Chlorine-mediated photocatalytic hydrogen production based on triazine covalent organic framework

A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The Cl-ECF exhibited enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channel...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 272; p. 118989
Main Authors Li, Shuang, Wu, Mei-Feng, Guo, Tao, Zheng, Ling-Ling, Wang, Dengke, Mu, Yi, Xing, Qiu-Ju, Zou, Jian-Ping
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The Cl-ECF exhibited enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF that can significantly promote photogenerated charge transfer. [Display omitted] •A new strategy was developed for synthesis of Cl-intercalated CTF-1.•Cl-C and Cl-N bonds can be formed in the Cl-intercalated CTF-1.•Cl-C and Cl-N covalent bonds can form covalently interlayer channels to promote charge transfer.•The Cl-intercalated CTF-1 show superior photocatalytic hydrogen evolution. Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven photocatalytic performance for water splitting. Nonetheless, amelioration on the configuration and electronic microstructure of CTFs for enhanced photocatalytic performance is still challenging and anticipated. Herein, we developed a new strategy to synthesize visible-light-driven Cl-intercalated CTF-1 photocatalysts (labeled as Cl-ECF) via a ball-milling exfoliation-assisted acidification method. Many characterizations confirm the formation of Cl-C and Cl-N bonds in the Cl-ECF. The effects of the Cl-intercalation on the crystal structure, microstructure and charge transfer behaviors of CTF-1 were systematically studied by various characterizations and DFT calculation. The results revealed that Cl-ECF exhibited significantly promoted charge transfer, narrowed bandgap and enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF. The as-prepared Cl-ECF shows a hydrogen production rate of 1.296 mmol·g–1 h–1 under visible light irradiation, which is 2.2 times higher than that of CTF-1. This work could provide new insights into the new approach of intercalation modification to improve photocatalytic performance of 2D layered photocatalysts.
AbstractList Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven photocatalytic performance for water splitting. Nonetheless, amelioration on the configuration and electronic microstructure of CTFs for enhanced photocatalytic performance is still challenging and anticipated. Herein, we developed a new strategy to synthesize visible-light-driven Cl-intercalated CTF-1 photocatalysts (labeled as Cl-ECF) via a ball-milling exfoliation-assisted acidification method. Many characterizations confirm the formation of Cl-C and Cl-N bonds in the Cl-ECF. The effects of the Cl-intercalation on the crystal structure, microstructure and charge transfer behaviors of CTF-1 were systematically studied by various characterizations and DFT calculation. The results revealed that Cl-ECF exhibited significantly promoted charge transfer, narrowed bandgap and enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF. The as-prepared Cl-ECF shows a hydrogen production rate of 1.296 mmol·g–1 h–1 under visible light irradiation, which is 2.2 times higher than that of CTF-1. This work could provide new insights into the new approach of intercalation modification to improve photocatalytic performance of 2D layered photocatalysts.
A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The Cl-ECF exhibited enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF that can significantly promote photogenerated charge transfer. [Display omitted] •A new strategy was developed for synthesis of Cl-intercalated CTF-1.•Cl-C and Cl-N bonds can be formed in the Cl-intercalated CTF-1.•Cl-C and Cl-N covalent bonds can form covalently interlayer channels to promote charge transfer.•The Cl-intercalated CTF-1 show superior photocatalytic hydrogen evolution. Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven photocatalytic performance for water splitting. Nonetheless, amelioration on the configuration and electronic microstructure of CTFs for enhanced photocatalytic performance is still challenging and anticipated. Herein, we developed a new strategy to synthesize visible-light-driven Cl-intercalated CTF-1 photocatalysts (labeled as Cl-ECF) via a ball-milling exfoliation-assisted acidification method. Many characterizations confirm the formation of Cl-C and Cl-N bonds in the Cl-ECF. The effects of the Cl-intercalation on the crystal structure, microstructure and charge transfer behaviors of CTF-1 were systematically studied by various characterizations and DFT calculation. The results revealed that Cl-ECF exhibited significantly promoted charge transfer, narrowed bandgap and enhanced photocatalytic activity of H2 production because Cl-C and Cl-N covalent bonds can form covalently interlayer channels in the Cl-ECF. The as-prepared Cl-ECF shows a hydrogen production rate of 1.296 mmol·g–1 h–1 under visible light irradiation, which is 2.2 times higher than that of CTF-1. This work could provide new insights into the new approach of intercalation modification to improve photocatalytic performance of 2D layered photocatalysts.
ArticleNumber 118989
Author Zheng, Ling-Ling
Zou, Jian-Ping
Mu, Yi
Li, Shuang
Wu, Mei-Feng
Wang, Dengke
Guo, Tao
Xing, Qiu-Ju
Author_xml – sequence: 1
  givenname: Shuang
  surname: Li
  fullname: Li, Shuang
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
– sequence: 2
  givenname: Mei-Feng
  surname: Wu
  fullname: Wu, Mei-Feng
  email: 635703756@qq.com
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
– sequence: 3
  givenname: Tao
  surname: Guo
  fullname: Guo, Tao
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
– sequence: 4
  givenname: Ling-Ling
  surname: Zheng
  fullname: Zheng, Ling-Ling
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
– sequence: 5
  givenname: Dengke
  surname: Wang
  fullname: Wang, Dengke
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
– sequence: 6
  givenname: Yi
  surname: Mu
  fullname: Mu, Yi
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
– sequence: 7
  givenname: Qiu-Ju
  surname: Xing
  fullname: Xing, Qiu-Ju
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
– sequence: 8
  givenname: Jian-Ping
  surname: Zou
  fullname: Zou, Jian-Ping
  email: zjp_112@126.com
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
BookMark eNqFkLtOwzAYRi1UJNrCGzBEYk7xJYkdBiRUcZMqscBs_bGd1iW1i-MWlafHVZgYYPLtO5_tM0Ej551B6JLgGcGkul7PYKsgNjOKadoiohb1CRoTwVnOhGAjNMY1rXLGODtDk75fY4wpo2KMYL7qfLDO5BujLUSjs-3KR5_qoDtEq7LVQQe_NC7bBq93Klrvsgb6FEyTGCx8JTpTfg-dcTHzYQkuYW2Ajfn04f0cnbbQ9ebiZ5yit4f71_lTvnh5fJ7fLXJVYBzzUihGay00GGZKDhTSoi4IBlY0leAU2haXnGulaVlXqmxqjtsSOOEYioKxKboaetM7P3amj3Ltd8GlKyVN51VRkoqmVDGkVPB9H0wrt8FuIBwkwfIoU67lIFMeZcpBZsJufmHKRji6iAFs9x98O8AmfX9vTZC9ssapJDwYFaX29u-Cb4oAlew
CitedBy_id crossref_primary_10_1016_j_optmat_2023_114742
crossref_primary_10_1246_cl_200834
crossref_primary_10_1016_j_mtchem_2024_102140
crossref_primary_10_1016_j_jcat_2023_115112
crossref_primary_10_1039_D0NJ05037G
crossref_primary_10_1039_D1RA07916F
crossref_primary_10_1039_D2EN00278G
crossref_primary_10_1016_j_cej_2022_137128
crossref_primary_10_3390_polym14071363
crossref_primary_10_1016_j_jece_2025_116253
crossref_primary_10_1016_j_apsusc_2023_158808
crossref_primary_10_1002_cssc_202201943
crossref_primary_10_1016_j_colsurfa_2020_125780
crossref_primary_10_1021_acs_est_2c01781
crossref_primary_10_1039_D3TA04472F
crossref_primary_10_1016_j_apsusc_2020_148558
crossref_primary_10_1016_j_cej_2021_129829
crossref_primary_10_1002_solr_202000458
crossref_primary_10_1016_j_jece_2022_108745
crossref_primary_10_1021_acsnano_1c09194
crossref_primary_10_1021_acs_chemmater_1c02697
crossref_primary_10_1016_j_gee_2021_02_001
crossref_primary_10_1016_j_cej_2021_129984
crossref_primary_10_1016_j_apcatb_2023_123321
crossref_primary_10_1002_cssc_202400556
crossref_primary_10_1016_j_jallcom_2021_159565
crossref_primary_10_1016_j_apcatb_2023_123004
crossref_primary_10_1016_j_apsusc_2023_156697
crossref_primary_10_1016_j_apmate_2024_100178
crossref_primary_10_1039_D0TA12122C
crossref_primary_10_1039_D0TA12425G
crossref_primary_10_1016_j_micromeso_2021_110939
crossref_primary_10_1016_j_jallcom_2022_165794
crossref_primary_10_1007_s12274_024_6779_y
crossref_primary_10_1016_j_nanoso_2024_101295
crossref_primary_10_1039_D4SC06496H
crossref_primary_10_1016_j_colsurfa_2024_135655
crossref_primary_10_3390_catal11060754
crossref_primary_10_1002_smll_202303632
crossref_primary_10_1016_j_jcat_2024_115859
crossref_primary_10_1039_D2NR04727F
crossref_primary_10_1002_smtd_202200265
crossref_primary_10_1016_j_heliyon_2024_e32202
crossref_primary_10_1039_D2NR05341A
crossref_primary_10_1039_D3CS00908D
crossref_primary_10_1002_smll_202400259
crossref_primary_10_1016_j_jcis_2024_03_102
crossref_primary_10_1016_j_inoche_2024_112486
crossref_primary_10_1016_j_pmatsci_2024_101352
crossref_primary_10_1039_D3CP03983H
crossref_primary_10_1002_chem_202101956
crossref_primary_10_1016_j_mssp_2024_108267
crossref_primary_10_1016_j_envres_2025_120901
crossref_primary_10_1016_j_apcatb_2022_121144
crossref_primary_10_1002_aoc_7980
crossref_primary_10_1021_acs_macromol_2c01412
crossref_primary_10_1080_01614940_2022_2041836
crossref_primary_10_1016_j_ijbiomac_2020_12_002
crossref_primary_10_1039_D2CY02013K
Cites_doi 10.1002/cssc.201702220
10.1016/j.apsusc.2006.12.077
10.1039/C7TA07387A
10.1016/S1872-2067(17)62936-X
10.1016/j.ijhydene.2019.11.049
10.1002/anie.201907595
10.1016/j.scib.2019.10.015
10.1016/j.apcatb.2018.03.014
10.1039/C7CC01827D
10.1016/j.colsurfa.2015.05.021
10.1016/j.carbon.2005.09.009
10.1016/j.cattod.2016.05.013
10.1016/j.carbon.2015.02.074
10.1016/j.apcatb.2018.10.043
10.1016/j.saa.2012.06.014
10.1016/j.cej.2019.122342
10.1016/j.cej.2019.02.123
10.1002/anie.201905869
10.1016/j.watres.2018.11.077
10.1016/j.cej.2019.02.150
10.1016/j.apcatb.2016.10.002
10.1039/C6TA04711D
10.1007/s12274-017-1651-y
10.1002/adma.200801306
10.1524/zkri.220.5.567.65075
10.1021/acs.accounts.5b00369
10.1039/C5NR00665A
10.1016/j.apcatb.2017.08.086
10.1038/s41467-018-06719-8
10.1039/C8CC09633C
10.1039/C6TA04623A
10.1039/C9SC02340B
10.1016/j.apcatb.2018.08.048
10.1038/nature06016
10.1021/acsami.8b16013
10.1021/nn500606a
10.1039/C8NA00238J
10.1021/acscatal.6b02367
10.1039/C9CC01161G
10.1002/anie.200500064
10.1002/anie.200705710
10.1016/j.apcatb.2016.06.020
10.1039/C7TA01438D
10.1039/C9EN00545E
10.1016/j.cplett.2006.05.054
10.1039/C8NR06691D
10.1016/j.apcatb.2019.117981
10.1039/C6TA01828A
10.1021/am100511x
10.1039/C5TA07408H
10.1016/j.apcatb.2016.10.014
10.1039/C8CC10262G
10.1021/jacs.7b11255
10.1006/jcph.1996.5612
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Sep 5, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 5, 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2020.118989
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2020_118989
S0926337320304045
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c400t-58c329d8dae3e57a2a9d89410a34b6872aff0577dcd2596c5b970f5a7170a4433
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 07:44:03 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 04:35:05 EDT 2025
Sat Mar 02 16:00:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cl-intercalated
H2evolution
Triazine-based covalent organic frameworks
Photocatalysis
Doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-58c329d8dae3e57a2a9d89410a34b6872aff0577dcd2596c5b970f5a7170a4433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2443645162
PQPubID 2045281
ParticipantIDs proquest_journals_2443645162
crossref_primary_10_1016_j_apcatb_2020_118989
crossref_citationtrail_10_1016_j_apcatb_2020_118989
elsevier_sciencedirect_doi_10_1016_j_apcatb_2020_118989
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-05
PublicationDateYYYYMMDD 2020-09-05
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhou, Wu, Xing, Li, Liu, Luo, Zou, Luo, Zhang (bib0030) 2018; 220
Wang, Lian, Ma, Zhang, He, Zhong, Li, Huang, Su (bib0085) 2017; 281
Ouyang, Ye, Wu, Xiao, Liu (bib0055) 2018; 14
Huang, Wang, Ma, Ghasimi, Gehrig, Laquai, Landfester, Zhang (bib0025) 2016; 4
Wei, Huang, Gu, Wang, Zeng, Chen, Liu (bib0070) 2018; 231
Dodziuk (bib0190) 2006; 426
Wang, Ouyang, Wang, Zhong, Ma, Liu (bib0090) 2019; 7
Liu, Chen, Wang, Jing, Zhang (bib0255) 2017; 203
Jiao, Hu, Ju, Wang, Gao, Yang, Zhu, Yu, Jiang (bib0115) 2017; 5
Ren, Ng, Liew (bib0195) 2006; 44
Kuhn, Antonietti, Thomas (bib0205) 2008; 47
Liu, Cao, Chen, Zhou (bib0215) 2015; 481
Zhu, Huang, Cao, Lee, Chen, Shen (bib0105) 2019; 258
Wang, Wang, Che, Wang, Li, Li, Zhang, Dong, Qiu (bib0135) 2019; 6
Li, Wang, Xing, Zhou, Liu, Li, Zheng, Ye, Zou (bib0040) 2019; 243
Zhao, Chen, Liu, Jiang, Jiang, Yin, Xiao, Cao (bib0075) 2019; 367
Govindarajan, Karabacak, Periandy, Tanuja (bib0230) 2012; 97
Zhu, Qiao, Peng, Li, Zhang, Zhang, Li, Fan (bib0250) 2017; 5
Zhu, Chen, Cao, Peng, Li, Zhang, Zhang, Fan (bib0155) 2019; 55
Li, Li, Wu, Tian, Yue, Zhu (bib0220) 2019; 10
Dimiev, Tour (bib0140) 2014; 8
Kocer, Akdag, Worley, Acevedo, Broughton, Wu (bib0235) 2010; 2
Cao, Li, Tong, Chen, Yu, Yu, Chen (bib0100) 2018; 28
Pfrommer, Coˆte, Louie, Cohen (bib0200) 1997; 131
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr 220 (2005) 567-570.
Huang, Xiao, He, Zhang, Dong, Du, Zhang (bib0280) 2016; 199
Piras, Fernández-Prieto, De Borggraeve (bib0170) 2019; 1
Jin, Li, Geng, Jiang, Xu, Xu, Jiang (bib0160) 2018
Zhou, Zheng, Wang, Xing, Li, Ye, Xiao, Li, Zou (bib0045) 2019; 55
Fan, Peng, Li, Li, Wang, Zhang, Zhang (bib0210) 2008; 20
Li, Zhu, Gong, Zhang, Peng, Li, Zhang, Fan (bib0150) 2020; 45
Debiemme-Chouvy, Haskouri, Cachet (bib0245) 2007; 253
Pachfule, Acharjya, Roeser, Langenhahn, Schwarze, Schomaecker, Thomas, Schmidt (bib0010) 2018; 140
Kuecken, Acharjya, Zhi, Schwarze, Schomacker, Thomas (bib0020) 2017; 53
Kuecken, Schmidt, Zhi, Thomas (bib0175) 2015; 3
Zou, Chen, Liu, Xing, Dong, Luo, Dai, Xiao, Luo, Crittenden (bib0285) 2019; 150
Zhang, Veder, He, Jiang (bib0265) 2019; 55
Du, Zou, Wang, Wang (bib0145) 2015; 7
Dikin, Stankovich, Zimney, Piner, Dommett, Evmenenko, Nguyen, Ruoff (bib0130) 2007; 448
Jiang, Sun, Bi, Liang, Li, Yu, Wu (bib0060) 2018; 11
Waller, Gandara, Yaghi (bib0015) 2015; 48
Wang, Chen, Wang, Hou, Wang, Ao (bib0035) 2018; 239
Kim, Borse, Choi, Lee (bib0270) 2005; 44
Kofuji, Ohkita, Shiraishi, Sakamoto, Tanaka, Ichikawa, Hirai (bib0260) 2016; 6
Zhang, Hong, Li, Wang, Huang, Chen, Tu, Yu, Xu, Zhou, Zhang (bib0275) 2019; 5
Jiang, Cao, Hu, Chen (bib0095) 2017; 38
Dong, Meng, Zhang, Tang, Liu, Wang, Wei, Zhang, Bai, Sun (bib0065) 2020; 379
Cheng, Fang, Zhao, Fang, Bi, Liang, Li, Yu, Wu (bib0110) 2018; 10
Bhunia, Esquivel, Dey, Fernández-Terán, Yasutomo, Inagaki, Voort, Janiak (bib0225) 2016; 4
Liu, Zhang, Dong, Reshak, Ye, Pinna, Zeng, Zhang, Huang (bib0125) 2017; 203
Wang, Ye, Li, Zeng, Nie, Dong, Xing, Zou (bib0050) 2020; 260
Li, Fang, Zhang, Bi, He, Wang, Su (bib0080) 2016; 4
Wang, Zeng, Xiong, Wu, Xia, Xie, Zou, Luo (bib0005) 2020; 65
Wang, Li, Zheng, Qin, Li, Ye, Li, Jian-Ping, Zou (bib0180) 2018; 10
Wu, Lin, Shen, Sun, Liu, Wang, Kim (bib0240) 2015; 89
Wang, Shen, Chen, Liu, Zhao (bib0120) 2019; 367
Chen, Zhang, Zhu (bib0165) 2017; 11
Wang (10.1016/j.apcatb.2020.118989_bib0050) 2020; 260
Wang (10.1016/j.apcatb.2020.118989_bib0090) 2019; 7
Wei (10.1016/j.apcatb.2020.118989_bib0070) 2018; 231
Cao (10.1016/j.apcatb.2020.118989_bib0100) 2018; 28
Wang (10.1016/j.apcatb.2020.118989_bib0035) 2018; 239
Zhao (10.1016/j.apcatb.2020.118989_bib0075) 2019; 367
10.1016/j.apcatb.2020.118989_bib0185
Huang (10.1016/j.apcatb.2020.118989_bib0280) 2016; 199
Zou (10.1016/j.apcatb.2020.118989_bib0285) 2019; 150
Wang (10.1016/j.apcatb.2020.118989_bib0120) 2019; 367
Li (10.1016/j.apcatb.2020.118989_bib0080) 2016; 4
Piras (10.1016/j.apcatb.2020.118989_bib0170) 2019; 1
Zhang (10.1016/j.apcatb.2020.118989_bib0265) 2019; 55
Zhou (10.1016/j.apcatb.2020.118989_bib0045) 2019; 55
Zhu (10.1016/j.apcatb.2020.118989_bib0250) 2017; 5
Zhou (10.1016/j.apcatb.2020.118989_bib0030) 2018; 220
Debiemme-Chouvy (10.1016/j.apcatb.2020.118989_bib0245) 2007; 253
Dimiev (10.1016/j.apcatb.2020.118989_bib0140) 2014; 8
Jiang (10.1016/j.apcatb.2020.118989_bib0095) 2017; 38
Kim (10.1016/j.apcatb.2020.118989_bib0270) 2005; 44
Du (10.1016/j.apcatb.2020.118989_bib0145) 2015; 7
Wang (10.1016/j.apcatb.2020.118989_bib0005) 2020; 65
Waller (10.1016/j.apcatb.2020.118989_bib0015) 2015; 48
Zhu (10.1016/j.apcatb.2020.118989_bib0105) 2019; 258
Li (10.1016/j.apcatb.2020.118989_bib0150) 2020; 45
Kuhn (10.1016/j.apcatb.2020.118989_bib0205) 2008; 47
Liu (10.1016/j.apcatb.2020.118989_bib0125) 2017; 203
Dong (10.1016/j.apcatb.2020.118989_bib0065) 2020; 379
Liu (10.1016/j.apcatb.2020.118989_bib0255) 2017; 203
Ouyang (10.1016/j.apcatb.2020.118989_bib0055) 2018; 14
Jiao (10.1016/j.apcatb.2020.118989_bib0115) 2017; 5
Wu (10.1016/j.apcatb.2020.118989_bib0240) 2015; 89
Pachfule (10.1016/j.apcatb.2020.118989_bib0010) 2018; 140
Kofuji (10.1016/j.apcatb.2020.118989_bib0260) 2016; 6
Huang (10.1016/j.apcatb.2020.118989_bib0025) 2016; 4
Wang (10.1016/j.apcatb.2020.118989_bib0085) 2017; 281
Wang (10.1016/j.apcatb.2020.118989_bib0135) 2019; 6
Pfrommer (10.1016/j.apcatb.2020.118989_bib0200) 1997; 131
Govindarajan (10.1016/j.apcatb.2020.118989_bib0230) 2012; 97
Zhang (10.1016/j.apcatb.2020.118989_bib0275) 2019; 5
Kuecken (10.1016/j.apcatb.2020.118989_bib0020) 2017; 53
Li (10.1016/j.apcatb.2020.118989_bib0220) 2019; 10
Zhu (10.1016/j.apcatb.2020.118989_bib0155) 2019; 55
Ren (10.1016/j.apcatb.2020.118989_bib0195) 2006; 44
Chen (10.1016/j.apcatb.2020.118989_bib0165) 2017; 11
Li (10.1016/j.apcatb.2020.118989_bib0040) 2019; 243
Bhunia (10.1016/j.apcatb.2020.118989_bib0225) 2016; 4
Kuecken (10.1016/j.apcatb.2020.118989_bib0175) 2015; 3
Kocer (10.1016/j.apcatb.2020.118989_bib0235) 2010; 2
Cheng (10.1016/j.apcatb.2020.118989_bib0110) 2018; 10
Jiang (10.1016/j.apcatb.2020.118989_bib0060) 2018; 11
Fan (10.1016/j.apcatb.2020.118989_bib0210) 2008; 20
Dikin (10.1016/j.apcatb.2020.118989_bib0130) 2007; 448
Jin (10.1016/j.apcatb.2020.118989_bib0160) 2018
Dodziuk (10.1016/j.apcatb.2020.118989_bib0190) 2006; 426
Wang (10.1016/j.apcatb.2020.118989_bib0180) 2018; 10
Liu (10.1016/j.apcatb.2020.118989_bib0215) 2015; 481
References_xml – volume: 89
  start-page: 102
  year: 2015
  end-page: 112
  ident: bib0240
  publication-title: Carbon
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  ident: bib0015
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 24422
  year: 2015
  end-page: 24427
  ident: bib0175
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 2456
  year: 2010
  end-page: 2464
  ident: bib0235
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 397
  year: 2006
  end-page: 406
  ident: bib0195
  publication-title: Carbon
– volume: 4
  start-page: 7555
  year: 2016
  end-page: 7559
  ident: bib0025
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 2689
  year: 2020
  end-page: 2698
  ident: bib0150
  publication-title: Int. J. Hydrogen Energy
– volume: 281
  start-page: 662
  year: 2017
  end-page: 668
  ident: bib0085
  publication-title: Catal. Today
– volume: 5
  start-page: 11752
  year: 2019
  end-page: 11756
  ident: bib0275
  publication-title: Angew. Chem.
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: bib0205
  publication-title: Angew. Chem.
– volume: 8
  start-page: 3060
  year: 2014
  end-page: 3068
  ident: bib0140
  publication-title: ACS Nano
– volume: 55
  start-page: 4150
  year: 2019
  end-page: 4153
  ident: bib0045
  publication-title: Chem. Commun.
– volume: 239
  start-page: 578
  year: 2018
  end-page: 585
  ident: bib0035
  publication-title: Appl. Catal. B Environ.
– volume: 231
  start-page: 101
  year: 2018
  end-page: 107
  ident: bib0070
  publication-title: Appl. Catal. B Environ.
– volume: 55
  start-page: 1233
  year: 2019
  end-page: 1236
  ident: bib0265
  publication-title: Chem. Commun.
– reference: S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr 220 (2005) 567-570.
– start-page: 4143
  year: 2018
  ident: bib0160
  publication-title: Nat. Commun.
– volume: 448
  start-page: 457
  year: 2007
  end-page: 460
  ident: bib0130
  publication-title: Nature
– volume: 10
  start-page: 7695
  year: 2019
  end-page: 7701
  ident: bib0220
  publication-title: Chem. Sci.
– volume: 243
  start-page: 621
  year: 2019
  end-page: 628
  ident: bib0040
  publication-title: Appl. Catal. B Environ.
– volume: 44
  start-page: 4585
  year: 2005
  end-page: 4589
  ident: bib0270
  publication-title: Angew. Chem.
– volume: 5
  start-page: 9272
  year: 2017
  end-page: 9278
  ident: bib0250
  publication-title: J. Mater. Chem. A
– volume: 379
  year: 2020
  ident: bib0065
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 41415
  year: 2018
  end-page: 41421
  ident: bib0110
  publication-title: ACS Appl. Mater. Interfaces
– volume: 97
  start-page: 231
  year: 2012
  end-page: 245
  ident: bib0230
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– volume: 140
  start-page: 1423
  year: 2018
  end-page: 1427
  ident: bib0010
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 4490
  year: 2008
  end-page: 4493
  ident: bib0210
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  ident: bib0100
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 937
  year: 2019
  end-page: 947
  ident: bib0170
  publication-title: Nanoscale Adv.
– volume: 65
  start-page: 113
  year: 2020
  end-page: 122
  ident: bib0005
  publication-title: Sci. Bull.
– volume: 220
  start-page: 607
  year: 2018
  end-page: 614
  ident: bib0030
  publication-title: Appl. Catal. B Environ.
– volume: 4
  start-page: 12402
  year: 2016
  end-page: 12406
  ident: bib0080
  publication-title: J. Mater. Chem. A
– volume: 426
  start-page: 224
  year: 2006
  end-page: 225
  ident: bib0190
  publication-title: Chem. Phys. Lett.
– volume: 55
  start-page: 1434
  year: 2019
  end-page: 1437
  ident: bib0155
  publication-title: Chem. Commun. (Camb.)
– volume: 481
  start-page: 276
  year: 2015
  end-page: 282
  ident: bib0215
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 253
  start-page: 5506
  year: 2007
  end-page: 5510
  ident: bib0245
  publication-title: Appl. Surf. Sci.
– volume: 53
  start-page: 5854
  year: 2017
  end-page: 5857
  ident: bib0020
  publication-title: Chem. Commun. (Camb.)
– volume: 258
  year: 2019
  ident: bib0105
  publication-title: Appl. Catal. B Environ.
– volume: 367
  start-page: 260
  year: 2019
  end-page: 268
  ident: bib0120
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 19509
  year: 2018
  end-page: 19516
  ident: bib0180
  publication-title: Nanoscale
– volume: 131
  start-page: 233
  year: 1997
  end-page: 240
  ident: bib0200
  publication-title: J. Comput. Phys.
– volume: 14
  start-page: 262
  year: 2018
  ident: bib0055
  publication-title: Angew. Chem.
– volume: 7
  start-page: 13291
  year: 2019
  end-page: 13296
  ident: bib0090
  publication-title: Angew. Chem.
– volume: 260
  year: 2020
  ident: bib0050
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 8701
  year: 2015
  end-page: 8706
  ident: bib0145
  publication-title: Nanoscale
– volume: 203
  start-page: 300
  year: 2017
  end-page: 313
  ident: bib0255
  publication-title: Appl. Catal. B Environ.
– volume: 199
  start-page: 75
  year: 2016
  end-page: 86
  ident: bib0280
  publication-title: Appl. Catal. B Environ.
– volume: 150
  start-page: 330
  year: 2019
  end-page: 339
  ident: bib0285
  publication-title: Water Res.
– volume: 367
  start-page: 249
  year: 2019
  end-page: 259
  ident: bib0075
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 7021
  year: 2016
  end-page: 7029
  ident: bib0260
  publication-title: ACS Catal.
– volume: 5
  start-page: 23170
  year: 2017
  end-page: 23178
  ident: bib0115
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 440
  year: 2017
  end-page: 448
  ident: bib0165
  publication-title: Nano Res.
– volume: 6
  start-page: 2379
  year: 2019
  end-page: 2388
  ident: bib0135
  publication-title: Environ. Sci. Nano
– volume: 11
  start-page: 1108
  year: 2018
  end-page: 1113
  ident: bib0060
  publication-title: ChemSusChem
– volume: 38
  start-page: 1981
  year: 2017
  end-page: 1989
  ident: bib0095
  publication-title: Chin. J. Catal.
– volume: 203
  start-page: 465
  year: 2017
  end-page: 474
  ident: bib0125
  publication-title: Appl. Catal. B Environ.
– volume: 4
  start-page: 13450
  year: 2016
  end-page: 13457
  ident: bib0225
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 1108
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0060
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702220
– volume: 253
  start-page: 5506
  year: 2007
  ident: 10.1016/j.apcatb.2020.118989_bib0245
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2006.12.077
– volume: 5
  start-page: 23170
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0115
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07387A
– volume: 14
  start-page: 262
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0055
  publication-title: Angew. Chem.
– volume: 38
  start-page: 1981
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0095
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62936-X
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0100
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 2689
  year: 2020
  ident: 10.1016/j.apcatb.2020.118989_bib0150
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.049
– volume: 7
  start-page: 13291
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0090
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201907595
– volume: 65
  start-page: 113
  year: 2020
  ident: 10.1016/j.apcatb.2020.118989_bib0005
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.10.015
– volume: 231
  start-page: 101
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0070
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.03.014
– volume: 53
  start-page: 5854
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0020
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C7CC01827D
– volume: 481
  start-page: 276
  year: 2015
  ident: 10.1016/j.apcatb.2020.118989_bib0215
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2015.05.021
– volume: 44
  start-page: 397
  year: 2006
  ident: 10.1016/j.apcatb.2020.118989_bib0195
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.09.009
– volume: 281
  start-page: 662
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0085
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.05.013
– volume: 89
  start-page: 102
  year: 2015
  ident: 10.1016/j.apcatb.2020.118989_bib0240
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.02.074
– volume: 243
  start-page: 621
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0040
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.10.043
– volume: 97
  start-page: 231
  year: 2012
  ident: 10.1016/j.apcatb.2020.118989_bib0230
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2012.06.014
– volume: 379
  year: 2020
  ident: 10.1016/j.apcatb.2020.118989_bib0065
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122342
– volume: 367
  start-page: 249
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0075
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.123
– volume: 5
  start-page: 11752
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0275
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201905869
– volume: 150
  start-page: 330
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0285
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.11.077
– volume: 367
  start-page: 260
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0120
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.150
– volume: 203
  start-page: 465
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0125
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.10.002
– volume: 4
  start-page: 12402
  year: 2016
  ident: 10.1016/j.apcatb.2020.118989_bib0080
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04711D
– volume: 11
  start-page: 440
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0165
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1651-y
– volume: 20
  start-page: 4490
  year: 2008
  ident: 10.1016/j.apcatb.2020.118989_bib0210
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801306
– ident: 10.1016/j.apcatb.2020.118989_bib0185
  doi: 10.1524/zkri.220.5.567.65075
– volume: 48
  start-page: 3053
  year: 2015
  ident: 10.1016/j.apcatb.2020.118989_bib0015
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00369
– volume: 7
  start-page: 8701
  year: 2015
  ident: 10.1016/j.apcatb.2020.118989_bib0145
  publication-title: Nanoscale
  doi: 10.1039/C5NR00665A
– volume: 220
  start-page: 607
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0030
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.08.086
– start-page: 4143
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0160
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06719-8
– volume: 55
  start-page: 1233
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0265
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09633C
– volume: 4
  start-page: 13450
  year: 2016
  ident: 10.1016/j.apcatb.2020.118989_bib0225
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04623A
– volume: 10
  start-page: 7695
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0220
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02340B
– volume: 239
  start-page: 578
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0035
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.08.048
– volume: 448
  start-page: 457
  year: 2007
  ident: 10.1016/j.apcatb.2020.118989_bib0130
  publication-title: Nature
  doi: 10.1038/nature06016
– volume: 10
  start-page: 41415
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0110
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16013
– volume: 8
  start-page: 3060
  year: 2014
  ident: 10.1016/j.apcatb.2020.118989_bib0140
  publication-title: ACS Nano
  doi: 10.1021/nn500606a
– volume: 1
  start-page: 937
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0170
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00238J
– volume: 6
  start-page: 7021
  year: 2016
  ident: 10.1016/j.apcatb.2020.118989_bib0260
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02367
– volume: 55
  start-page: 4150
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0045
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01161G
– volume: 44
  start-page: 4585
  year: 2005
  ident: 10.1016/j.apcatb.2020.118989_bib0270
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200500064
– volume: 47
  start-page: 3450
  year: 2008
  ident: 10.1016/j.apcatb.2020.118989_bib0205
  publication-title: Angew. Chem.
  doi: 10.1002/anie.200705710
– volume: 199
  start-page: 75
  year: 2016
  ident: 10.1016/j.apcatb.2020.118989_bib0280
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.06.020
– volume: 5
  start-page: 9272
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0250
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01438D
– volume: 6
  start-page: 2379
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0135
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C9EN00545E
– volume: 426
  start-page: 224
  year: 2006
  ident: 10.1016/j.apcatb.2020.118989_bib0190
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.05.054
– volume: 260
  year: 2020
  ident: 10.1016/j.apcatb.2020.118989_bib0050
  publication-title: Appl. Catal. B Environ.
– volume: 10
  start-page: 19509
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0180
  publication-title: Nanoscale
  doi: 10.1039/C8NR06691D
– volume: 258
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0105
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.117981
– volume: 4
  start-page: 7555
  year: 2016
  ident: 10.1016/j.apcatb.2020.118989_bib0025
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01828A
– volume: 2
  start-page: 2456
  year: 2010
  ident: 10.1016/j.apcatb.2020.118989_bib0235
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100511x
– volume: 3
  start-page: 24422
  year: 2015
  ident: 10.1016/j.apcatb.2020.118989_bib0175
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA07408H
– volume: 203
  start-page: 300
  year: 2017
  ident: 10.1016/j.apcatb.2020.118989_bib0255
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.10.014
– volume: 55
  start-page: 1434
  year: 2019
  ident: 10.1016/j.apcatb.2020.118989_bib0155
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C8CC10262G
– volume: 140
  start-page: 1423
  year: 2018
  ident: 10.1016/j.apcatb.2020.118989_bib0010
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11255
– volume: 131
  start-page: 233
  year: 1997
  ident: 10.1016/j.apcatb.2020.118989_bib0200
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.5612
SSID ssj0002328
Score 2.5637977
Snippet A novel strategy was firstly developed to prepare Cl intercalated CTF-1 photocatalyst (labeled as Cl-ECF) via ball-milled flaking assisted acidification. The...
Covalent triazine-based frameworks (CTFs), as a type of 2D conjugated polymer, have attracted keen attention because of the promising visible-light-driven...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118989
SubjectTerms Acidification
Ball milling
Catalytic activity
Charge transfer
Chlorine
Cl-intercalated
Covalence
Covalent bonds
Crystal structure
Doping
H2evolution
Hydrogen production
Intercalation
Interlayers
Irradiation
Light irradiation
Microstructure
Photocatalysis
Photocatalysts
Polymers
Radiation
Triazine
Triazine-based covalent organic frameworks
Water splitting
Title Chlorine-mediated photocatalytic hydrogen production based on triazine covalent organic framework
URI https://dx.doi.org/10.1016/j.apcatb.2020.118989
https://www.proquest.com/docview/2443645162
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFV8k4PXuLtJmmyPsiirohcVvIVp0rKKbIvWgxd_u5O09QUiSC9NSULJPJN8MwNwKIUfShQJR60VV4gkc2Q2uEnpwcIZHfMUXF7pya06v0vu5mDcxcIEWGWr-xudHrV1-6Xfrma_ur_vXw9SoaU0UoTbPfJMQgS7MoHLj94-YR7kMURtTJ156N2Fz0WMF1YO64x2iSLojlBJ8Tfz9ENRR-tzugorrdvIjps_W4O5fNaDxXFXra0Hy18SC_Zg8-Qzfo2GtQL8vA44nkbIXc5jyAi5m6yalnUZT3FeaXI2ffVPJXEVq5pcsEQ3FkydZ_QSanyEdNTMlcShNDlrqkI5VnQgrw24PT25GU94W2WBO5LfmicjJ0XqRx5zmScGBVIjVcMBSpXpkRFYFOTUGe88bZW0S7LUDIoEaR84QKWk3IT5WTnLt4Aluc6kQByaEB6bG1SpVt4UQosCpffbILvFta5NQR4qYTzaDmv2YBuS2EAS25BkG_jHqKpJwfFHf9PRzX5jJUtW4o-Rex2ZbSvKz5b8n3BVO9Ri598T78JSaEVsWrIH8_XTS75PzkydHURuPYCF47OLydU7Un70iQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8qcCgcplFAwNjmA1fT1nbs5jhVVN0GXAYSN-vFTlQQaqISDlz423l2knWbNCGhXPJhW5Hf18_2-wA4lcKPJYqEo9aKK0SSOTIb3KR0YeGMjnkKLq_0_Eb9uE1uezDtYmGCW2Wr-xudHrV1-2bYzuawursb_hqlQktppAine4RMNmBLkfiGMgZnL2s_D4IMUR1Tax6ad_Fz0ckLK4d1RstEEZRHKKX4P_v0j6aO5mf2ET60uJF9a35tF3r5cgD9aVeubQA7f2QWHMDB-TqAjbq1Evy4BzhdRJ-7nMeYEcKbrFqUdRm3cZ5pcLZ49quS2IpVTTJYIhwLts4zuglFPkI-auZKYlEanDVloRwrOi-vfbiZnV9P57wts8AdCXDNk4mTIvUTj7nME4MC6SFV4xFKlemJEVgUhOqMd57WStolWWpGRYK0EByhUlIewOayXOaHwJJcZ1Igjk2Ij80NqlQrbwqhRYHS-yOQ3eRa1-YgD6UwHmznbHZvG5LYQBLbkOQI-O9eVZOD4432pqOb_YuXLJmJN3qedGS2rSw_WgJA4ax2rMXxuwf-Cv359eWFvfh-9fMTbIcv0VEtOYHNevWUfyZkU2dfIue-AucV9hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorine-mediated+photocatalytic+hydrogen+production+based+on+triazine+covalent+organic+framework&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Li%2C+Shuang&rft.au=Wu%2C+Mei-Feng&rft.au=Guo%2C+Tao&rft.au=Zheng%2C+Ling-Ling&rft.date=2020-09-05&rft.issn=0926-3373&rft.volume=272&rft.spage=118989&rft_id=info:doi/10.1016%2Fj.apcatb.2020.118989&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2020_118989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon