Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study
As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second...
Saved in:
Published in | Nanoscale Vol. 12; no. 17; pp. 9696 - 977 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N
2
, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N&z.tbd;N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N
2
. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.
The Fe/Mn-N-C catalyst is a promising candidate for the NRR as it shows significantly improved NRR catalytic activity and strong selectivity against the HER. |
---|---|
AbstractList | As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N2, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N[triple bond, length as m-dash]N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N2. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR.As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N2, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N[triple bond, length as m-dash]N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N2. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR. As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe–N–C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M–N–C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N 2 , the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn–N–C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert NN triple bond, inducing the “acceptance–donation” process to facilitate the activation and reduction of N 2 . The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR. As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N , the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N[triple bond, length as m-dash]N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N . The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR. As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe–N–C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M–N–C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N2, the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn–N–C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N≡N triple bond, inducing the “acceptance–donation” process to facilitate the activation and reduction of N2. The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR. As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding of the nitrogen reduction reaction (NRR) impedes the development of high-performance catalysts. In the present study, we introduce a second transition metal (M = Mn, Fe, Co, Ni, Cu, Zn, and Mo) into the active site of a single-atom Fe-N-C catalyst to tune the electronic structure and study the activity of the as-designed neighboring bimetal Fe/M-N-C catalyst in the electrochemical NRR under acidic conditions, by performing first-principles calculations. By checking the stability of the catalysts, the adsorption ability for N 2 , the Gibbs free energy change for the potential-determining step in the NRR, and the hydrogen evolution reaction (HER) activity, only the Fe/Mn-N-C catalyst is predicted to be a promising candidate for the NRR as it shows significantly improved catalytic activity and strong selectivity against the HER. A mechanistic study reveals the synergistic effects of the bimetal active sites, and the introduced Mn atom generates a strong multi-reference effect on the electronic configuration to create more tunnels to transfer the d-orbital electrons to activate the inert N&z.tbd;N triple bond, inducing the "acceptance-donation" process to facilitate the activation and reduction of N 2 . The current results provide an effective strategy to design stable, active, and selective catalysts for the electrochemical NRR. The Fe/Mn-N-C catalyst is a promising candidate for the NRR as it shows significantly improved NRR catalytic activity and strong selectivity against the HER. |
Author | Zheng, Xiaonan Wang, Ya Liu, Yang Yao, Yuan |
AuthorAffiliation | Harbin Institute of Technology School of Chemistry and Chemical Engineering MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage |
AuthorAffiliation_xml | – name: Harbin Institute of Technology – name: MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage – name: School of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Xiaonan surname: Zheng fullname: Zheng, Xiaonan – sequence: 2 givenname: Yuan surname: Yao fullname: Yao, Yuan – sequence: 3 givenname: Ya surname: Wang fullname: Wang, Ya – sequence: 4 givenname: Yang surname: Liu fullname: Liu, Yang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32323698$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1URD_gwh1kxAVVCszaSbzmhgq0SBVIqJwjxx7vukrsYDuH_Sv8Wrxsd5GqqvLB1szzvmPP-JQc-eCRkJcLeL8ALj8Y8BEABFs_IScMaqg4F-zocG7rY3Ka0i1AK3nLn5Fjzspq5fKE_LmZvfMrmtdIcUCdY_BO05TjrPMckQZLc1Q-ueyCpyNmNSSKY4_GoKHOU--KZoW-MmEqkVVU0xo9Uhvi3lGrotrk4ruHaURTChTLj1RR62LK1RSd124aMJXys9k8J09tKYYv7vYz8uvrl5uLq-r6x-W3i0_Xla4BctXU_ZLVIHrgnDHFrRDYG7kUqu8law1T2qBWSyut1LZVjW6ENhq4tkowrPkZebfznWL4PWPK3eiSxmFQHsOcOsZlzRpoWFPQt_fQ2zBHX263pSSrWylEoV7fUXM_ounKw0YVN92-6wU43wE6hpQi2gOygG470u4zfP_5b6RXBYZ7sHZZbVtX5uKGhyWvdpKY9MH6_y8p-TeP5bvJWP4XRkm8mg |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2023_05_353 crossref_primary_10_1149_1945_7111_ac3aba crossref_primary_10_1039_D3CP03073C crossref_primary_10_1016_j_mcat_2024_114757 crossref_primary_10_15541_jim20220033 crossref_primary_10_1007_s40843_022_2416_2 crossref_primary_10_1016_j_apsusc_2021_152272 crossref_primary_10_1021_acs_jpcc_1c05893 crossref_primary_10_1016_j_jechem_2021_06_012 crossref_primary_10_1039_D2CP01446G crossref_primary_10_1016_j_cclet_2021_12_054 crossref_primary_10_1039_D2TA02887E crossref_primary_10_1016_j_mtcomm_2024_109629 crossref_primary_10_1149_1945_7111_ac3ff2 crossref_primary_10_1007_s12274_022_4318_2 crossref_primary_10_1021_acs_jpclett_2c00209 crossref_primary_10_1039_D2TA04867A crossref_primary_10_1007_s12274_021_3479_8 crossref_primary_10_3390_molecules29163719 crossref_primary_10_1016_j_jechem_2020_09_019 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_1039_D3RA04270G crossref_primary_10_1016_j_apsusc_2021_150328 crossref_primary_10_1021_acs_jpcc_1c08779 crossref_primary_10_1021_acs_jpcc_1c06339 crossref_primary_10_1016_j_mssp_2024_108368 crossref_primary_10_1039_D3NR02491A crossref_primary_10_1039_D2NJ02892A crossref_primary_10_1016_j_inoche_2024_112869 crossref_primary_10_1016_j_diamond_2024_111857 crossref_primary_10_1016_j_jmst_2022_07_063 crossref_primary_10_1016_j_jcis_2022_11_052 crossref_primary_10_1016_j_cej_2020_128027 crossref_primary_10_1016_j_cej_2021_130745 crossref_primary_10_1039_D1CP04937B crossref_primary_10_1039_D2NH00451H crossref_primary_10_1016_j_ijhydene_2021_04_008 crossref_primary_10_3390_molecules28124597 crossref_primary_10_1088_2053_1583_acb784 crossref_primary_10_1039_D3CP06077B crossref_primary_10_1021_acscatal_2c04527 crossref_primary_10_1016_j_mcat_2024_114463 crossref_primary_10_1016_j_ijleo_2023_170660 crossref_primary_10_1016_j_mtnano_2023_100323 crossref_primary_10_1007_s12274_022_5347_6 crossref_primary_10_1016_j_apsusc_2022_153338 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1002_cjce_25532 crossref_primary_10_1021_acsnano_0c10596 crossref_primary_10_1016_j_ccr_2022_214468 crossref_primary_10_1016_j_apsusc_2022_154380 crossref_primary_10_1002_smtd_202201524 crossref_primary_10_1039_D1QI01083B crossref_primary_10_1039_D4CP00542B crossref_primary_10_1002_sstr_202000075 |
Cites_doi | 10.1039/C9EE00162J 10.1039/C4CP05501B 10.1021/acscatal.9b00959 10.1038/s41467-018-08120-x 10.1002/smtd.201800202 10.1002/ange.201908210 10.1126/science.aaq1684 10.1038/s41570-018-0010-1 10.1021/acscatal.8b03802 10.1039/C8EE02656D 10.1002/adma.201803498 10.1002/asia.201901100 10.1038/s41586-019-1260-x 10.1126/sciadv.aar3208 10.1038/nchem.1095 10.1021/jacs.8b13165 10.1016/j.chempr.2019.07.020 10.1039/C5SC00789E 10.1002/adma.201800191 10.1002/cctc.201801208 10.1093/nsr/nwy077 10.1021/jacs.8b07472 10.1016/j.jpcs.2016.08.008 10.1039/C7EE02716H 10.1021/acsenergylett.9b02679 10.1103/PhysRevLett.77.3865 10.1038/nature01014 10.1016/j.cattod.2016.05.008 10.1016/j.chempr.2018.10.007 10.1063/1.3382344 10.1021/jacs.6b04778 10.1002/anie.201901575 10.1103/PhysRevB.54.11169 10.1039/C7EE01126A 10.1039/C9NR02586C 10.1021/acscatal.8b00905 10.1021/acs.chemrev.9b00230 10.1021/ja00464a015 10.1021/acscatal.7b00547 10.1021/acsenergylett.7b00111 10.1002/aenm.201801357 10.1002/jcc.21759 10.1021/acscatal.6b00535 10.1002/cssc.201500322 10.1039/C6EE01800A 10.1039/C8CC00459E 10.1039/c0ee00071j 10.1126/science.aaf2091 10.1016/j.mcat.2019.03.024 10.1039/C1CP22271F 10.1039/C7CP07542A 10.1103/PhysRevB.59.1758 10.1021/acsenergylett.8b00487 10.1039/C4CS00085D 10.1038/nmat4555 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d0nr00072h |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 977 |
ExternalDocumentID | 32323698 10_1039_D0NR00072H d0nr00072h |
Genre | Journal Article |
GroupedDBID | - 0-7 0R 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- F5P HZ H~N J3I JG O-G O9- OK1 P2P RCNCU RIG RNS RPMJG RRC RSCEA --- 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY -JG NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c400t-54b82407b03322a3f77ebd987abb926d2acdeca8f9f9cf6a5c57cdc03cfa72e43 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 15:33:35 EDT 2025 Sun Jun 29 12:36:28 EDT 2025 Wed Feb 19 02:30:07 EST 2025 Tue Jul 01 01:13:55 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Wed Nov 11 00:26:55 EST 2020 Sat Jan 08 03:56:28 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-54b82407b03322a3f77ebd987abb926d2acdeca8f9f9cf6a5c57cdc03cfa72e43 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0nr00072h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6475-8943 0000-0003-0033-971X |
PMID | 32323698 |
PQID | 2399246977 |
PQPubID | 2047485 |
PageCount | 12 |
ParticipantIDs | rsc_primary_d0nr00072h proquest_miscellaneous_2394250525 crossref_primary_10_1039_D0NR00072H crossref_citationtrail_10_1039_D0NR00072H proquest_journals_2399246977 pubmed_primary_32323698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-07 |
PublicationDateYYYYMMDD | 2020-05-07 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gao (D0NR00072H-(cit31)/*[position()=1]) 2019; 470 Schrauzer (D0NR00072H-(cit10)/*[position()=1]) 1977; 99 Perdew (D0NR00072H-(cit37)/*[position()=1]) 1996; 77 Grimme (D0NR00072H-(cit38)/*[position()=1]) 2011; 32 Ye (D0NR00072H-(cit50)/*[position()=1]) 2019; 5 Tilman (D0NR00072H-(cit1)/*[position()=1]) 2002; 418 Li (D0NR00072H-(cit28)/*[position()=1]) 2018; 8 Zhang (D0NR00072H-(cit18)/*[position()=1]) 2018; 5 Michalsky (D0NR00072H-(cit2)/*[position()=1]) 2015; 6 Zhang (D0NR00072H-(cit17)/*[position()=1]) 2020; 120 He (D0NR00072H-(cit19)/*[position()=1]) 2019; 9 Qin (D0NR00072H-(cit22)/*[position()=1]) 2018; 2 Wang (D0NR00072H-(cit25)/*[position()=1]) 2019; 9 Chun (D0NR00072H-(cit45)/*[position()=1]) 2017; 7 Wang (D0NR00072H-(cit16)/*[position()=1]) 2018; 2 Ou (D0NR00072H-(cit20)/*[position()=1]) 2019; 11 Skúlason (D0NR00072H-(cit8)/*[position()=1]) 2012; 14 Suryanto (D0NR00072H-(cit54)/*[position()=1]) 2018; 3 Brown (D0NR00072H-(cit5)/*[position()=1]) 2016; 352 Azofra (D0NR00072H-(cit44)/*[position()=1]) 2016; 9 van der Ham (D0NR00072H-(cit3)/*[position()=1]) 2014; 43 Wang (D0NR00072H-(cit33)/*[position()=1]) 2018; 11 Peterson (D0NR00072H-(cit40)/*[position()=1]) 2010; 3 Zhou (D0NR00072H-(cit53)/*[position()=1]) 2017; 10 Shipman (D0NR00072H-(cit4)/*[position()=1]) 2017; 286 Hu (D0NR00072H-(cit55)/*[position()=1]) 2020; 5 Liu (D0NR00072H-(cit46)/*[position()=1]) 2017; 2 Chen (D0NR00072H-(cit29)/*[position()=1]) 2016; 15 Montoya (D0NR00072H-(cit41)/*[position()=1]) 2015; 8 Pašti (D0NR00072H-(cit43)/*[position()=1]) 2018; 20 Andersen (D0NR00072H-(cit51)/*[position()=1]) 2019; 570 Kresse (D0NR00072H-(cit36)/*[position()=1]) 1999; 59 Lee (D0NR00072H-(cit52)/*[position()=1]) 2018; 4 Grimme (D0NR00072H-(cit39)/*[position()=1]) 2010; 132 Lin (D0NR00072H-(cit47)/*[position()=1]) 2019; 131 Ling (D0NR00072H-(cit48)/*[position()=1]) 2018; 140 Lin (D0NR00072H-(cit30)/*[position()=1]) 2016; 6 Qiao (D0NR00072H-(cit15)/*[position()=1]) 2011; 3 Geng (D0NR00072H-(cit21)/*[position()=1]) 2018; 30 Kresse (D0NR00072H-(cit35)/*[position()=1]) 1996; 54 McEnaney (D0NR00072H-(cit6)/*[position()=1]) 2017; 10 Qiu (D0NR00072H-(cit14)/*[position()=1]) 2019; 14 Li (D0NR00072H-(cit24)/*[position()=1]) 2016; 138 Zhang (D0NR00072H-(cit34)/*[position()=1]) 2019; 12 Ren (D0NR00072H-(cit32)/*[position()=1]) 2019; 58 Choi (D0NR00072H-(cit42)/*[position()=1]) 2018; 8 Kugler (D0NR00072H-(cit9)/*[position()=1]) 2015; 17 Wang (D0NR00072H-(cit26)/*[position()=1]) 2019; 10 Tao (D0NR00072H-(cit27)/*[position()=1]) 2019; 5 Zhang (D0NR00072H-(cit12)/*[position()=1]) 2018; 54 Liu (D0NR00072H-(cit23)/*[position()=1]) 2019; 141 Xiang (D0NR00072H-(cit11)/*[position()=1]) 2018; 10 Légaré (D0NR00072H-(cit49)/*[position()=1]) 2018; 359 Zhang (D0NR00072H-(cit7)/*[position()=1]) 2018; 30 Ma (D0NR00072H-(cit13)/*[position()=1]) 2016; 99 |
References_xml | – volume: 12 start-page: 1317 year: 2019 ident: D0NR00072H-(cit34)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00162J – volume: 17 start-page: 3768 year: 2015 ident: D0NR00072H-(cit9)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05501B – volume: 9 start-page: 7311 year: 2019 ident: D0NR00072H-(cit19)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00959 – volume: 10 start-page: 341 year: 2019 ident: D0NR00072H-(cit26)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-08120-x – volume: 2 start-page: 1800202 year: 2018 ident: D0NR00072H-(cit22)/*[position()=1] publication-title: Small Methods doi: 10.1002/smtd.201800202 – volume: 131 start-page: 17129 year: 2019 ident: D0NR00072H-(cit47)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/ange.201908210 – volume: 359 start-page: 896 year: 2018 ident: D0NR00072H-(cit49)/*[position()=1] publication-title: Science doi: 10.1126/science.aaq1684 – volume: 2 start-page: 65 year: 2018 ident: D0NR00072H-(cit16)/*[position()=1] publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 9 start-page: 336 year: 2019 ident: D0NR00072H-(cit25)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b03802 – volume: 11 start-page: 3375 year: 2018 ident: D0NR00072H-(cit33)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02656D – volume: 30 start-page: 1803498 year: 2018 ident: D0NR00072H-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 14 start-page: 2770 year: 2019 ident: D0NR00072H-(cit14)/*[position()=1] publication-title: Chem. – Asian J. doi: 10.1002/asia.201901100 – volume: 570 start-page: 504 year: 2019 ident: D0NR00072H-(cit51)/*[position()=1] publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 4 start-page: 3208 year: 2018 ident: D0NR00072H-(cit52)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.aar3208 – volume: 3 start-page: 634 year: 2011 ident: D0NR00072H-(cit15)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 141 start-page: 2884 year: 2019 ident: D0NR00072H-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13165 – volume: 5 start-page: 2865 year: 2019 ident: D0NR00072H-(cit50)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2019.07.020 – volume: 6 start-page: 3965 year: 2015 ident: D0NR00072H-(cit2)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC00789E – volume: 30 start-page: 1800191 year: 2018 ident: D0NR00072H-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800191 – volume: 10 start-page: 4530 year: 2018 ident: D0NR00072H-(cit11)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201801208 – volume: 5 start-page: 653 year: 2018 ident: D0NR00072H-(cit18)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwy077 – volume: 140 start-page: 14161 year: 2018 ident: D0NR00072H-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07472 – volume: 99 start-page: 51 year: 2016 ident: D0NR00072H-(cit13)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2016.08.008 – volume: 10 start-page: 2516 year: 2017 ident: D0NR00072H-(cit53)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02716H – volume: 5 start-page: 430 year: 2020 ident: D0NR00072H-(cit55)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02679 – volume: 77 start-page: 3865 year: 1996 ident: D0NR00072H-(cit37)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 418 start-page: 671 year: 2002 ident: D0NR00072H-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature01014 – volume: 286 start-page: 57 year: 2017 ident: D0NR00072H-(cit4)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – volume: 5 start-page: 204 year: 2019 ident: D0NR00072H-(cit27)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.10.007 – volume: 132 start-page: 154104 year: 2010 ident: D0NR00072H-(cit39)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 138 start-page: 8706 year: 2016 ident: D0NR00072H-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04778 – volume: 58 start-page: 6972 year: 2019 ident: D0NR00072H-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901575 – volume: 54 start-page: 11169 year: 1996 ident: D0NR00072H-(cit35)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 10 start-page: 1621 year: 2017 ident: D0NR00072H-(cit6)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01126A – volume: 11 start-page: 13600 year: 2019 ident: D0NR00072H-(cit20)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR02586C – volume: 8 start-page: 7517 year: 2018 ident: D0NR00072H-(cit42)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.8b00905 – volume: 120 start-page: 683 year: 2020 ident: D0NR00072H-(cit17)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00230 – volume: 99 start-page: 7189 year: 1977 ident: D0NR00072H-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00464a015 – volume: 7 start-page: 3869 year: 2017 ident: D0NR00072H-(cit45)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.7b00547 – volume: 2 start-page: 745 year: 2017 ident: D0NR00072H-(cit46)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00111 – volume: 8 start-page: 1801357 year: 2018 ident: D0NR00072H-(cit28)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801357 – volume: 32 start-page: 1456 year: 2011 ident: D0NR00072H-(cit38)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 6 start-page: 4449 year: 2016 ident: D0NR00072H-(cit30)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b00535 – volume: 8 start-page: 2180 year: 2015 ident: D0NR00072H-(cit41)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500322 – volume: 9 start-page: 2545 year: 2016 ident: D0NR00072H-(cit44)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01800A – volume: 54 start-page: 5323 year: 2018 ident: D0NR00072H-(cit12)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC00459E – volume: 3 start-page: 1311 year: 2010 ident: D0NR00072H-(cit40)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 352 start-page: 448 year: 2016 ident: D0NR00072H-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.aaf2091 – volume: 470 start-page: 56 year: 2019 ident: D0NR00072H-(cit31)/*[position()=1] publication-title: Mol. Catal. doi: 10.1016/j.mcat.2019.03.024 – volume: 14 start-page: 1235 year: 2012 ident: D0NR00072H-(cit8)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 20 start-page: 858 year: 2018 ident: D0NR00072H-(cit43)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07542A – volume: 59 start-page: 1758 year: 1999 ident: D0NR00072H-(cit36)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 3 start-page: 1219 year: 2018 ident: D0NR00072H-(cit54)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00487 – volume: 43 start-page: 5183 year: 2014 ident: D0NR00072H-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00085D – volume: 15 start-page: 564 year: 2016 ident: D0NR00072H-(cit29)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4555 |
SSID | ssj0069363 |
Score | 2.5332308 |
Snippet | As one of the most important subjects in chemistry, nitrogen activation and reduction to yield ammonia is still a big challenge. The lack of deep understanding... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9696 |
SubjectTerms | Activation Ammonia Bimetals Catalysts Catalytic activity Chemical reduction Copper Electronic structure First principles Gibbs free energy Graphene Hydrogen evolution reactions Iron Manganese Molybdenum Nickel Nitrogen Selectivity Transition metals Zinc |
Title | Tuning the electronic structure of transition metals embedded in nitrogen-doped graphene for electrocatalytic nitrogen reduction: a first-principles study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32323698 https://www.proquest.com/docview/2399246977 https://www.proquest.com/docview/2394250525 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wIPiNtYx0BG8IKqjNROk5q3ARsVlCKhVut4iXyLqARJ1YsE_BR-Lcd27HSjD4OXqDqx7Kjn87n48h2EniudFQXXLOr1tIoSlSQRi2MVFT01EIaPjFBz3_njOB1Ok_ez_qzV-rF1ammzFsfy1857Jf-jVZCBXs0t2X_QbOgUBPAb9AtP0DA8r6fjTelvO22Vs3GUsGZjwOz_G19kj2WZYtGGK1l_FxqsjeFc6sJ8XlbQfaSqBUgsezUYP8cD7nq06zs_Da2rb9xdGrpXfyiEd4s5RJDRwq_ar7Yoa-uoF0x4tQIwBBB9gVGsjZnNOaQCAaAX3K7cXmwa0Xm9oH0R_MdovnGC2unWaxbEbre74rbOtBFzjpFSV7TnWO-QedtMtjGYbVlaw-qz0wXE1DCoqrhcmviHfG0cnd_cH3_Kz6ajUT45nU1uoD0CCQZpo72TD6_fnXsvnjJqq_CFr_LUtpS9bPq-HMz8laFAvLL0dWRsvDK5g27XiQY-cai5i1q6vIdubdFP3ke_HX4w4Ac3-MEBP7gqcIMf7PCDPX7wvMSX8YM9fjDgB1_FT2iMA35eYY6vogdb9DxA07PTyZthVNfqiCR4gXXUT8TALA6ImIKL4LTIMi0UG2RcCEZSRbhUWvJBwQomi5T3ZT-TSsZUFjwjOqH7qF1WpT5AGDLeniBCcqlZ0mdUpHrAZZr1uIgFZMsd9ML_6bmsiexNPZVvuT1QQVn-Nh5_tgoadtCz0Hbh6Ft2tjryusvr6b3KzaVvkqSQH3XQ0_AajK_ZUeOlrja2TUJsKcgOeuh0HoahkKvQlMHn7gMIgrgBTwcd7n6RL1RxeI0xH6GbzeQ6Qm1Ah34MIfJaPKnR_Ae558Z5 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+the+electronic+structure+of+transition+metals+embedded+in+nitrogen-doped+graphene+for+electrocatalytic+nitrogen+reduction%3A+a+first-principles+study&rft.jtitle=Nanoscale&rft.au=Zheng%2C+Xiaonan&rft.au=Yao%2C+Yuan&rft.au=Wang%2C+Ya&rft.au=Liu%2C+Yang&rft.date=2020-05-07&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=12&rft.issue=17&rft.spage=9696&rft_id=info:doi/10.1039%2Fd0nr00072h&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |