Deep insights on the creep behavior and mechanism of a novel G115 steel: Micromechanical modeling and experimental validation

•The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The experimental microstructural parameters, i.e., boundary dislocation density, internal dislocation density, and tempered martensite laths, of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of plasticity Vol. 147; p. 103124
Main Authors Xiao, Bo, Yadav, Surya D., Zhao, Lei, Tang, Zhengxin, Han, Yongdian, Yang, Xiawei, Kai, Ji-Jung, Yang, Tao, Xu, Lianyong
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The experimental microstructural parameters, i.e., boundary dislocation density, internal dislocation density, and tempered martensite laths, of G115 steel with different creep durations were quantitatively evaluated during the creep process at 923 K and 140 MPa.•The creep behavior and corresponding microstructural evolutions predicted from the model are in good agreement with the experimental data. Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new tempered martensitic heat-resistant steel, so-called the G115 steel, shows great potential as the candidate for next-generation USC power plant components. However, so far, the intrinsic relationship between microstructure and creep response of this steel still remains ambiguous. In this study, we examined the microstructure-creep behavior relationship of the G115 steel by utilizing a combined experimental and micromechanical modeling approach. More specifically, the modified Orowan's equation was applied to evaluate the creep strain since dislocation motion was a basis of creep deformation. Three kinds of dislocation configurations were incorporated to model the evolution of the substructures, and meanwhile, the kinetic equations were also employed here to describe the damage evolution. The creep curves of G115 steel simulated by this model are reasonably good for up to thousands of hours compared with our experimental data. Moreover, the model outputs, i.e., dislocation densities and width of tempered laths, also agree well with the microstructural parameters achieved from the interrupted creep tests at 923 K and 140 MPa. Regarding the microstructural evolution during the creep process, internal dislocation density (mobile + dipole dislocation densities) first decreases rapidly along the steep slope, and then the rate of decline becomes slower with increasing creep time. In contrast, boundary dislocation density first increases whereas subsequently decreases due to the dominance of tempered lath growth in the later stage of creep. Our results suggest that the micromechanical creep model can fairly elucidate the relationship of microstructural parameters and creep response for G115 steel, which greatly enhances the fundamental understanding of its microstructural features for governing the creep responses.
AbstractList Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new tempered martensitic heat-resistant steel, so-called the G115 steel, shows great potential as the candidate for next-generation USC power plant components. However, so far, the intrinsic relationship between microstructure and creep response of this steel still remains ambiguous. In this study, we examined the microstructure-creep behavior relationship of the G115 steel by utilizing a combined experimental and micromechanical modeling approach. More specifically, the modified Orowan's equation was applied to evaluate the creep strain since dislocation motion was a basis of creep deformation. Three kinds of dislocation configurations were incorporated to model the evolution of the substructures, and meanwhile, the kinetic equations were also employed here to describe the damage evolution. The creep curves of G115 steel simulated by this model are reasonably good for up to thousands of hours compared with our experimental data. Moreover, the model outputs, i.e., dislocation densities and width of tempered laths, also agree well with the microstructural parameters achieved from the interrupted creep tests at 923 K and 140 MPa. Regarding the microstructural evolution during the creep process, internal dislocation density (mobile + dipole dislocation densities) first decreases rapidly along the steep slope, and then the rate of decline becomes slower with increasing creep time. In contrast, boundary dislocation density first increases whereas subsequently decreases due to the dominance of tempered lath growth in the later stage of creep. Our results suggest that the micromechanical creep model can fairly elucidate the relationship of microstructural parameters and creep response for G115 steel, which greatly enhances the fundamental understanding of its microstructural features for governing the creep responses.
•The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The experimental microstructural parameters, i.e., boundary dislocation density, internal dislocation density, and tempered martensite laths, of G115 steel with different creep durations were quantitatively evaluated during the creep process at 923 K and 140 MPa.•The creep behavior and corresponding microstructural evolutions predicted from the model are in good agreement with the experimental data. Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new tempered martensitic heat-resistant steel, so-called the G115 steel, shows great potential as the candidate for next-generation USC power plant components. However, so far, the intrinsic relationship between microstructure and creep response of this steel still remains ambiguous. In this study, we examined the microstructure-creep behavior relationship of the G115 steel by utilizing a combined experimental and micromechanical modeling approach. More specifically, the modified Orowan's equation was applied to evaluate the creep strain since dislocation motion was a basis of creep deformation. Three kinds of dislocation configurations were incorporated to model the evolution of the substructures, and meanwhile, the kinetic equations were also employed here to describe the damage evolution. The creep curves of G115 steel simulated by this model are reasonably good for up to thousands of hours compared with our experimental data. Moreover, the model outputs, i.e., dislocation densities and width of tempered laths, also agree well with the microstructural parameters achieved from the interrupted creep tests at 923 K and 140 MPa. Regarding the microstructural evolution during the creep process, internal dislocation density (mobile + dipole dislocation densities) first decreases rapidly along the steep slope, and then the rate of decline becomes slower with increasing creep time. In contrast, boundary dislocation density first increases whereas subsequently decreases due to the dominance of tempered lath growth in the later stage of creep. Our results suggest that the micromechanical creep model can fairly elucidate the relationship of microstructural parameters and creep response for G115 steel, which greatly enhances the fundamental understanding of its microstructural features for governing the creep responses.
ArticleNumber 103124
Author Xu, Lianyong
Yang, Tao
Yadav, Surya D.
Kai, Ji-Jung
Zhao, Lei
Xiao, Bo
Tang, Zhengxin
Yang, Xiawei
Han, Yongdian
Author_xml – sequence: 1
  givenname: Bo
  surname: Xiao
  fullname: Xiao, Bo
  organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China
– sequence: 2
  givenname: Surya D.
  surname: Yadav
  fullname: Yadav, Surya D.
  organization: Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
– sequence: 3
  givenname: Lei
  surname: Zhao
  fullname: Zhao, Lei
  organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China
– sequence: 4
  givenname: Zhengxin
  surname: Tang
  fullname: Tang, Zhengxin
  organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China
– sequence: 5
  givenname: Yongdian
  surname: Han
  fullname: Han, Yongdian
  organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China
– sequence: 6
  givenname: Xiawei
  surname: Yang
  fullname: Yang, Xiawei
  organization: State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, PR China
– sequence: 7
  givenname: Ji-Jung
  surname: Kai
  fullname: Kai, Ji-Jung
  organization: Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, PR China
– sequence: 8
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  email: taoyang6@cityu.edu.hk
  organization: Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, PR China
– sequence: 9
  givenname: Lianyong
  surname: Xu
  fullname: Xu, Lianyong
  email: xulianyong@tju.edu.cn
  organization: School of Materials Science and Engineering, Tianjin University, Tianjin 300350, PR China
BookMark eNqFkE9v1DAQxS1UJLaFb8DBEuds_S_rpAckVKBFatVLe7ZmnXHXUdYOtrsqB7473qYnDnCa0fj9ZvzeKTkJMSAhHzlbc8Y35-Paj_MEeS2Y4HUkuVBvyIp3um8Eb9UJWTGt-majeP-OnOY8MsbaTvIV-f0VcaY-ZP-4K5nGQMsOqU3H6RZ3cPAxUQgD3aPdQfB5T6OjQEM84ESvOG9pLojTBb31NsVXlYWJ7uOAkw-PLzQ-z5j8HkOpLweY_ADFx_CevHUwZfzwWs_Iw_dv95fXzc3d1Y_LLzeNVYyVpuXabTu3BSedkEJ2ctBaKT1IwE5YNXRSK9bWvhcKHQIg11qCY2Bt57Q8I5-WvXOKP58wFzPGpxTqSSM2TGsuNOurSi2qaiTnhM7M9c-QfhnOzDFoM5olaHMM2ixBV-ziL8z68mKvJPDT_-DPC4zV_sFjMtl6DBYHn9AWM0T_7wV_AEG5nuo
CitedBy_id crossref_primary_10_1016_j_matdes_2023_111635
crossref_primary_10_1016_j_engfracmech_2023_109412
crossref_primary_10_1088_1757_899X_1248_1_012022
crossref_primary_10_1108_EC_02_2024_0096
crossref_primary_10_1016_j_cja_2023_03_047
crossref_primary_10_1016_j_engfailanal_2024_108319
crossref_primary_10_3390_met13020182
crossref_primary_10_1007_s10853_022_07969_0
crossref_primary_10_1016_j_ijplas_2025_104295
crossref_primary_10_1016_j_ijplas_2023_103601
crossref_primary_10_1016_j_msea_2024_146577
crossref_primary_10_1016_j_ijplas_2023_103868
crossref_primary_10_1016_j_matdes_2024_113198
crossref_primary_10_1016_j_matpr_2022_11_292
crossref_primary_10_1016_j_ijplas_2024_104038
crossref_primary_10_1016_j_energy_2024_133099
crossref_primary_10_1016_j_euromechsol_2025_105591
crossref_primary_10_1016_j_energy_2023_130188
crossref_primary_10_1007_s42243_022_00854_9
crossref_primary_10_1016_j_jnucmat_2023_154702
crossref_primary_10_3390_met13101683
crossref_primary_10_1016_j_jmrt_2024_10_045
crossref_primary_10_1002_srin_202200270
crossref_primary_10_1007_s11663_023_02797_2
crossref_primary_10_3390_ma15062053
crossref_primary_10_1016_j_fusengdes_2023_113908
crossref_primary_10_1155_2022_7901316
crossref_primary_10_1016_j_ijplas_2022_103251
crossref_primary_10_1016_j_ijplas_2022_103394
crossref_primary_10_1002_srin_202400372
crossref_primary_10_3390_met12071119
crossref_primary_10_1016_j_ijplas_2023_103611
Cites_doi 10.1016/j.ijplas.2017.08.005
10.1016/j.ijplas.2020.102743
10.1016/j.ijplas.2010.06.007
10.5006/1065
10.1016/j.ijplas.2019.11.012
10.1016/j.proeng.2013.03.334
10.1016/j.ijplas.2019.07.011
10.1016/j.ijplas.2012.03.015
10.1016/j.msea.2013.09.033
10.1016/j.ijplas.2019.04.019
10.1007/s11661-007-9256-9
10.1016/j.msea.2010.01.004
10.1007/s11661-002-0090-9
10.1016/j.commatsci.2011.03.047
10.1016/j.actamat.2020.05.054
10.1016/j.ijplas.2009.03.002
10.1016/j.ijplas.2016.03.001
10.1016/j.ijplas.2012.04.004
10.2355/isijinternational.41.641
10.1016/j.ijplas.2013.06.008
10.1016/j.ijplas.2014.03.002
10.1016/j.ijplas.2012.03.013
10.1016/j.msea.2016.05.074
10.1016/j.engfracmech.2018.07.027
10.1016/j.msea.2004.12.004
10.1016/j.msea.2011.02.060
10.1016/j.ijplas.2013.06.003
10.1016/j.jallcom.2014.09.204
10.1016/j.ijplas.2011.03.005
10.1016/j.ijplas.2020.102820
10.1016/j.msea.2016.11.044
10.1016/j.ijplas.2010.08.005
10.1016/j.ijplas.2014.01.006
10.1016/j.ijplas.2013.05.007
10.1016/0001-6160(76)90036-5
10.1016/j.msea.2018.11.083
10.1016/j.ijplas.2011.05.007
10.1016/j.ijplas.2014.08.014
10.1016/j.ijplas.2021.102975
10.1016/j.ijplas.2014.10.012
10.1016/j.actamat.2014.08.008
10.1016/j.ijplas.2015.03.009
10.1063/1.1721875
10.1016/S1359-6454(03)00324-0
10.1016/j.ijplas.2014.12.001
10.1016/j.msea.2017.11.061
10.1016/j.ijplas.2012.02.001
10.1016/j.ijplas.2021.102991
10.1016/j.ijplas.2013.11.001
10.1016/j.proeng.2013.03.326
10.1016/S0921-5093(01)01126-1
10.1016/j.ijplas.2018.09.011
10.1016/j.ijplas.2018.09.009
10.1016/j.matdes.2011.05.009
10.1016/j.ijplas.2018.01.009
10.1016/j.msea.2016.03.071
10.1016/j.ijplas.2013.08.011
10.1016/j.msea.2017.02.099
10.1016/j.ijplas.2011.02.004
10.1016/j.ijplas.2020.102924
10.1016/j.ijplas.2017.06.007
10.1016/j.ijplas.2016.08.004
10.1016/j.ijplas.2019.04.010
10.1016/j.ijplas.2018.01.005
10.1016/j.msea.2019.01.051
10.1016/j.ijplas.2013.05.001
10.1016/j.msea.2011.10.064
10.1016/j.ijplas.2020.102677
10.3184/096034008X354873
10.1016/0001-6160(86)90247-6
10.1016/j.ijplas.2021.103025
10.1016/j.ijplas.2010.10.005
10.1016/j.ijplas.2019.02.015
10.1016/j.ijplas.2015.09.003
10.1016/S0921-5093(97)00708-9
10.1016/j.actamat.2017.03.045
10.1016/j.msea.2008.11.019
10.1016/j.ijplas.2011.02.001
10.1016/j.ijmecsci.2015.02.009
10.1016/j.ijplas.2016.04.005
10.1016/j.ijplas.2017.09.002
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijplas.2021.103124
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2154
ExternalDocumentID 10_1016_j_ijplas_2021_103124
S0749641921001923
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c400t-517fb8fbaf3f232383d77447d3ae82c4d837405e82924efeaae1773af0acc8f73
IEDL.DBID .~1
ISSN 0749-6419
IngestDate Mon Jul 14 08:22:57 EDT 2025
Tue Jul 01 01:37:14 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Fri Feb 23 02:44:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dislocation density
G115 steel
Micromechanical model
Continuum damage mechanics (CDM)
Kinetic equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-517fb8fbaf3f232383d77447d3ae82c4d837405e82924efeaae1773af0acc8f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2607712709
PQPubID 2045460
ParticipantIDs proquest_journals_2607712709
crossref_primary_10_1016_j_ijplas_2021_103124
crossref_citationtrail_10_1016_j_ijplas_2021_103124
elsevier_sciencedirect_doi_10_1016_j_ijplas_2021_103124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of plasticity
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Barkar, Agren (bib0006) 2005; 395
Xiao, Xu, Tang, Zhao, Jing, Han, Li (bib0074) 2019; 747
Blum, Eisenlohr, Breutinger (bib0005) 2002; 33A
Zhang, Gou (bib0090) 2020; 10
Kabirian, Khan, Herlod (bib0039) 2015; 68
Feather, Ghorbanpour, Savage, Ardeljan, Jahedi, McWilliams, Gupta, Xiang, Vogel, Knezevic (bib0025) 2019; 120
Yadav, Sonderegger, Stracey, Poletti (bib0080) 2016; 662
Ardeljan, Beyerlein, Knezevic (bib0003) 2017; 99
Weertman (bib92) 1955; 26
Maddi, Deshmukh, Ballal, Peshwe, Paretkar, Laha, Mathew (bib0048) 2016; 668
Lee, Kim, Lee, Barlat, Zhou, Chen, Wagoner (bib0042) 2015; 75
Long, Zhang, Guo, Cui, Sun, Chen, Jiang, Zhao, Zhao, Zhang (bib0044) 2021; 138
Birosca, Liu, Ding, Jiang, Simm, Deen, Whittaker (bib0012) 2019; 118
Neumann, Bohlke (bib0051) 2016; 77
Xiao, Xu, Tang, Zhao, Jing, Han, Li (bib0071) 2017; 690
Benafan, Noebe, Padula II, Brown, Vogel, Vaidyanathan (bib0010) 2014; 56
Jia, Peng, Gong, Zhang (bib0029) 2011; 27
Cao, Wei, Ma, Sun, Lu, Fan, Meng (bib0017) 2017; 99
Nandi, Vikrant, Ahv, Singh, Ghosh (bib0050) 2013; 55
Zhang, Xuan (bib0087) 2017; 98
Lakshmanan, Luo, Javaheri, Sundararaghavan (bib0043) 2021; 142
Selles, Saintier, Laiarinandrasana (bib0063) 2016; 86
Joseph, Joseph, Lindley, Dye (bib0030) 2020; 131
Xiao, Xu, Cayron, Xue, Sha, Logé (bib0077) 2020; 195
Takeuchi, Argon (bib91) 1976; 24
Orlova, Bursik, Kucharova, Sklenicka (bib0052) 1998; 245
Yadav, Schuler, Sommitsch, Poletti (bib0079) 2014
Khan, Yu, Liu (bib0034) 2012; 38
Xu, Li, Cui, Zhang, Sun, Li, Luan, Jiao, Wang, Liu, Zhang (bib0076) 2020; 128
Khan, Liu (bib0035) 2012; 36
Kipelova, Belyakov, Kaibyshev (bib0037) 2012; 532
Pešička, Kužel, Dronhofer, Eggeler (bib0053) 2003; 51
Park, Lee, Kang, Hong, Kwon, Lee (bib0058) 2021; 143
Cayzac, Sai, Laiarinandrasana (bib0016) 2013; 51
Svoboda, Fischer, Riedel, Kozeschnik (bib0062) 2016; 82
Fournier, Sauzay, Pineau (bib0022) 2011; 27
Semba, Dyson, Mclean (bib0060) 2008; 25
Puchi-Cabrera, Staia, Guerin, Lesage, Dubar, Chicot (bib0056) 2014; 54
Pandey, Kabirian, Hwang, Choi, Khan (bib0057) 2015; 68
Xu, Nie, Wang, Li, Jin (bib0070) 2017; 131
Zhao, Jing, Xu, An, Xiao (bib0084) 2012; 34
Calcagnotto, Ponge, Demir, Raabe (bib0013) 2010; 527
Zhao, Xu, Han, Jing (bib0086) 2015; 94-95
Yadav, Scherer, Reddy, Laha, Sasikala, Albert, Poletti (bib0082) 2018; 200
Zeng, Huang, Li, Li, Zhu, Zhang (bib0089) 2019; 120
Danielsen, Hald (bib0019) 2009; 505
Xu, Wang, Wang, Gu, Chen, Zhou, Ma, Liu, Huang (bib0069) 2015; 621
Arzt, Wilkinson (bib0001) 1986; 34
Fischer, Svoboda (bib0023) 2011; 27
Morra, Radelaar, Yandouzi, Chen, Böttger (bib0047) 2009; 25
Ghoniem, Matthews, Amodeo (bib0026) 1990; 29
Khan, Yeakle (bib0032) 2011; 27
Becker, Hackenberg (bib0007) 2011; 27
Yan, Liu, Bao, Weng, Liu (bib0078) 2013; 588
Krumphals, Reggiani, Donati, Wlanis, Sommitsch (bib0036) 2012; 52
Christopher, Sainath, Srinivasan, Samuel, Choudhary, Mathew, Jayakumar (bib0015) 2013; 55
Li, Wu, Yang (bib0040) 2013; 51
Cai, Steinmann, Yao, Wang (bib0018) 2019; 114
Jiang, Dasgupta (bib0031) 2021; 140
Wen, Kohnert, Kumar, Capolungo, Tome (bib0068) 2020; 126
Xu, Zhao, Chen, Sun, Chen, Tong, Liu, Zhang (bib0075) 2019; 113
Alvarez-Hostos, Bencomo, Puchi-Cabrera, Guerin, Dubar (bib0004) 2018; 103
Egner, Egner (bib0020) 2014; 57
Magnusson, Sandstrom (bib0046) 2007; 38
Basirat, Shrestha, Potirniche, Charit, Rink (bib0008) 2012; 37
Murchu, Leen, O'Donoghue, Barrett (bib0049) 2017; 682
Egner, Sulich, Mrozinski, Egner (bib0021) 2020; 135
Raj (bib0059) 2002; 322
Xiao, Xu, Zhao, Jing, Han (bib0073) 2019; 743
Zurek, Bruycker, Huysmans, Quadakkers (bib0085) 2014; 70
Tehrani, Safdari, Al-Haik (bib0067) 2011; 27
Maruyama, Sawada, Koike (bib0045) 2001; 41
Fischer, Svoboda, Antretter, Kozeschnik (bib0024) 2015; 64
Ardeljan, Beyerlein, McWilliams, Knezevic (bib0002) 2016; 83
Puchi-Cabrera, Staia, Guerin, Lesage, Dubar, Chicot (bib0055) 2013; 51
Zhang, Ngan (bib0088) 2018; 104
Chen, Armaki, Maruyama, Igarashi (bib0014) 2011; 528
Khan, Yu (bib0033) 2012; 38
Kabirian, Khan, Pandey (bib0038) 2014; 55
Benafan, Noebe, Padula II, Garg, Clausen, Vogel, Vaidyanathan (bib0009) 2013; 51
Isik, Kostka, Eggeler (bib0028) 2014; 81
Xiao, Xu, Zhao, Jing, Han, Zhang (bib0072) 2018; 711
Bai, Liu, Xie, Bao, Chen (bib0011) 2018; 54
Habib, Lloyd, Meredith, Khan, Schoenfeld (bib0027) 2019; 122
Taleb, Cailletaud (bib0066) 2011; 27
Xu (10.1016/j.ijplas.2021.103124_bib0069) 2015; 621
Xu (10.1016/j.ijplas.2021.103124_bib0076) 2020; 128
Zhang (10.1016/j.ijplas.2021.103124_bib0087) 2017; 98
Maddi (10.1016/j.ijplas.2021.103124_bib0048) 2016; 668
Zhang (10.1016/j.ijplas.2021.103124_bib0088) 2018; 104
Yadav (10.1016/j.ijplas.2021.103124_bib0080) 2016; 662
Egner (10.1016/j.ijplas.2021.103124_bib0020) 2014; 57
Christopher (10.1016/j.ijplas.2021.103124_bib0015) 2013; 55
Semba (10.1016/j.ijplas.2021.103124_bib0060) 2008; 25
Khan (10.1016/j.ijplas.2021.103124_bib0033) 2012; 38
Xiao (10.1016/j.ijplas.2021.103124_bib0077) 2020; 195
Becker (10.1016/j.ijplas.2021.103124_bib0007) 2011; 27
Ardeljan (10.1016/j.ijplas.2021.103124_bib0003) 2017; 99
Blum (10.1016/j.ijplas.2021.103124_bib0005) 2002; 33A
Ghoniem (10.1016/j.ijplas.2021.103124_bib0026) 1990; 29
Krumphals (10.1016/j.ijplas.2021.103124_bib0036) 2012; 52
Lee (10.1016/j.ijplas.2021.103124_bib0042) 2015; 75
Yadav (10.1016/j.ijplas.2021.103124_bib0079) 2014
Khan (10.1016/j.ijplas.2021.103124_bib0034) 2012; 38
Zhao (10.1016/j.ijplas.2021.103124_bib0086) 2015; 94-95
Neumann (10.1016/j.ijplas.2021.103124_bib0051) 2016; 77
Orlova (10.1016/j.ijplas.2021.103124_bib0052) 1998; 245
Benafan (10.1016/j.ijplas.2021.103124_bib0010) 2014; 56
Murchu (10.1016/j.ijplas.2021.103124_bib0049) 2017; 682
Maruyama (10.1016/j.ijplas.2021.103124_bib0045) 2001; 41
Habib (10.1016/j.ijplas.2021.103124_bib0027) 2019; 122
Khan (10.1016/j.ijplas.2021.103124_bib0032) 2011; 27
Kabirian (10.1016/j.ijplas.2021.103124_bib0039) 2015; 68
Fournier (10.1016/j.ijplas.2021.103124_bib0022) 2011; 27
Zhao (10.1016/j.ijplas.2021.103124_bib0084) 2012; 34
Barkar (10.1016/j.ijplas.2021.103124_bib0006) 2005; 395
Lakshmanan (10.1016/j.ijplas.2021.103124_bib0043) 2021; 142
Kipelova (10.1016/j.ijplas.2021.103124_bib0037) 2012; 532
Xu (10.1016/j.ijplas.2021.103124_bib0070) 2017; 131
Basirat (10.1016/j.ijplas.2021.103124_bib0008) 2012; 37
Benafan (10.1016/j.ijplas.2021.103124_bib0009) 2013; 51
Zeng (10.1016/j.ijplas.2021.103124_bib0089) 2019; 120
Cao (10.1016/j.ijplas.2021.103124_bib0017) 2017; 99
Selles (10.1016/j.ijplas.2021.103124_bib0063) 2016; 86
Bai (10.1016/j.ijplas.2021.103124_bib0011) 2018; 54
Wen (10.1016/j.ijplas.2021.103124_bib0068) 2020; 126
Yadav (10.1016/j.ijplas.2021.103124_bib0082) 2018; 200
Isik (10.1016/j.ijplas.2021.103124_bib0028) 2014; 81
Xiao (10.1016/j.ijplas.2021.103124_bib0072) 2018; 711
Zurek (10.1016/j.ijplas.2021.103124_bib0085) 2014; 70
Fischer (10.1016/j.ijplas.2021.103124_bib0024) 2015; 64
Joseph (10.1016/j.ijplas.2021.103124_bib0030) 2020; 131
Puchi-Cabrera (10.1016/j.ijplas.2021.103124_bib0056) 2014; 54
Raj (10.1016/j.ijplas.2021.103124_bib0059) 2002; 322
Magnusson (10.1016/j.ijplas.2021.103124_bib0046) 2007; 38
Arzt (10.1016/j.ijplas.2021.103124_bib0001) 1986; 34
Egner (10.1016/j.ijplas.2021.103124_bib0021) 2020; 135
Tehrani (10.1016/j.ijplas.2021.103124_bib0067) 2011; 27
Alvarez-Hostos (10.1016/j.ijplas.2021.103124_bib0004) 2018; 103
Khan (10.1016/j.ijplas.2021.103124_bib0035) 2012; 36
Jiang (10.1016/j.ijplas.2021.103124_bib0031) 2021; 140
Nandi (10.1016/j.ijplas.2021.103124_bib0050) 2013; 55
Birosca (10.1016/j.ijplas.2021.103124_bib0012) 2019; 118
Xiao (10.1016/j.ijplas.2021.103124_bib0074) 2019; 747
Takeuchi (10.1016/j.ijplas.2021.103124_bib91) 1976; 24
Puchi-Cabrera (10.1016/j.ijplas.2021.103124_bib0055) 2013; 51
Fischer (10.1016/j.ijplas.2021.103124_bib0023) 2011; 27
Chen (10.1016/j.ijplas.2021.103124_bib0014) 2011; 528
Cayzac (10.1016/j.ijplas.2021.103124_bib0016) 2013; 51
Taleb (10.1016/j.ijplas.2021.103124_bib0066) 2011; 27
Pandey (10.1016/j.ijplas.2021.103124_bib0057) 2015; 68
Park (10.1016/j.ijplas.2021.103124_bib0058) 2021; 143
Cai (10.1016/j.ijplas.2021.103124_bib0018) 2019; 114
Jia (10.1016/j.ijplas.2021.103124_bib0029) 2011; 27
Morra (10.1016/j.ijplas.2021.103124_bib0047) 2009; 25
Feather (10.1016/j.ijplas.2021.103124_bib0025) 2019; 120
Calcagnotto (10.1016/j.ijplas.2021.103124_bib0013) 2010; 527
Danielsen (10.1016/j.ijplas.2021.103124_bib0019) 2009; 505
Yan (10.1016/j.ijplas.2021.103124_bib0078) 2013; 588
Weertman (10.1016/j.ijplas.2021.103124_bib92) 1955; 26
Zhang (10.1016/j.ijplas.2021.103124_bib0090) 2020; 10
Pešička (10.1016/j.ijplas.2021.103124_bib0053) 2003; 51
Kabirian (10.1016/j.ijplas.2021.103124_bib0038) 2014; 55
Xiao (10.1016/j.ijplas.2021.103124_bib0071) 2017; 690
Xu (10.1016/j.ijplas.2021.103124_bib0075) 2019; 113
Long (10.1016/j.ijplas.2021.103124_bib0044) 2021; 138
Li (10.1016/j.ijplas.2021.103124_bib0040) 2013; 51
Svoboda (10.1016/j.ijplas.2021.103124_bib0062) 2016; 82
Ardeljan (10.1016/j.ijplas.2021.103124_bib0002) 2016; 83
Xiao (10.1016/j.ijplas.2021.103124_bib0073) 2019; 743
References_xml – volume: 37
  start-page: 95
  year: 2012
  end-page: 107
  ident: bib0008
  article-title: A study of the creep behavior of modified 9Cr–1Mo steel using continuum-damage modeling
  publication-title: Int. J. Plast.
– volume: 27
  start-page: 512
  year: 2011
  end-page: 521
  ident: bib0032
  article-title: Experimental investigation and modeling of non-monotonic creep behavior in polymers
  publication-title: Int. J. Plast.
– volume: 82
  start-page: 112
  year: 2016
  end-page: 126
  ident: bib0062
  article-title: Precipitate growth in multi-component systems with stress relaxation by diffusion and creep
  publication-title: Int. J. Plast.
– volume: 54
  start-page: 113
  year: 2014
  end-page: 131
  ident: bib0056
  article-title: An experimental analysis and modeling of the work-softening transient due to dynamic recrystallization
  publication-title: Int. J. Plast.
– volume: 38
  start-page: 2033
  year: 2007
  end-page: 2039
  ident: bib0046
  article-title: Creep strain modelling of 9-12 pct Cr steels based on microstructure evolution
  publication-title: Metall. Mater. Trans. A
– volume: 662
  start-page: 330
  year: 2016
  end-page: 341
  ident: bib0080
  article-title: Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach
  publication-title: Mater. Sci. Eng. A
– volume: 55
  start-page: 798
  year: 2013
  end-page: 804
  ident: bib0015
  article-title: Continuum damage mechanics approach to predict creep behaviour of modified 9Cr-1Mo ferritic steel at 873K
  publication-title: Procedia Eng
– volume: 126
  year: 2020
  ident: bib0068
  article-title: Mechanism-based modeling of thermal and irradiation creep behavior: an application to ferritic/martensitic HT9 steel
  publication-title: Int. J. Plast.
– volume: 51
  start-page: 145
  year: 2013
  end-page: 160
  ident: bib0055
  article-title: Analysis of the work-hardening behavior of C-Mn steels deformed under hot-working conditions
  publication-title: Int. J. Plast.
– volume: 588
  start-page: 22
  year: 2013
  end-page: 28
  ident: bib0078
  article-title: Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions
  publication-title: Mater. Sci. Eng. A
– volume: 29
  start-page: 197
  year: 1990
  end-page: 219
  ident: bib0026
  article-title: A dislocation model for creep in engineering materials
  publication-title: Res. Mech.
– volume: 711
  start-page: 434
  year: 2018
  end-page: 447
  ident: bib0072
  article-title: Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel
  publication-title: Mater. Sci. Eng. A
– volume: 51
  start-page: 47
  year: 2013
  end-page: 64
  ident: bib0016
  article-title: Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model
  publication-title: Int. J. Plast.
– volume: 38
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib0033
  article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy. Part I: experiments
  publication-title: Int. J. Plast.
– volume: 34
  start-page: 1893
  year: 1986
  end-page: 1898
  ident: bib0001
  article-title: Threshold stresses for dislocation climb over hard particles: the effect of an attractive interaction
  publication-title: Acta Metall.
– volume: 104
  start-page: 1
  year: 2018
  end-page: 22
  ident: bib0088
  article-title: Dislocation-density dynamics for modeling the cores and Peierls stress of curved dislocations
  publication-title: Int. J. Plast.
– volume: 27
  start-page: 1803
  year: 2011
  end-page: 1816
  ident: bib0022
  article-title: Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels
  publication-title: Int J. Plast.
– volume: 142
  year: 2021
  ident: bib0043
  article-title: Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison
  publication-title: Int. J. Plast.
– volume: 114
  start-page: 15
  year: 2019
  end-page: 39
  ident: bib0018
  article-title: Thermodynamic formation of a unified multi-mechanism continuum viscoplastic damage model with application to high-Cr steels
  publication-title: Int. J. Plast.
– volume: 138
  year: 2021
  ident: bib0044
  article-title: Enhanced dynamic mechanical properties and resistance to the formation of adiabatic shear band by Cu-rich nano-precipitates in high-strength steels
  publication-title: Int. J. Plast.
– volume: 131
  year: 2020
  ident: bib0030
  article-title: The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy
  publication-title: Int. J. Plast.
– volume: 27
  start-page: 887
  year: 2011
  end-page: 901
  ident: bib0067
  article-title: Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite
  publication-title: Int. J. Plast.
– volume: 55
  start-page: 751
  year: 2013
  end-page: 755
  ident: bib0050
  article-title: Creep modelling of P91 steel for high temperature power plant applications
  publication-title: Procedia Eng.
– volume: 94-95
  start-page: 63
  year: 2015
  end-page: 74
  ident: bib0086
  article-title: Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel
  publication-title: Int. J. Mech. Sci.
– volume: 527
  start-page: 2738
  year: 2010
  end-page: 2746
  ident: bib0013
  article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD
  publication-title: Mater. Sci. Eng. A
– volume: 55
  start-page: 232
  year: 2014
  end-page: 246
  ident: bib0038
  article-title: Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: experiment and constitutive modeling
  publication-title: Int. J. Plast.
– volume: 64
  start-page: 164
  year: 2015
  end-page: 176
  ident: bib0024
  article-title: Relaxation of a precipitate misfit stress state by creep in the matrix
  publication-title: Int. J. Plast.
– volume: 143
  year: 2021
  ident: bib0058
  article-title: Hierarchical microstructure based crystal plasticity-continuum damage mechanics approach: model development and validation of rolling contact fatigue behavior
  publication-title: Int. J. Plast.
– volume: 395
  start-page: 110
  year: 2005
  end-page: 115
  ident: bib0006
  article-title: Creep simulation of 9–12% Cr steels using the composite model with thermodynamically calculated input
  publication-title: Mater. Sci. Eng. A
– volume: 747
  start-page: 161
  year: 2019
  end-page: 176
  ident: bib0074
  article-title: A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep
  publication-title: Mater. Sci. Eng. A
– volume: 140
  year: 2021
  ident: bib0031
  article-title: Anisotropic steady-state creep behavior of single-crystal β-Sn: a continuum constitutive model based on crystal viscoplasticity
  publication-title: Int. J. Plast.
– volume: 24
  start-page: 883
  year: 1976
  end-page: 889
  ident: bib91
  article-title: Steady-state creep of alloys due to viscous motion of dislocations
  publication-title: Acta Metall.
– volume: 25
  start-page: 2331
  year: 2009
  end-page: 2348
  ident: bib0047
  article-title: Precipitate coarsening-induced plasticity: low temperature creep behaviour of tempered SAE 52100
  publication-title: Int. J. Plast.
– volume: 25
  start-page: 131
  year: 2008
  end-page: 137
  ident: bib0060
  article-title: Microstructure-based creep modelling of a 9% Cr martensitic steel
  publication-title: Mater. High Temp.
– volume: 743
  start-page: 280
  year: 2019
  end-page: 293
  ident: bib0073
  article-title: Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range
  publication-title: Mater. Sci. Eng. A
– volume: 68
  start-page: 111
  year: 2015
  end-page: 131
  ident: bib0057
  article-title: Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations
  publication-title: Int. J. Plast.
– volume: 10
  year: 2020
  ident: bib0090
  article-title: Microstructure and properties of 9Cr-3W-3Co steel joint by shielded metal are welding
  publication-title: AIP Adv.
– volume: 51
  start-page: 4847
  year: 2003
  end-page: 4862
  ident: bib0053
  article-title: The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels
  publication-title: Acta Mater.
– volume: 57
  start-page: 77
  year: 2014
  end-page: 91
  ident: bib0020
  article-title: Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermos-viscoplastic coupling
  publication-title: Int. J. Plast.
– volume: 113
  start-page: 99
  year: 2019
  end-page: 110
  ident: bib0075
  article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel
  publication-title: Int. J. Plast.
– volume: 75
  start-page: 100
  year: 2015
  end-page: 120
  ident: bib0042
  article-title: Properties controlling the bend-assisted fracture of AHSS
  publication-title: Int. J. Plast.
– volume: 195
  start-page: 199
  year: 2020
  end-page: 208
  ident: bib0077
  article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel
  publication-title: Acta Mater.
– volume: 27
  start-page: 1239
  year: 2011
  end-page: 1251
  ident: bib0029
  article-title: Creep and recovery of polypropylene/carbon nanotube composites
  publication-title: Int. J. Plast.
– volume: 668
  start-page: 215
  year: 2016
  end-page: 223
  ident: bib0048
  article-title: Effect of Laves phase on the creep rupture properties of P92 steel
  publication-title: Mater. Sci. Eng. A
– volume: 245
  start-page: 39
  year: 1998
  end-page: 48
  ident: bib0052
  article-title: Microstructural development during high temperature creep of 9% Cr steel
  publication-title: Mater. Sci. Eng. A
– volume: 34
  start-page: 566
  year: 2012
  end-page: 575
  ident: bib0084
  article-title: Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint
  publication-title: Mater. Des.
– volume: 51
  start-page: 271
  year: 2013
  end-page: 291
  ident: bib0040
  article-title: Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing
  publication-title: Int. J. Plast.
– volume: 27
  start-page: 596
  year: 2011
  end-page: 619
  ident: bib0007
  article-title: A constitutive model for rate dependent and rate independent inelasticity. Application to IN718
  publication-title: Int. J. Plast.
– volume: 33A
  start-page: 291
  year: 2002
  end-page: 303
  ident: bib0005
  article-title: Understanding creep—a review
  publication-title: Metall. Mater. Trans. A
– volume: 98
  start-page: 45
  year: 2017
  end-page: 64
  ident: bib0087
  article-title: Interaction of cyclic softening and stress relaxation of 9-12% Cr steel under strain-controlled fatigue-creep condition: experimental and modeling
  publication-title: Int. J. Plast.
– volume: 120
  start-page: 64
  year: 2019
  end-page: 87
  ident: bib0089
  article-title: Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel
  publication-title: Int. J. Plast.
– volume: 528
  start-page: 4390
  year: 2011
  end-page: 4394
  ident: bib0014
  article-title: Long-term microstructural degradation and creep strength in Gr. 91 steel
  publication-title: Mater. Sci. Eng. A
– volume: 103
  start-page: 119
  year: 2018
  end-page: 142
  ident: bib0004
  article-title: Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique
  publication-title: Int. J. Plast.
– volume: 505
  start-page: 169
  year: 2009
  end-page: 177
  ident: bib0019
  article-title: On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels
  publication-title: Mater. Sci. Eng. A
– volume: 26
  start-page: 1213
  year: 1955
  end-page: 1217
  ident: bib92
  article-title: Theory of steady-state creep based on dislocation climb
  publication-title: J. Appl. Phys.
– volume: 322
  start-page: 132
  year: 2002
  end-page: 147
  ident: bib0059
  article-title: Power-law and exponential creep in class M materials: discrepancies in experimental observations and implications for creep modeling
  publication-title: Mater. Sci. Eng. A
– volume: 135
  year: 2020
  ident: bib0021
  article-title: Modelling thermo-mechanical cyclic behavior of P91 steel
  publication-title: Inter. J. Plast.
– volume: 131
  start-page: 110
  year: 2017
  end-page: 122
  ident: bib0070
  article-title: The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging
  publication-title: Acta Mater.
– volume: 70
  start-page: 112
  year: 2014
  end-page: 129
  ident: bib0085
  article-title: Steam oxidation of 9% to 12%Cr steels: critical evaluation and implications for practical application
  publication-title: Corros
– volume: 690
  start-page: 104
  year: 2017
  end-page: 119
  ident: bib0071
  article-title: Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures
  publication-title: Mater. Sci. Eng. A
– volume: 532
  start-page: 71
  year: 2012
  end-page: 77
  ident: bib0037
  article-title: Laves phase evolution in a modified P911 heat resistant steel during creep at 923K
  publication-title: Mater. Sci. Eng. A
– volume: 99
  start-page: 81
  year: 2017
  end-page: 101
  ident: bib0003
  article-title: Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling
  publication-title: Int. J. Plast.
– volume: 118
  start-page: 252
  year: 2019
  end-page: 268
  ident: bib0012
  article-title: The dislocation behavior and GND development in a nickel based superalloy during creep
  publication-title: Int. J. Plast.
– volume: 86
  start-page: 112
  year: 2016
  end-page: 127
  ident: bib0063
  article-title: Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations
  publication-title: Int. J. Plast.
– volume: 83
  start-page: 90
  year: 2016
  end-page: 109
  ident: bib0002
  article-title: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy
  publication-title: Int. J. Plast.
– volume: 120
  start-page: 180
  year: 2019
  end-page: 204
  ident: bib0025
  article-title: Mechanical response, twinning, and texture evolution of WE43 magnesium-rare earth alloy as a function of strain rate: experiments and multi-level crystal plasticity modeling
  publication-title: Int. J. Plast.
– volume: 68
  start-page: 1
  year: 2015
  end-page: 20
  ident: bib0039
  article-title: Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions
  publication-title: Int. J. Plast.
– year: 2014
  ident: bib0079
  article-title: Physical based creep strain modelling of 9Cr martensitic steel
  publication-title: Proceedings of the ECCC
– volume: 54
  start-page: 895
  year: 2018
  end-page: 904
  ident: bib0011
  article-title: Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel
  publication-title: Acta Metall. Sin.
– volume: 122
  start-page: 285
  year: 2019
  end-page: 318
  ident: bib0027
  article-title: Fracture of an anisotropic rare-earth-containing magnesium alloy (ZEK100) at different stress states and strain rates: experiments and modeling
  publication-title: Int. J. Plast.
– volume: 621
  start-page: 93
  year: 2015
  end-page: 98
  ident: bib0069
  article-title: Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging
  publication-title: J. Alloy. Compd.
– volume: 56
  start-page: 99
  year: 2014
  end-page: 118
  ident: bib0010
  article-title: Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution
  publication-title: Int. J. Plast.
– volume: 682
  start-page: 714
  year: 2017
  end-page: 722
  ident: bib0049
  article-title: A physically-based creep damage model for effects of different precipitate types
  publication-title: Mater. Sci. Eng. A
– volume: 38
  start-page: 14
  year: 2012
  end-page: 26
  ident: bib0034
  article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II: a strain rate and temperature dependent anisotropic yield criterion
  publication-title: Int. J. Plast.
– volume: 81
  start-page: 230
  year: 2014
  end-page: 240
  ident: bib0028
  article-title: On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels
  publication-title: Acta Mater.
– volume: 200
  start-page: 104
  year: 2018
  end-page: 114
  ident: bib0082
  article-title: Creep modelling of P91 steel employing a microstructural based hybrid concept
  publication-title: Eng. Fract. Mech.
– volume: 36
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib0035
  article-title: Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling
  publication-title: Int. J. Plast.
– volume: 41
  start-page: 641
  year: 2001
  end-page: 653
  ident: bib0045
  article-title: Strengthening mechanisms of creep resistant tempered martensitic steel
  publication-title: ISIJ Int.
– volume: 99
  start-page: 43
  year: 2017
  end-page: 57
  ident: bib0017
  article-title: Cyclic deformation induced strengthening and unusual rate sensitivity in Cu/Ru nanolayered films
  publication-title: Int. J. Plast.
– volume: 27
  start-page: 1384
  year: 2011
  end-page: 1390
  ident: bib0023
  article-title: Chemically and mechanically driven creep due to generation and annihilation of vacancies with non-ideal sources and sinks
  publication-title: Int. J. Plast.
– volume: 27
  start-page: 1936
  year: 2011
  end-page: 1958
  ident: bib0066
  article-title: Cyclic accumulation of the inelastic strain in the 304L SS under stress control at room temperature: ratcheting or creep?
  publication-title: Int. J. Plast.
– volume: 128
  year: 2020
  ident: bib0076
  article-title: Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel
  publication-title: Int. J. Plast.
– volume: 51
  start-page: 103
  year: 2013
  end-page: 121
  ident: bib0009
  article-title: Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy
  publication-title: Int. J. Plast.
– volume: 77
  start-page: 1
  year: 2016
  end-page: 29
  ident: bib0051
  article-title: Hashin-Shtrikman type mean field model for the two-scale simulation of the thermomechanical processing of steel
  publication-title: Int. J. Plast.
– volume: 52
  start-page: 40
  year: 2012
  end-page: 45
  ident: bib0036
  article-title: Deformation behaviour of a ferritic hot-work tool steel with respect to the microstructure
  publication-title: Comput. Mater. Sci.
– volume: 99
  start-page: 43
  year: 2017
  ident: 10.1016/j.ijplas.2021.103124_bib0017
  article-title: Cyclic deformation induced strengthening and unusual rate sensitivity in Cu/Ru nanolayered films
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.08.005
– volume: 131
  year: 2020
  ident: 10.1016/j.ijplas.2021.103124_bib0030
  article-title: The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102743
– volume: 27
  start-page: 512
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0032
  article-title: Experimental investigation and modeling of non-monotonic creep behavior in polymers
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2010.06.007
– volume: 70
  start-page: 112
  year: 2014
  ident: 10.1016/j.ijplas.2021.103124_bib0085
  article-title: Steam oxidation of 9% to 12%Cr steels: critical evaluation and implications for practical application
  publication-title: Corros
  doi: 10.5006/1065
– volume: 126
  year: 2020
  ident: 10.1016/j.ijplas.2021.103124_bib0068
  article-title: Mechanism-based modeling of thermal and irradiation creep behavior: an application to ferritic/martensitic HT9 steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.11.012
– volume: 55
  start-page: 798
  year: 2013
  ident: 10.1016/j.ijplas.2021.103124_bib0015
  article-title: Continuum damage mechanics approach to predict creep behaviour of modified 9Cr-1Mo ferritic steel at 873K
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2013.03.334
– volume: 122
  start-page: 285
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0027
  article-title: Fracture of an anisotropic rare-earth-containing magnesium alloy (ZEK100) at different stress states and strain rates: experiments and modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.07.011
– volume: 38
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijplas.2021.103124_bib0033
  article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy. Part I: experiments
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.03.015
– volume: 588
  start-page: 22
  year: 2013
  ident: 10.1016/j.ijplas.2021.103124_bib0078
  article-title: Effect of microstructural evolution on high-temperature strength of 9Cr–3W–3Co martensitic heat resistant steel under different aging conditions
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.09.033
– volume: 120
  start-page: 180
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0025
  article-title: Mechanical response, twinning, and texture evolution of WE43 magnesium-rare earth alloy as a function of strain rate: experiments and multi-level crystal plasticity modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.04.019
– volume: 38
  start-page: 2033
  year: 2007
  ident: 10.1016/j.ijplas.2021.103124_bib0046
  article-title: Creep strain modelling of 9-12 pct Cr steels based on microstructure evolution
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-007-9256-9
– volume: 527
  start-page: 2738
  year: 2010
  ident: 10.1016/j.ijplas.2021.103124_bib0013
  article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.01.004
– volume: 33A
  start-page: 291
  year: 2002
  ident: 10.1016/j.ijplas.2021.103124_bib0005
  article-title: Understanding creep—a review
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-002-0090-9
– volume: 52
  start-page: 40
  year: 2012
  ident: 10.1016/j.ijplas.2021.103124_bib0036
  article-title: Deformation behaviour of a ferritic hot-work tool steel with respect to the microstructure
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.03.047
– volume: 195
  start-page: 199
  year: 2020
  ident: 10.1016/j.ijplas.2021.103124_bib0077
  article-title: Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2020.05.054
– volume: 25
  start-page: 2331
  year: 2009
  ident: 10.1016/j.ijplas.2021.103124_bib0047
  article-title: Precipitate coarsening-induced plasticity: low temperature creep behaviour of tempered SAE 52100
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2009.03.002
– volume: 82
  start-page: 112
  year: 2016
  ident: 10.1016/j.ijplas.2021.103124_bib0062
  article-title: Precipitate growth in multi-component systems with stress relaxation by diffusion and creep
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.03.001
– volume: 37
  start-page: 95
  year: 2012
  ident: 10.1016/j.ijplas.2021.103124_bib0008
  article-title: A study of the creep behavior of modified 9Cr–1Mo steel using continuum-damage modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.04.004
– volume: 41
  start-page: 641
  year: 2001
  ident: 10.1016/j.ijplas.2021.103124_bib0045
  article-title: Strengthening mechanisms of creep resistant tempered martensitic steel
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.41.641
– volume: 51
  start-page: 47
  year: 2013
  ident: 10.1016/j.ijplas.2021.103124_bib0016
  article-title: Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.06.008
– volume: 57
  start-page: 77
  year: 2014
  ident: 10.1016/j.ijplas.2021.103124_bib0020
  article-title: Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermos-viscoplastic coupling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.03.002
– volume: 38
  start-page: 14
  year: 2012
  ident: 10.1016/j.ijplas.2021.103124_bib0034
  article-title: Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II: a strain rate and temperature dependent anisotropic yield criterion
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.03.013
– volume: 10
  year: 2020
  ident: 10.1016/j.ijplas.2021.103124_bib0090
  article-title: Microstructure and properties of 9Cr-3W-3Co steel joint by shielded metal are welding
  publication-title: AIP Adv.
– volume: 668
  start-page: 215
  year: 2016
  ident: 10.1016/j.ijplas.2021.103124_bib0048
  article-title: Effect of Laves phase on the creep rupture properties of P92 steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.05.074
– volume: 200
  start-page: 104
  year: 2018
  ident: 10.1016/j.ijplas.2021.103124_bib0082
  article-title: Creep modelling of P91 steel employing a microstructural based hybrid concept
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.07.027
– volume: 395
  start-page: 110
  year: 2005
  ident: 10.1016/j.ijplas.2021.103124_bib0006
  article-title: Creep simulation of 9–12% Cr steels using the composite model with thermodynamically calculated input
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2004.12.004
– volume: 528
  start-page: 4390
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0014
  article-title: Long-term microstructural degradation and creep strength in Gr. 91 steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.02.060
– volume: 51
  start-page: 103
  year: 2013
  ident: 10.1016/j.ijplas.2021.103124_bib0009
  article-title: Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.06.003
– volume: 621
  start-page: 93
  year: 2015
  ident: 10.1016/j.ijplas.2021.103124_bib0069
  article-title: Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.09.204
– volume: 27
  start-page: 1384
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0023
  article-title: Chemically and mechanically driven creep due to generation and annihilation of vacancies with non-ideal sources and sinks
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.03.005
– volume: 135
  year: 2020
  ident: 10.1016/j.ijplas.2021.103124_bib0021
  article-title: Modelling thermo-mechanical cyclic behavior of P91 steel
  publication-title: Inter. J. Plast.
  doi: 10.1016/j.ijplas.2020.102820
– volume: 682
  start-page: 714
  year: 2017
  ident: 10.1016/j.ijplas.2021.103124_bib0049
  article-title: A physically-based creep damage model for effects of different precipitate types
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.11.044
– volume: 27
  start-page: 596
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0007
  article-title: A constitutive model for rate dependent and rate independent inelasticity. Application to IN718
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2010.08.005
– volume: 56
  start-page: 99
  year: 2014
  ident: 10.1016/j.ijplas.2021.103124_bib0010
  article-title: Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.01.006
– volume: 51
  start-page: 145
  year: 2013
  ident: 10.1016/j.ijplas.2021.103124_bib0055
  article-title: Analysis of the work-hardening behavior of C-Mn steels deformed under hot-working conditions
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.05.007
– volume: 24
  start-page: 883
  year: 1976
  ident: 10.1016/j.ijplas.2021.103124_bib91
  article-title: Steady-state creep of alloys due to viscous motion of dislocations
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(76)90036-5
– volume: 743
  start-page: 280
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0073
  article-title: Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.11.083
– volume: 27
  start-page: 1803
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0022
  article-title: Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels
  publication-title: Int J. Plast.
  doi: 10.1016/j.ijplas.2011.05.007
– volume: 64
  start-page: 164
  year: 2015
  ident: 10.1016/j.ijplas.2021.103124_bib0024
  article-title: Relaxation of a precipitate misfit stress state by creep in the matrix
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.08.014
– volume: 140
  year: 2021
  ident: 10.1016/j.ijplas.2021.103124_bib0031
  article-title: Anisotropic steady-state creep behavior of single-crystal β-Sn: a continuum constitutive model based on crystal viscoplasticity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2021.102975
– volume: 68
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijplas.2021.103124_bib0039
  article-title: Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.10.012
– volume: 81
  start-page: 230
  year: 2014
  ident: 10.1016/j.ijplas.2021.103124_bib0028
  article-title: On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.08.008
– volume: 75
  start-page: 100
  year: 2015
  ident: 10.1016/j.ijplas.2021.103124_bib0042
  article-title: Properties controlling the bend-assisted fracture of AHSS
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2015.03.009
– volume: 26
  start-page: 1213
  year: 1955
  ident: 10.1016/j.ijplas.2021.103124_bib92
  article-title: Theory of steady-state creep based on dislocation climb
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1721875
– volume: 51
  start-page: 4847
  year: 2003
  ident: 10.1016/j.ijplas.2021.103124_bib0053
  article-title: The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(03)00324-0
– volume: 68
  start-page: 111
  year: 2015
  ident: 10.1016/j.ijplas.2021.103124_bib0057
  article-title: Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.12.001
– volume: 711
  start-page: 434
  year: 2018
  ident: 10.1016/j.ijplas.2021.103124_bib0072
  article-title: Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.11.061
– year: 2014
  ident: 10.1016/j.ijplas.2021.103124_bib0079
  article-title: Physical based creep strain modelling of 9Cr martensitic steel
– volume: 36
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijplas.2021.103124_bib0035
  article-title: Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.02.001
– volume: 142
  year: 2021
  ident: 10.1016/j.ijplas.2021.103124_bib0043
  article-title: Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2021.102991
– volume: 55
  start-page: 232
  year: 2014
  ident: 10.1016/j.ijplas.2021.103124_bib0038
  article-title: Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: experiment and constitutive modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.11.001
– volume: 55
  start-page: 751
  year: 2013
  ident: 10.1016/j.ijplas.2021.103124_bib0050
  article-title: Creep modelling of P91 steel for high temperature power plant applications
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.03.326
– volume: 322
  start-page: 132
  year: 2002
  ident: 10.1016/j.ijplas.2021.103124_bib0059
  article-title: Power-law and exponential creep in class M materials: discrepancies in experimental observations and implications for creep modeling
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01126-1
– volume: 114
  start-page: 15
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0018
  article-title: Thermodynamic formation of a unified multi-mechanism continuum viscoplastic damage model with application to high-Cr steels
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.09.011
– volume: 113
  start-page: 99
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0075
  article-title: Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.09.009
– volume: 34
  start-page: 566
  year: 2012
  ident: 10.1016/j.ijplas.2021.103124_bib0084
  article-title: Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.05.009
– volume: 104
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijplas.2021.103124_bib0088
  article-title: Dislocation-density dynamics for modeling the cores and Peierls stress of curved dislocations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.01.009
– volume: 662
  start-page: 330
  year: 2016
  ident: 10.1016/j.ijplas.2021.103124_bib0080
  article-title: Modelling the creep behaviour of tempered martensitic steel based on a hybrid approach
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.03.071
– volume: 54
  start-page: 113
  year: 2014
  ident: 10.1016/j.ijplas.2021.103124_bib0056
  article-title: An experimental analysis and modeling of the work-softening transient due to dynamic recrystallization
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.08.011
– volume: 690
  start-page: 104
  year: 2017
  ident: 10.1016/j.ijplas.2021.103124_bib0071
  article-title: Tensile mechanical properties, constitutive equations, and fracture mechanisms of a novel 9% chromium tempered martensitic steel at elevated temperatures
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.02.099
– volume: 27
  start-page: 1239
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0029
  article-title: Creep and recovery of polypropylene/carbon nanotube composites
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.02.004
– volume: 138
  year: 2021
  ident: 10.1016/j.ijplas.2021.103124_bib0044
  article-title: Enhanced dynamic mechanical properties and resistance to the formation of adiabatic shear band by Cu-rich nano-precipitates in high-strength steels
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102924
– volume: 54
  start-page: 895
  year: 2018
  ident: 10.1016/j.ijplas.2021.103124_bib0011
  article-title: Effect of pre-oxidation treatment on the behavior of high temperature oxidation in steam of G115 steel
  publication-title: Acta Metall. Sin.
– volume: 98
  start-page: 45
  year: 2017
  ident: 10.1016/j.ijplas.2021.103124_bib0087
  article-title: Interaction of cyclic softening and stress relaxation of 9-12% Cr steel under strain-controlled fatigue-creep condition: experimental and modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.06.007
– volume: 86
  start-page: 112
  year: 2016
  ident: 10.1016/j.ijplas.2021.103124_bib0063
  article-title: Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.08.004
– volume: 120
  start-page: 64
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0089
  article-title: Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.04.010
– volume: 103
  start-page: 119
  year: 2018
  ident: 10.1016/j.ijplas.2021.103124_bib0004
  article-title: Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.01.005
– volume: 29
  start-page: 197
  year: 1990
  ident: 10.1016/j.ijplas.2021.103124_bib0026
  article-title: A dislocation model for creep in engineering materials
  publication-title: Res. Mech.
– volume: 747
  start-page: 161
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0074
  article-title: A physical-based yield strength model for the microstructural degradation of G115 steel during long-term creep
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.01.051
– volume: 51
  start-page: 271
  year: 2013
  ident: 10.1016/j.ijplas.2021.103124_bib0040
  article-title: Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.05.001
– volume: 532
  start-page: 71
  year: 2012
  ident: 10.1016/j.ijplas.2021.103124_bib0037
  article-title: Laves phase evolution in a modified P911 heat resistant steel during creep at 923K
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2011.10.064
– volume: 128
  year: 2020
  ident: 10.1016/j.ijplas.2021.103124_bib0076
  article-title: Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102677
– volume: 25
  start-page: 131
  year: 2008
  ident: 10.1016/j.ijplas.2021.103124_bib0060
  article-title: Microstructure-based creep modelling of a 9% Cr martensitic steel
  publication-title: Mater. High Temp.
  doi: 10.3184/096034008X354873
– volume: 34
  start-page: 1893
  year: 1986
  ident: 10.1016/j.ijplas.2021.103124_bib0001
  article-title: Threshold stresses for dislocation climb over hard particles: the effect of an attractive interaction
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(86)90247-6
– volume: 143
  year: 2021
  ident: 10.1016/j.ijplas.2021.103124_bib0058
  article-title: Hierarchical microstructure based crystal plasticity-continuum damage mechanics approach: model development and validation of rolling contact fatigue behavior
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2021.103025
– volume: 27
  start-page: 887
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0067
  article-title: Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2010.10.005
– volume: 118
  start-page: 252
  year: 2019
  ident: 10.1016/j.ijplas.2021.103124_bib0012
  article-title: The dislocation behavior and GND development in a nickel based superalloy during creep
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.02.015
– volume: 77
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijplas.2021.103124_bib0051
  article-title: Hashin-Shtrikman type mean field model for the two-scale simulation of the thermomechanical processing of steel
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2015.09.003
– volume: 245
  start-page: 39
  year: 1998
  ident: 10.1016/j.ijplas.2021.103124_bib0052
  article-title: Microstructural development during high temperature creep of 9% Cr steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(97)00708-9
– volume: 131
  start-page: 110
  year: 2017
  ident: 10.1016/j.ijplas.2021.103124_bib0070
  article-title: The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.03.045
– volume: 505
  start-page: 169
  year: 2009
  ident: 10.1016/j.ijplas.2021.103124_bib0019
  article-title: On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.11.019
– volume: 27
  start-page: 1936
  year: 2011
  ident: 10.1016/j.ijplas.2021.103124_bib0066
  article-title: Cyclic accumulation of the inelastic strain in the 304L SS under stress control at room temperature: ratcheting or creep?
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.02.001
– volume: 94-95
  start-page: 63
  year: 2015
  ident: 10.1016/j.ijplas.2021.103124_bib0086
  article-title: Quantifying the constraint effect induced by specimen geometry on creep crack growth behavior in P92 steel
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2015.02.009
– volume: 83
  start-page: 90
  year: 2016
  ident: 10.1016/j.ijplas.2021.103124_bib0002
  article-title: Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.04.005
– volume: 99
  start-page: 81
  year: 2017
  ident: 10.1016/j.ijplas.2021.103124_bib0003
  article-title: Effect of dislocation density-twin interactions on twin growth in AZ31 as revealed by explicit crystal plasticity finite element modeling
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.09.002
SSID ssj0005831
Score 2.5080464
Snippet •The microstructure-creep behavior relationship of the G115 steel was examined by utilizing a combined experimental and micromechanical modeling approach.•The...
Ultra-supercritical (USC) power plants with enhanced thermal efficiency have gained significant attention for reducing carbon dioxide (CO2) emissions. A new...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103124
SubjectTerms Carbon dioxide
Continuum damage mechanics (CDM)
Creep strength
Creep tests
Dipoles
Dislocation density
Dislocation mobility
Evolution
G115 steel
Heat resistant steels
Kinetic equations
Martensitic stainless steels
Mathematical models
Micromechanical model
Microstructure
Modelling
Parameters
Power plant components
Power plants
Thermodynamic efficiency
Title Deep insights on the creep behavior and mechanism of a novel G115 steel: Micromechanical modeling and experimental validation
URI https://dx.doi.org/10.1016/j.ijplas.2021.103124
https://www.proquest.com/docview/2607712709
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjBB2pEkczBa4U-t_VGUEQNXJSEW7O0s0kJFCLoTX-7s92tQRND4q2P2bbZeX3Tndlh7MpN2g5G6FuYSlS_boQVolI8REdEEScfqYqTB8OgP_Iex_64wrplLYxKqzS2X9v0wlqbKy0zm61llrWeyflFgVrEtDVOURXsHldSfv25keYR6p6ERGwp6rJ8rsjxyqZLwqgUJTq2qj63He8v9_TLUBfep3fI9g1shI7-siNWwbzGDgyEBKOgqxrb29hf8Jh93CIuIctXKgJfwSIHgntAOJGulvX5IPIU5qgKgLPVHBYSBOSLd5zBPcE4ICHA2Q0Mirw9TUVchaKBDr2jGL3ZJQBIcjPdp-mEjXp3L92-ZfotWAlp8trybS4noZwI6UoCWhS7pgQOPZ66AkMn8VIKZgnf0TEFbShRCLQ5d4VsiyQJJXdPWTVf5HjGIPLcwHcEgREuPR7iRAaJL9oCuedThGPXmVtOc5yYzchVT4xZXGadTWPNnFgxJ9bMqTPre9RSb8axhZ6XHIx_CFVM_mLLyEbJ8NgoNd0P2pyrlfro_N8PvmC76kwnxDRYdf36hpcEa9aTZiG3TbbTeXjqD78AJzf3hQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKA90DYtAhroHLhaiZ9rc0MUGprHBZByW23sWcko2BFJe-t_Z9a75iVVkXqz1ju2tTOz8413HgAnYT4IKKPYo0KT-XWjvJSM4hEFKssE20iTnDyZJsPb6Ncsnm3BeZsLY8Iq3d5v9_Rmt3Yjfbea_WVZ9q_Z-GWJOcT0LU55B9umOlXcge2zq9Fw-hzpkdq2hDzfMwRtBl0T5lXeLRmmsqMY-CYB3Q-if1moN3t1Y4AuP8GuQ454Zj_uM2xR1YWPDkWi09FVFz68KDH4Bf7-IFpiWa2ME77CukJGfMhQkUfbFH1UVYH3ZHKAy9U91hoVVvUfWuBPRnLIckCLU5w0oXt2FjMWmx46_I6G-mWjAGThLW2rpq9we3lxcz70XMsFL2dlXnuxL_Q81XOlQ81Yi93XgvFhJIpQURrkUcH-LEM8vma_jTQpRb4QodIDleepFuEedKq6on3ALAqTOFCMR4SOREpzneSxGigSUcxOjn8AYbvMMnf1yE1bjIVsA8_upGWONMyRljkH4D1RLW09jg3zRctB-UquJJuMDZS9luHS6TXfTwZCmMP67PC_H_wddoY3k7EcX01H3-C9uWPjY3rQWT_8piNGOev5sZPiR6Gh-jY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+insights+on+the+creep+behavior+and+mechanism+of+a+novel+G115+steel%3A+Micromechanical+modeling+and+experimental+validation&rft.jtitle=International+journal+of+plasticity&rft.au=Xiao%2C+Bo&rft.au=Yadav%2C+Surya+D.&rft.au=Zhao%2C+Lei&rft.au=Tang%2C+Zhengxin&rft.date=2021-12-01&rft.issn=0749-6419&rft.volume=147&rft.spage=103124&rft_id=info:doi/10.1016%2Fj.ijplas.2021.103124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2021_103124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon