_bib0065) 2020; 379 Liu (10.1016/j.apcatb.2020.118989_bib0255) 2017; 203 Ouyang (10.1016/j.apcatb.2020.118989_bib0055) 2018; 14 Jiao (10.1016/j.apcatb.2020.118989_bib0115) 2017; 5 Wu (10.1016/j.apcatb.2020.118989_bib0240) 2015; 89 Pachfule (10.1016/j.apcatb.2020.118989_bib0010) 2018; 140 Kofuji (10.1016/j.apcatb.2020.118989_bib0260) 2016; 6 Huang (10.1016/j.apcatb.2020.118989_bib0025) 2016; 4 Wang (10.1016/j.apcatb.2020.118989_bib0085) 2017; 281 Wang (10.1016/j.apcatb.2020.118989_bib0135) 2019; 6 Pfrommer (10.1016/j.apcatb.2020.118989_bib0200) 1997; 131 Govindarajan (10.1016/j.apcatb.2020.118989_bib0230) 2012; 97 Zhang (10.1016/j.apcatb.2020.118989_bib0275) 2019; 5 Kuecken (10.1016/j.apcatb.2020.118989_bib0020) 2017; 53 Li (10.1016/j.apcatb.2020.118989_bib0220) 2019; 10 Zhu (10.1016/j.apcatb.2020.118989_bib0155) 2019; 55 Ren (10.1016/j.apcatb.2020.118989_bib0195) 2006; 44 Chen (10.1016/j.apcatb.2020.118989_bib0165) 2017; 11 Li (10.1016/j.apcatb.2020.118989_bib0040) 2019; 243 Bhunia (10.1016/j.apcatb.2020.118989_bib0225) 2016; 4 Kuecken (10.1016/j.apcatb.2020.118989_bib0175) 2015; 3 Kocer (10.1016/j.apcatb.2020.118989_bib0235) 2010; 2 Cheng (10.1016/j.apcatb.2020.118989_bib0110) 2018; 10 Jiang (10.1016/j.apcatb.2020.118989_bib0060) 2018; 11 Fan (10.1016/j.apcatb.2020.118989_bib0210) 2008; 20 Dikin (10.1016/j.apcatb.2020.118989_bib0130) 2007; 448 Jin (10.1016/j.apcatb.2020.118989_bib0160) 2018 Dodziuk (10.1016/j.apcatb.2020.118989_bib0190) 2006; 426 Wang (10.1016/j.apcatb.2020.118989_bib0180) 2018; 10 Liu (10.1016/j.apcatb.2020.118989_bib0215) 2015; 481 |
References_xml | – volume: 89 start-page: 102 year: 2015 end-page: 112 ident: bib0240 publication-title: Carbon – volume: 48 start-page: 3053 year: 2015 end-page: 3063 ident: bib0015 publication-title: Acc. Chem. Res. – volume: 3 start-page: 24422 year: 2015 end-page: 24427 ident: bib0175 publication-title: J. Mater. Chem. A – volume: 2 start-page: 2456 year: 2010 end-page: 2464 ident: bib0235 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 397 year: 2006 end-page: 406 ident: bib0195 publication-title: Carbon – volume: 4 start-page: 7555 year: 2016 end-page: 7559 ident: bib0025 publication-title: J. Mater. Chem. A – volume: 45 start-page: 2689 year: 2020 end-page: 2698 ident: bib0150 publication-title: Int. J. Hydrogen Energy – volume: 281 start-page: 662 year: 2017 end-page: 668 ident: bib0085 publication-title: Catal. Today – volume: 5 start-page: 11752 year: 2019 end-page: 11756 ident: bib0275 publication-title: Angew. Chem. – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: bib0205 publication-title: Angew. Chem. – volume: 8 start-page: 3060 year: 2014 end-page: 3068 ident: bib0140 publication-title: ACS Nano – volume: 55 start-page: 4150 year: 2019 end-page: 4153 ident: bib0045 publication-title: Chem. Commun. – volume: 239 start-page: 578 year: 2018 end-page: 585 ident: bib0035 publication-title: Appl. Catal. B Environ. – volume: 231 start-page: 101 year: 2018 end-page: 107 ident: bib0070 publication-title: Appl. Catal. B Environ. – volume: 55 start-page: 1233 year: 2019 end-page: 1236 ident: bib0265 publication-title: Chem. Commun. – reference: S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr 220 (2005) 567-570. – start-page: 4143 year: 2018 ident: bib0160 publication-title: Nat. Commun. – volume: 448 start-page: 457 year: 2007 end-page: 460 ident: bib0130 publication-title: Nature – volume: 10 start-page: 7695 year: 2019 end-page: 7701 ident: bib0220 publication-title: Chem. Sci. – volume: 243 start-page: 621 year: 2019 end-page: 628 ident: bib0040 publication-title: Appl. Catal. B Environ. – volume: 44 start-page: 4585 year: 2005 end-page: 4589 ident: bib0270 publication-title: Angew. Chem. – volume: 5 start-page: 9272 year: 2017 end-page: 9278 ident: bib0250 publication-title: J. Mater. Chem. A – volume: 379 year: 2020 ident: bib0065 publication-title: Chem. Eng. J. – volume: 10 start-page: 41415 year: 2018 end-page: 41421 ident: bib0110 publication-title: ACS Appl. Mater. Interfaces – volume: 97 start-page: 231 year: 2012 end-page: 245 ident: bib0230 publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. – volume: 140 start-page: 1423 year: 2018 end-page: 1427 ident: bib0010 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 4490 year: 2008 end-page: 4493 ident: bib0210 publication-title: Adv. Mater. – volume: 28 year: 2018 ident: bib0100 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 937 year: 2019 end-page: 947 ident: bib0170 publication-title: Nanoscale Adv. – volume: 65 start-page: 113 year: 2020 end-page: 122 ident: bib0005 publication-title: Sci. Bull. – volume: 220 start-page: 607 year: 2018 end-page: 614 ident: bib0030 publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 12402 year: 2016 end-page: 12406 ident: bib0080 publication-title: J. Mater. Chem. A – volume: 426 start-page: 224 year: 2006 end-page: 225 ident: bib0190 publication-title: Chem. Phys. Lett. – volume: 55 start-page: 1434 year: 2019 end-page: 1437 ident: bib0155 publication-title: Chem. Commun. (Camb.) – volume: 481 start-page: 276 year: 2015 end-page: 282 ident: bib0215 publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 253 start-page: 5506 year: 2007 end-page: 5510 ident: bib0245 publication-title: Appl. Surf. Sci. – volume: 53 start-page: 5854 year: 2017 end-page: 5857 ident: bib0020 publication-title: Chem. Commun. (Camb.) – volume: 258 year: 2019 ident: bib0105 publication-title: Appl. Catal. B Environ. – volume: 367 start-page: 260 year: 2019 end-page: 268 ident: bib0120 publication-title: Chem. Eng. J. – volume: 10 start-page: 19509 year: 2018 end-page: 19516 ident: bib0180 publication-title: Nanoscale – volume: 131 start-page: 233 year: 1997 end-page: 240 ident: bib0200 publication-title: J. Comput. Phys. – volume: 14 start-page: 262 year: 2018 ident: bib0055 publication-title: Angew. Chem. – volume: 7 start-page: 13291 year: 2019 end-page: 13296 ident: bib0090 publication-title: Angew. Chem. – volume: 260 year: 2020 ident: bib0050 publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 8701 year: 2015 end-page: 8706 ident: bib0145 publication-title: Nanoscale – volume: 203 start-page: 300 year: 2017 end-page: 313 ident: bib0255 publication-title: Appl. Catal. B Environ. – volume: 199 start-page: 75 year: 2016 end-page: 86 ident: bib0280 publication-title: Appl. Catal. B Environ. – volume: 150 start-page: 330 year: 2019 end-page: 339 ident: bib0285 publication-title: Water Res. – volume: 367 start-page: 249 year: 2019 end-page: 259 ident: bib0075 publication-title: Chem. Eng. J. – volume: 6 start-page: 7021 year: 2016 end-page: 7029 ident: bib0260 publication-title: ACS Catal. – volume: 5 start-page: 23170 year: 2017 end-page: 23178 ident: bib0115 publication-title: J. Mater. Chem. A – volume: 11 start-page: 440 year: 2017 end-page: 448 ident: bib0165 publication-title: Nano Res. – volume: 6 start-page: 2379 year: 2019 end-page: 2388 ident: bib0135 publication-title: Environ. Sci. Nano – volume: 11 start-page: 1108 year: 2018 end-page: 1113 ident: bib0060 publication-title: ChemSusChem – volume: 38 start-page: 1981 year: 2017 end-page: 1989 ident: bib0095 publication-title: Chin. J. Catal. – volume: 203 start-page: 465 year: 2017 end-page: 474 ident: bib0125 publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 13450 year: 2016 end-page: 13457 ident: bib0225 publication-title: J. Mater. Chem. A – volume: 11 start-page: 1108 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0060 publication-title: ChemSusChem doi: 10.1002/cssc.201702220 – volume: 253 start-page: 5506 year: 2007 ident: 10.1016/j.apcatb.2020.118989_bib0245 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2006.12.077 – volume: 5 start-page: 23170 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0115 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07387A – volume: 14 start-page: 262 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0055 publication-title: Angew. Chem. – volume: 38 start-page: 1981 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0095 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62936-X – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0100 publication-title: Adv. Funct. Mater. – volume: 45 start-page: 2689 year: 2020 ident: 10.1016/j.apcatb.2020.118989_bib0150 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.049 – volume: 7 start-page: 13291 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0090 publication-title: Angew. Chem. doi: 10.1002/anie.201907595 – volume: 65 start-page: 113 year: 2020 ident: 10.1016/j.apcatb.2020.118989_bib0005 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.015 – volume: 231 start-page: 101 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0070 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.03.014 – volume: 53 start-page: 5854 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0020 publication-title: Chem. Commun. (Camb.) doi: 10.1039/C7CC01827D – volume: 481 start-page: 276 year: 2015 ident: 10.1016/j.apcatb.2020.118989_bib0215 publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2015.05.021 – volume: 44 start-page: 397 year: 2006 ident: 10.1016/j.apcatb.2020.118989_bib0195 publication-title: Carbon doi: 10.1016/j.carbon.2005.09.009 – volume: 281 start-page: 662 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0085 publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.013 – volume: 89 start-page: 102 year: 2015 ident: 10.1016/j.apcatb.2020.118989_bib0240 publication-title: Carbon doi: 10.1016/j.carbon.2015.02.074 – volume: 243 start-page: 621 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0040 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.10.043 – volume: 97 start-page: 231 year: 2012 ident: 10.1016/j.apcatb.2020.118989_bib0230 publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2012.06.014 – volume: 379 year: 2020 ident: 10.1016/j.apcatb.2020.118989_bib0065 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122342 – volume: 367 start-page: 249 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0075 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.123 – volume: 5 start-page: 11752 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0275 publication-title: Angew. Chem. doi: 10.1002/anie.201905869 – volume: 150 start-page: 330 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0285 publication-title: Water Res. doi: 10.1016/j.watres.2018.11.077 – volume: 367 start-page: 260 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0120 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.150 – volume: 203 start-page: 465 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0125 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.10.002 – volume: 4 start-page: 12402 year: 2016 ident: 10.1016/j.apcatb.2020.118989_bib0080 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04711D – volume: 11 start-page: 440 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0165 publication-title: Nano Res. doi: 10.1007/s12274-017-1651-y – volume: 20 start-page: 4490 year: 2008 ident: 10.1016/j.apcatb.2020.118989_bib0210 publication-title: Adv. Mater. doi: 10.1002/adma.200801306 – ident: 10.1016/j.apcatb.2020.118989_bib0185 doi: 10.1524/zkri.220.5.567.65075 – volume: 48 start-page: 3053 year: 2015 ident: 10.1016/j.apcatb.2020.118989_bib0015 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00369 – volume: 7 start-page: 8701 year: 2015 ident: 10.1016/j.apcatb.2020.118989_bib0145 publication-title: Nanoscale doi: 10.1039/C5NR00665A – volume: 220 start-page: 607 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0030 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.086 – start-page: 4143 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0160 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06719-8 – volume: 55 start-page: 1233 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0265 publication-title: Chem. Commun. doi: 10.1039/C8CC09633C – volume: 4 start-page: 13450 year: 2016 ident: 10.1016/j.apcatb.2020.118989_bib0225 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04623A – volume: 10 start-page: 7695 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0220 publication-title: Chem. Sci. doi: 10.1039/C9SC02340B – volume: 239 start-page: 578 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0035 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.08.048 – volume: 448 start-page: 457 year: 2007 ident: 10.1016/j.apcatb.2020.118989_bib0130 publication-title: Nature doi: 10.1038/nature06016 – volume: 10 start-page: 41415 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0110 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16013 – volume: 8 start-page: 3060 year: 2014 ident: 10.1016/j.apcatb.2020.118989_bib0140 publication-title: ACS Nano doi: 10.1021/nn500606a – volume: 1 start-page: 937 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0170 publication-title: Nanoscale Adv. doi: 10.1039/C8NA00238J – volume: 6 start-page: 7021 year: 2016 ident: 10.1016/j.apcatb.2020.118989_bib0260 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02367 – volume: 55 start-page: 4150 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0045 publication-title: Chem. Commun. doi: 10.1039/C9CC01161G – volume: 44 start-page: 4585 year: 2005 ident: 10.1016/j.apcatb.2020.118989_bib0270 publication-title: Angew. Chem. doi: 10.1002/anie.200500064 – volume: 47 start-page: 3450 year: 2008 ident: 10.1016/j.apcatb.2020.118989_bib0205 publication-title: Angew. Chem. doi: 10.1002/anie.200705710 – volume: 199 start-page: 75 year: 2016 ident: 10.1016/j.apcatb.2020.118989_bib0280 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.06.020 – volume: 5 start-page: 9272 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0250 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01438D – volume: 6 start-page: 2379 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0135 publication-title: Environ. Sci. Nano doi: 10.1039/C9EN00545E – volume: 426 start-page: 224 year: 2006 ident: 10.1016/j.apcatb.2020.118989_bib0190 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.05.054 – volume: 260 year: 2020 ident: 10.1016/j.apcatb.2020.118989_bib0050 publication-title: Appl. Catal. B Environ. – volume: 10 start-page: 19509 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0180 publication-title: Nanoscale doi: 10.1039/C8NR06691D – volume: 258 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0105 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.117981 – volume: 4 start-page: 7555 year: 2016 ident: 10.1016/j.apcatb.2020.118989_bib0025 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01828A – volume: 2 start-page: 2456 year: 2010 ident: 10.1016/j.apcatb.2020.118989_bib0235 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100511x – volume: 3 start-page: 24422 year: 2015 ident: 10.1016/j.apcatb.2020.118989_bib0175 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA07408H – volume: 203 start-page: 300 year: 2017 ident: 10.1016/j.apcatb.2020.118989_bib0255 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.10.014 – volume: 55 start-page: 1434 year: 2019 ident: 10.1016/j.apcatb.2020.118989_bib0155 publication-title: Chem. Commun. (Camb.) doi: 10.1039/C8CC10262G – volume: 140 start-page: 1423 year: 2018 ident: 10.1016/j.apcatb.2020.118989_bib0010 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11255 – volume: 131 start-page: 233 year: 1997 ident: 10.1016/j.apcatb.2020.118989_bib0200 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.5612 |
SSID | ssj0002328 |
Score | 2.5637977 |
Snippet | A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The... Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118989 |
SubjectTerms | Acidification Ball milling Catalytic activity Charge transfer Chlorine Cl-intercalated Covalence Covalent bonds Crystal structure Doping H2evolution Hydrogen production Intercalation Interlayers Irradiation Light irradiation Microstructure Photocatalysis Photocatalysts Polymers Radiation Triazine Triazine-based covalent organic frameworks Water splitting |
Title | Chlorine-mediated photocatalytic hydrogen production based on triazine covalent organic framework |
URI | https://dx.doi.org/10.1016/j.apcatb.2020.118989 https://www.proquest.com/docview/2443645162 |
Volume | 272 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFV8k4PXuLtJmmyPsiirohcVvIVp0rKKbIvWgxd_u5O09QUiSC9NSULJPJN8MwNwKIUfShQJR60VV4gkc2Q2uEnpwcIZHfMUXF7pya06v0vu5mDcxcIEWGWr-xudHrV1-6Xfrma_ur_vXw9SoaU0UoTbPfJMQgS7MoHLj94-YR7kMURtTJ156N2Fz0WMF1YO64x2iSLojlBJ8Tfz9ENRR-tzugorrdvIjps_W4O5fNaDxXFXra0Hy18SC_Zg8-Qzfo2GtQL8vA44nkbIXc5jyAi5m6yalnUZT3FeaXI2ffVPJXEVq5pcsEQ3FkydZ_QSanyEdNTMlcShNDlrqkI5VnQgrw24PT25GU94W2WBO5LfmicjJ0XqRx5zmScGBVIjVcMBSpXpkRFYFOTUGe88bZW0S7LUDIoEaR84QKWk3IT5WTnLt4Aluc6kQByaEB6bG1SpVt4UQosCpffbILvFta5NQR4qYTzaDmv2YBuS2EAS25BkG_jHqKpJwfFHf9PRzX5jJUtW4o-Rex2ZbSvKz5b8n3BVO9Ri598T78JSaEVsWrIH8_XTS75PzkydHURuPYCF47OLydU7Un70iQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8qcCgcplFAwNjmA1fT1nbs5jhVVN0GXAYSN-vFTlQQaqISDlz423l2knWbNCGhXPJhW5Hf18_2-wA4lcKPJYqEo9aKK0SSOTIb3KR0YeGMjnkKLq_0_Eb9uE1uezDtYmGCW2Wr-xudHrV1-2bYzuawursb_hqlQktppAine4RMNmBLkfiGMgZnL2s_D4IMUR1Tax6ad_Fz0ckLK4d1RstEEZRHKKX4P_v0j6aO5mf2ET60uJF9a35tF3r5cgD9aVeubQA7f2QWHMDB-TqAjbq1Evy4BzhdRJ-7nMeYEcKbrFqUdRm3cZ5pcLZ49quS2IpVTTJYIhwLts4zuglFPkI-auZKYlEanDVloRwrOi-vfbiZnV9P57wts8AdCXDNk4mTIvUTj7nME4MC6SFV4xFKlemJEVgUhOqMd57WStolWWpGRYK0EByhUlIewOayXOaHwJJcZ1Igjk2Ij80NqlQrbwqhRYHS-yOQ3eRa1-YgD6UwHmznbHZvG5LYQBLbkOQI-O9eVZOD4432pqOb_YuXLJmJN3qedGS2rSw_WgJA4ax2rMXxuwf-Cv359eWFvfh-9fMTbIcv0VEtOYHNevWUfyZkU2dfIue-AucV9hc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorine-mediated+photocatalytic+hydrogen+production+based+on+triazine+covalent+organic+framework&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Li%2C+Shuang&rft.au=Wu%2C+Mei-Feng&rft.au=Guo%2C+Tao&rft.au=Zheng%2C+Ling-Ling&rft.date=2020-09-05&rft.issn=0926-3373&rft.volume=272&rft.spage=118989&rft_id=info:doi/10.1016%2Fj.apcatb.2020.118989&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_118989 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |