Deep insights on the creep behavior and mechanism of a novel G115 steel: Micromechanical modeling and experimental validation
•The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The experimental microstructural parameters, i.e., boundary dislocation density, internal dislocation density, and tempered martensite laths, of...
Saved in:
Published in | International journal of plasticity Vol. 147; p. 103124 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The experimental microstructural parameters, i.e., boundary dislocation density, internal dislocation density, and tempered martensite laths, of G115 steel with different creep durations were quantitatively evaluated during the creep process at 923 K and 140 MPa.•The creep behavior and corresponding microstructural evolutions predicted from the model are in good agreement with the experimental data.
Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new tempered martensitic heat-resistant steel, so-called the G115 steel, shows great potential as the candidate for next-generation USC power plant components. However, so far, the intrinsic relationship between microstructure and creep response of this steel still remains ambiguous. In this study, we examined the microstructure-creep behavior relationship of the G115 steel by utilizing a combined experimental and micromechanical modeling approach. More specifically, the modified Orowan's equation was applied to evaluate the creep strain since dislocation motion was a basis of creep deformation. Three kinds of dislocation configurations were incorporated to model the evolution of the substructures, and meanwhile, the kinetic equations were also employed here to describe the damage evolution. The creep curves of G115 steel simulated by this model are reasonably good for up to thousands of hours compared with our experimental data. Moreover, the model outputs, i.e., dislocation densities and width of tempered laths, also agree well with the microstructural parameters achieved from the interrupted creep tests at 923 K and 140 MPa. Regarding the microstructural evolution during the creep process, internal dislocation density (mobile + dipole dislocation densities) first decreases rapidly along the steep slope, and then the rate of decline becomes slower with increasing creep time. In contrast, boundary dislocation density first increases whereas subsequently decreases due to the dominance of tempered lath growth in the later stage of creep. Our results suggest that the micromechanical creep model can fairly elucidate the relationship of microstructural parameters and creep response for G115 steel, which greatly enhances the fundamental understanding of its microstructural features for governing the creep responses. |
---|---|
AbstractList | Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new tempered martensitic heat-resistant steel, so-called the G115 steel, shows great potential as the candidate for next-generation USC power plant components. However, so far, the intrinsic relationship between microstructure and creep response of this steel still remains ambiguous. In this study, we examined the microstructure-creep behavior relationship of the G115 steel by utilizing a combined experimental and micromechanical modeling approach. More specifically, the modified Orowan's equation was applied to evaluate the creep strain since dislocation motion was a basis of creep deformation. Three kinds of dislocation configurations were incorporated to model the evolution of the substructures, and meanwhile, the kinetic equations were also employed here to describe the damage evolution. The creep curves of G115 steel simulated by this model are reasonably good for up to thousands of hours compared with our experimental data. Moreover, the model outputs, i.e., dislocation densities and width of tempered laths, also agree well with the microstructural parameters achieved from the interrupted creep tests at 923 K and 140 MPa. Regarding the microstructural evolution during the creep process, internal dislocation density (mobile + dipole dislocation densities) first decreases rapidly along the steep slope, and then the rate of decline becomes slower with increasing creep time. In contrast, boundary dislocation density first increases whereas subsequently decreases due to the dominance of tempered lath growth in the later stage of creep. Our results suggest that the micromechanical creep model can fairly elucidate the relationship of microstructural parameters and creep response for G115 steel, which greatly enhances the fundamental understanding of its microstructural features for governing the creep responses. •The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The experimental microstructural parameters, i.e., boundary dislocation density, internal dislocation density, and tempered martensite laths, of G115 steel with different creep durations were quantitatively evaluated during the creep process at 923 K and 140 MPa.•The creep behavior and corresponding microstructural evolutions predicted from the model are in good agreement with the experimental data. Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new tempered martensitic heat-resistant steel, so-called the G115 steel, shows great potential as the candidate for next-generation USC power plant components. However, so far, the intrinsic relationship between microstructure and creep response of this steel still remains ambiguous. In this study, we examined the microstructure-creep behavior relationship of the G115 steel by utilizing a combined experimental and micromechanical modeling approach. More specifically, the modified Orowan's equation was applied to evaluate the creep strain since dislocation motion was a basis of creep deformation. Three kinds of dislocation configurations were incorporated to model the evolution of the substructures, and meanwhile, the kinetic equations were also employed here to describe the damage evolution. The creep curves of G115 steel simulated by this model are reasonably good for up to thousands of hours compared with our experimental data. Moreover, the model outputs, i.e., dislocation densities and width of tempered laths, also agree well with the microstructural parameters achieved from the interrupted creep tests at 923 K and 140 MPa. Regarding the microstructural evolution during the creep process, internal dislocation density (mobile + dipole dislocation densities) first decreases rapidly along the steep slope, and then the rate of decline becomes slower with increasing creep time. In contrast, boundary dislocation density first increases whereas subsequently decreases due to the dominance of tempered lath growth in the later stage of creep. Our results suggest that the micromechanical creep model can fairly elucidate the relationship of microstructural parameters and creep response for G115 steel, which greatly enhances the fundamental understanding of its microstructural features for governing the creep responses. |
ArticleNumber | 103124 |
Author | Xu, Lianyong Yang, Tao Yadav, Surya D. Kai, Ji-Jung Zhao, Lei Xiao, Bo Tang, Zhengxin Yang, Xiawei Han, Yongdian |
Author_xml | – sequence: 1 givenname: Bo surname: Xiao fullname: Xiao, Bo organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China – sequence: 2 givenname: Surya D. surname: Yadav fullname: Yadav, Surya D. organization: Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India – sequence: 3 givenname: Lei surname: Zhao fullname: Zhao, Lei organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China – sequence: 4 givenname: Zhengxin surname: Tang fullname: Tang, Zhengxin organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China – sequence: 5 givenname: Yongdian surname: Han fullname: Han, Yongdian organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China – sequence: 6 givenname: Xiawei surname: Yang fullname: Yang, Xiawei organization: State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, PR China – sequence: 7 givenname: Ji-Jung surname: Kai fullname: Kai, Ji-Jung organization: Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, PR China – sequence: 8 givenname: Tao surname: Yang fullname: Yang, Tao email: taoyang6@cityu.edu.hk organization: Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, PR China – sequence: 9 givenname: Lianyong surname: Xu fullname: Xu, Lianyong email: xulianyong@tju.edu.cn organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China |
BookMark | eNqFkE9v1DAQxS1UJLaFb8DBEuds_S_rpAckVKBFatVLe7ZmnXHXUdYOtrsqB7473qYnDnCa0fj9ZvzeKTkJMSAhHzlbc8Y35-Paj_MEeS2Y4HUkuVBvyIp3um8Eb9UJWTGt-majeP-OnOY8MsbaTvIV-f0VcaY-ZP-4K5nGQMsOqU3H6RZ3cPAxUQgD3aPdQfB5T6OjQEM84ESvOG9pLojTBb31NsVXlYWJ7uOAkw-PLzQ-z5j8HkOpLweY_ADFx_CevHUwZfzwWs_Iw_dv95fXzc3d1Y_LLzeNVYyVpuXabTu3BSedkEJ2ctBaKT1IwE5YNXRSK9bWvhcKHQIg11qCY2Bt57Q8I5-WvXOKP58wFzPGpxTqSSM2TGsuNOurSi2qaiTnhM7M9c-QfhnOzDFoM5olaHMM2ixBV-ziL8z68mKvJPDT_-DPC4zV_sFjMtl6DBYHn9AWM0T_7wV_AEG5nuo |
CitedBy_id | crossref_primary_10_1016_j_matdes_2023_111635 crossref_primary_10_1016_j_engfracmech_2023_109412 crossref_primary_10_1088_1757_899X_1248_1_012022 crossref_primary_10_1108_EC_02_2024_0096 crossref_primary_10_1016_j_cja_2023_03_047 crossref_primary_10_1016_j_engfailanal_2024_108319 crossref_primary_10_3390_met13020182 crossref_primary_10_1007_s10853_022_07969_0 crossref_primary_10_1016_j_ijplas_2025_104295 crossref_primary_10_1016_j_ijplas_2023_103601 crossref_primary_10_1016_j_msea_2024_146577 crossref_primary_10_1016_j_ijplas_2023_103868 crossref_primary_10_1016_j_matdes_2024_113198 crossref_primary_10_1016_j_matpr_2022_11_292 crossref_primary_10_1016_j_ijplas_2024_104038 crossref_primary_10_1016_j_energy_2024_133099 crossref_primary_10_1016_j_euromechsol_2025_105591 crossref_primary_10_1016_j_energy_2023_130188 crossref_primary_10_1007_s42243_022_00854_9 crossref_primary_10_1016_j_jnucmat_2023_154702 crossref_primary_10_3390_met13101683 crossref_primary_10_1016_j_jmrt_2024_10_045 crossref_primary_10_1002_srin_202200270 crossref_primary_10_1007_s11663_023_02797_2 crossref_primary_10_3390_ma15062053 crossref_primary_10_1016_j_fusengdes_2023_113908 crossref_primary_10_1155_2022_7901316 crossref_primary_10_1016_j_ijplas_2022_103251 crossref_primary_10_1016_j_ijplas_2022_103394 crossref_primary_10_1002_srin_202400372 crossref_primary_10_3390_met12071119 crossref_primary_10_1016_j_ijplas_2023_103611 |
Cites_doi | 10.1016/j.ijplas.2017.08.005 10.1016/j.ijplas.2020.102743 10.1016/j.ijplas.2010.06.007 10.5006/1065 10.1016/j.ijplas.2019.11.012 10.1016/j.proeng.2013.03.334 10.1016/j.ijplas.2019.07.011 10.1016/j.ijplas.2012.03.015 10.1016/j.msea.2013.09.033 10.1016/j.ijplas.2019.04.019 10.1007/s11661-007-9256-9 10.1016/j.msea.2010.01.004 10.1007/s11661-002-0090-9 10.1016/j.commatsci.2011.03.047 10.1016/j.actamat.2020.05.054 10.1016/j.ijplas.2009.03.002 10.1016/j.ijplas.2016.03.001 10.1016/j.ijplas.2012.04.004 10.2355/isijinternational.41.641 10.1016/j.ijplas.2013.06.008 10.1016/j.ijplas.2014.03.002 10.1016/j.ijplas.2012.03.013 10.1016/j.msea.2016.05.074 10.1016/j.engfracmech.2018.07.027 10.1016/j.msea.2004.12.004 10.1016/j.msea.2011.02.060 10.1016/j.ijplas.2013.06.003 10.1016/j.jallcom.2014.09.204 10.1016/j.ijplas.2011.03.005 10.1016/j.ijplas.2020.102820 10.1016/j.msea.2016.11.044 10.1016/j.ijplas.2010.08.005 10.1016/j.ijplas.2014.01.006 10.1016/j.ijplas.2013.05.007 10.1016/0001-6160(76)90036-5 10.1016/j.msea.2018.11.083 10.1016/j.ijplas.2011.05.007 10.1016/j.ijplas.2014.08.014 10.1016/j.ijplas.2021.102975 10.1016/j.ijplas.2014.10.012 10.1016/j.actamat.2014.08.008 10.1016/j.ijplas.2015.03.009 10.1063/1.1721875 10.1016/S1359-6454(03)00324-0 10.1016/j.ijplas.2014.12.001 10.1016/j.msea.2017.11.061 10.1016/j.ijplas.2012.02.001 10.1016/j.ijplas.2021.102991 10.1016/j.ijplas.2013.11.001 10.1016/j.proeng.2013.03.326 10.1016/S0921-5093(01)01126-1 10.1016/j.ijplas.2018.09.011 10.1016/j.ijplas.2018.09.009 10.1016/j.matdes.2011.05.009 10.1016/j.ijplas.2018.01.009 10.1016/j.msea.2016.03.071 10.1016/j.ijplas.2013.08.011 10.1016/j.msea.2017.02.099 10.1016/j.ijplas.2011.02.004 10.1016/j.ijplas.2020.102924 10.1016/j.ijplas.2017.06.007 10.1016/j.ijplas.2016.08.004 10.1016/j.ijplas.2019.04.010 10.1016/j.ijplas.2018.01.005 10.1016/j.msea.2019.01.051 10.1016/j.ijplas.2013.05.001 10.1016/j.msea.2011.10.064 10.1016/j.ijplas.2020.102677 10.3184/096034008X354873 10.1016/0001-6160(86)90247-6 10.1016/j.ijplas.2021.103025 10.1016/j.ijplas.2010.10.005 10.1016/j.ijplas.2019.02.015 10.1016/j.ijplas.2015.09.003 10.1016/S0921-5093(97)00708-9 10.1016/j.actamat.2017.03.045 10.1016/j.msea.2008.11.019 10.1016/j.ijplas.2011.02.001 10.1016/j.ijmecsci.2015.02.009 10.1016/j.ijplas.2016.04.005 10.1016/j.ijplas.2017.09.002 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2021 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijplas.2021.103124 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-2154 |
ExternalDocumentID | 10_1016_j_ijplas_2021_103124 S0749641921001923 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 UNMZH VH1 WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c400t-517fb8fbaf3f232383d77447d3ae82c4d837405e82924efeaae1773af0acc8f73 |
IEDL.DBID | .~1 |
ISSN | 0749-6419 |
IngestDate | Mon Jul 14 08:22:57 EDT 2025 Tue Jul 01 01:37:14 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Fri Feb 23 02:44:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dislocation density G115 steel Micromechanical model Continuum damage mechanics (CDM) Kinetic equations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-517fb8fbaf3f232383d77447d3ae82c4d837405e82924efeaae1773af0acc8f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2607712709 |
PQPubID | 2045460 |
ParticipantIDs | proquest_journals_2607712709 crossref_primary_10_1016_j_ijplas_2021_103124 crossref_citationtrail_10_1016_j_ijplas_2021_103124 elsevier_sciencedirect_doi_10_1016_j_ijplas_2021_103124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of plasticity |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Barkar, Agren (bib0006) 2005; 395 Xiao, Xu, Tang, Zhao, Jing, Han, Li (bib0074) 2019; 747 Blum, Eisenlohr, Breutinger (bib0005) 2002; 33A Zhang, Gou (bib0090) 2020; 10 Kabirian, Khan, Herlod (bib0039) 2015; 68 Feather, Ghorbanpour, Savage, Ardeljan, Jahedi, McWilliams, Gupta, Xiang, Vogel, Knezevic (bib0025) 2019; 120 Yadav, Sonderegger, Stracey, Poletti (bib0080) 2016; 662 Ardeljan, Beyerlein, Knezevic (bib0003) 2017; 99 Weertman (bib92) 1955; 26 Maddi, Deshmukh, Ballal, Peshwe, Paretkar, Laha, Mathew (bib0048) 2016; 668 Lee, Kim, Lee, Barlat, Zhou, Chen, Wagoner (bib0042) 2015; 75 Long, Zhang, Guo, Cui, Sun, Chen, Jiang, Zhao, Zhao, Zhang (bib0044) 2021; 138 Birosca, Liu, Ding, Jiang, Simm, Deen, Whittaker (bib0012) 2019; 118 Neumann, Bohlke (bib0051) 2016; 77 Xiao, Xu, Tang, Zhao, Jing, Han, Li (bib0071) 2017; 690 Benafan, Noebe, Padula II, Brown, Vogel, Vaidyanathan (bib0010) 2014; 56 Jia, Peng, Gong, Zhang (bib0029) 2011; 27 Cao, Wei, Ma, Sun, Lu, Fan, Meng (bib0017) 2017; 99 Nandi, Vikrant, Ahv, Singh, Ghosh (bib0050) 2013; 55 Zhang, Xuan (bib0087) 2017; 98 Lakshmanan, Luo, Javaheri, Sundararaghavan (bib0043) 2021; 142 Selles, Saintier, Laiarinandrasana (bib0063) 2016; 86 Joseph, Joseph, Lindley, Dye (bib0030) 2020; 131 Xiao, Xu, Cayron, Xue, Sha, Logé (bib0077) 2020; 195 Takeuchi, Argon (bib91) 1976; 24 Orlova, Bursik, Kucharova, Sklenicka (bib0052) 1998; 245 Yadav, Schuler, Sommitsch, Poletti (bib0079) 2014 Khan, Yu, Liu (bib0034) 2012; 38 Xu, Li, Cui, Zhang, Sun, Li, Luan, Jiao, Wang, Liu, Zhang (bib0076) 2020; 128 Khan, Liu (bib0035) 2012; 36 Kipelova, Belyakov, Kaibyshev (bib0037) 2012; 532 Pešička, Kužel, Dronhofer, Eggeler (bib0053) 2003; 51 Park, Lee, Kang, Hong, Kwon, Lee (bib0058) 2021; 143 Cayzac, Sai, Laiarinandrasana (bib0016) 2013; 51 Svoboda, Fischer, Riedel, Kozeschnik (bib0062) 2016; 82 Fournier, Sauzay, Pineau (bib0022) 2011; 27 Semba, Dyson, Mclean (bib0060) 2008; 25 Puchi-Cabrera, Staia, Guerin, Lesage, Dubar, Chicot (bib0056) 2014; 54 Pandey, Kabirian, Hwang, Choi, Khan (bib0057) 2015; 68 Xu, Nie, Wang, Li, Jin (bib0070) 2017; 131 Zhao, Jing, Xu, An, Xiao (bib0084) 2012; 34 Calcagnotto, Ponge, Demir, Raabe (bib0013) 2010; 527 Zhao, Xu, Han, Jing (bib0086) 2015; 94-95 Yadav, Scherer, Reddy, Laha, Sasikala, Albert, Poletti (bib0082) 2018; 200 Zeng, Huang, Li, Li, Zhu, Zhang (bib0089) 2019; 120 Danielsen, Hald (bib0019) 2009; 505 Xu, Wang, Wang, Gu, Chen, Zhou, Ma, Liu, Huang (bib0069) 2015; 621 Arzt, Wilkinson (bib0001) 1986; 34 Fischer, Svoboda (bib0023) 2011; 27 Morra, Radelaar, Yandouzi, Chen, Böttger (bib0047) 2009; 25 Ghoniem, Matthews, Amodeo (bib0026) 1990; 29 Khan, Yeakle (bib0032) 2011; 27 Becker, Hackenberg (bib0007) 2011; 27 Yan, Liu, Bao, Weng, Liu (bib0078) 2013; 588 Krumphals, Reggiani, Donati, Wlanis, Sommitsch (bib0036) 2012; 52 Christopher, Sainath, Srinivasan, Samuel, Choudhary, Mathew, Jayakumar (bib0015) 2013; 55 Li, Wu, Yang (bib0040) 2013; 51 Cai, Steinmann, Yao, Wang (bib0018) 2019; 114 Jiang, Dasgupta (bib0031) 2021; 140 Wen, Kohnert, Kumar, Capolungo, Tome (bib0068) 2020; 126 Xu, Zhao, Chen, Sun, Chen, Tong, Liu, Zhang (bib0075) 2019; 113 Alvarez-Hostos, Bencomo, Puchi-Cabrera, Guerin, Dubar (bib0004) 2018; 103 Egner, Egner (bib0020) 2014; 57 Magnusson, Sandstrom (bib0046) 2007; 38 Basirat, Shrestha, Potirniche, Charit, Rink (bib0008) 2012; 37 Murchu, Leen, O'Donoghue, Barrett (bib0049) 2017; 682 Egner, Sulich, Mrozinski, Egner (bib0021) 2020; 135 Raj (bib0059) 2002; 322 Xiao, Xu, Zhao, Jing, Han (bib0073) 2019; 743 Zurek, Bruycker, Huysmans, Quadakkers (bib0085) 2014; 70 Tehrani, Safdari, Al-Haik (bib0067) 2011; 27 Maruyama, Sawada, Koike (bib0045) 2001; 41 Fischer, Svoboda, Antretter, Kozeschnik (bib0024) 2015; 64 Ardeljan, Beyerlein, McWilliams, Knezevic (bib0002) 2016; 83 Puchi-Cabrera, Staia, Guerin, Lesage, Dubar, Chicot (bib0055) 2013; 51 Zhang, Ngan (bib0088) 2018; 104 Chen, Armaki, Maruyama, Igarashi (bib0014) 2011; 528 Khan, Yu (bib0033) 2012; 38 Kabirian, Khan, Pandey (bib0038) 2014; 55 Benafan, Noebe, Padula II, Garg, Clausen, Vogel, Vaidyanathan (bib0009) 2013; 51 Isik, Kostka, Eggeler (bib0028) 2014; 81 Xiao, Xu, Zhao, Jing, Han, Zhang (bib0072) 2018; 711 Bai, Liu, Xie, Bao, Chen (bib0011) 2018; 54 Habib, Lloyd, Meredith, Khan, Schoenfeld (bib0027) 2019; 122 Taleb, Cailletaud (bib0066) 2011; 27 Xu (10.1016/j.ijplas.2021.103124_bib0069) 2015; 621 Xu (10.1016/j.ijplas.2021.103124_bib0076) 2020; 128 Zhang (10.1016/j.ijplas.2021.103124_bib0087) 2017; 98 Maddi (10.1016/j.ijplas.2021.103124_bib0048) 2016; 668 Zhang (10.1016/j.ijplas.2021.103124_bib0088) 2018; 104 Yadav (10.1016/j.ijplas.2021.103124_bib0080) 2016; 662 Egner (10.1016/j.ijplas.2021.103124_bib0020) 2014; 57 Christopher (10.1016/j.ijplas.2021.103124_bib0015) 2013; 55 Semba (10.1016/j.ijplas.2021.103124_bib0060) 2008; 25 Khan (10.1016/j.ijplas.2021.103124_bib0033) 2012; 38 Xiao (10.1016/j.ijplas.2021.103124_bib0077) 2020; 195 Becker (10.1016/j.ijplas.2021.103124_bib0007) 2011; 27 Ardeljan (10.1016/j.ijplas.2021.103124_bib0003) 2017; 99 Blum (10.1016/j.ijplas.2021.103124_bib0005) 2002; 33A Ghoniem (10.1016/j.ijplas.2021.103124_bib0026) 1990; 29 Krumphals (10.1016/j.ijplas.2021.103124_bib0036) 2012; 52 Lee (10.1016/j.ijplas.2021.103124_bib0042) 2015; 75 Yadav (10.1016/j.ijplas.2021.103124_bib0079) 2014 Khan (10.1016/j.ijplas.2021.103124_bib0034) 2012; 38 Zhao (10.1016/j.ijplas.2021.103124_bib0086) 2015; 94-95 Neumann (10.1016/j.ijplas.2021.103124_bib0051) 2016; 77 Orlova (10.1016/j.ijplas.2021.103124_bib0052) 1998; 245 Benafan (10.1016/j.ijplas.2021.103124_bib0010) 2014; 56 Murchu (10.1016/j.ijplas.2021.103124_bib0049) 2017; 682 Maruyama (10.1016/j.ijplas.2021.103124_bib0045) 2001; 41 Habib (10.1016/j.ijplas.2021.103124_bib0027) 2019; 122 Khan (10.1016/j.ijplas.2021.103124_bib0032) 2011; 27 Kabirian (10.1016/j.ijplas.2021.103124_bib0039) 2015; 68 Fournier (10.1016/j.ijplas.2021.103124_bib0022) 2011; 27 Zhao (10.1016/j.ijplas.2021.103124_bib0084) 2012; 34 Barkar (10.1016/j.ijplas.2021.103124_bib0006) 2005; 395 Lakshmanan (10.1016/j.ijplas.2021.103124_bib0043) 2021; 142 Kipelova (10.1016/j.ijplas.2021.103124_bib0037) 2012; 532 Xu (10.1016/j.ijplas.2021.103124_bib0070) 2017; 131 Basirat (10.1016/j.ijplas.2021.103124_bib0008) 2012; 37 Benafan (10.1016/j.ijplas.2021.103124_bib0009) 2013; 51 Zeng (10.1016/j.ijplas.2021.103124_bib0089) 2019; 120 Cao (10.1016/j.ijplas.2021.103124_bib0017) 2017; 99 Selles (10.1016/j.ijplas.2021.103124_bib0063) 2016; 86 Bai (10.1016/j.ijplas.2021.103124_bib0011) 2018; 54 Wen (10.1016/j.ijplas.2021.103124_bib0068) 2020; 126 Yadav (10.1016/j.ijplas.2021.103124_bib0082) 2018; 200 Isik (10.1016/j.ijplas.2021.103124_bib0028) 2014; 81 Xiao (10.1016/j.ijplas.2021.103124_bib0072) 2018; 711 Zurek (10.1016/j.ijplas.2021.103124_bib0085) 2014; 70 Fischer (10.1016/j.ijplas.2021.103124_bib0024) 2015; 64 Joseph (10.1016/j.ijplas.2021.103124_bib0030) 2020; 131 Puchi-Cabrera (10.1016/j.ijplas.2021.103124_bib0056) 2014; 54 Raj (10.1016/j.ijplas.2021.103124_bib0059) 2002; 322 Magnusson (10.1016/j.ijplas.2021.103124_bib0046) 2007; 38 Arzt (10.1016/j.ijplas.2021.103124_bib0001) 1986; 34 Egner (10.1016/j.ijplas.2021.103124_bib0021) 2020; 135 Tehrani (10.1016/j.ijplas.2021.103124_bib0067) 2011; 27 Alvarez-Hostos (10.1016/j.ijplas.2021.103124_bib0004) 2018; 103 Khan (10.1016/j.ijplas.2021.103124_bib0035) 2012; 36 Jiang (10.1016/j.ijplas.2021.103124_bib0031) 2021; 140 Nandi (10.1016/j.ijplas.2021.103124_bib0050) 2013; 55 Birosca (10.1016/j.ijplas.2021.103124_bib0012) 2019; 118 Xiao (10.1016/j.ijplas.2021.103124_bib0074) 2019; 747 Takeuchi (10.1016/j.ijplas.2021.103124_bib91) 1976; 24 Puchi-Cabrera (10.1016/j.ijplas.2021.103124_bib0055) 2013; 51 Fischer (10.1016/j.ijplas.2021.103124_bib0023) 2011; 27 Chen (10.1016/j.ijplas.2021.103124_bib0014) 2011; 528 Cayzac (10.1016/j.ijplas.2021.103124_bib0016) 2013; 51 Taleb (10.1016/j.ijplas.2021.103124_bib0066) 2011; 27 Pandey (10.1016/j.ijplas.2021.103124_bib0057) 2015; 68 Park (10.1016/j.ijplas.2021.103124_bib0058) 2021; 143 Cai (10.1016/j.ijplas.2021.103124_bib0018) 2019; 114 Jia (10.1016/j.ijplas.2021.103124_bib0029) 2011; 27 Morra (10.1016/j.ijplas.2021.103124_bib0047) 2009; 25 Feather (10.1016/j.ijplas.2021.103124_bib0025) 2019; 120 Calcagnotto (10.1016/j.ijplas.2021.103124_bib0013) 2010; 527 Danielsen (10.1016/j.ijplas.2021.103124_bib0019) 2009; 505 Yan (10.1016/j.ijplas.2021.103124_bib0078) 2013; 588 Weertman (10.1016/j.ijplas.2021.103124_bib92) 1955; 26 Zhang (10.1016/j.ijplas.2021.103124_bib0090) 2020; 10 Pešička (10.1016/j.ijplas.2021.103124_bib0053) 2003; 51 Kabirian (10.1016/j.ijplas.2021.103124_bib0038) 2014; 55 Xiao (10.1016/j.ijplas.2021.103124_bib0071) 2017; 690 Xu (10.1016/j.ijplas.2021.103124_bib0075) 2019; 113 Long (10.1016/j.ijplas.2021.103124_bib0044) 2021; 138 Li (10.1016/j.ijplas.2021.103124_bib0040) 2013; 51 Svoboda (10.1016/j.ijplas.2021.103124_bib0062) 2016; 82 Ardeljan (10.1016/j.ijplas.2021.103124_bib0002) 2016; 83 Xiao (10.1016/j.ijplas.2021.103124_bib0073) 2019; 743 |
References_xml | – volume: 37 start-page: 95 year: 2012 end-page: 107 ident: bib0008 article-title: A study of the creep behavior of modified 9Cr–1Mo steel using continuum-damage modeling publication-title: Int. J. Plast. – volume: 27 start-page: 512 year: 2011 end-page: 521 ident: bib0032 article-title: Experimental investigation and modeling of non-monotonic creep behavior in polymers publication-title: Int. J. Plast. – volume: 82 start-page: 112 year: 2016 end-page: 126 ident: bib0062 article-title: Precipitate growth in multi-component systems with stress relaxation by diffusion and creep publication-title: Int. J. Plast. – volume: 54 start-page: 113 year: 2014 end-page: 131 ident: bib0056 article-title: An experimental analysis and modeling of the work-softening transient due to dynamic recrystallization publication-title: Int. J. Plast. – volume: 38 start-page: 2033 year: 2007 end-page: 2039 ident: bib0046 article-title: Creep strain modelling of 9-12 pct Cr steels based on microstructure evolution publication-title: Metall. Mater. Trans. A – volume: 662 start-page: 330 year: 2016 end-page: 341 ident: bib0080 article-title: Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach publication-title: Mater. Sci. Eng. A – volume: 55 start-page: 798 year: 2013 end-page: 804 ident: bib0015 article-title: Continuum damage mechanics approach to predict creep behaviour of modified 9Cr-1Mo ferritic steel at 873K publication-title: Procedia Eng – volume: 126 year: 2020 ident: bib0068 article-title: Mechanism-based modeling of thermal and irradiation creep behavior: an application to ferritic/martensitic HT9 steel publication-title: Int. J. Plast. – volume: 51 start-page: 145 year: 2013 end-page: 160 ident: bib0055 article-title: Analysis of the work-hardening behavior of C-Mn steels deformed under hot-working conditions publication-title: Int. J. Plast. – volume: 588 start-page: 22 year: 2013 end-page: 28 ident: bib0078 article-title: Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions publication-title: Mater. Sci. Eng. A – volume: 29 start-page: 197 year: 1990 end-page: 219 ident: bib0026 article-title: A dislocation model for creep in engineering materials publication-title: Res. Mech. – volume: 711 start-page: 434 year: 2018 end-page: 447 ident: bib0072 article-title: Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel publication-title: Mater. Sci. Eng. A – volume: 51 start-page: 47 year: 2013 end-page: 64 ident: bib0016 article-title: Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model publication-title: Int. J. Plast. – volume: 38 start-page: 1 year: 2012 end-page: 13 ident: bib0033 article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy. Part I: experiments publication-title: Int. J. Plast. – volume: 34 start-page: 1893 year: 1986 end-page: 1898 ident: bib0001 article-title: Threshold stresses for dislocation climb over hard particles: the effect of an attractive interaction publication-title: Acta Metall. – volume: 104 start-page: 1 year: 2018 end-page: 22 ident: bib0088 article-title: Dislocation-density dynamics for modeling the cores and Peierls stress of curved dislocations publication-title: Int. J. Plast. – volume: 27 start-page: 1803 year: 2011 end-page: 1816 ident: bib0022 article-title: Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels publication-title: Int J. Plast. – volume: 142 year: 2021 ident: bib0043 article-title: Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison publication-title: Int. J. Plast. – volume: 114 start-page: 15 year: 2019 end-page: 39 ident: bib0018 article-title: Thermodynamic formation of a unified multi-mechanism continuum viscoplastic damage model with application to high-Cr steels publication-title: Int. J. Plast. – volume: 138 year: 2021 ident: bib0044 article-title: Enhanced dynamic mechanical properties and resistance to the formation of adiabatic shear band by Cu-rich nano-precipitates in high-strength steels publication-title: Int. J. Plast. – volume: 131 year: 2020 ident: bib0030 article-title: The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy publication-title: Int. J. Plast. – volume: 27 start-page: 887 year: 2011 end-page: 901 ident: bib0067 article-title: Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite publication-title: Int. J. Plast. – volume: 55 start-page: 751 year: 2013 end-page: 755 ident: bib0050 article-title: Creep modelling of P91 steel for high temperature power plant applications publication-title: Procedia Eng. – volume: 94-95 start-page: 63 year: 2015 end-page: 74 ident: bib0086 article-title: Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel publication-title: Int. J. Mech. Sci. – volume: 527 start-page: 2738 year: 2010 end-page: 2746 ident: bib0013 article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD publication-title: Mater. Sci. Eng. A – volume: 55 start-page: 232 year: 2014 end-page: 246 ident: bib0038 article-title: Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: experiment and constitutive modeling publication-title: Int. J. Plast. – volume: 64 start-page: 164 year: 2015 end-page: 176 ident: bib0024 article-title: Relaxation of a precipitate misfit stress state by creep in the matrix publication-title: Int. J. Plast. – volume: 143 year: 2021 ident: bib0058 article-title: Hierarchical microstructure based crystal plasticity-continuum damage mechanics approach: model development and validation of rolling contact fatigue behavior publication-title: Int. J. Plast. – volume: 395 start-page: 110 year: 2005 end-page: 115 ident: bib0006 article-title: Creep simulation of 9–12% Cr steels using the composite model with thermodynamically calculated input publication-title: Mater. Sci. Eng. A – volume: 747 start-page: 161 year: 2019 end-page: 176 ident: bib0074 article-title: A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep publication-title: Mater. Sci. Eng. A – volume: 140 year: 2021 ident: bib0031 article-title: Anisotropic steady-state creep behavior of single-crystal β-Sn: a continuum constitutive model based on crystal viscoplasticity publication-title: Int. J. Plast. – volume: 24 start-page: 883 year: 1976 end-page: 889 ident: bib91 article-title: Steady-state creep of alloys due to viscous motion of dislocations publication-title: Acta Metall. – volume: 25 start-page: 2331 year: 2009 end-page: 2348 ident: bib0047 article-title: Precipitate coarsening-induced plasticity: low temperature creep behaviour of tempered SAE 52100 publication-title: Int. J. Plast. – volume: 25 start-page: 131 year: 2008 end-page: 137 ident: bib0060 article-title: Microstructure-based creep modelling of a 9% Cr martensitic steel publication-title: Mater. High Temp. – volume: 743 start-page: 280 year: 2019 end-page: 293 ident: bib0073 article-title: Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range publication-title: Mater. Sci. Eng. A – volume: 68 start-page: 111 year: 2015 end-page: 131 ident: bib0057 article-title: Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations publication-title: Int. J. Plast. – volume: 10 year: 2020 ident: bib0090 article-title: Microstructure and properties of 9Cr-3W-3Co steel joint by shielded metal are welding publication-title: AIP Adv. – volume: 51 start-page: 4847 year: 2003 end-page: 4862 ident: bib0053 article-title: The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels publication-title: Acta Mater. – volume: 57 start-page: 77 year: 2014 end-page: 91 ident: bib0020 article-title: Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermos-viscoplastic coupling publication-title: Int. J. Plast. – volume: 113 start-page: 99 year: 2019 end-page: 110 ident: bib0075 article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel publication-title: Int. J. Plast. – volume: 75 start-page: 100 year: 2015 end-page: 120 ident: bib0042 article-title: Properties controlling the bend-assisted fracture of AHSS publication-title: Int. J. Plast. – volume: 195 start-page: 199 year: 2020 end-page: 208 ident: bib0077 article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel publication-title: Acta Mater. – volume: 27 start-page: 1239 year: 2011 end-page: 1251 ident: bib0029 article-title: Creep and recovery of polypropylene/carbon nanotube composites publication-title: Int. J. Plast. – volume: 668 start-page: 215 year: 2016 end-page: 223 ident: bib0048 article-title: Effect of Laves phase on the creep rupture properties of P92 steel publication-title: Mater. Sci. Eng. A – volume: 245 start-page: 39 year: 1998 end-page: 48 ident: bib0052 article-title: Microstructural development during high temperature creep of 9% Cr steel publication-title: Mater. Sci. Eng. A – volume: 34 start-page: 566 year: 2012 end-page: 575 ident: bib0084 article-title: Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint publication-title: Mater. Des. – volume: 51 start-page: 271 year: 2013 end-page: 291 ident: bib0040 article-title: Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing publication-title: Int. J. Plast. – volume: 27 start-page: 596 year: 2011 end-page: 619 ident: bib0007 article-title: A constitutive model for rate dependent and rate independent inelasticity. Application to IN718 publication-title: Int. J. Plast. – volume: 33A start-page: 291 year: 2002 end-page: 303 ident: bib0005 article-title: Understanding creep—a review publication-title: Metall. Mater. Trans. A – volume: 98 start-page: 45 year: 2017 end-page: 64 ident: bib0087 article-title: Interaction of cyclic softening and stress relaxation of 9-12% Cr steel under strain-controlled fatigue-creep condition: experimental and modeling publication-title: Int. J. Plast. – volume: 120 start-page: 64 year: 2019 end-page: 87 ident: bib0089 article-title: Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel publication-title: Int. J. Plast. – volume: 528 start-page: 4390 year: 2011 end-page: 4394 ident: bib0014 article-title: Long-term microstructural degradation and creep strength in Gr. 91 steel publication-title: Mater. Sci. Eng. A – volume: 103 start-page: 119 year: 2018 end-page: 142 ident: bib0004 article-title: Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique publication-title: Int. J. Plast. – volume: 505 start-page: 169 year: 2009 end-page: 177 ident: bib0019 article-title: On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels publication-title: Mater. Sci. Eng. A – volume: 26 start-page: 1213 year: 1955 end-page: 1217 ident: bib92 article-title: Theory of steady-state creep based on dislocation climb publication-title: J. Appl. Phys. – volume: 322 start-page: 132 year: 2002 end-page: 147 ident: bib0059 article-title: Power-law and exponential creep in class M materials: discrepancies in experimental observations and implications for creep modeling publication-title: Mater. Sci. Eng. A – volume: 135 year: 2020 ident: bib0021 article-title: Modelling thermo-mechanical cyclic behavior of P91 steel publication-title: Inter. J. Plast. – volume: 131 start-page: 110 year: 2017 end-page: 122 ident: bib0070 article-title: The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging publication-title: Acta Mater. – volume: 70 start-page: 112 year: 2014 end-page: 129 ident: bib0085 article-title: Steam oxidation of 9% to 12%Cr steels: critical evaluation and implications for practical application publication-title: Corros – volume: 690 start-page: 104 year: 2017 end-page: 119 ident: bib0071 article-title: Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures publication-title: Mater. Sci. Eng. A – volume: 532 start-page: 71 year: 2012 end-page: 77 ident: bib0037 article-title: Laves phase evolution in a modified P911 heat resistant steel during creep at 923K publication-title: Mater. Sci. Eng. A – volume: 99 start-page: 81 year: 2017 end-page: 101 ident: bib0003 article-title: Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling publication-title: Int. J. Plast. – volume: 118 start-page: 252 year: 2019 end-page: 268 ident: bib0012 article-title: The dislocation behavior and GND development in a nickel based superalloy during creep publication-title: Int. J. Plast. – volume: 86 start-page: 112 year: 2016 end-page: 127 ident: bib0063 article-title: Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations publication-title: Int. J. Plast. – volume: 83 start-page: 90 year: 2016 end-page: 109 ident: bib0002 article-title: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy publication-title: Int. J. Plast. – volume: 120 start-page: 180 year: 2019 end-page: 204 ident: bib0025 article-title: Mechanical response, twinning, and texture evolution of WE43 magnesium-rare earth alloy as a function of strain rate: experiments and multi-level crystal plasticity modeling publication-title: Int. J. Plast. – volume: 68 start-page: 1 year: 2015 end-page: 20 ident: bib0039 article-title: Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions publication-title: Int. J. Plast. – year: 2014 ident: bib0079 article-title: Physical based creep strain modelling of 9Cr martensitic steel publication-title: Proceedings of the ECCC – volume: 54 start-page: 895 year: 2018 end-page: 904 ident: bib0011 article-title: Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel publication-title: Acta Metall. Sin. – volume: 122 start-page: 285 year: 2019 end-page: 318 ident: bib0027 article-title: Fracture of an anisotropic rare-earth-containing magnesium alloy (ZEK100) at different stress states and strain rates: experiments and modeling publication-title: Int. J. Plast. – volume: 621 start-page: 93 year: 2015 end-page: 98 ident: bib0069 article-title: Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging publication-title: J. Alloy. Compd. – volume: 56 start-page: 99 year: 2014 end-page: 118 ident: bib0010 article-title: Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution publication-title: Int. J. Plast. – volume: 682 start-page: 714 year: 2017 end-page: 722 ident: bib0049 article-title: A physically-based creep damage model for effects of different precipitate types publication-title: Mater. Sci. Eng. A – volume: 38 start-page: 14 year: 2012 end-page: 26 ident: bib0034 article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II: a strain rate and temperature dependent anisotropic yield criterion publication-title: Int. J. Plast. – volume: 81 start-page: 230 year: 2014 end-page: 240 ident: bib0028 article-title: On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels publication-title: Acta Mater. – volume: 200 start-page: 104 year: 2018 end-page: 114 ident: bib0082 article-title: Creep modelling of P91 steel employing a microstructural based hybrid concept publication-title: Eng. Fract. Mech. – volume: 36 start-page: 1 year: 2012 end-page: 14 ident: bib0035 article-title: Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling publication-title: Int. J. Plast. – volume: 41 start-page: 641 year: 2001 end-page: 653 ident: bib0045 article-title: Strengthening mechanisms of creep resistant tempered martensitic steel publication-title: ISIJ Int. – volume: 99 start-page: 43 year: 2017 end-page: 57 ident: bib0017 article-title: Cyclic deformation induced strengthening and unusual rate sensitivity in Cu/Ru nanolayered films publication-title: Int. J. Plast. – volume: 27 start-page: 1384 year: 2011 end-page: 1390 ident: bib0023 article-title: Chemically and mechanically driven creep due to generation and annihilation of vacancies with non-ideal sources and sinks publication-title: Int. J. Plast. – volume: 27 start-page: 1936 year: 2011 end-page: 1958 ident: bib0066 article-title: Cyclic accumulation of the inelastic strain in the 304L SS under stress control at room temperature: ratcheting or creep? publication-title: Int. J. Plast. – volume: 128 year: 2020 ident: bib0076 article-title: Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel publication-title: Int. J. Plast. – volume: 51 start-page: 103 year: 2013 end-page: 121 ident: bib0009 article-title: Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy publication-title: Int. J. Plast. – volume: 77 start-page: 1 year: 2016 end-page: 29 ident: bib0051 article-title: Hashin-Shtrikman type mean field model for the two-scale simulation of the thermomechanical processing of steel publication-title: Int. J. Plast. – volume: 52 start-page: 40 year: 2012 end-page: 45 ident: bib0036 article-title: Deformation behaviour of a ferritic hot-work tool steel with respect to the microstructure publication-title: Comput. Mater. Sci. – volume: 99 start-page: 43 year: 2017 ident: 10.1016/j.ijplas.2021.103124_bib0017 article-title: Cyclic deformation induced strengthening and unusual rate sensitivity in Cu/Ru nanolayered films publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.08.005 – volume: 131 year: 2020 ident: 10.1016/j.ijplas.2021.103124_bib0030 article-title: The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102743 – volume: 27 start-page: 512 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0032 article-title: Experimental investigation and modeling of non-monotonic creep behavior in polymers publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.06.007 – volume: 70 start-page: 112 year: 2014 ident: 10.1016/j.ijplas.2021.103124_bib0085 article-title: Steam oxidation of 9% to 12%Cr steels: critical evaluation and implications for practical application publication-title: Corros doi: 10.5006/1065 – volume: 126 year: 2020 ident: 10.1016/j.ijplas.2021.103124_bib0068 article-title: Mechanism-based modeling of thermal and irradiation creep behavior: an application to ferritic/martensitic HT9 steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.11.012 – volume: 55 start-page: 798 year: 2013 ident: 10.1016/j.ijplas.2021.103124_bib0015 article-title: Continuum damage mechanics approach to predict creep behaviour of modified 9Cr-1Mo ferritic steel at 873K publication-title: Procedia Eng doi: 10.1016/j.proeng.2013.03.334 – volume: 122 start-page: 285 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0027 article-title: Fracture of an anisotropic rare-earth-containing magnesium alloy (ZEK100) at different stress states and strain rates: experiments and modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.07.011 – volume: 38 start-page: 1 year: 2012 ident: 10.1016/j.ijplas.2021.103124_bib0033 article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy. Part I: experiments publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.03.015 – volume: 588 start-page: 22 year: 2013 ident: 10.1016/j.ijplas.2021.103124_bib0078 article-title: Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.09.033 – volume: 120 start-page: 180 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0025 article-title: Mechanical response, twinning, and texture evolution of WE43 magnesium-rare earth alloy as a function of strain rate: experiments and multi-level crystal plasticity modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.04.019 – volume: 38 start-page: 2033 year: 2007 ident: 10.1016/j.ijplas.2021.103124_bib0046 article-title: Creep strain modelling of 9-12 pct Cr steels based on microstructure evolution publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-007-9256-9 – volume: 527 start-page: 2738 year: 2010 ident: 10.1016/j.ijplas.2021.103124_bib0013 article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.01.004 – volume: 33A start-page: 291 year: 2002 ident: 10.1016/j.ijplas.2021.103124_bib0005 article-title: Understanding creep—a review publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-002-0090-9 – volume: 52 start-page: 40 year: 2012 ident: 10.1016/j.ijplas.2021.103124_bib0036 article-title: Deformation behaviour of a ferritic hot-work tool steel with respect to the microstructure publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.03.047 – volume: 195 start-page: 199 year: 2020 ident: 10.1016/j.ijplas.2021.103124_bib0077 article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.05.054 – volume: 25 start-page: 2331 year: 2009 ident: 10.1016/j.ijplas.2021.103124_bib0047 article-title: Precipitate coarsening-induced plasticity: low temperature creep behaviour of tempered SAE 52100 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2009.03.002 – volume: 82 start-page: 112 year: 2016 ident: 10.1016/j.ijplas.2021.103124_bib0062 article-title: Precipitate growth in multi-component systems with stress relaxation by diffusion and creep publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.03.001 – volume: 37 start-page: 95 year: 2012 ident: 10.1016/j.ijplas.2021.103124_bib0008 article-title: A study of the creep behavior of modified 9Cr–1Mo steel using continuum-damage modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.04.004 – volume: 41 start-page: 641 year: 2001 ident: 10.1016/j.ijplas.2021.103124_bib0045 article-title: Strengthening mechanisms of creep resistant tempered martensitic steel publication-title: ISIJ Int. doi: 10.2355/isijinternational.41.641 – volume: 51 start-page: 47 year: 2013 ident: 10.1016/j.ijplas.2021.103124_bib0016 article-title: Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.06.008 – volume: 57 start-page: 77 year: 2014 ident: 10.1016/j.ijplas.2021.103124_bib0020 article-title: Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermos-viscoplastic coupling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.03.002 – volume: 38 start-page: 14 year: 2012 ident: 10.1016/j.ijplas.2021.103124_bib0034 article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II: a strain rate and temperature dependent anisotropic yield criterion publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.03.013 – volume: 10 year: 2020 ident: 10.1016/j.ijplas.2021.103124_bib0090 article-title: Microstructure and properties of 9Cr-3W-3Co steel joint by shielded metal are welding publication-title: AIP Adv. – volume: 668 start-page: 215 year: 2016 ident: 10.1016/j.ijplas.2021.103124_bib0048 article-title: Effect of Laves phase on the creep rupture properties of P92 steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.05.074 – volume: 200 start-page: 104 year: 2018 ident: 10.1016/j.ijplas.2021.103124_bib0082 article-title: Creep modelling of P91 steel employing a microstructural based hybrid concept publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.07.027 – volume: 395 start-page: 110 year: 2005 ident: 10.1016/j.ijplas.2021.103124_bib0006 article-title: Creep simulation of 9–12% Cr steels using the composite model with thermodynamically calculated input publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2004.12.004 – volume: 528 start-page: 4390 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0014 article-title: Long-term microstructural degradation and creep strength in Gr. 91 steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.02.060 – volume: 51 start-page: 103 year: 2013 ident: 10.1016/j.ijplas.2021.103124_bib0009 article-title: Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.06.003 – volume: 621 start-page: 93 year: 2015 ident: 10.1016/j.ijplas.2021.103124_bib0069 article-title: Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2014.09.204 – volume: 27 start-page: 1384 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0023 article-title: Chemically and mechanically driven creep due to generation and annihilation of vacancies with non-ideal sources and sinks publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.03.005 – volume: 135 year: 2020 ident: 10.1016/j.ijplas.2021.103124_bib0021 article-title: Modelling thermo-mechanical cyclic behavior of P91 steel publication-title: Inter. J. Plast. doi: 10.1016/j.ijplas.2020.102820 – volume: 682 start-page: 714 year: 2017 ident: 10.1016/j.ijplas.2021.103124_bib0049 article-title: A physically-based creep damage model for effects of different precipitate types publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.11.044 – volume: 27 start-page: 596 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0007 article-title: A constitutive model for rate dependent and rate independent inelasticity. Application to IN718 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.08.005 – volume: 56 start-page: 99 year: 2014 ident: 10.1016/j.ijplas.2021.103124_bib0010 article-title: Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.01.006 – volume: 51 start-page: 145 year: 2013 ident: 10.1016/j.ijplas.2021.103124_bib0055 article-title: Analysis of the work-hardening behavior of C-Mn steels deformed under hot-working conditions publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.05.007 – volume: 24 start-page: 883 year: 1976 ident: 10.1016/j.ijplas.2021.103124_bib91 article-title: Steady-state creep of alloys due to viscous motion of dislocations publication-title: Acta Metall. doi: 10.1016/0001-6160(76)90036-5 – volume: 743 start-page: 280 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0073 article-title: Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.11.083 – volume: 27 start-page: 1803 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0022 article-title: Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels publication-title: Int J. Plast. doi: 10.1016/j.ijplas.2011.05.007 – volume: 64 start-page: 164 year: 2015 ident: 10.1016/j.ijplas.2021.103124_bib0024 article-title: Relaxation of a precipitate misfit stress state by creep in the matrix publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.08.014 – volume: 140 year: 2021 ident: 10.1016/j.ijplas.2021.103124_bib0031 article-title: Anisotropic steady-state creep behavior of single-crystal β-Sn: a continuum constitutive model based on crystal viscoplasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2021.102975 – volume: 68 start-page: 1 year: 2015 ident: 10.1016/j.ijplas.2021.103124_bib0039 article-title: Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.10.012 – volume: 81 start-page: 230 year: 2014 ident: 10.1016/j.ijplas.2021.103124_bib0028 article-title: On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.08.008 – volume: 75 start-page: 100 year: 2015 ident: 10.1016/j.ijplas.2021.103124_bib0042 article-title: Properties controlling the bend-assisted fracture of AHSS publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2015.03.009 – volume: 26 start-page: 1213 year: 1955 ident: 10.1016/j.ijplas.2021.103124_bib92 article-title: Theory of steady-state creep based on dislocation climb publication-title: J. Appl. Phys. doi: 10.1063/1.1721875 – volume: 51 start-page: 4847 year: 2003 ident: 10.1016/j.ijplas.2021.103124_bib0053 article-title: The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels publication-title: Acta Mater. doi: 10.1016/S1359-6454(03)00324-0 – volume: 68 start-page: 111 year: 2015 ident: 10.1016/j.ijplas.2021.103124_bib0057 article-title: Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.12.001 – volume: 711 start-page: 434 year: 2018 ident: 10.1016/j.ijplas.2021.103124_bib0072 article-title: Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.11.061 – year: 2014 ident: 10.1016/j.ijplas.2021.103124_bib0079 article-title: Physical based creep strain modelling of 9Cr martensitic steel – volume: 36 start-page: 1 year: 2012 ident: 10.1016/j.ijplas.2021.103124_bib0035 article-title: Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.02.001 – volume: 142 year: 2021 ident: 10.1016/j.ijplas.2021.103124_bib0043 article-title: Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2021.102991 – volume: 55 start-page: 232 year: 2014 ident: 10.1016/j.ijplas.2021.103124_bib0038 article-title: Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: experiment and constitutive modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.11.001 – volume: 55 start-page: 751 year: 2013 ident: 10.1016/j.ijplas.2021.103124_bib0050 article-title: Creep modelling of P91 steel for high temperature power plant applications publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.03.326 – volume: 322 start-page: 132 year: 2002 ident: 10.1016/j.ijplas.2021.103124_bib0059 article-title: Power-law and exponential creep in class M materials: discrepancies in experimental observations and implications for creep modeling publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01126-1 – volume: 114 start-page: 15 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0018 article-title: Thermodynamic formation of a unified multi-mechanism continuum viscoplastic damage model with application to high-Cr steels publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.09.011 – volume: 113 start-page: 99 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0075 article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.09.009 – volume: 34 start-page: 566 year: 2012 ident: 10.1016/j.ijplas.2021.103124_bib0084 article-title: Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.05.009 – volume: 104 start-page: 1 year: 2018 ident: 10.1016/j.ijplas.2021.103124_bib0088 article-title: Dislocation-density dynamics for modeling the cores and Peierls stress of curved dislocations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.01.009 – volume: 662 start-page: 330 year: 2016 ident: 10.1016/j.ijplas.2021.103124_bib0080 article-title: Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.03.071 – volume: 54 start-page: 113 year: 2014 ident: 10.1016/j.ijplas.2021.103124_bib0056 article-title: An experimental analysis and modeling of the work-softening transient due to dynamic recrystallization publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.08.011 – volume: 690 start-page: 104 year: 2017 ident: 10.1016/j.ijplas.2021.103124_bib0071 article-title: Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.02.099 – volume: 27 start-page: 1239 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0029 article-title: Creep and recovery of polypropylene/carbon nanotube composites publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.02.004 – volume: 138 year: 2021 ident: 10.1016/j.ijplas.2021.103124_bib0044 article-title: Enhanced dynamic mechanical properties and resistance to the formation of adiabatic shear band by Cu-rich nano-precipitates in high-strength steels publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102924 – volume: 54 start-page: 895 year: 2018 ident: 10.1016/j.ijplas.2021.103124_bib0011 article-title: Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel publication-title: Acta Metall. Sin. – volume: 98 start-page: 45 year: 2017 ident: 10.1016/j.ijplas.2021.103124_bib0087 article-title: Interaction of cyclic softening and stress relaxation of 9-12% Cr steel under strain-controlled fatigue-creep condition: experimental and modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.06.007 – volume: 86 start-page: 112 year: 2016 ident: 10.1016/j.ijplas.2021.103124_bib0063 article-title: Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.08.004 – volume: 120 start-page: 64 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0089 article-title: Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.04.010 – volume: 103 start-page: 119 year: 2018 ident: 10.1016/j.ijplas.2021.103124_bib0004 article-title: Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.01.005 – volume: 29 start-page: 197 year: 1990 ident: 10.1016/j.ijplas.2021.103124_bib0026 article-title: A dislocation model for creep in engineering materials publication-title: Res. Mech. – volume: 747 start-page: 161 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0074 article-title: A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.01.051 – volume: 51 start-page: 271 year: 2013 ident: 10.1016/j.ijplas.2021.103124_bib0040 article-title: Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2013.05.001 – volume: 532 start-page: 71 year: 2012 ident: 10.1016/j.ijplas.2021.103124_bib0037 article-title: Laves phase evolution in a modified P911 heat resistant steel during creep at 923K publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2011.10.064 – volume: 128 year: 2020 ident: 10.1016/j.ijplas.2021.103124_bib0076 article-title: Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102677 – volume: 25 start-page: 131 year: 2008 ident: 10.1016/j.ijplas.2021.103124_bib0060 article-title: Microstructure-based creep modelling of a 9% Cr martensitic steel publication-title: Mater. High Temp. doi: 10.3184/096034008X354873 – volume: 34 start-page: 1893 year: 1986 ident: 10.1016/j.ijplas.2021.103124_bib0001 article-title: Threshold stresses for dislocation climb over hard particles: the effect of an attractive interaction publication-title: Acta Metall. doi: 10.1016/0001-6160(86)90247-6 – volume: 143 year: 2021 ident: 10.1016/j.ijplas.2021.103124_bib0058 article-title: Hierarchical microstructure based crystal plasticity-continuum damage mechanics approach: model development and validation of rolling contact fatigue behavior publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2021.103025 – volume: 27 start-page: 887 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0067 article-title: Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.10.005 – volume: 118 start-page: 252 year: 2019 ident: 10.1016/j.ijplas.2021.103124_bib0012 article-title: The dislocation behavior and GND development in a nickel based superalloy during creep publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.02.015 – volume: 77 start-page: 1 year: 2016 ident: 10.1016/j.ijplas.2021.103124_bib0051 article-title: Hashin-Shtrikman type mean field model for the two-scale simulation of the thermomechanical processing of steel publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2015.09.003 – volume: 245 start-page: 39 year: 1998 ident: 10.1016/j.ijplas.2021.103124_bib0052 article-title: Microstructural development during high temperature creep of 9% Cr steel publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(97)00708-9 – volume: 131 start-page: 110 year: 2017 ident: 10.1016/j.ijplas.2021.103124_bib0070 article-title: The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.03.045 – volume: 505 start-page: 169 year: 2009 ident: 10.1016/j.ijplas.2021.103124_bib0019 article-title: On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2008.11.019 – volume: 27 start-page: 1936 year: 2011 ident: 10.1016/j.ijplas.2021.103124_bib0066 article-title: Cyclic accumulation of the inelastic strain in the 304L SS under stress control at room temperature: ratcheting or creep? publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.02.001 – volume: 94-95 start-page: 63 year: 2015 ident: 10.1016/j.ijplas.2021.103124_bib0086 article-title: Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2015.02.009 – volume: 83 start-page: 90 year: 2016 ident: 10.1016/j.ijplas.2021.103124_bib0002 article-title: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.04.005 – volume: 99 start-page: 81 year: 2017 ident: 10.1016/j.ijplas.2021.103124_bib0003 article-title: Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.09.002 |
SSID | ssj0005831 |
Score | 2.5080464 |
Snippet | •The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The... Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103124 |
SubjectTerms | Carbon dioxide Continuum damage mechanics (CDM) Creep strength Creep tests Dipoles Dislocation density Dislocation mobility Evolution G115 steel Heat resistant steels Kinetic equations Martensitic stainless steels Mathematical models Micromechanical model Microstructure Modelling Parameters Power plant components Power plants Thermodynamic efficiency |
Title | Deep insights on the creep behavior and mechanism of a novel G115 steel: Micromechanical modeling and experimental validation |
URI | https://dx.doi.org/10.1016/j.ijplas.2021.103124 https://www.proquest.com/docview/2607712709 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjBB2pEkczBa4U-t_VGUEQNXJSEW7O0s0kJFCLoTX-7s92tQRND4q2P2bbZeX3Tndlh7MpN2g5G6FuYSlS_boQVolI8REdEEScfqYqTB8OgP_Iex_64wrplLYxKqzS2X9v0wlqbKy0zm61llrWeyflFgVrEtDVOURXsHldSfv25keYR6p6ERGwp6rJ8rsjxyqZLwqgUJTq2qj63He8v9_TLUBfep3fI9g1shI7-siNWwbzGDgyEBKOgqxrb29hf8Jh93CIuIctXKgJfwSIHgntAOJGulvX5IPIU5qgKgLPVHBYSBOSLd5zBPcE4ICHA2Q0Mirw9TUVchaKBDr2jGL3ZJQBIcjPdp-mEjXp3L92-ZfotWAlp8trybS4noZwI6UoCWhS7pgQOPZ66AkMn8VIKZgnf0TEFbShRCLQ5d4VsiyQJJXdPWTVf5HjGIPLcwHcEgREuPR7iRAaJL9oCuedThGPXmVtOc5yYzchVT4xZXGadTWPNnFgxJ9bMqTPre9RSb8axhZ6XHIx_CFVM_mLLyEbJ8NgoNd0P2pyrlfro_N8PvmC76kwnxDRYdf36hpcEa9aTZiG3TbbTeXjqD78AJzf3hQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKA90DYtAhroHLhaiZ9rc0MUGprHBZByW23sWcko2BFJe-t_Z9a75iVVkXqz1ju2tTOz8413HgAnYT4IKKPYo0KT-XWjvJSM4hEFKssE20iTnDyZJsPb6Ncsnm3BeZsLY8Iq3d5v9_Rmt3Yjfbea_WVZ9q_Z-GWJOcT0LU55B9umOlXcge2zq9Fw-hzpkdq2hDzfMwRtBl0T5lXeLRmmsqMY-CYB3Q-if1moN3t1Y4AuP8GuQ454Zj_uM2xR1YWPDkWi09FVFz68KDH4Bf7-IFpiWa2ME77CukJGfMhQkUfbFH1UVYH3ZHKAy9U91hoVVvUfWuBPRnLIckCLU5w0oXt2FjMWmx46_I6G-mWjAGThLW2rpq9we3lxcz70XMsFL2dlXnuxL_Q81XOlQ81Yi93XgvFhJIpQURrkUcH-LEM8vma_jTQpRb4QodIDleepFuEedKq6on3ALAqTOFCMR4SOREpzneSxGigSUcxOjn8AYbvMMnf1yE1bjIVsA8_upGWONMyRljkH4D1RLW09jg3zRctB-UquJJuMDZS9luHS6TXfTwZCmMP67PC_H_wddoY3k7EcX01H3-C9uWPjY3rQWT_8piNGOev5sZPiR6Gh-jY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+insights+on+the+creep+behavior+and+mechanism+of+a+novel+G115+steel%3A+Micromechanical+modeling+and+experimental+validation&rft.jtitle=International+journal+of+plasticity&rft.au=Xiao%2C+Bo&rft.au=Yadav%2C+Surya+D.&rft.au=Zhao%2C+Lei&rft.au=Tang%2C+Zhengxin&rft.date=2021-12-01&rft.issn=0749-6419&rft.volume=147&rft.spage=103124&rft_id=info:doi/10.1016%2Fj.ijplas.2021.103124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2021_103124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon |