A Multi-Fluid Model for Water and Methanol Transport in a Direct Methanol Fuel Cell
Direct-methanol fuel cell (DMFC) systems are comparatively simple, sometimes just requiring a fuel cartridge and a fuel cell stack with appropriate control devices. The key challenge in these systems is the accurate determination and control of the flow rates and the appropriate mixture of methanol...
Saved in:
Published in | Energies (Basel) Vol. 15; no. 19; p. 6869 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct-methanol fuel cell (DMFC) systems are comparatively simple, sometimes just requiring a fuel cartridge and a fuel cell stack with appropriate control devices. The key challenge in these systems is the accurate determination and control of the flow rates and the appropriate mixture of methanol and water, and fundamental understanding can be gained by computational fluid dynamics. In this work, a three-dimensional, steady-state, two-phase, multi-component and non-isothermal DMFC model is presented. The model is based on the Eulerian approach, and it can account for gas and liquid transport in porous media subject to mixed wettability, i.e., the simultaneous presence of hydrophilic and hydrophobic pores. Other phenomena considered are variations in surface tension due to water–methanol mixing and the capillary pressure at the gas diffusion layer–channel interface. Another important aspect of DMFC modeling is the transport of methanol and water across the membrane. In this model, non-equilibrium sorption–desorption, diffusion and electro-osmotic drag of both species are included. The DMFC model is validated against experimental measurements, and it is used to study the interaction between volume porosity of the anode gas diffusion layer and the capillary pressure boundary condition at the anode, and how it affects performance and limiting current density. |
---|---|
AbstractList | Direct-methanol fuel cell (DMFC) systems are comparatively simple, sometimes just requiring a fuel cartridge and a fuel cell stack with appropriate control devices. The key challenge in these systems is the accurate determination and control of the flow rates and the appropriate mixture of methanol and water, and fundamental understanding can be gained by computational fluid dynamics. In this work, a three-dimensional, steady-state, two-phase, multi-component and non-isothermal DMFC model is presented. The model is based on the Eulerian approach, and it can account for gas and liquid transport in porous media subject to mixed wettability, i.e., the simultaneous presence of hydrophilic and hydrophobic pores. Other phenomena considered are variations in surface tension due to water–methanol mixing and the capillary pressure at the gas diffusion layer–channel interface. Another important aspect of DMFC modeling is the transport of methanol and water across the membrane. In this model, non-equilibrium sorption–desorption, diffusion and electro-osmotic drag of both species are included. The DMFC model is validated against experimental measurements, and it is used to study the interaction between volume porosity of the anode gas diffusion layer and the capillary pressure boundary condition at the anode, and how it affects performance and limiting current density. |
Audience | Academic |
Author | Kær, Søren Knudsen Olesen, Anders Christian Berning, Torsten |
Author_xml | – sequence: 1 givenname: Anders Christian surname: Olesen fullname: Olesen, Anders Christian – sequence: 2 givenname: Søren Knudsen surname: Kær fullname: Kær, Søren Knudsen – sequence: 3 givenname: Torsten orcidid: 0000-0003-3324-0927 surname: Berning fullname: Berning, Torsten |
BookMark | eNptkU9vFSEUxYlpE2vbjZ9gEncmU4fhz8Dy5enTJm1ctMYluQOXyguFJ8Ms_PZin6bGCAtuDvd3cuG8IicpJyTkNR2uGNPDO0xUUC2V1C_IGdVa9nSY2Mlf9UtyuSz7oS3GKGPsjNxtuts11tDv4hpcd5sdxs7n0n2FiqWD1DSs3yDl2N0XSMshl9qF1EH3PhS09fl6tzZ0izFekFMPccHL3-c5-bL7cL_91N98_ni93dz0lg9D7bkVTCtlEaSaJdfOOjZpSdv8HpwaRsVmwaeR8tkL1BIlWoUcqRRMCqDsnFwffV2GvTmU8Ajlh8kQzJOQy4OBUoONaLwCkM4rqjly79Qs3DyxcRIA3KGH5vXm6HUo-fuKSzX7vJbUxjfjNPKRCzbx1nV17HqAZhqSz7WAbdvhY7AtDR-avpm4EO3LqW7AcARsyctS0BsbKtSQUwNDNHQwv6Izz9E15O0_yJ-X_af5J6YPmNA |
CitedBy_id | crossref_primary_10_3390_en16073226 crossref_primary_10_3390_en17164077 crossref_primary_10_1016_j_jpowsour_2024_235880 |
Cites_doi | 10.1023/A:1003589319211 10.1149/1.3603974 10.1016/S1385-8947(99)00166-7 10.1016/j.jpowsour.2009.12.048 10.1115/1.4002315 10.1149/1.1899263 10.1016/S0378-7753(99)00302-X 10.1016/0013-4686(94)00277-8 10.3390/en13184726 10.1016/j.jpowsour.2009.11.069 10.1016/j.jpowsour.2008.06.007 10.1016/j.jpowsour.2011.03.068 10.1149/1.3206691 10.1016/j.jpowsour.2007.08.075 10.1016/j.jpowsour.2005.05.086 10.3390/en13030596 10.1016/j.jpowsour.2004.01.055 10.1016/j.memsci.2005.10.001 10.1149/1.2429041 10.1201/9781420040470 10.1149/1.1473189 10.1149/1.1623495 10.1016/j.ijhydene.2012.03.041 10.1149/1.2784283 10.1016/j.memsci.2009.03.056 10.1016/j.ijhydene.2006.06.049 10.1016/j.ces.2007.09.017 10.1007/430_2011_41 10.1177/0021998305046438 10.1016/j.jpowsour.2006.10.014 10.1016/j.jpowsour.2006.10.047 10.1016/j.jpowsour.2009.01.059 10.1016/0017-9310(85)90082-1 10.1016/j.memsci.2007.06.022 10.1016/j.polymer.2012.01.050 10.1016/j.electacta.2007.03.069 10.1016/j.electacta.2007.07.070 10.1149/1.2401034 10.1016/S0167-2738(97)00033-7 10.1021/jp806326a 10.1016/j.jpowsour.2012.12.009 10.1002/aic.690461018 10.1016/j.ijhydene.2011.11.102 10.1149/1.1393219 10.1149/1.1559061 10.1021/j100168a060 10.1149/05002.0979ecst 10.1149/1.1393879 10.1016/j.electacta.2010.01.064 10.1016/S0017-9310(03)00305-3 10.1115/1.2821597 10.1007/s10800-007-9304-6 10.1149/1.1572150 10.1016/j.ijhydene.2011.04.079 10.1002/fuce.200700054 10.1016/j.jpowsour.2007.11.098 10.1016/j.ijhydene.2010.10.037 10.1016/j.jpowsour.2007.03.044 10.1021/jp073242v 10.2118/941152-G 10.1149/1.1615609 10.1016/j.electacta.2009.06.070 10.1021/je00019a016 10.1149/1.2085971 10.1021/jp1112125 10.1021/j100148a030 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/en15196869 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1073 |
ExternalDocumentID | oai_doaj_org_article_f8aa6df8194e4fd8b5db73275aa4defa A745599619 10_3390_en15196869 |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c400t-4c53988cea68b649dcd37961869fad80283b547214bf5e96e6ec8e4e165365a13 |
IEDL.DBID | DOA |
ISSN | 1996-1073 |
IngestDate | Wed Aug 27 01:29:04 EDT 2025 Mon Jun 30 07:44:13 EDT 2025 Tue Jun 10 21:07:57 EDT 2025 Tue Jul 01 01:28:19 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-4c53988cea68b649dcd37961869fad80283b547214bf5e96e6ec8e4e165365a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3324-0927 |
OpenAccessLink | https://doaj.org/article/f8aa6df8194e4fd8b5db73275aa4defa |
PQID | 2724245374 |
PQPubID | 2032402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f8aa6df8194e4fd8b5db73275aa4defa proquest_journals_2724245374 gale_infotracacademiconefile_A745599619 crossref_citationtrail_10_3390_en15196869 crossref_primary_10_3390_en15196869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Energies (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_17) 2007; 52 Garvin (ref_25) 2011; 158 Ge (ref_15) 2007; 163 Divisek (ref_14) 2003; 150 Meyers (ref_40) 2002; 149 Olesen (ref_38) 2011; 54693 Onishi (ref_48) 2007; 111 Leverett (ref_10) 1976; 142 Springer (ref_57) 1991; 138 Ju (ref_43) 2007; 154 Olesen (ref_59) 2012; 50 Neburchilov (ref_3) 2007; 169 Miao (ref_21) 2008; 185 Xu (ref_20) 2008; 178 Berning (ref_42) 2011; 196 ref_65 Jeck (ref_49) 2009; 337 Wang (ref_9) 2003; 150 Gurau (ref_33) 2008; 5 Zhao (ref_56) 2012; 53 ref_29 Mangold (ref_35) 2008; 63 Hallberg (ref_62) 2010; 55 Nam (ref_32) 2003; 46 Berning (ref_64) 2011; 36 Berning (ref_11) 2009; 156 Zhao (ref_55) 2011; 115 Ismail (ref_67) 2010; 195 Bocarsly (ref_60) 2011; Volume 141 Yang (ref_18) 2007; 174 Motupally (ref_58) 2000; 147 Bahrami (ref_26) 2013; 230 Yang (ref_19) 2007; 53 Lu (ref_7) 2004; 134 Gostick (ref_27) 2006; 156 Argyropoulos (ref_6) 1999; 29 Mazumder (ref_30) 2003; 150 Miao (ref_22) 2010; 195 Nitta (ref_68) 2008; 8 Liu (ref_16) 2007; 164 ref_31 Ge (ref_54) 2005; 152 Schultz (ref_45) 2006; 276 Argyropoulos (ref_28) 2000; 78 Freger (ref_47) 2008; 113 He (ref_4) 2012; 37 Choi (ref_46) 2003; 150 Ren (ref_52) 2000; 147 Tschinder (ref_63) 2007; 37 Liu (ref_23) 2007; 154 Yang (ref_24) 2009; 190 Zawodzinski (ref_61) 1995; 40 Bahrami (ref_41) 2010; 8 Vazquez (ref_37) 1995; 40 Wu (ref_12) 2009; 54 Kumbur (ref_13) 2007; 154 Majsztrik (ref_53) 2007; 301 Udell (ref_34) 1985; 28 Tomadakis (ref_66) 2005; 39 Gasteiger (ref_39) 1993; 97 Gates (ref_44) 2000; 46 Heinzel (ref_2) 1999; 84 Skou (ref_51) 1997; 97 ref_1 Zawodzinski (ref_50) 1991; 95 Berning (ref_5) 2012; 37 Oliveira (ref_8) 2007; 32 Mangold (ref_36) 2011; 36 |
References_xml | – volume: 29 start-page: 661 year: 1999 ident: ref_6 article-title: Gas evolution and power performance in direct methanol fuel cells publication-title: J. Appl. Electrochem. doi: 10.1023/A:1003589319211 – volume: 158 start-page: B1119 year: 2011 ident: ref_25 article-title: Modeling of Coupled Multiphase Transport in Direct Methanol Fuel Cell Diffusion Layers publication-title: J. Electrochem. Soc. doi: 10.1149/1.3603974 – volume: 78 start-page: 29 year: 2000 ident: ref_28 article-title: Modelling pressure distribution and anode/cathode streams vapour–liquid equilibrium composition in liquid feed direct methanol fuel cells publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(99)00166-7 – volume: 195 start-page: 3693 year: 2010 ident: ref_22 article-title: Modeling the effect of anisotropy of gas diffusion layer on transport phenomena in a direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.12.048 – volume: 8 start-page: 021011 year: 2010 ident: ref_41 article-title: Water Management in a Passive DMFC Using Highly Concentrated Methanol Solution publication-title: J. Fuel Cell Sci. Technol. doi: 10.1115/1.4002315 – volume: 152 start-page: A1149 year: 2005 ident: ref_54 article-title: Absorption, Desorption, and Transport of Water in Polymer Electrolyte Membranes for Fuel Cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1899263 – volume: 84 start-page: 70 year: 1999 ident: ref_2 article-title: A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00302-X – volume: 40 start-page: 297 year: 1995 ident: ref_61 article-title: The water content dependence of electro-osmotic drag in proton-conducting polymer electrolytes publication-title: Electrochim. Acta doi: 10.1016/0013-4686(94)00277-8 – ident: ref_65 doi: 10.3390/en13184726 – volume: 54693 start-page: 839 year: 2011 ident: ref_38 article-title: The Effect of Inhomogeneous Compression on Water Transport in the Cathode of a PEM publication-title: Fuel Cell – volume: 195 start-page: 2700 year: 2010 ident: ref_67 article-title: Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the electrical conductivity of gas diffusion layers used in proton exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.11.069 – volume: 185 start-page: 1233 year: 2008 ident: ref_21 article-title: A two-dimensional two-phase mass transport model for direct methanol fuel cells adopting a modified agglomerate approach publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.06.007 – volume: 196 start-page: 6305 year: 2011 ident: ref_42 article-title: Water balance simulations of a polymer-electrolyte membrane fuel cell using a two-fluid model publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.03.068 – volume: 156 start-page: B1301 year: 2009 ident: ref_11 article-title: A computational analysis of multi-phase flow through the porous media of a PEMFC cathode using the multi-fluid approach publication-title: J. Electrochem. Soc. doi: 10.1149/1.3206691 – volume: 174 start-page: 136 year: 2007 ident: ref_18 article-title: Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.08.075 – ident: ref_31 – volume: 156 start-page: 375 year: 2006 ident: ref_27 article-title: Capillary pressure and hydrophilic porosity in gas diffusion layers for polymer electrolyte fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.05.086 – ident: ref_1 doi: 10.3390/en13030596 – volume: 134 start-page: 33 year: 2004 ident: ref_7 article-title: Electrochemical and flow characterization of a direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.01.055 – volume: 276 start-page: 272 year: 2006 ident: ref_45 article-title: Mass, charge and energy transport phenomena in a polymer electrolyte membrane (PEM) used in a direct methanol fuel cell (DMFC): Modelling and experimental validation of fluxes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.10.001 – volume: 154 start-page: B352 year: 2007 ident: ref_23 article-title: Three-dimensional simulations of liquid feed direct methanol fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.2429041 – ident: ref_29 doi: 10.1201/9781420040470 – volume: 149 start-page: A718 year: 2002 ident: ref_40 article-title: Simulation of the Direct Methanol Fuel Cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.1473189 – volume: 150 start-page: E601 year: 2003 ident: ref_46 article-title: Sorption in Proton-Exchange Membranes an Explanation of Schroeder’s Paradox publication-title: J. Electrochem. Soc. doi: 10.1149/1.1623495 – volume: 37 start-page: 10265 year: 2012 ident: ref_5 article-title: The dew point temperature as a criterion for optimizing operating conditions of proton exchange membrane fuel cells publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.03.041 – volume: 154 start-page: B1295 year: 2007 ident: ref_13 article-title: Validated leverett approach for multiphase flow in PEFC diffusion media publication-title: J. Electrochem. Soc. doi: 10.1149/1.2784283 – volume: 337 start-page: 291 year: 2009 ident: ref_49 article-title: Water sorption in physically crosslinked poly (vinyl alcohol) membranes: An experimental investigation of Schroeder’s paradox publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.03.056 – volume: 32 start-page: 415 year: 2007 ident: ref_8 article-title: A comparative study of approaches to direct methanol fuel cells modelling publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.06.049 – volume: 63 start-page: 434 year: 2008 ident: ref_35 article-title: A two-phase PEMFC model for process control purposes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.09.017 – volume: Volume 141 start-page: 85 year: 2011 ident: ref_60 article-title: Mechanical and transport properties of nafion: Effects of temperature and water activity publication-title: Fuel Cells and Hydrogen Storage doi: 10.1007/430_2011_41 – volume: 39 start-page: 163 year: 2005 ident: ref_66 article-title: Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results publication-title: J. Compos. Mater. doi: 10.1177/0021998305046438 – volume: 163 start-page: 907 year: 2007 ident: ref_15 article-title: A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.10.014 – volume: 164 start-page: 189 year: 2007 ident: ref_16 article-title: Modeling water transport in liquid feed direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.10.047 – volume: 190 start-page: 216 year: 2009 ident: ref_24 article-title: An approach for determining the liquid water distribution in a liquid-feed direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.01.059 – volume: 28 start-page: 485 year: 1985 ident: ref_34 article-title: Heat transfer in porous media considering phase change and capillarity-the heat pipe effect publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(85)90082-1 – volume: 301 start-page: 93 year: 2007 ident: ref_53 article-title: Water sorption, desorption and transport in Nafion membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.06.022 – volume: 53 start-page: 1267 year: 2012 ident: ref_56 article-title: Sorption and transport of methanol and ethanol in H+-nafion publication-title: Polymer doi: 10.1016/j.polymer.2012.01.050 – volume: 52 start-page: 6125 year: 2007 ident: ref_17 article-title: A two-dimensional, two-phase mass transport model for liquid-feed DMFCs publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.03.069 – volume: 53 start-page: 853 year: 2007 ident: ref_19 article-title: Three-dimensional two-phase mass transport model for direct methanol fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.07.070 – volume: 154 start-page: B218 year: 2007 ident: ref_43 article-title: Probing liquid water saturation in diffusion media of polymer electrolyte fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.2401034 – volume: 97 start-page: 333 year: 1997 ident: ref_51 article-title: Water and methanol uptake in proton conducting Nafion® membranes publication-title: Solid State Ion. doi: 10.1016/S0167-2738(97)00033-7 – volume: 113 start-page: 24 year: 2008 ident: ref_47 article-title: Hydration of ionomers and schroeder’s paradox in nafion publication-title: J. Phys. Chem. B doi: 10.1021/jp806326a – volume: 230 start-page: 303 year: 2013 ident: ref_26 article-title: Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.009 – volume: 46 start-page: 2076 year: 2000 ident: ref_44 article-title: Equilibrium and diffusion of methanol and water in a nafion 117 membrane publication-title: AICHE J. doi: 10.1002/aic.690461018 – volume: 37 start-page: 4422 year: 2012 ident: ref_4 article-title: Numerical study of the effect of the GDL structure on water crossover in a direct methanol fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.11.102 – volume: 147 start-page: 466 year: 2000 ident: ref_52 article-title: Methanol transport through nafion membranes. Electro-osmotic drag effects on potential step measurements publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393219 – volume: 150 start-page: A508 year: 2003 ident: ref_9 article-title: Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1559061 – volume: 95 start-page: 6040 year: 1991 ident: ref_50 article-title: Determination of Water Diffusion Coefficients in Perfluorosulfonate Ionomeric Membranes publication-title: J. Phys. Chem. doi: 10.1021/j100168a060 – volume: 50 start-page: 979 year: 2012 ident: ref_59 article-title: On the Diffusion Coefficient of Water in Polymer Electrolyte Membranes publication-title: ECS Trans. doi: 10.1149/05002.0979ecst – volume: 147 start-page: 3171 year: 2000 ident: ref_58 article-title: Diffusion of Water in Nafion 115 Membranes publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393879 – volume: 55 start-page: 3542 year: 2010 ident: ref_62 article-title: Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.01.064 – volume: 46 start-page: 4595 year: 2003 ident: ref_32 article-title: Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(03)00305-3 – volume: 5 start-page: 021009 year: 2008 ident: ref_33 article-title: Two-phase trans.sport in PEM fuel cell cathodes publication-title: J. Fuel Cell Sci. Technol. doi: 10.1115/1.2821597 – volume: 37 start-page: 711 year: 2007 ident: ref_63 article-title: Electro-osmotic drag of methanol in proton exchange membranes publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-007-9304-6 – volume: 150 start-page: A811 year: 2003 ident: ref_14 article-title: Performance Modeling of a Direct Methanol Fuel publication-title: J. Electrochem. Soc. doi: 10.1149/1.1572150 – volume: 36 start-page: 9341 year: 2011 ident: ref_64 article-title: On water transport in polymer electrolyte membranes during the passage of current publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.04.079 – volume: 8 start-page: 111 year: 2008 ident: ref_68 article-title: Thermal conductivity and contact resistance of compressed gas diffusion layer of PEM fuel cell publication-title: Fuel Cells doi: 10.1002/fuce.200700054 – volume: 178 start-page: 291 year: 2008 ident: ref_20 article-title: Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.098 – volume: 36 start-page: 1637 year: 2011 ident: ref_36 article-title: The gas diffusion layer in polymer electrolyte membrane fuel cells: A process model of the two-phase flow publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.10.037 – volume: 169 start-page: 221 year: 2007 ident: ref_3 article-title: A review of polymer electrolyte membranes for direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.03.044 – volume: 111 start-page: 10166 year: 2007 ident: ref_48 article-title: Water and nafion equilibria. absence of schroeder’s paradox publication-title: J. Phys. Chem. B doi: 10.1021/jp073242v – volume: 142 start-page: 152 year: 1976 ident: ref_10 article-title: Capillary behavior in porous solids publication-title: Trans. AIME doi: 10.2118/941152-G – volume: 150 start-page: A1510 year: 2003 ident: ref_30 article-title: Rigorous 3-D Mathematical Modeling of PEM Fuel Cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1615609 – volume: 54 start-page: 6913 year: 2009 ident: ref_12 article-title: On the modeling of water transport in polymer electrolyte membrane fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.06.070 – volume: 40 start-page: 611 year: 1995 ident: ref_37 article-title: Surface Tension of Alcohol Water + Water from 20 to 50 °C publication-title: J. Chem. Eng. Data doi: 10.1021/je00019a016 – volume: 138 start-page: 2334 year: 1991 ident: ref_57 article-title: Polymer Electrolyte Fuel Cell Model publication-title: J. Electrochem. Soc. doi: 10.1149/1.2085971 – volume: 115 start-page: 2717 year: 2011 ident: ref_55 article-title: Diffusion and Interfacial Transport of Water in Nafion publication-title: J. Phys. Chem. B doi: 10.1021/jp1112125 – volume: 97 start-page: 12020 year: 1993 ident: ref_39 article-title: Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys publication-title: J. Phys. Chem. doi: 10.1021/j100148a030 |
SSID | ssj0000331333 |
Score | 2.3275464 |
Snippet | Direct-methanol fuel cell (DMFC) systems are comparatively simple, sometimes just requiring a fuel cartridge and a fuel cell stack with appropriate control... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 6869 |
SubjectTerms | computational fluid dynamics (CFD) Contact angle Design and construction direct-methanol fuel cells (DMFC) Electrolytes Equilibrium Fluid dynamics Fuel cells Interfaces Investigations limiting current density Methanol multi-phase flow reactant cross-over |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauNADgpaqy0uWWqnqwYKNH7FPaEGsUKWiqi0qN8uxxxVSlIVl9_8zk_XucihcYydKxp7HN_F8w9iXYUY_YKwUNusgVJZONFXtxKmMdbQuOZsoD_nj2lzdqO-3-rYk3B7LscqlTewNdZpEypGfVDUVMmhZq7P7B0Fdo-jvammh8ZZtogm2CL42zy-vf_5aZVlOpUQQJhe8pBLx_Ql06OOcsXTC-Zkn6gn7XzLLva8Z77DtEiTy0WJVd9kb6N6zd8-oAz-w3yPe186KcTu_S5xamrUcA1D-F4PHKQ8dXgNKi09aviIw53cdD3xh5dbD4zneegFtu8duxpd_Lq5EaZAgIqreTKiopbM2QjC2McqlmGRNLVyMyyFZCh0arRDjqSZrcAYMRAsKhkZLo8NQfmQb3aSDT4xXKkPVhBzxEYiZqgBKqwiyCtKmkIYD9m0pLB8Lezg1sWg9oggSrF8LdsA-r-beLzgz_jvrnGS-mkE81_2FyfSfL2rjsw3BpIxhiwKVk210ampZ1ToElSCHAftKK-ZJG_F1YihFBfhRxGvlR7UiSjVEiQN2uFxUX9T00a831f7rwwdsq6K6h_4U3yHbmE3ncITRyKw5LlvuCf403kQ priority: 102 providerName: ProQuest |
Title | A Multi-Fluid Model for Water and Methanol Transport in a Direct Methanol Fuel Cell |
URI | https://www.proquest.com/docview/2724245374 https://doaj.org/article/f8aa6df8194e4fd8b5db73275aa4defa |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NIeQvqi2ySLoIXSg0ltPSwdNyFOKDSUtqF7E7I0goBxQrr7_zNjO5s9NPTSiw-ybOQZz-MTmm8APpaZ4oCxsrBZh0Jl6Yq2ql3xRcY6WpecTbwP-e3CnF-qr0u93Gr1xWfCRnrgUXBH2YZgUqbApVDlZFud2lpWtQ5BJcxDakQxbwtMDT5YSgJfcuQjlYTrj7Cn2OaM5ZPNWxFoIOp_zB0PMabZg90pORSLcVEv4Qn2r-DFFmXga_i5EEPNbNF066skuJVZJyjxFL8pabwVoacx5O3w605siMvFVS-CGL3bw-1mTY-eYNe9gcvm9NfJeTE1RigimdyqUFFLZ23EYGxrlEsxyZpbtxiXQ7KcMrRaEbZTbdboDBqMFhWWRkujQynfwk5_3eM7EJXKWLUhR3oFYaUqoNIqoqyCtCmkcgaf74Xl48Qazs0rOk_ogQXrHwQ7gw-buTcjV8ZfZx2zzDczmN96GCCt-0nr_l9an8En1phnK6TlxDAVE9BHMZ-VX9SKqdQIHc7g4F6pfjLPP76quSpGy1q9_x-r2YfnFVdFDGf8DmBndbvGQ8pVVu0cntrmbA7Pjk8vvv-YDz8pXc-W5R0oPOrg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKfYUsASIMQh6q5fsQ9VtRTClj4utKI34_hRVYqy7XZXiD_Fb2Qmj90egFuvHsdKxuN5xfMNIW9HCeyA0jzTSbpMJG6ykuUmG3Kfe22C0QHzkEfHanIqvp7JszXyu6-FwWuVvU5sFHWYesyRb7McCxkkz8Xu5VWGXaPw72rfQqMVi4P46yeEbNc7-59gf98xVnw-2ZtkXVeBzIO8zjPhJTda--iULpUwwQeeY98TZZILGu1tKQUERqJMMhoVVfQ6ijhSkivpRhzWvUPuCs4NnihdfFnmdIacQ8jHWxRUoA-3Yw0W1SiN96lv2L2mPcC_jEBj2YqH5EHnktJxK0OPyFqsH5ONG0CFT8i3MW0qdbOiWlwEig3UKgruLv0OruqMuhrGIibhpxVdwqXTi5o62urUFblYwKN7saqektNbYdwzsl5P6_icUCZSZKVLHpaACI25KKTwkTPHdXBhNCAfemZZ32GVY8uMykLMgoy1K8YOyJvl3MsWoeOvsz4iz5czEFW7GZjOzm13SG3SzqmQwEkSUaSgSxnKnLNcOidCTG5A3uOOWTz78DredSUM8FGIomXHuUAAN4hJB2Sr31TbKYVruxLhzf-TX5N7k5OjQ3u4f3zwgtxnWHHR3B_cIuvz2SK-BD9oXr5qhI-SH7ct7X8ANFUYvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFaAFLgBCHVRK_1j4glD6ilkJUARW9uV4_UKXVpk0TIf4av47xPpIegFuvttfaHc_OyzPfALweRdQDUrFMRWEzHpnOCprrbMhc7pT2WvkUh_w8lQcn_OOpON2A310tTEqr7GRiLaj9zKUY-YDmqZBBsJwPYpsWcbw3-XBxmaUOUummtWun0bDIUfj1E923q_eHe3jWbyid7H_bPcjaDgOZQ95dZNwJppVywUpVSK698yxPPVCkjtarpHsLwdFJ4kUUQcsgg1OBh5EUTAo7YrjvLdjM0Ssa9mBzZ396_GUV4Rkyhg4gazBRGdPDQahQv2qpUnb1NS1YNwv4l0qo9dzkPtxrDVQybjjqAWyE6iHcvQZb-Ai-jkldt5tNyuW5J6mdWknQ-CXf0XCdE1vhWEgh-VlJVuDp5LwiljQSdj09WeKju6EsH8PJjZDuCfSqWRWeAqE8BlrY6HAL9NeoDVxwFxi1THnrR3141xHLuBa5PDXQKA16MImwZk3YPrxarb1o8Dr-umon0Xy1ImFs1wOz-Q_T_rImKmulj2gy8cCjV4XwRc5oLqzlPkTbh7fpxEySBPg6zrYFDfhRCVPLjHOe4NzQQ-3DdneophURV2bN0M_-P_0SbiOnm0-H06MtuENT-UWdTLgNvcV8GZ6jUbQoXrTcR-Dsphn-D-wZHk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Fluid+Model+for+Water+and+Methanol+Transport+in+a+Direct+Methanol+Fuel+Cell&rft.jtitle=Energies+%28Basel%29&rft.au=Anders+Christian+Olesen&rft.au=S%C3%B8ren+Knudsen+K%C3%A6r&rft.au=Torsten+Berning&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=19&rft.spage=6869&rft_id=info:doi/10.3390%2Fen15196869&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f8aa6df8194e4fd8b5db73275aa4defa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |