An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function
Adsorption cooling technology is a promising alternative to replace conventional solutions. However, adsorption chillers still need to be improved in terms of performance parameters. One of the most important factors affecting their efficiency is the characteristics of the adsorbent, which should ha...
Saved in:
Published in | Energies (Basel) Vol. 16; no. 15; p. 5808 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1073 1996-1073 |
DOI | 10.3390/en16155808 |
Cover
Loading…
Abstract | Adsorption cooling technology is a promising alternative to replace conventional solutions. However, adsorption chillers still need to be improved in terms of performance parameters. One of the most important factors affecting their efficiency is the characteristics of the adsorbent, which should have the highest adsorption capacity and enable efficient heat transport in the bed. The objective of this paper is to present current developments in the field of composite sorbents with silica gel matrix as modern and very promising materials and then perform a detailed analysis of them. The paper summarises the methods of synthesis of composite sorbents and the current knowledge concerning these materials. The analysis focuses on a comparison of the available data, particular taking into account the types of matrixes, so that the analysis provides a clear and qualitative basis for further research. As a result of exploring the state of the art, this subject is found to be insufficiently described; therefore, these materials are comprehensively analysed in terms of their properties and the impact of their use on the COP (coefficient of performance) and SCP (specific cooling power) of adsorption chillers. Based on the analysis of the literature, the most promising directions for further research are also indicated. |
---|---|
AbstractList | Adsorption cooling technology is a promising alternative to replace conventional solutions. However, adsorption chillers still need to be improved in terms of performance parameters. One of the most important factors affecting their efficiency is the characteristics of the adsorbent, which should have the highest adsorption capacity and enable efficient heat transport in the bed. The objective of this paper is to present current developments in the field of composite sorbents with silica gel matrix as modern and very promising materials and then perform a detailed analysis of them. The paper summarises the methods of synthesis of composite sorbents and the current knowledge concerning these materials. The analysis focuses on a comparison of the available data, particular taking into account the types of matrixes, so that the analysis provides a clear and qualitative basis for further research. As a result of exploring the state of the art, this subject is found to be insufficiently described; therefore, these materials are comprehensively analysed in terms of their properties and the impact of their use on the COP (coefficient of performance) and SCP (specific cooling power) of adsorption chillers. Based on the analysis of the literature, the most promising directions for further research are also indicated. |
Audience | Academic |
Author | Sztekler, Karol Mlonka-Mędrala, Agata Mika, Łukasz Sowa, Marcin |
Author_xml | – sequence: 1 givenname: Marcin orcidid: 0000-0003-4639-7616 surname: Sowa fullname: Sowa, Marcin – sequence: 2 givenname: Karol orcidid: 0000-0002-1828-2603 surname: Sztekler fullname: Sztekler, Karol – sequence: 3 givenname: Agata orcidid: 0000-0002-7603-7307 surname: Mlonka-Mędrala fullname: Mlonka-Mędrala, Agata – sequence: 4 givenname: Łukasz orcidid: 0000-0002-0750-7694 surname: Mika fullname: Mika, Łukasz |
BookMark | eNptkU1vVCEUhm9MTay1G38BiTuTqXC5fC0no62TtOmiuiYMHFomd-AKzLT-e-kdjaYRFpwc3vfh433bncQUoeveE3xBqcKfIBJOGJNYvupOiVJ8QbCgJ__Ub7rzUra4DUoJpfS0Oywjuj1APgR4RMmjz3CAMU07iLWgdUR3YQzWoCsY0Y2pOTyhVdpNqYQK6C7lzazzKaOlKylPNaSIVg9hHCEX9BjqQyMWM4Zo5q3LfbTPxbvutTdjgfPf61n3_fLLt9XXxfXt1Xq1vF7YAeO6YEIxonrGDesFNxKwswKwZ94PRrnecGkYHogDxonbCGqlF0Z4J9wGbK_oWbc-cl0yWz3lsDP5p04m6LmR8r02uQY7glagBueoFzDwwXMiXe8HSgxnFjPsXWN9OLKmnH7soVS9Tfsc2_V1LweplJLziRdH1b1p0BB9qtnYNh3sgm2B-dD6S8ExIwz3uBnw0WBzKiWD1zbU-beaMYyaYP2crv6bbrN8fGH587L_iH8Bg4KnMQ |
CitedBy_id | crossref_primary_10_1016_j_nexus_2024_100319 crossref_primary_10_3390_pr11123344 crossref_primary_10_1016_j_desal_2024_118175 crossref_primary_10_1016_j_jwpe_2025_107187 |
Cites_doi | 10.1016/j.enbuild.2006.11.010 10.1016/j.applthermaleng.2005.07.022 10.1016/j.ijrefrig.2008.03.012 10.1007/BF02068130 10.1016/j.applthermaleng.2012.04.008 10.1016/j.enconman.2020.113105 10.1016/j.rser.2019.109630 10.1016/j.solener.2020.10.068 10.1016/j.ijrefrig.2009.02.005 10.1016/j.desal.2012.07.030 10.1016/j.applthermaleng.2021.117553 10.1016/j.cej.2019.122104 10.1016/S1359-4311(01)00039-4 10.1016/j.renene.2016.08.041 10.1016/j.energy.2017.04.010 10.1016/j.energy.2009.04.001 10.1021/ie8016303 10.1016/S0196-8904(02)00169-3 10.1016/j.rser.2015.09.027 10.1016/j.ijrefrig.2012.05.007 10.1016/j.ijrefrig.2012.08.017 10.1016/S0144-2449(05)80313-6 10.1016/j.ijrefrig.2010.05.015 10.1016/j.applthermaleng.2016.05.036 10.1016/j.applthermaleng.2016.09.099 10.1016/j.apenergy.2012.08.005 10.1016/j.applthermaleng.2016.02.066 10.1016/j.enconman.2021.115162 10.1016/j.enconman.2021.114977 10.1016/j.micromeso.2015.10.041 10.1016/j.applthermaleng.2014.04.023 10.1016/j.ijrefrig.2003.09.003 10.1016/j.enconman.2021.114576 10.1016/j.rser.2021.110954 10.1016/j.enconman.2016.08.012 10.1016/j.ijrefrig.2020.04.001 10.1016/j.ces.2014.08.047 10.1016/j.renene.2020.09.072 10.1016/j.rser.2014.07.081 10.2533/chimia.2013.419 10.1016/j.ijrefrig.2009.12.032 10.1051/e3sconf/201910801010 10.1016/S0140-7007(01)00004-4 10.1016/j.egyr.2021.11.280 10.1016/j.ijrefrig.2009.01.022 10.1126/science.1230444 10.1016/j.enconman.2008.09.022 10.1016/j.ijheatmasstransfer.2008.06.018 10.1016/j.ijheatmasstransfer.2006.01.053 10.1016/j.applthermaleng.2020.116265 10.1016/j.applthermaleng.2016.08.075 10.1016/j.applthermaleng.2021.117953 10.1016/j.renene.2011.01.005 10.1016/j.applthermaleng.2005.07.023 10.1016/j.energy.2018.03.060 10.1016/S0927-7757(99)00218-6 10.1016/j.ijrefrig.2018.09.003 10.1016/j.energy.2014.11.022 10.1016/j.enconman.2015.01.076 10.3390/en14217226 10.1016/j.ijheatmasstransfer.2012.02.054 10.1016/j.applthermaleng.2011.09.038 10.1016/j.desal.2019.114170 10.1016/S0140-7007(99)00078-X 10.1016/j.applthermaleng.2019.114341 10.1016/j.ijrefrig.2022.06.001 10.1016/j.applthermaleng.2013.08.022 10.1007/s10971-022-06010-9 10.1080/01457630601023625 10.1016/S0140-7007(99)00036-5 10.1016/j.ijrefrig.2022.03.032 10.1016/j.enconman.2022.116346 10.1007/978-981-13-6887-5 10.1016/j.applthermaleng.2021.117958 10.1016/j.applthermaleng.2005.02.011 10.1016/S0360-1285(03)00028-5 10.1016/j.apenergy.2010.11.021 10.3390/en14041083 10.1016/j.tsep.2023.101685 10.1016/j.solener.2018.03.062 10.1016/j.jcis.2021.06.012 10.1016/j.energy.2023.127255 10.1007/s10450-013-9513-8 10.1016/j.energy.2016.09.113 10.1016/j.rser.2015.12.266 10.1093/ijlct/cts050 10.1016/j.enconman.2017.03.036 10.1016/j.csite.2019.100568 10.1016/j.applthermaleng.2016.11.138 10.1016/j.applthermaleng.2017.06.141 10.1016/j.applthermaleng.2005.04.024 10.1016/j.desal.2022.116278 10.1016/j.applthermaleng.2015.06.078 10.1016/j.ces.2014.02.012 10.1016/j.rser.2007.12.002 10.1016/j.rser.2015.05.035 10.3390/en14154707 10.1016/j.energy.2010.11.016 10.1016/j.ijrefrig.2010.07.019 10.1016/j.applthermaleng.2015.09.023 10.1016/j.rser.2009.08.001 10.1134/S1810232807020026 10.1016/j.applthermaleng.2010.01.020 10.1080/01614940600962321 10.1016/j.desal.2015.08.002 10.1134/S0023158410050186 10.1016/j.matpr.2017.06.364 10.1016/S1359-4311(01)00072-2 10.1016/j.apenergy.2012.11.042 10.1016/j.applthermaleng.2006.09.008 10.1016/j.renene.2013.10.010 10.1016/j.applthermaleng.2017.04.059 10.1016/j.ijrefrig.2018.10.011 10.1016/j.applthermaleng.2008.07.026 10.1016/j.desal.2018.08.022 10.1016/j.energy.2015.05.079 10.1016/j.rser.2013.09.023 10.1016/S1359-4311(97)00106-3 10.1016/j.ijheatmasstransfer.2016.05.127 10.1016/j.rser.2018.10.004 10.1016/S0038-092X(98)00012-7 10.1016/0140-7007(92)90064-2 10.1177/1687814019884780 10.1016/j.apenergy.2018.02.063 10.1016/S0301-9322(03)00103-4 10.1016/j.ijrefrig.2006.05.003 10.1016/j.micromeso.2009.02.034 10.1039/C8DT04688C 10.1016/j.applthermaleng.2018.10.043 10.1016/j.ijheatmasstransfer.2009.12.069 10.1016/j.enconman.2011.09.001 10.1016/j.enconman.2010.12.036 10.1016/j.apenergy.2010.03.013 10.1016/j.applthermaleng.2016.10.189 10.1016/j.enconman.2020.113564 10.1016/j.ijrefrig.2021.06.033 10.1016/j.rser.2012.11.037 10.1016/j.ijrefrig.2009.06.011 10.1016/j.solener.2006.11.013 10.1021/je900993a 10.3390/en13215827 10.1016/j.applthermaleng.2015.02.052 10.1016/j.pecs.2006.01.002 10.1016/j.enbuild.2017.11.040 10.1016/j.ijrefrig.2005.05.008 10.1016/j.enconman.2017.09.069 10.1016/j.jcis.2006.05.009 10.1016/j.ijheatmasstransfer.2013.06.053 10.1016/S0960-1481(00)00107-5 10.1016/j.applthermaleng.2021.116958 10.1016/0300-9467(75)88019-1 10.1016/j.icheatmasstransfer.2009.01.008 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/en16155808 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_9e94dd3f7e464f618d2f431a65c050fd A760515020 10_3390_en16155808 |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c400t-579519256a5276a8e0dc7e0f5ff4a9d2a68a5041de561db73c8f7a7fd7dbec293 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:23:06 EDT 2025 Mon Jun 30 04:05:06 EDT 2025 Tue Jun 10 21:23:45 EDT 2025 Tue Jul 01 01:59:11 EDT 2025 Thu Apr 24 22:53:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-579519256a5276a8e0dc7e0f5ff4a9d2a68a5041de561db73c8f7a7fd7dbec293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7603-7307 0000-0002-1828-2603 0000-0002-0750-7694 0000-0003-4639-7616 |
OpenAccessLink | https://doaj.org/article/9e94dd3f7e464f618d2f431a65c050fd |
PQID | 2848999829 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e94dd3f7e464f618d2f431a65c050fd proquest_journals_2848999829 gale_infotracacademiconefile_A760515020 crossref_citationtrail_10_3390_en16155808 crossref_primary_10_3390_en16155808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Goyal (ref_36) 2016; 53 Askalany (ref_6) 2013; 19 Grabowska (ref_56) 2018; 151 Tso (ref_80) 2012; 35 Janiak (ref_120) 2013; 67 Li (ref_54) 2015; 94 Hua (ref_112) 2022; 204 ref_96 Aristov (ref_132) 2012; 35 Aristov (ref_140) 2007; 16 Patel (ref_13) 2017; 4 Ma (ref_29) 2018; 446 Gordeeva (ref_139) 2006; 301 Elsaid (ref_5) 2020; 221 Gong (ref_137) 2010; 55 Freni (ref_61) 2015; 82 Gupta (ref_24) 2021; 245 Li (ref_155) 2010; 51 Younes (ref_110) 2017; 114 ref_128 Restuccia (ref_129) 2004; 27 Hassan (ref_22) 2021; 199 Tanashev (ref_154) 2013; 61 Wang (ref_156) 2023; 275 Aristov (ref_131) 2002; 22 Eun (ref_85) 2000; 23 Liu (ref_114) 2021; 131 Zhu (ref_27) 1992; 15 Askalany (ref_82) 2017; 110 Naseem (ref_17) 2022; 251 Pan (ref_12) 2021; 228 Gordeeva (ref_149) 2009; 48 Dakkama (ref_121) 2017; 142 Freni (ref_141) 2007; 27 Simonova (ref_163) 2005; 79 Chorowski (ref_42) 2015; 92 Glaznev (ref_76) 2010; 53 Yu (ref_138) 2014; 111 Eun (ref_84) 2000; 23 ref_77 ref_75 Hu (ref_124) 1998; 62 Hua (ref_86) 2022; 139 Ma (ref_118) 2016; 95 Myat (ref_109) 2013; 102 Verde (ref_25) 2016; 116 Wang (ref_67) 2007; 28 Ng (ref_8) 2013; 308 Chua (ref_62) 2001; 24 Rouf (ref_11) 2020; 17 ref_83 Henninger (ref_115) 2017; 110 Ali (ref_160) 2015; 90 Wang (ref_71) 2001; 24 Wang (ref_111) 2011; 36 Ng (ref_70) 2006; 49 Alsaman (ref_28) 2017; 128 Verde (ref_52) 2017; 111 Furukawa (ref_113) 2013; 341 Thu (ref_30) 2013; 65 Sumathy (ref_88) 2003; 29 Younes (ref_87) 2019; 98 Zheng (ref_144) 2014; 120 Krzywanski (ref_48) 2017; 153 Wang (ref_43) 2006; 32 Babamiri (ref_16) 2022; 253 Mika (ref_35) 2019; 108 Pan (ref_69) 2019; 163 Demir (ref_79) 2009; 36 Elsayed (ref_116) 2020; 475 Tatlier (ref_57) 2017; 113 Thu (ref_31) 2016; 101 Rezk (ref_53) 2012; 89 Alghoul (ref_89) 2007; 27 Freni (ref_102) 2016; 104 ref_58 Mitra (ref_64) 2014; 72 Demir (ref_81) 2010; 33 Liu (ref_73) 2006; 29 Srivastava (ref_123) 1998; 18 Aristov (ref_133) 1996; 59 Saha (ref_99) 2001; 23 Pan (ref_20) 2018; 172 Hassan (ref_125) 2009; 32 Baiju (ref_21) 2022; 141 Alsaman (ref_32) 2016; 58 Wang (ref_66) 2010; 14 Gwadera (ref_122) 2013; 52 Daou (ref_151) 2006; 26 Mahmoud (ref_19) 2016; 126 Sayilgan (ref_105) 2016; 224 Chan (ref_106) 2018; 158 Alahmer (ref_37) 2019; 99 Hassan (ref_14) 2020; 116 Luo (ref_46) 2010; 87 Daou (ref_153) 2007; 30 Coronel (ref_3) 2022; 8 Choudhury (ref_72) 2013; 104 Gordeeva (ref_97) 2010; 35 Wang (ref_91) 2009; 3 Palomba (ref_101) 2018; 216 ref_161 Girnik (ref_60) 2017; 125 ref_63 Rogala (ref_15) 2017; 121 Grisel (ref_18) 2010; 30 Wang (ref_33) 2005; 25 Gong (ref_143) 2011; 52 Zhang (ref_158) 2023; 548 Ilis (ref_78) 2021; 192 Duong (ref_59) 2021; 184 Thu (ref_90) 2013; 50 Bu (ref_152) 2013; 19 Wu (ref_165) 2007; 81 Hu (ref_104) 2009; 50 Santori (ref_98) 2023; 39 Maggio (ref_147) 2009; 29 ref_34 Liu (ref_103) 1990; 10 Chang (ref_47) 2007; 27 Niazmand (ref_51) 2012; 35 Ng (ref_92) 2001; 21 Lu (ref_26) 2003; 44 Freni (ref_150) 2012; 35 Gordeeva (ref_162) 2003; 77 Lu (ref_148) 2014; 63 Gordeeva (ref_134) 2012; 7 Elsheniti (ref_50) 2019; 146 Olkis (ref_9) 2019; 378 Chejne (ref_145) 2012; 53 Sharma (ref_93) 1975; 10 Basdanis (ref_74) 2021; 164 Rezk (ref_55) 2013; 53 Feng (ref_41) 2021; 144 Wang (ref_94) 2009; 32 Xie (ref_159) 2023; 105 Iguchi (ref_38) 2019; 105 Saha (ref_45) 2003; 29 Saha (ref_130) 2009; 52 Simonova (ref_164) 2009; 122 Wang (ref_68) 2014; 30 Aristov (ref_142) 2009; 32 Chan (ref_107) 2012; 55 Saha (ref_119) 2015; 79 ref_44 Khattak (ref_136) 2000; 162 Zhai (ref_100) 2007; 39 Zhang (ref_157) 2022; 203 Robbins (ref_23) 2020; 211 ref_40 ref_1 Shabir (ref_95) 2020; 119 ref_2 Fernandes (ref_10) 2014; 39 Tannert (ref_117) 2019; 48 Chen (ref_49) 2022; 271 Kossmann (ref_108) 2021; 602 Shmroukh (ref_127) 2015; 50 Bourikas (ref_135) 2006; 48 Saha (ref_126) 2008; 31 Mitra (ref_65) 2017; 206 Youssef (ref_39) 2015; 375 ref_4 Zajaczkowski (ref_7) 2016; 100 Gordeeva (ref_146) 2011; 36 |
References_xml | – volume: 39 start-page: 985 year: 2007 ident: ref_100 article-title: Solar integrated energy system for a green building publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.11.010 – volume: 27 start-page: 2195 year: 2007 ident: ref_47 article-title: Experimental study of a solid adsorption cooling system using flat-tube heat exchangers as adsorption bed publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.07.022 – volume: 52 start-page: 317 year: 2013 ident: ref_122 article-title: Adsorpcja wody na silikażelu w adsorpcyjnych urządzeniach chłodniczych publication-title: Inż. Ap. Chem. – volume: 31 start-page: 1407 year: 2008 ident: ref_126 article-title: Experimental investigation on activated carbon–ethanol pair for solar powered adsorption cooling applications publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2008.03.012 – volume: 59 start-page: 325 year: 1996 ident: ref_133 article-title: Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties publication-title: React. Kinet. Catal. Lett. doi: 10.1007/BF02068130 – volume: 206 start-page: 507 year: 2017 ident: ref_65 article-title: Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system publication-title: Appl. Therm. Eng. – volume: 53 start-page: 278 year: 2013 ident: ref_55 article-title: Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.04.008 – volume: 23 start-page: 164 year: 2000 ident: ref_84 article-title: Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks publication-title: Int. J. Refrig. – volume: 221 start-page: 113105 year: 2020 ident: ref_5 article-title: Recent progress on the utilization of waste heat for desalination: A review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113105 – volume: 119 start-page: 109630 year: 2020 ident: ref_95 article-title: Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109630 – volume: 211 start-page: 1318 year: 2020 ident: ref_23 article-title: An autonomous solar driven adsorption cooling system publication-title: Sol. Energy doi: 10.1016/j.solener.2020.10.068 – volume: 32 start-page: 638 year: 2009 ident: ref_94 article-title: Solar sorption cooling systems for residential applications: Options and guidelines publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.02.005 – volume: 308 start-page: 161 year: 2013 ident: ref_8 article-title: Adsorption desalination: An emerging low-cost thermal desalination method publication-title: Desalination doi: 10.1016/j.desal.2012.07.030 – volume: 199 start-page: 117553 year: 2021 ident: ref_22 article-title: Performance investigation of a solar-powered adsorption-based trigeneration system for cooling, electricity, and domestic hot water production publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117553 – volume: 378 start-page: 122104 year: 2019 ident: ref_9 article-title: Cycle and performance analysis of a small-scale adsorption heat transformer for desalination and cooling applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122104 – volume: 21 start-page: 1631 year: 2001 ident: ref_92 article-title: Experimental investigation of the silica gel–water adsorption isotherm characteristics publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(01)00039-4 – volume: 110 start-page: 59 year: 2017 ident: ref_115 article-title: New materials for adsorption heat transformation and storage publication-title: Renew. Energy doi: 10.1016/j.renene.2016.08.041 – ident: ref_1 – volume: 128 start-page: 196 year: 2017 ident: ref_28 article-title: Performance evaluation of a solar-driven adsorption desalination-cooling system publication-title: Energy doi: 10.1016/j.energy.2017.04.010 – volume: 35 start-page: 2703 year: 2010 ident: ref_97 article-title: Novel sorbents of ethanol “salt confined to porous matrix” for adsorptive cooling publication-title: Energy doi: 10.1016/j.energy.2009.04.001 – volume: 48 start-page: 13 year: 2009 ident: ref_149 article-title: Composite Sorbent of Methanol “Lithium Chloride in Mesoporous Silica Gel” for Adsorption Cooling Machines: Performance and Stability Evaluation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie8016303 – ident: ref_161 – volume: 44 start-page: 1733 year: 2003 ident: ref_26 article-title: Adsorption cold storage system with zeolite–water working pair used for locomotive air conditioning publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(02)00169-3 – volume: 53 start-page: 1389 year: 2016 ident: ref_36 article-title: Adsorption refrigeration technology—An overview of theory and its solar energy applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.027 – volume: 35 start-page: 1626 year: 2012 ident: ref_80 article-title: Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.05.007 – volume: 35 start-page: 2261 year: 2012 ident: ref_51 article-title: Bed geometrical specifications effects on the performance of silica/water adsorption chillers publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.08.017 – volume: 10 start-page: 565 year: 1990 ident: ref_103 article-title: Fast simple and accurate measurement of zeolite thermal conductivity publication-title: Zeolites doi: 10.1016/S0144-2449(05)80313-6 – ident: ref_4 – volume: 35 start-page: 518 year: 2012 ident: ref_150 article-title: Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate” publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.05.015 – volume: 104 start-page: 85 year: 2016 ident: ref_102 article-title: Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.05.036 – volume: 111 start-page: 489 year: 2017 ident: ref_52 article-title: Optimization of thermal design and geometrical parameters of a flat tube-fin adsorbent bed for automobile air-conditioning publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.09.099 – volume: 102 start-page: 582 year: 2013 ident: ref_109 article-title: Experimental investigation on the optimal performance of Zeolite–water adsorption chiller publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.08.005 – volume: 100 start-page: 744 year: 2016 ident: ref_7 article-title: Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.02.066 – volume: 253 start-page: 115162 year: 2022 ident: ref_16 article-title: Multi-criteria evaluation of a novel micro-trigeneration cycle based on α-type Stirling engine, organic Rankine cycle, and adsorption chiller publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.115162 – volume: 251 start-page: 114977 year: 2022 ident: ref_17 article-title: Experimental and theoretical analysis of a trigeneration system consisting of adsorption chiller and high temperature PEMFC publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114977 – volume: 224 start-page: 9 year: 2016 ident: ref_105 article-title: Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13x-water pair publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.10.041 – ident: ref_128 – volume: 72 start-page: 283 year: 2014 ident: ref_64 article-title: Simulation study of a two-stage adsorber system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.04.023 – volume: 27 start-page: 284 year: 2004 ident: ref_129 article-title: Selective water sorbent for solid sorption chiller: Experimental results and modelling publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2003.09.003 – volume: 245 start-page: 114576 year: 2021 ident: ref_24 article-title: Waste heat recovery in a data center with an adsorption chiller: Technical and economic analysis publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114576 – volume: 144 start-page: 110954 year: 2021 ident: ref_41 article-title: Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.110954 – volume: 126 start-page: 373 year: 2016 ident: ref_19 article-title: Low grade heat driven adsorption system for cooling and power generation using advanced adsorbent materials publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.08.012 – volume: 116 start-page: 129 year: 2020 ident: ref_14 article-title: Integrated adsorption-based multigeneration systems: A critical review and future trends publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.04.001 – volume: 120 start-page: 1 year: 2014 ident: ref_144 article-title: Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.08.047 – volume: 164 start-page: 362 year: 2021 ident: ref_74 article-title: Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time publication-title: Renew. Energy doi: 10.1016/j.renene.2020.09.072 – volume: 39 start-page: 102 year: 2014 ident: ref_10 article-title: Review and future trends of solar adsorption refrigeration systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.07.081 – volume: 67 start-page: 419 year: 2013 ident: ref_120 article-title: Porous Coordination Polymers as Novel Sorption Materials for Heat Transformation Processes publication-title: Chimia doi: 10.2533/chimia.2013.419 – volume: 33 start-page: 714 year: 2010 ident: ref_81 article-title: The use of metal piece additives to enhance heat transfer rate through an unconsolidated adsorbent bed publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.12.032 – volume: 108 start-page: 01010 year: 2019 ident: ref_35 article-title: Adsorption bed configurations for adsorption cooling application publication-title: E3S Web Conf. doi: 10.1051/e3sconf/201910801010 – volume: 24 start-page: 602 year: 2001 ident: ref_71 article-title: Performance improvement of adsorption cooling by heat and mass recovery operation publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(01)00004-4 – volume: 8 start-page: 626 year: 2022 ident: ref_3 article-title: A review on buildings energy information: Trends, end-uses, fuels and drivers publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.11.280 – volume: 32 start-page: 675 year: 2009 ident: ref_142 article-title: Optimal adsorbent for adsorptive heat transformers: Dynamic considerations publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.01.022 – volume: 341 start-page: 1230444 year: 2013 ident: ref_113 article-title: The Chemistry and Applications of Metal-Organic Frameworks publication-title: Science doi: 10.1126/science.1230444 – volume: 50 start-page: 255 year: 2009 ident: ref_104 article-title: Analysis for composite zeolite/foam aluminum–water mass recovery adsorption refrigeration system driven by engine exhaust heat publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.09.022 – volume: 52 start-page: 516 year: 2009 ident: ref_130 article-title: A new generation cooling device employing CaCl2-in-silica gel–water system publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.06.018 – volume: 49 start-page: 3343 year: 2006 ident: ref_70 article-title: Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2006.01.053 – volume: 184 start-page: 116265 year: 2021 ident: ref_59 article-title: Effect of coating thickness, binder and cycle time in adsorption cooling applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116265 – volume: 110 start-page: 695 year: 2017 ident: ref_82 article-title: Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.08.075 – volume: 203 start-page: 117953 year: 2022 ident: ref_157 article-title: Development and characterization of LiCl supported composite sorbents for adsorption desalination publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117953 – volume: 36 start-page: 2062 year: 2011 ident: ref_111 article-title: Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration publication-title: Renew. Energy doi: 10.1016/j.renene.2011.01.005 – volume: 27 start-page: 2200 year: 2007 ident: ref_141 article-title: An advanced solid sorption chiller using SWS-1L. Appl publication-title: Therm. Eng. doi: 10.1016/j.applthermaleng.2005.07.023 – volume: 151 start-page: 317 year: 2018 ident: ref_56 article-title: Construction of an innovative adsorbent bed configuration in the adsorption chiller—Selection criteria for effective sorbent-glue pair publication-title: Energy doi: 10.1016/j.energy.2018.03.060 – volume: 162 start-page: 99 year: 2000 ident: ref_136 article-title: Surface modification of alumina by metal doping publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/S0927-7757(99)00218-6 – volume: 98 start-page: 161 year: 2019 ident: ref_87 article-title: Synthesis and characterization of silica gel composite with polymer binders for adsorption cooling applications publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.09.003 – volume: 79 start-page: 363 year: 2015 ident: ref_119 article-title: Ethanol adsorption onto metal organic framework: Theory and experiments publication-title: Energy doi: 10.1016/j.energy.2014.11.022 – volume: 94 start-page: 221 year: 2015 ident: ref_54 article-title: A review on development of adsorption cooling–Novel beds and advanced cycles publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.01.076 – ident: ref_75 doi: 10.3390/en14217226 – volume: 55 start-page: 3214 year: 2012 ident: ref_107 article-title: Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.02.054 – volume: 50 start-page: 1596 year: 2013 ident: ref_90 article-title: Thermo-physical properties of silica gel for adsorption desalination cycle publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.09.038 – volume: 475 start-page: 114170 year: 2020 ident: ref_116 article-title: Experimental testing of aluminium fumarate MOF for adsorption desalination publication-title: Desalination doi: 10.1016/j.desal.2019.114170 – volume: 24 start-page: 124 year: 2001 ident: ref_62 article-title: Multi-bed regenerative adsorption chiller—Improving the utilization of waste heat and reducing the chilled water outlet temperature fluctuation publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(99)00078-X – volume: 163 start-page: 114341 year: 2019 ident: ref_69 article-title: Experimental study of an adsorption chiller for extra low temperature waste heat utilization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114341 – volume: 141 start-page: 90 year: 2022 ident: ref_21 article-title: Energy and exergy based assessment of a two bed solar adsorption cooling system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2022.06.001 – volume: 61 start-page: 401 year: 2013 ident: ref_154 article-title: Thermal conductivity of composite sorbents “salt in porous matrix” for heat storage and transformation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.08.022 – volume: 105 start-page: 525 year: 2023 ident: ref_159 article-title: Preparation and characteristics analysis of the new-type silica gel/CaCl2 adsorbents with nanoparticles for adsorption desalination and cooling system publication-title: J. Sol. Gel Sci. Technol. doi: 10.1007/s10971-022-06010-9 – volume: 28 start-page: 147 year: 2007 ident: ref_67 article-title: How Heat and Mass Recovery Strategies Impact the Performance of Adsorption Desalination Plant: Theory and Experiments publication-title: Heat. Transf. Eng. doi: 10.1080/01457630601023625 – volume: 23 start-page: 74 year: 2000 ident: ref_85 article-title: Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps. Part II. Cooling system using the composite blocks publication-title: Int. J. Refrig. doi: 10.1016/S0140-7007(99)00036-5 – volume: 139 start-page: 93 year: 2022 ident: ref_86 article-title: Synthesis and characterization of silica gel composite with thermal conductivity enhancers and polymer binders for adsorption desalination and cooling system publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2022.03.032 – volume: 271 start-page: 116346 year: 2022 ident: ref_49 article-title: Towards a digital twin approach—Experimental analysis and energy optimization of a multi-bed adsorption system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.116346 – ident: ref_77 doi: 10.1007/978-981-13-6887-5 – volume: 204 start-page: 117958 year: 2022 ident: ref_112 article-title: Review on adsorption materials and system configurations of the adsorption desalination applications publication-title: Appl. Energy doi: 10.1016/j.applthermaleng.2021.117958 – volume: 25 start-page: 2780 year: 2005 ident: ref_33 article-title: Experimental investigation of an adsorption desalination plant using low-temperature waste heat publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.02.011 – volume: 29 start-page: 301 year: 2003 ident: ref_88 article-title: Technology development in the solar adsorption refrigeration systems publication-title: Prog. Energy Combust. Sci doi: 10.1016/S0360-1285(03)00028-5 – volume: 89 start-page: 142 year: 2012 ident: ref_53 article-title: Physical and operating conditions effects on silica gel/water adsorption chiller performance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.11.021 – ident: ref_83 doi: 10.3390/en14041083 – volume: 39 start-page: 101685 year: 2023 ident: ref_98 article-title: The cost of manufacturing adsorption chillers publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2023.101685 – volume: 172 start-page: 24 year: 2018 ident: ref_20 article-title: Study on operation strategy of a silica gel-water adsorption chiller in solar cooling application publication-title: Solar Energy doi: 10.1016/j.solener.2018.03.062 – volume: 602 start-page: 880 year: 2021 ident: ref_108 article-title: Ultrahigh water sorption on highly nitrogen doped carbonaceous materials derived from uric acid publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.012 – volume: 275 start-page: 127255 year: 2023 ident: ref_156 article-title: Fluidisable mesoporous silica composites for thermochemical energy storage publication-title: Energy doi: 10.1016/j.energy.2023.127255 – volume: 19 start-page: 929 year: 2013 ident: ref_152 article-title: Effect of pore size on the performance of composite adsorbent publication-title: Adsorption doi: 10.1007/s10450-013-9513-8 – volume: 116 start-page: 526 year: 2016 ident: ref_25 article-title: Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part I—Modeling and experimental validation publication-title: Energy doi: 10.1016/j.energy.2016.09.113 – volume: 58 start-page: 692 year: 2016 ident: ref_32 article-title: A state of the art of hybrid adsorption desalination–cooling systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.266 – volume: 7 start-page: 288 year: 2012 ident: ref_134 article-title: Composites ‘salt inside porous matrix’ for adsorption heat transformation: A current state-of-the-art and new trends publication-title: Int. J. Low Carbon Technol. doi: 10.1093/ijlct/cts050 – volume: 142 start-page: 53 year: 2017 ident: ref_121 article-title: Adsorption ice making and water desalination system using metal organic frameworks/water pair publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.03.036 – volume: 77 start-page: 1715 year: 2003 ident: ref_162 article-title: Sorption of water by sodium, copper, and magnesium sulfates dispersed into mesopores of silica gel and alumina publication-title: Russ. J. Phys. Chem. A – volume: 17 start-page: 100568 year: 2020 ident: ref_11 article-title: Improved cooling capacity of a solar heat driven adsorption chiller publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2019.100568 – volume: 114 start-page: 394 year: 2017 ident: ref_110 article-title: A review on adsorbent-adsorbate pairs for cooling applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.138 – volume: 125 start-page: 823 year: 2017 ident: ref_60 article-title: Dynamic optimization of adsorptive chillers: Compact layer vs. bed of loose grains publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.06.141 – volume: 26 start-page: 56 year: 2006 ident: ref_151 article-title: Development of a new synthesized adsorbent for refrigeration and air conditioning applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.04.024 – volume: 548 start-page: 116278 year: 2023 ident: ref_158 article-title: Performance analysis of a lab-scale adsorption desalination system using silica gel/LiCl composite publication-title: Desalination doi: 10.1016/j.desal.2022.116278 – volume: 90 start-page: 54 year: 2015 ident: ref_160 article-title: Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.06.078 – volume: 111 start-page: 73 year: 2014 ident: ref_138 article-title: Development and characterization of silica gel–LiCl composite sorbents for thermal energy storage publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.02.012 – volume: 3 start-page: 518 year: 2009 ident: ref_91 article-title: A review on adsorption working pairs for refrigeration publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.12.002 – volume: 50 start-page: 445 year: 2015 ident: ref_127 article-title: Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.05.035 – ident: ref_58 doi: 10.3390/en14154707 – volume: 36 start-page: 1273 year: 2011 ident: ref_146 article-title: Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization publication-title: Energy doi: 10.1016/j.energy.2010.11.016 – volume: 35 start-page: 525 year: 2012 ident: ref_132 article-title: Reallocation of adsorption and desorption times for optimisation of cooling cycles publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2010.07.019 – volume: 95 start-page: 223 year: 2016 ident: ref_118 article-title: Performance evaluation of shaped MIL-101–ethanol working pair for adsorption refrigeration publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.023 – volume: 14 start-page: 344 year: 2010 ident: ref_66 article-title: A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.08.001 – volume: 16 start-page: 63 year: 2007 ident: ref_140 article-title: New family of solid sorbents for adsorptive cooling: Material scientist approach publication-title: J. Eng. Thermophys. doi: 10.1134/S1810232807020026 – volume: 30 start-page: 1039 year: 2010 ident: ref_18 article-title: Waste heat driven silica gel/water adsorption cooling in trigeneration publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.01.020 – volume: 48 start-page: 363 year: 2006 ident: ref_135 article-title: The Role of the Liquid-Solid Interface in the Preparation of Supported Catalysts publication-title: Catal. Rev. doi: 10.1080/01614940600962321 – volume: 375 start-page: 100 year: 2015 ident: ref_39 article-title: Performance analysis of four bed adsorption water desalination/refrigeration system, comparison of AQSOA-Z02 to silica-gel publication-title: Desalination doi: 10.1016/j.desal.2015.08.002 – volume: 51 start-page: 754 year: 2010 ident: ref_155 article-title: Dynamics and isotherms of water vapor sorption on mesoporous silica gels modified by different salts publication-title: Kinet. Catal. doi: 10.1134/S0023158410050186 – volume: 4 start-page: 10278 year: 2017 ident: ref_13 article-title: Adsorption Refrigeration System: Design and Analysis publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2017.06.364 – volume: 22 start-page: 191 year: 2002 ident: ref_131 article-title: A family of new working materials for solid sorption air conditioning systems publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(01)00072-2 – volume: 104 start-page: 554 year: 2013 ident: ref_72 article-title: An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.042 – volume: 27 start-page: 813 year: 2007 ident: ref_89 article-title: Advances on multi-purpose solar adsorption systems for domestic refrigeration and water heating publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.09.008 – volume: 79 start-page: 1307 year: 2005 ident: ref_163 article-title: Sorption properties of calcium nitrate dispersed in silica gel: The effect of pore size publication-title: Russ. J. Phys. Chem. A – volume: 63 start-page: 445 year: 2014 ident: ref_148 article-title: Study of the new composite adsorbent of salt LiCl/silica gel–methanol used in an innovative adsorption cooling machine driven by low temperature heat source publication-title: Renew. Energy doi: 10.1016/j.renene.2013.10.010 – volume: 121 start-page: 431 year: 2017 ident: ref_15 article-title: Adsorption chiller using flat-tube adsorbers—Performance assessment and optimization publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.04.059 – volume: 105 start-page: 66 year: 2019 ident: ref_38 article-title: Method for estimating optimum cycle time based on adsorption chiller parameters publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2018.10.011 – volume: 29 start-page: 1714 year: 2009 ident: ref_147 article-title: Simulation of a solid sorption ice-maker based on the novel composite sorbent “lithium chloride in silica gel pores” publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2008.07.026 – volume: 446 start-page: 42 year: 2018 ident: ref_29 article-title: Experimental investigation on an adsorption desalination system with heat and mass recovery between adsorber and desorber beds publication-title: Desalination doi: 10.1016/j.desal.2018.08.022 – volume: 92 start-page: 221 year: 2015 ident: ref_42 article-title: Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration publication-title: Energy doi: 10.1016/j.energy.2015.05.079 – volume: 30 start-page: 85 year: 2014 ident: ref_68 article-title: Progress in silica gel–water adsorption refrigeration technology publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.09.023 – volume: 18 start-page: 707 year: 1998 ident: ref_123 article-title: A review of adsorbents and adsorbates in solid–vapour adsorption heat pump systems publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(97)00106-3 – volume: 101 start-page: 1111 year: 2016 ident: ref_31 article-title: Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.127 – volume: 99 start-page: 138 year: 2019 ident: ref_37 article-title: Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review Renew publication-title: Sustain. Energy Rev. doi: 10.1016/j.rser.2018.10.004 – volume: 62 start-page: 325 year: 1998 ident: ref_124 article-title: A study of thermal decomposition of methanol in solar powered adsorption refrigeration systems publication-title: Sol. Energy doi: 10.1016/S0038-092X(98)00012-7 – volume: 15 start-page: 31 year: 1992 ident: ref_27 article-title: Experimental investigation on an adsorption system for producing chilled water publication-title: Int. J. Refrig. doi: 10.1016/0140-7007(92)90064-2 – ident: ref_44 doi: 10.1177/1687814019884780 – volume: 216 start-page: 620 year: 2018 ident: ref_101 article-title: Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.063 – volume: 29 start-page: 1249 year: 2003 ident: ref_45 article-title: Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(03)00103-4 – volume: 30 start-page: 68 year: 2007 ident: ref_153 article-title: Experimental comparison of the sorption and refrigerating performances of a CaCl2 impregnated composite adsorbent and those of the host silica gel publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.05.003 – volume: 122 start-page: 223 year: 2009 ident: ref_164 article-title: Water sorption on composite “silica modified by calcium nitrate” publication-title: Microporous. Mesoporous Mater. doi: 10.1016/j.micromeso.2009.02.034 – ident: ref_34 – volume: 48 start-page: 2967 year: 2019 ident: ref_117 article-title: Robust Synthesis Routes and Porosity of the Al-Based Metal–Organic Frameworks Al-Fumarate, CAU-10-H and MIL-160 publication-title: Dalton Trans. doi: 10.1039/C8DT04688C – volume: 146 start-page: 674 year: 2019 ident: ref_50 article-title: Examination of effects of operating and geometric parameters on the performance of a two-bed adsorption chiller publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.043 – volume: 53 start-page: 1893 year: 2010 ident: ref_76 article-title: The effect of cycle boundary conditions and adsorbent grain size on the water sorption dynamics in adsorption chillers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.12.069 – volume: 53 start-page: 219 year: 2012 ident: ref_145 article-title: Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2011.09.001 – volume: 52 start-page: 2345 year: 2011 ident: ref_143 article-title: Design and performance prediction of a new generation adsorption chiller using composite adsorbent publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.12.036 – ident: ref_40 – volume: 87 start-page: 3018 year: 2010 ident: ref_46 article-title: The effects of operation parameter on the performance of a solar-powered adsorption chiller publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.03.013 – volume: 113 start-page: 290 year: 2017 ident: ref_57 article-title: Performances of MOF vs. zeolite coatings in adsorption cooling applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.189 – volume: 228 start-page: 113564 year: 2021 ident: ref_12 article-title: Application analysis of adsorption refrigeration system for solar and data center waste heat utilization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113564 – volume: 131 start-page: 909 year: 2021 ident: ref_114 article-title: Performance prediction of adsorbent in an adsorption refrigeration system based on variable temperature and constant pressure experiment and dynamic model publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2021.06.033 – ident: ref_96 – volume: 19 start-page: 565 year: 2013 ident: ref_6 article-title: An overview on adsorption pairs for cooling publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.11.037 – volume: 32 start-page: 1579 year: 2009 ident: ref_125 article-title: Study on adsorption of methanol onto carbon based adsorbents publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.06.011 – volume: 81 start-page: 864 year: 2007 ident: ref_165 article-title: Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage publication-title: Sol. Energy doi: 10.1016/j.solener.2006.11.013 – volume: 55 start-page: 2920 year: 2010 ident: ref_137 article-title: Adsorption Equilibrium of Water on a Composite Adsorbent Employing Lithium Chloride in Silica Gel publication-title: J. Chem. Eng. Data doi: 10.1021/je900993a – ident: ref_63 doi: 10.3390/en13215827 – volume: 82 start-page: 1 year: 2015 ident: ref_61 article-title: SAPO-34 coated adsorbent heat exchanger for adsorption chillers publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.02.052 – ident: ref_2 – volume: 32 start-page: 424 year: 2006 ident: ref_43 article-title: Adsorption refrigeration—An efficient way to make good use of waste heat and solar energy publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2006.01.002 – volume: 158 start-page: 1368 year: 2018 ident: ref_106 article-title: Enhancing the performance of a zeolite 13X/CaCl2–water adsorption cooling system by improving adsorber design and operation sequence publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.040 – volume: 29 start-page: 250 year: 2006 ident: ref_73 article-title: Numerical study of a novel cascading adsorption cycle publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2005.05.008 – volume: 153 start-page: 313 year: 2017 ident: ref_48 article-title: Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.09.069 – volume: 301 start-page: 685 year: 2006 ident: ref_139 article-title: Impact of phase composition on water adsorption on inorganic hybrids “salt/silica” publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.05.009 – volume: 65 start-page: 662 year: 2013 ident: ref_30 article-title: Performance analysis of a low-temperature waste heat-driven adsorption desalination prototype publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.06.053 – volume: 23 start-page: 93 year: 2001 ident: ref_99 article-title: Solar/waste heat driven two-stage adsorption chiller: The prototype publication-title: Renew. Energ. doi: 10.1016/S0960-1481(00)00107-5 – volume: 192 start-page: 116958 year: 2021 ident: ref_78 article-title: Innovative approach in adsorption chiller: Combination of condenser-adsorber for improving performance publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116958 – volume: 10 start-page: 73 year: 1975 ident: ref_93 article-title: Thermal conductivity of catalyst pellets and other porous particles: Part II: Experimental measurements publication-title: Chem. Eng. J. doi: 10.1016/0300-9467(75)88019-1 – volume: 36 start-page: 372 year: 2009 ident: ref_79 article-title: Effects of porosity on heat and mass transfer in a granular adsorbent bed publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2009.01.008 |
SSID | ssj0000331333 |
Score | 2.3665557 |
SecondaryResourceType | review_article |
Snippet | Adsorption cooling technology is a promising alternative to replace conventional solutions. However, adsorption chillers still need to be improved in terms of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 5808 |
SubjectTerms | Adsorbents Adsorption adsorption cooling Aquatic resources Chlorofluorocarbons Composite materials composite sorbents Cooling Desalination Electricity Emissions Energy consumption Greenhouse gases Heat Industrial plant emissions inorganic salts Saline water conversion Silica silica gel Temperature |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZ4XMoBlUfFAq0sgYR6iMjDsZ1TtVRsAYmHCkjcLD8R0iqBzfL4-Z3Jepc9QG9RPIoST2b8zXj8DSH7uCRp6U1S8AABihVpUnGdJZpbgOO-yALDg8LnF_zklp3dlXcx4dbGssqpT-wctWss5sgPwY1CaFDJvPr1-JRg1yjcXY0tNBbJMrhgCcHX8tHxxdXfWZYlLQoIwooJL2kB8f2hr7utOIn9JOdWoo6w_zO33K01g69kNYJE2p9odY0s-HqdrMxRB26Ql35NL1_Q0P0rbQKdK_5p6WlNrx8wG0f_-CE9Rxb-N4qWjxVanl43I9PJAWClfdc2o85vUKQ5HgIcpJichSe2Gk_rdkMDWP7wYpPcDo5vfp8ksYdCYsE6x0kpAEJVgGt0mQsOWkmdFT4NZQhMVy7XXOoyZZnzAKScEYWVQWgRnHCgXcAC38hS3dR-i1AXYFhILgwzLDMBkGXguTCcSVt6Y3rk53Q-lY0E49jnYqgg0MC5V-9z3yN7M9nHCa3Gh1JHqJaZBFJhdzea0b2KlqUqXzHniiA84yzwTLo8ACrSvLRpmQbXIweoVIUGC69jdTx3AB-F1FeqLzj2uQHY3CO7U72raMmtev_vtv8_vEO-YCv6SXHgLlkaj579dwAsY_Mj_pX_AFA07Lg priority: 102 providerName: ProQuest |
Title | An Overview of Developments In Silica Gel Matrix Composite Sorbents for Adsorption Chillers with Desalination Function |
URI | https://www.proquest.com/docview/2848999829 https://doaj.org/article/9e94dd3f7e464f618d2f431a65c050fd |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7S5NIeQpO2dNN0ESRQejDxQ5bk46ZkNy0kKU0DexN6QmHxlt1t2p_fGdlJfEjopRdjrMHImhnNN7L0DcAxhSSjgs0qETFBcTLPGmGKzAiHcDxUReR0UPjiUpzf8C_zej4o9UV7wjp64G7gTprQcO-rKAMXPIpC-TJi0DOidnmdR0-zL8a8QTKV5uCqwuSr6vhIK8zrT0KbfsEpqiM5iECJqP-p6TjFmOlL2O3BIZt0ndqDrdDuw4sBZeAruJ207OqWHDz8ZsvIBpt-1uxzy65_0Cocm4UFuyD2_T-MPJ52ZgV2vVzZJIdAlU38erlK8wUjeuMFwkBGi7L4xrWhU7qpaYphj25ew8307Pun86yvnZA59MpNVkuETg3iGVOXUqA2cu9kyGMdIzeNL41Qps554QMCKG9l5VSURkYvPWoVMcAb2G6XbXgLzEdslkpIyy0vbEREGUUpreDK1cHaEXy8G0_temJxqm-x0Jhg0Njrh7EfwdG97M-OTuNRqVNSy70EUWCnB2gYujcM_S_DGMEHUqomR8XuONOfN8CPIsorPZGC6tsgXB7B4Z3ede_Ba41hG1PRRpXNwf_ozTt4ToXqu62Dh7C9Wf0K7xHObOwYnqnpbAw7p2eXX7-Nkx3jdTYv_gK7Wfc- |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKGAJEOIQNXEc2zkgtDy2u7RbDm2l3oyfCGmVlM3Swp_iNzKTx3YPwK23KLYixx5_840f3xDyAl2SUcEmuYgQoDiZJqUwWWKEAzoe8ixyvCg8PxTTE_7ptDjdIr-HuzB4rHLAxBaofe1wjXwXYBRCg1Kx8u3Z9wSzRuHu6pBCozOL_fDrAkK25s3sA4zvS8YmH4_fT5M-q0DiwF5XSSGBVJTg6U3BpIB2pt7JkMYiRm5Kz4xQpkh55gNQC29l7lSURkYvPfwvQ_ElgPxrPM9LnFFqsrde00nzHEK-vFNBhfJ0N1Ttxp_C7JUbfq9ND_AvJ9B6tsltcqunpHTc2dAdshWqu-TmhlDhPXI-rujnc4SVcEHrSDeOGjV0VtGjb7j2R_fCgs5R8_8nRZzB82CBHtVL29YDekzHvqmXLUpRFFVeAPmkuBQMX2wM3g1uiybgbPHhPjm5kr59QLarugoPCfURiqUS0nLLMxuBx0bBpBVcuSJYOyKvh_7Urpczx6waCw1hDfa9vuz7EXm-rnvWiXj8tdY7HJZ1DRTebl_Uy6-6n8e6DCX3Po8ycMGjyJRnETiYEYVLizT6EXmFg6oRHqA5zvS3HOCnUGhLj6XArDpA0kdkZxh33eNGoy-t_NH_i5-R69Pj-YE-mB3uPyY3GFCv7ljiDtleLX-EJ0CVVvZpa5-UfLnqCfEHsYAo6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHiKpQUsAUIcok0cx04OCG1ply6lS0Wp1JvxE1VaJWWztPDX-HXM5LHdA3DrLYpHkWOPv_nGHs8Q8gJNks69iVIRwEGxMo4KoZNICwt03KdJ4HhR-HAm9k_4h9PsdIP87u_CYFhlj4kNULvK4h75CGAUXIMiZ8UodGERR7uTt-ffI6wghSetfTmNVkUO_K9LcN_qN9NdmOuXjE32vrzbj7oKA5EF3V1GmQSCUYDV1xmTAvocOyt9HLIQuC4c0yLXWcwT54FmOCNTmwepZXDSwb8zTMQE8L8pwSuKB2RzZ2929Hm1wxOnKTiAaZsTNU2LeOTL5hgwx1qWa1awKRbwL5PQ2LnJHXK7I6h03GrUXbLhy3vk1lrawvvkYlzSTxcIMv6SVoGuBR7VdFrS4zPcCaTv_ZweYgWAnxRRB6PDPD2uFqaRA7JMx66uFg1mUUyxPAcqSnFjGL5Ya7wp3DRNwPTiwwNyci2j-5AMyqr0jwh1AZplLqThhicmAKsNgkkjeG4zb8yQvO7HU9kuuTnW2JgrcHJw7NXV2A_J85XseZvS469SOzgtKwlMw928qBbfVLeqVeEL7lwapOeCB5HkjgVgZFpkNs7i4IbkFU6qQrCA7ljd3XmAn8K0W2osBdbYAco-JNv9vKsORWp1pfOP_9_8jNyAxaA-TmcHW-QmAx7Wxihuk8Fy8cM_Ad60NE87BaXk63WviT82hC57 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Overview+of+Developments+In+Silica+Gel+Matrix+Composite+Sorbents+for+Adsorption+Chillers+with+Desalination+Function&rft.jtitle=Energies+%28Basel%29&rft.au=Sowa%2C+Marcin&rft.au=Sztekler%2C+Karol&rft.au=Mlonka-M%C4%99drala%2C+Agata&rft.au=Mika%2C+%C5%81ukasz&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=15&rft_id=info:doi/10.3390%2Fen16155808&rft.externalDocID=A760515020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |