Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource sta...
Saved in:
Published in | IEEE transactions on quantum engineering Vol. 5; pp. 1 - 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2689-1808 2689-1808 |
DOI | 10.1109/TQE.2024.3358674 |
Cover
Loading…
Abstract | Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> time steps. Let <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> be the number of desired resource states required by a protocol. We characterize the probability distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula> of the ages of the quantum resource states, once <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> states have been generated in a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> quantum resources. We also give exact solutions for the first and second moments of the waiting time <inline-formula><tex-math notation="LaTeX">\tau _{(w,s)}</tex-math></inline-formula> until <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> resources are produced within a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <inline-formula><tex-math notation="LaTeX">\mathbb {E}(\tau _{(w,s)})</tex-math></inline-formula> and the distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> to optimize the rate of successful protocol execution. |
---|---|
AbstractList | Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <tex-math notation="LaTeX">$p$</tex-math> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <tex-math notation="LaTeX">$w$</tex-math> time steps. Let <tex-math notation="LaTeX">$s$</tex-math> be the number of desired resource states required by a protocol. We characterize the probability distribution <tex-math notation="LaTeX">$X_{(w,s)}$</tex-math> of the ages of the quantum resource states, once <tex-math notation="LaTeX">$s$</tex-math> states have been generated in a window <tex-math notation="LaTeX">$w$</tex-math>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <tex-math notation="LaTeX">$s$</tex-math> quantum resources. We also give exact solutions for the first and second moments of the waiting time <tex-math notation="LaTeX">$\tau _{(w,s)}$</tex-math> until <tex-math notation="LaTeX">$s$</tex-math> resources are produced within a window <tex-math notation="LaTeX">$w$</tex-math>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <tex-math notation="LaTeX">$\mathbb {E}(\tau _{(w,s)})$</tex-math> and the distribution <tex-math notation="LaTeX">$X_{(w,s)}$</tex-math>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <tex-math notation="LaTeX">$w$</tex-math> and <tex-math notation="LaTeX">$p$</tex-math> to optimize the rate of successful protocol execution. Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> time steps. Let <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> be the number of desired resource states required by a protocol. We characterize the probability distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula> of the ages of the quantum resource states, once <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> states have been generated in a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> quantum resources. We also give exact solutions for the first and second moments of the waiting time <inline-formula><tex-math notation="LaTeX">\tau _{(w,s)}</tex-math></inline-formula> until <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> resources are produced within a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <inline-formula><tex-math notation="LaTeX">\mathbb {E}(\tau _{(w,s)})</tex-math></inline-formula> and the distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> to optimize the rate of successful protocol execution. Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability [Formula Omitted] in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after [Formula Omitted] time steps. Let [Formula Omitted] be the number of desired resource states required by a protocol. We characterize the probability distribution [Formula Omitted] of the ages of the quantum resource states, once [Formula Omitted] states have been generated in a window [Formula Omitted]. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the [Formula Omitted] quantum resources. We also give exact solutions for the first and second moments of the waiting time [Formula Omitted] until [Formula Omitted] resources are produced within a window [Formula Omitted], which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time [Formula Omitted] and the distribution [Formula Omitted], we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer [Formula Omitted] and [Formula Omitted] to optimize the rate of successful protocol execution. |
Author | Vardoyan, Gayane Wehner, Stephanie Beauchamp, Thomas Davies, Bethany |
Author_xml | – sequence: 1 givenname: Bethany orcidid: 0009-0006-5422-1388 surname: Davies fullname: Davies, Bethany email: b.j.davies@tudelft.nl organization: QuTech, Delft University of Technology, Delft, The Netherlands – sequence: 2 givenname: Thomas orcidid: 0000-0001-7480-3728 surname: Beauchamp fullname: Beauchamp, Thomas email: t.r.beauchamp@tudelft.nl organization: QuTech, Delft University of Technology, Delft, The Netherlands – sequence: 3 givenname: Gayane orcidid: 0000-0002-6005-8138 surname: Vardoyan fullname: Vardoyan, Gayane email: g.s.vardoyan@tudelft.nl organization: QuTech, Delft University of Technology, Delft, The Netherlands – sequence: 4 givenname: Stephanie orcidid: 0000-0002-8433-0730 surname: Wehner fullname: Wehner, Stephanie email: s.d.c.wehner@tudelft.nl organization: QuTech, Delft University of Technology, Delft, The Netherlands |
BookMark | eNp9kc1LHTEUxUOxUGvdd9FFoOv3vPmYTGYpYq0gqPVJF12ETOZG85iXaJJB_O87z6cgXXR1PzjncLm_z2QvpoiEfGWwZAy6o9X16ZIDl0shGq1a-YHsc6W7BdOg9971n8hhKWsA4A1jCvg--bNKaSzUp0zrPdLjaMfnEgpNnl5PNtZpQ69yqsltVb_wcQo5xDt6U21FeoYRs60hRfo71PsQqaWrsMF5ikN6-kI-ejsWPHytB-T2x-nq5Ofi4vLs_OT4YuEkQF3Ivm9Ey_quUXrwcgBsOQrZSa4HJzQD5Yem6b1sWi298-0AXmFvQWGjtURxQM53uUOya_OQw8bmZ5NsMC-LlO-MzTW4EQ3re6kBBlACpeqsdl5766wUqKztuznr-y7rIafHCUs16zTl-SvFCFCd4iBUO6vUTuVyKiWjNy7Ul0fUbMNoGJgtFzNzMVsu5pXLbIR_jG_n_sfybWcJiPhOLlnbcin-ApAZmhQ |
CODEN | ITQEA9 |
CitedBy_id | crossref_primary_10_22331_q_2024_09_03_1458 |
Cites_doi | 10.1081/SQA-200056194 10.1038/s41534-023-00713-9 10.1103/physrevlett.70.1895 10.1103/PhysRevA.71.060310 10.1214/aop/1176994578 10.22331/q-2021-09-07-537 10.1103/physrevlett.77.2818 10.1007/978-3-662-45608-8_22 10.1007/978-0-8176-4749-0 10.1103/PhysRevA.59.1025 10.1038/s41467-021-22706-y 10.1103/PhysRevA.71.022316 10.1142/4669 10.1103/physrevlett.124.010510 10.1007/978-0-8176-4749-0_14 10.1119/1.1463744 10.1103/PhysRevA.100.032322 10.1007/978-1-4757-3460-7 10.1126/science.aam9288 10.1017/cbo9780511813658 10.1103/PhysRevLett.86.5188 10.1103/PRXQuantum.2.040302 10.1364/QIM.2021.M2A.2 10.1038/s41534-022-00631-2 10.1017/cbo9780511810817 10.1103/physreva.60.1888 10.1103/PhysRevLett.130.050803 10.1109/QCE49297.2020.00029 10.1103/physrevlett.76.722 10.1088/2058-9565/aab31b 10.1038/s41534-023-00765-x 10.1088/1367-2630/acb004 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.1109/TQE.2024.3358674 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2689-1808 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_1bb4800d063e469a8cf8faca43e6aab9 10_1109_TQE_2024_3358674 10417724 |
Genre | orig-research |
GrantInformation_xml | – fundername: NWO ZK QSC Ada Lovelace Fellowship – fundername: EU Horizon Europe grantid: 101102140 – fundername: Quantum Internet Alliance |
GroupedDBID | 0R~ 97E AAFWJ ABAZT ABJNI ABVLG AFPKN ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IEDLZ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-4bb5371b9568df4d0e72e349428dc38106fd55bf45784fcf7d0f6eba06e5884e3 |
IEDL.DBID | RIE |
ISSN | 2689-1808 |
IngestDate | Wed Aug 27 01:28:44 EDT 2025 Fri Jul 25 02:44:13 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Tue Jul 01 01:36:24 EDT 2025 Wed Aug 27 01:53:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-4bb5371b9568df4d0e72e349428dc38106fd55bf45784fcf7d0f6eba06e5884e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7480-3728 0000-0002-8433-0730 0009-0006-5422-1388 0000-0002-6005-8138 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10417724 |
PQID | 3069620367 |
PQPubID | 5075780 |
PageCount | 20 |
ParticipantIDs | ieee_primary_10417724 crossref_citationtrail_10_1109_TQE_2024_3358674 proquest_journals_3069620367 crossref_primary_10_1109_TQE_2024_3358674 doaj_primary_oai_doaj_org_article_1bb4800d063e469a8cf8faca43e6aab9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on quantum engineering |
PublicationTitleAbbrev | TQE |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 Praxmeyer (ref13) 2013 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1081/SQA-200056194 – ident: ref15 doi: 10.1038/s41534-023-00713-9 – ident: ref33 doi: 10.1103/physrevlett.70.1895 – ident: ref5 doi: 10.1103/PhysRevA.71.060310 – ident: ref30 doi: 10.1214/aop/1176994578 – ident: ref12 doi: 10.22331/q-2021-09-07-537 – ident: ref2 doi: 10.1103/physrevlett.77.2818 – ident: ref28 doi: 10.1007/978-3-662-45608-8_22 – ident: ref20 doi: 10.1007/978-0-8176-4749-0 – ident: ref6 doi: 10.1103/PhysRevA.59.1025 – ident: ref17 doi: 10.1038/s41467-021-22706-y – ident: ref4 doi: 10.1103/PhysRevA.71.022316 – ident: ref22 doi: 10.1142/4669 – ident: ref10 doi: 10.1103/physrevlett.124.010510 – ident: ref24 doi: 10.1007/978-0-8176-4749-0_14 – ident: ref26 doi: 10.1119/1.1463744 – ident: ref14 doi: 10.1103/PhysRevA.100.032322 – ident: ref19 doi: 10.1007/978-1-4757-3460-7 – ident: ref3 doi: 10.1126/science.aam9288 – ident: ref31 doi: 10.1017/cbo9780511813658 – ident: ref27 doi: 10.1103/PhysRevLett.86.5188 – ident: ref21 doi: 10.1214/aop/1176994578 – ident: ref18 doi: 10.1103/PRXQuantum.2.040302 – ident: ref7 doi: 10.1364/QIM.2021.M2A.2 – ident: ref8 doi: 10.1038/s41534-022-00631-2 – ident: ref32 doi: 10.1017/cbo9780511810817 – ident: ref34 doi: 10.1103/physreva.60.1888 – ident: ref9 doi: 10.1103/PhysRevLett.130.050803 – ident: ref11 doi: 10.1109/QCE49297.2020.00029 – year: 2013 ident: ref13 article-title: Reposition time in probabilistic imperfect memories – ident: ref1 doi: 10.1103/physrevlett.76.722 – ident: ref16 doi: 10.1088/2058-9565/aab31b – ident: ref29 doi: 10.1038/s41534-023-00765-x – ident: ref35 doi: 10.1088/1367-2630/acb004 |
SSID | ssj0002511602 |
Score | 2.2570944 |
Snippet | Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Computational modeling Computer memory Exact solutions Performance analysis Performance evaluation Probabilistic logic Protocol Protocols Quantum computing Quantum entanglement Quantum networks Quantum phenomena Qubit scan statistics Statistical analysis Time dependence Windows (intervals) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRH5VWq-zBi4fYpNls0qNKi3gQKy0WPCz7xEJNpE3x7zuzSUtF0IvHLJtNMjO7M99m5ltCLqMY3KJ2HEAOC3G3KgqklEmQgeuV0GQj59k-H_n9hD1Mk-nWUV-YE1bRA1eC60ZKMQhqDLhSC1BOZtplTmrJYsulVL50D3zeFpjCNRgDZ46pO62aVLM7Hg0ADfbYdRwnGU_ZNz_k6frr81V-LMre0wwPyH4dItKb6tUOyY7Nj8iuT9XUy2PyOi6K-ZJCsEkheKNrVhFaODpagZxW7_RpUZSFxl7PFjN9wT1RH1XSimUalUFfZuXbLKeSYhUIXOWm-GySyXAwvrsP6iMSAg2TrwyYUkmcRgqL_oxjJrRpzyLjTC8zGsm7uDNJohyDicmcdqkJHbdKhtxihaqNT0gjL3LbItSCvPoAl7KeNgwcWz_MZAoDZ7HRTkWsTbprgQld84fjMRZz4XFE2BcgYoEiFrWI2-Rqc8dHxZ3xS99b1MGmH7Je-wawBVHbgvjLFtqkiRrcehiLAD3A4J21SkU9RZcCsFKf42_Y9PQ_nn1G9vB7qt2ZDmmUi5U9h3ilVBfeNL8A8XvknQ priority: 102 providerName: Directory of Open Access Journals |
Title | Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window |
URI | https://ieeexplore.ieee.org/document/10417724 https://www.proquest.com/docview/3069620367 https://doaj.org/article/1bb4800d063e469a8cf8faca43e6aab9 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEB9sQfDiZ6VPa9mDFw95TV42m-So8koRLFZeseBh2Y9ZLK2J9CUIHvzbndnse_iB4iUkYZMs-e1kfrOZ-S3A86Ikt-iCoiBH5jxbVWTGmCpryPUaOoVFiGqfp-rkXL65qC5SsXqshUHEmHyGc96N__J970aeKiMLlwWxQbkDOxS5TcVa2wkV5sqKs3X2k47m0epsSQHgQs7LsmpULX9xPVGhPy2p8sd3ODqX43twuunWlFNyNR8HO3ffflNs_O9-34e7iWaKl9O4eAC3sHsIt2O6p1s_go-rvr9eCyKsggig2CiTiD6Is5He9fhZvLvph95xq_fI2cLk4kRkpmJSqmZAxYfL4dNlJ4zgShI66nz_dQ_Oj5er1ydZWmYhc2TAQyatrcq6sFw46IP0OdYLZNWaReMdC4Cp4KvKBknGLYMLtc-DQmtyhVzliuVj2O36DvdBIAHQUsjVLJyX5BzbvDE13bgpvQu2kDM42iCgXdIg56UwrnWMRfJWE2aaMdMJsxm82F7xZdLf-EfbVwzqth0rZ8cTBIZOhqgLayWRZE_UDKVqTeNCE4wzskRljG1nsMcA_vSwCbsZHGzGiE5mvtYUb7WKf-XWT_5y2VO4w12cJm0OYHe4GfEZ0ZjBHsbwn7Zvvy8P41D-AcoF75s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BEaKXlo9WXSjgAxcO2SYbx0mOpWq1QFlRtBWVOFj-FBVtgrqJKvXXd8bxrigIxC2JnMTK82Te2DPPAG-yHN2i8QKDHJ7SbFWWKKWKpELXq_CSy3xQ-5yJ6Sn_cFacxWL1UAvjnAvJZ25Mh2Et37amp6kytHCeIRvk9-EBOv4iG8q1VlMqxJYF5evsRCXNvfnJIYaAEz7O86ISJb_jfIJGf9xU5Y8_cXAvR5swW3ZsyCr5Me47PTY3v2k2_nfPH8NGJJpsfxgZT-Cea57Cw5DwaRbP4Nu8bS8WDCkrQwrIltokrPXspMev3V-yz1dt1xpq9cVRvjA6ORa4KRu0qglS9vW8-37eMMWolgTPGtteb8Hp0eH8YJrEjRYSgybcJVzrIi8zTaWD1nObunLiSLdmUllDEmDC26LQnqN5c298aVMvnFapcFTn6vJtWGvaxu0AcwhAjUFXNTGWo3us00qV-OAqt8brjI9gb4mANFGFnDbDuJAhGklriZhJwkxGzEbwdnXHz0GB4x9t3xGoq3aknR0uIBgymqLMtOZIky2SM8dFrSrjK6-M4rkTSul6BFsE4C8vG7Abwe5yjMho6AuJEVctaDG3fP6X217Do-n807E8fj_7-ALWqbvDFM4urHVXvXuJpKbTr8JQvgUjVfC- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tools+for+the+Analysis+of+Quantum+Protocols+Requiring+State+Generation+Within+a+Time+Window&rft.jtitle=IEEE+transactions+on+quantum+engineering&rft.au=Davies%2C+Bethany&rft.au=Beauchamp%2C+Thomas&rft.au=Vardoyan%2C+Gayane&rft.au=Wehner%2C+Stephanie&rft.date=2024&rft.pub=IEEE&rft.eissn=2689-1808&rft.volume=5&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1109%2FTQE.2024.3358674&rft.externalDocID=10417724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-1808&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-1808&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-1808&client=summon |