Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study

As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 17; pp. 9696 - 977
Main Authors Zheng, Xiaonan, Yao, Yuan, Wang, Ya, Liu, Yang
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N 2 , the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N&z.tbd;N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N 2 . The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR. The Fe/Mn-N-C catalyst is a promising candidate for the NRR as it shows significantly improved NRR catalytic activity and strong selectivity against the HER.
AbstractList As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N2, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N[triple bond, length as m-dash]N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N2. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N2, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N[triple bond, length as m-dash]N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N2. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.
As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe–N–C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M–N–C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N 2 , the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn–N–C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert NN triple bond, inducing the “acceptance–donation” process to facilitate the activation and reduction of N 2 . The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.
As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N , the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N[triple bond, length as m-dash]N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N . The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.
As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe–N–C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M–N–C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N2, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn–N–C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N≡N triple bond, inducing the “acceptance–donation” process to facilitate the activation and reduction of N2. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.
As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N 2 , the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N&z.tbd;N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N 2 . The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR. The Fe/Mn-N-C catalyst is a promising candidate for the NRR as it shows significantly improved NRR catalytic activity and strong selectivity against the HER.
Author Zheng, Xiaonan
Wang, Ya
Liu, Yang
Yao, Yuan
AuthorAffiliation Harbin Institute of Technology
School of Chemistry and Chemical Engineering
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
AuthorAffiliation_xml – name: Harbin Institute of Technology
– name: MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
– name: School of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Xiaonan
  surname: Zheng
  fullname: Zheng, Xiaonan
– sequence: 2
  givenname: Yuan
  surname: Yao
  fullname: Yao, Yuan
– sequence: 3
  givenname: Ya
  surname: Wang
  fullname: Wang, Ya
– sequence: 4
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32323698$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URD_gwh1kxAVVCszaSbzmhgq0SBVIqJwjxx7vukrsYDuH_Sv8Wrxsd5GqqvLB1szzvmPP-JQc-eCRkJcLeL8ALj8Y8BEABFs_IScMaqg4F-zocG7rY3Ka0i1AK3nLn5Fjzspq5fKE_LmZvfMrmtdIcUCdY_BO05TjrPMckQZLc1Q-ueyCpyNmNSSKY4_GoKHOU--KZoW-MmEqkVVU0xo9Uhvi3lGrotrk4ruHaURTChTLj1RR62LK1RSd124aMJXys9k8J09tKYYv7vYz8uvrl5uLq-r6x-W3i0_Xla4BctXU_ZLVIHrgnDHFrRDYG7kUqu8law1T2qBWSyut1LZVjW6ENhq4tkowrPkZebfznWL4PWPK3eiSxmFQHsOcOsZlzRpoWFPQt_fQ2zBHX263pSSrWylEoV7fUXM_ounKw0YVN92-6wU43wE6hpQi2gOygG470u4zfP_5b6RXBYZ7sHZZbVtX5uKGhyWvdpKY9MH6_y8p-TeP5bvJWP4XRkm8mg
CitedBy_id crossref_primary_10_1016_j_ijhydene_2023_05_353
crossref_primary_10_1149_1945_7111_ac3aba
crossref_primary_10_1039_D3CP03073C
crossref_primary_10_1016_j_mcat_2024_114757
crossref_primary_10_15541_jim20220033
crossref_primary_10_1007_s40843_022_2416_2
crossref_primary_10_1016_j_apsusc_2021_152272
crossref_primary_10_1021_acs_jpcc_1c05893
crossref_primary_10_1016_j_jechem_2021_06_012
crossref_primary_10_1039_D2CP01446G
crossref_primary_10_1016_j_cclet_2021_12_054
crossref_primary_10_1039_D2TA02887E
crossref_primary_10_1016_j_mtcomm_2024_109629
crossref_primary_10_1149_1945_7111_ac3ff2
crossref_primary_10_1007_s12274_022_4318_2
crossref_primary_10_1021_acs_jpclett_2c00209
crossref_primary_10_1039_D2TA04867A
crossref_primary_10_1007_s12274_021_3479_8
crossref_primary_10_3390_molecules29163719
crossref_primary_10_1016_j_jechem_2020_09_019
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1039_D3RA04270G
crossref_primary_10_1016_j_apsusc_2021_150328
crossref_primary_10_1021_acs_jpcc_1c08779
crossref_primary_10_1021_acs_jpcc_1c06339
crossref_primary_10_1016_j_mssp_2024_108368
crossref_primary_10_1039_D3NR02491A
crossref_primary_10_1039_D2NJ02892A
crossref_primary_10_1016_j_inoche_2024_112869
crossref_primary_10_1016_j_diamond_2024_111857
crossref_primary_10_1016_j_jmst_2022_07_063
crossref_primary_10_1016_j_jcis_2022_11_052
crossref_primary_10_1016_j_cej_2020_128027
crossref_primary_10_1016_j_cej_2021_130745
crossref_primary_10_1039_D1CP04937B
crossref_primary_10_1039_D2NH00451H
crossref_primary_10_1016_j_ijhydene_2021_04_008
crossref_primary_10_3390_molecules28124597
crossref_primary_10_1088_2053_1583_acb784
crossref_primary_10_1039_D3CP06077B
crossref_primary_10_1021_acscatal_2c04527
crossref_primary_10_1016_j_mcat_2024_114463
crossref_primary_10_1016_j_ijleo_2023_170660
crossref_primary_10_1016_j_mtnano_2023_100323
crossref_primary_10_1007_s12274_022_5347_6
crossref_primary_10_1016_j_apsusc_2022_153338
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1002_cjce_25532
crossref_primary_10_1021_acsnano_0c10596
crossref_primary_10_1016_j_ccr_2022_214468
crossref_primary_10_1016_j_apsusc_2022_154380
crossref_primary_10_1002_smtd_202201524
crossref_primary_10_1039_D1QI01083B
crossref_primary_10_1039_D4CP00542B
crossref_primary_10_1002_sstr_202000075
Cites_doi 10.1039/C9EE00162J
10.1039/C4CP05501B
10.1021/acscatal.9b00959
10.1038/s41467-018-08120-x
10.1002/smtd.201800202
10.1002/ange.201908210
10.1126/science.aaq1684
10.1038/s41570-018-0010-1
10.1021/acscatal.8b03802
10.1039/C8EE02656D
10.1002/adma.201803498
10.1002/asia.201901100
10.1038/s41586-019-1260-x
10.1126/sciadv.aar3208
10.1038/nchem.1095
10.1021/jacs.8b13165
10.1016/j.chempr.2019.07.020
10.1039/C5SC00789E
10.1002/adma.201800191
10.1002/cctc.201801208
10.1093/nsr/nwy077
10.1021/jacs.8b07472
10.1016/j.jpcs.2016.08.008
10.1039/C7EE02716H
10.1021/acsenergylett.9b02679
10.1103/PhysRevLett.77.3865
10.1038/nature01014
10.1016/j.cattod.2016.05.008
10.1016/j.chempr.2018.10.007
10.1063/1.3382344
10.1021/jacs.6b04778
10.1002/anie.201901575
10.1103/PhysRevB.54.11169
10.1039/C7EE01126A
10.1039/C9NR02586C
10.1021/acscatal.8b00905
10.1021/acs.chemrev.9b00230
10.1021/ja00464a015
10.1021/acscatal.7b00547
10.1021/acsenergylett.7b00111
10.1002/aenm.201801357
10.1002/jcc.21759
10.1021/acscatal.6b00535
10.1002/cssc.201500322
10.1039/C6EE01800A
10.1039/C8CC00459E
10.1039/c0ee00071j
10.1126/science.aaf2091
10.1016/j.mcat.2019.03.024
10.1039/C1CP22271F
10.1039/C7CP07542A
10.1103/PhysRevB.59.1758
10.1021/acsenergylett.8b00487
10.1039/C4CS00085D
10.1038/nmat4555
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d0nr00072h
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 977
ExternalDocumentID 32323698
10_1039_D0NR00072H
d0nr00072h
Genre Journal Article
GroupedDBID -
0-7
0R
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ
H~N
J3I
JG
O-G
O9-
OK1
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
---
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
-JG
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c400t-54b82407b03322a3f77ebd987abb926d2acdeca8f9f9cf6a5c57cdc03cfa72e43
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 15:33:35 EDT 2025
Sun Jun 29 12:36:28 EDT 2025
Wed Feb 19 02:30:07 EST 2025
Tue Jul 01 01:13:55 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Wed Nov 11 00:26:55 EST 2020
Sat Jan 08 03:56:28 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-54b82407b03322a3f77ebd987abb926d2acdeca8f9f9cf6a5c57cdc03cfa72e43
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0nr00072h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6475-8943
0000-0003-0033-971X
PMID 32323698
PQID 2399246977
PQPubID 2047485
PageCount 12
ParticipantIDs rsc_primary_d0nr00072h
proquest_miscellaneous_2394250525
crossref_primary_10_1039_D0NR00072H
crossref_citationtrail_10_1039_D0NR00072H
proquest_journals_2399246977
pubmed_primary_32323698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-07
PublicationDateYYYYMMDD 2020-05-07
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gao (D0NR00072H-(cit31)/*[position()=1]) 2019; 470
Schrauzer (D0NR00072H-(cit10)/*[position()=1]) 1977; 99
Perdew (D0NR00072H-(cit37)/*[position()=1]) 1996; 77
Grimme (D0NR00072H-(cit38)/*[position()=1]) 2011; 32
Ye (D0NR00072H-(cit50)/*[position()=1]) 2019; 5
Tilman (D0NR00072H-(cit1)/*[position()=1]) 2002; 418
Li (D0NR00072H-(cit28)/*[position()=1]) 2018; 8
Zhang (D0NR00072H-(cit18)/*[position()=1]) 2018; 5
Michalsky (D0NR00072H-(cit2)/*[position()=1]) 2015; 6
Zhang (D0NR00072H-(cit17)/*[position()=1]) 2020; 120
He (D0NR00072H-(cit19)/*[position()=1]) 2019; 9
Qin (D0NR00072H-(cit22)/*[position()=1]) 2018; 2
Wang (D0NR00072H-(cit25)/*[position()=1]) 2019; 9
Chun (D0NR00072H-(cit45)/*[position()=1]) 2017; 7
Wang (D0NR00072H-(cit16)/*[position()=1]) 2018; 2
Ou (D0NR00072H-(cit20)/*[position()=1]) 2019; 11
Skúlason (D0NR00072H-(cit8)/*[position()=1]) 2012; 14
Suryanto (D0NR00072H-(cit54)/*[position()=1]) 2018; 3
Brown (D0NR00072H-(cit5)/*[position()=1]) 2016; 352
Azofra (D0NR00072H-(cit44)/*[position()=1]) 2016; 9
van der Ham (D0NR00072H-(cit3)/*[position()=1]) 2014; 43
Wang (D0NR00072H-(cit33)/*[position()=1]) 2018; 11
Peterson (D0NR00072H-(cit40)/*[position()=1]) 2010; 3
Zhou (D0NR00072H-(cit53)/*[position()=1]) 2017; 10
Shipman (D0NR00072H-(cit4)/*[position()=1]) 2017; 286
Hu (D0NR00072H-(cit55)/*[position()=1]) 2020; 5
Liu (D0NR00072H-(cit46)/*[position()=1]) 2017; 2
Chen (D0NR00072H-(cit29)/*[position()=1]) 2016; 15
Montoya (D0NR00072H-(cit41)/*[position()=1]) 2015; 8
Pašti (D0NR00072H-(cit43)/*[position()=1]) 2018; 20
Andersen (D0NR00072H-(cit51)/*[position()=1]) 2019; 570
Kresse (D0NR00072H-(cit36)/*[position()=1]) 1999; 59
Lee (D0NR00072H-(cit52)/*[position()=1]) 2018; 4
Grimme (D0NR00072H-(cit39)/*[position()=1]) 2010; 132
Lin (D0NR00072H-(cit47)/*[position()=1]) 2019; 131
Ling (D0NR00072H-(cit48)/*[position()=1]) 2018; 140
Lin (D0NR00072H-(cit30)/*[position()=1]) 2016; 6
Qiao (D0NR00072H-(cit15)/*[position()=1]) 2011; 3
Geng (D0NR00072H-(cit21)/*[position()=1]) 2018; 30
Kresse (D0NR00072H-(cit35)/*[position()=1]) 1996; 54
McEnaney (D0NR00072H-(cit6)/*[position()=1]) 2017; 10
Qiu (D0NR00072H-(cit14)/*[position()=1]) 2019; 14
Li (D0NR00072H-(cit24)/*[position()=1]) 2016; 138
Zhang (D0NR00072H-(cit34)/*[position()=1]) 2019; 12
Ren (D0NR00072H-(cit32)/*[position()=1]) 2019; 58
Choi (D0NR00072H-(cit42)/*[position()=1]) 2018; 8
Kugler (D0NR00072H-(cit9)/*[position()=1]) 2015; 17
Wang (D0NR00072H-(cit26)/*[position()=1]) 2019; 10
Tao (D0NR00072H-(cit27)/*[position()=1]) 2019; 5
Zhang (D0NR00072H-(cit12)/*[position()=1]) 2018; 54
Liu (D0NR00072H-(cit23)/*[position()=1]) 2019; 141
Xiang (D0NR00072H-(cit11)/*[position()=1]) 2018; 10
Légaré (D0NR00072H-(cit49)/*[position()=1]) 2018; 359
Zhang (D0NR00072H-(cit7)/*[position()=1]) 2018; 30
Ma (D0NR00072H-(cit13)/*[position()=1]) 2016; 99
References_xml – volume: 12
  start-page: 1317
  year: 2019
  ident: D0NR00072H-(cit34)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00162J
– volume: 17
  start-page: 3768
  year: 2015
  ident: D0NR00072H-(cit9)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05501B
– volume: 9
  start-page: 7311
  year: 2019
  ident: D0NR00072H-(cit19)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00959
– volume: 10
  start-page: 341
  year: 2019
  ident: D0NR00072H-(cit26)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08120-x
– volume: 2
  start-page: 1800202
  year: 2018
  ident: D0NR00072H-(cit22)/*[position()=1]
  publication-title: Small Methods
  doi: 10.1002/smtd.201800202
– volume: 131
  start-page: 17129
  year: 2019
  ident: D0NR00072H-(cit47)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201908210
– volume: 359
  start-page: 896
  year: 2018
  ident: D0NR00072H-(cit49)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaq1684
– volume: 2
  start-page: 65
  year: 2018
  ident: D0NR00072H-(cit16)/*[position()=1]
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 9
  start-page: 336
  year: 2019
  ident: D0NR00072H-(cit25)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03802
– volume: 11
  start-page: 3375
  year: 2018
  ident: D0NR00072H-(cit33)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02656D
– volume: 30
  start-page: 1803498
  year: 2018
  ident: D0NR00072H-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 14
  start-page: 2770
  year: 2019
  ident: D0NR00072H-(cit14)/*[position()=1]
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.201901100
– volume: 570
  start-page: 504
  year: 2019
  ident: D0NR00072H-(cit51)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 4
  start-page: 3208
  year: 2018
  ident: D0NR00072H-(cit52)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar3208
– volume: 3
  start-page: 634
  year: 2011
  ident: D0NR00072H-(cit15)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 141
  start-page: 2884
  year: 2019
  ident: D0NR00072H-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13165
– volume: 5
  start-page: 2865
  year: 2019
  ident: D0NR00072H-(cit50)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.07.020
– volume: 6
  start-page: 3965
  year: 2015
  ident: D0NR00072H-(cit2)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00789E
– volume: 30
  start-page: 1800191
  year: 2018
  ident: D0NR00072H-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800191
– volume: 10
  start-page: 4530
  year: 2018
  ident: D0NR00072H-(cit11)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801208
– volume: 5
  start-page: 653
  year: 2018
  ident: D0NR00072H-(cit18)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwy077
– volume: 140
  start-page: 14161
  year: 2018
  ident: D0NR00072H-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07472
– volume: 99
  start-page: 51
  year: 2016
  ident: D0NR00072H-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2016.08.008
– volume: 10
  start-page: 2516
  year: 2017
  ident: D0NR00072H-(cit53)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02716H
– volume: 5
  start-page: 430
  year: 2020
  ident: D0NR00072H-(cit55)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02679
– volume: 77
  start-page: 3865
  year: 1996
  ident: D0NR00072H-(cit37)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 418
  start-page: 671
  year: 2002
  ident: D0NR00072H-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature01014
– volume: 286
  start-page: 57
  year: 2017
  ident: D0NR00072H-(cit4)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.05.008
– volume: 5
  start-page: 204
  year: 2019
  ident: D0NR00072H-(cit27)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.007
– volume: 132
  start-page: 154104
  year: 2010
  ident: D0NR00072H-(cit39)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 138
  start-page: 8706
  year: 2016
  ident: D0NR00072H-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04778
– volume: 58
  start-page: 6972
  year: 2019
  ident: D0NR00072H-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901575
– volume: 54
  start-page: 11169
  year: 1996
  ident: D0NR00072H-(cit35)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  start-page: 1621
  year: 2017
  ident: D0NR00072H-(cit6)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01126A
– volume: 11
  start-page: 13600
  year: 2019
  ident: D0NR00072H-(cit20)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR02586C
– volume: 8
  start-page: 7517
  year: 2018
  ident: D0NR00072H-(cit42)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00905
– volume: 120
  start-page: 683
  year: 2020
  ident: D0NR00072H-(cit17)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00230
– volume: 99
  start-page: 7189
  year: 1977
  ident: D0NR00072H-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00464a015
– volume: 7
  start-page: 3869
  year: 2017
  ident: D0NR00072H-(cit45)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00547
– volume: 2
  start-page: 745
  year: 2017
  ident: D0NR00072H-(cit46)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00111
– volume: 8
  start-page: 1801357
  year: 2018
  ident: D0NR00072H-(cit28)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801357
– volume: 32
  start-page: 1456
  year: 2011
  ident: D0NR00072H-(cit38)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 6
  start-page: 4449
  year: 2016
  ident: D0NR00072H-(cit30)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00535
– volume: 8
  start-page: 2180
  year: 2015
  ident: D0NR00072H-(cit41)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500322
– volume: 9
  start-page: 2545
  year: 2016
  ident: D0NR00072H-(cit44)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01800A
– volume: 54
  start-page: 5323
  year: 2018
  ident: D0NR00072H-(cit12)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00459E
– volume: 3
  start-page: 1311
  year: 2010
  ident: D0NR00072H-(cit40)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 352
  start-page: 448
  year: 2016
  ident: D0NR00072H-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf2091
– volume: 470
  start-page: 56
  year: 2019
  ident: D0NR00072H-(cit31)/*[position()=1]
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2019.03.024
– volume: 14
  start-page: 1235
  year: 2012
  ident: D0NR00072H-(cit8)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 20
  start-page: 858
  year: 2018
  ident: D0NR00072H-(cit43)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07542A
– volume: 59
  start-page: 1758
  year: 1999
  ident: D0NR00072H-(cit36)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 3
  start-page: 1219
  year: 2018
  ident: D0NR00072H-(cit54)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00487
– volume: 43
  start-page: 5183
  year: 2014
  ident: D0NR00072H-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00085D
– volume: 15
  start-page: 564
  year: 2016
  ident: D0NR00072H-(cit29)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4555
SSID ssj0069363
Score 2.5332308
Snippet As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9696
SubjectTerms Activation
Ammonia
Bimetals
Catalysts
Catalytic activity
Chemical reduction
Copper
Electronic structure
First principles
Gibbs free energy
Graphene
Hydrogen evolution reactions
Iron
Manganese
Molybdenum
Nickel
Nitrogen
Selectivity
Transition metals
Zinc
Title Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study
URI https://www.ncbi.nlm.nih.gov/pubmed/32323698
https://www.proquest.com/docview/2399246977
https://www.proquest.com/docview/2394250525
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiNtYx0BG8IKqjNROk5q3ARsVlCKhVut4iXyLqARJ1YsE_BR-Lcd27HSjD4OXqDqx7Kjn87n48h2EniudFQXXLOr1tIoSlSQRi2MVFT01EIaPjFBz3_njOB1Ok_ez_qzV-rF1ammzFsfy1857Jf-jVZCBXs0t2X_QbOgUBPAb9AtP0DA8r6fjTelvO22Vs3GUsGZjwOz_G19kj2WZYtGGK1l_FxqsjeFc6sJ8XlbQfaSqBUgsezUYP8cD7nq06zs_Da2rb9xdGrpXfyiEd4s5RJDRwq_ar7Yoa-uoF0x4tQIwBBB9gVGsjZnNOaQCAaAX3K7cXmwa0Xm9oH0R_MdovnGC2unWaxbEbre74rbOtBFzjpFSV7TnWO-QedtMtjGYbVlaw-qz0wXE1DCoqrhcmviHfG0cnd_cH3_Kz6ajUT45nU1uoD0CCQZpo72TD6_fnXsvnjJqq_CFr_LUtpS9bPq-HMz8laFAvLL0dWRsvDK5g27XiQY-cai5i1q6vIdubdFP3ke_HX4w4Ac3-MEBP7gqcIMf7PCDPX7wvMSX8YM9fjDgB1_FT2iMA35eYY6vogdb9DxA07PTyZthVNfqiCR4gXXUT8TALA6ImIKL4LTIMi0UG2RcCEZSRbhUWvJBwQomi5T3ZT-TSsZUFjwjOqH7qF1WpT5AGDLeniBCcqlZ0mdUpHrAZZr1uIgFZMsd9ML_6bmsiexNPZVvuT1QQVn-Nh5_tgoadtCz0Hbh6Ft2tjryusvr6b3KzaVvkqSQH3XQ0_AajK_ZUeOlrja2TUJsKcgOeuh0HoahkKvQlMHn7gMIgrgBTwcd7n6RL1RxeI0xH6GbzeQ6Qm1Ah34MIfJaPKnR_Ae558Z5
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+electronic+structure+of+transition+metals+embedded+in+nitrogen-doped+graphene+for+electrocatalytic+nitrogen+reduction%3A+a+first-principles+study&rft.jtitle=Nanoscale&rft.au=Zheng%2C+Xiaonan&rft.au=Yao%2C+Yuan&rft.au=Wang%2C+Ya&rft.au=Liu%2C+Yang&rft.date=2020-05-07&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=12&rft.issue=17&rft.spage=9696&rft_id=info:doi/10.1039%2Fd0nr00072h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon