Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window

Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource sta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on quantum engineering Vol. 5; pp. 1 - 20
Main Authors Davies, Bethany, Beauchamp, Thomas, Vardoyan, Gayane, Wehner, Stephanie
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2689-1808
2689-1808
DOI10.1109/TQE.2024.3358674

Cover

Loading…
Abstract Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> time steps. Let <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> be the number of desired resource states required by a protocol. We characterize the probability distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula> of the ages of the quantum resource states, once <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> states have been generated in a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> quantum resources. We also give exact solutions for the first and second moments of the waiting time <inline-formula><tex-math notation="LaTeX">\tau _{(w,s)}</tex-math></inline-formula> until <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> resources are produced within a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <inline-formula><tex-math notation="LaTeX">\mathbb {E}(\tau _{(w,s)})</tex-math></inline-formula> and the distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> to optimize the rate of successful protocol execution.
AbstractList Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <tex-math notation="LaTeX">$p$</tex-math> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <tex-math notation="LaTeX">$w$</tex-math> time steps. Let <tex-math notation="LaTeX">$s$</tex-math> be the number of desired resource states required by a protocol. We characterize the probability distribution <tex-math notation="LaTeX">$X_{(w,s)}$</tex-math> of the ages of the quantum resource states, once <tex-math notation="LaTeX">$s$</tex-math> states have been generated in a window <tex-math notation="LaTeX">$w$</tex-math>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <tex-math notation="LaTeX">$s$</tex-math> quantum resources. We also give exact solutions for the first and second moments of the waiting time <tex-math notation="LaTeX">$\tau _{(w,s)}$</tex-math> until <tex-math notation="LaTeX">$s$</tex-math> resources are produced within a window <tex-math notation="LaTeX">$w$</tex-math>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <tex-math notation="LaTeX">$\mathbb {E}(\tau _{(w,s)})$</tex-math> and the distribution <tex-math notation="LaTeX">$X_{(w,s)}$</tex-math>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <tex-math notation="LaTeX">$w$</tex-math> and <tex-math notation="LaTeX">$p$</tex-math> to optimize the rate of successful protocol execution.
Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> time steps. Let <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> be the number of desired resource states required by a protocol. We characterize the probability distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula> of the ages of the quantum resource states, once <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> states have been generated in a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> quantum resources. We also give exact solutions for the first and second moments of the waiting time <inline-formula><tex-math notation="LaTeX">\tau _{(w,s)}</tex-math></inline-formula> until <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula> resources are produced within a window <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula>, which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time <inline-formula><tex-math notation="LaTeX">\mathbb {E}(\tau _{(w,s)})</tex-math></inline-formula> and the distribution <inline-formula><tex-math notation="LaTeX">X_{(w,s)}</tex-math></inline-formula>, we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer <inline-formula><tex-math notation="LaTeX">w</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">p</tex-math></inline-formula> to optimize the rate of successful protocol execution.
Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum network protocols that require a certain number of entangled pairs. Here, we consider a setting in which a process generates a quantum resource state with some probability [Formula Omitted] in each time step and stores it in a quantum memory that is subject to time-dependent noise. To maintain sufficient quality for an application, each resource state is discarded from the memory after [Formula Omitted] time steps. Let [Formula Omitted] be the number of desired resource states required by a protocol. We characterize the probability distribution [Formula Omitted] of the ages of the quantum resource states, once [Formula Omitted] states have been generated in a window [Formula Omitted]. Combined with a time-dependent noise model, knowledge of this distribution allows for the calculation of fidelity statistics of the [Formula Omitted] quantum resources. We also give exact solutions for the first and second moments of the waiting time [Formula Omitted] until [Formula Omitted] resources are produced within a window [Formula Omitted], which provides information about the rate of the protocol. Since it is difficult to obtain general closed-form expressions for statistical quantities describing the expected waiting time [Formula Omitted] and the distribution [Formula Omitted], we present two novel results that aid their computation in certain parameter regimes. The methods presented in this work can be used to analyze and optimize the execution of quantum protocols. Specifically, with an example of a blind quantum computing protocol, we illustrate how they may be used to infer [Formula Omitted] and [Formula Omitted] to optimize the rate of successful protocol execution.
Author Vardoyan, Gayane
Wehner, Stephanie
Beauchamp, Thomas
Davies, Bethany
Author_xml – sequence: 1
  givenname: Bethany
  orcidid: 0009-0006-5422-1388
  surname: Davies
  fullname: Davies, Bethany
  email: b.j.davies@tudelft.nl
  organization: QuTech, Delft University of Technology, Delft, The Netherlands
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0001-7480-3728
  surname: Beauchamp
  fullname: Beauchamp, Thomas
  email: t.r.beauchamp@tudelft.nl
  organization: QuTech, Delft University of Technology, Delft, The Netherlands
– sequence: 3
  givenname: Gayane
  orcidid: 0000-0002-6005-8138
  surname: Vardoyan
  fullname: Vardoyan, Gayane
  email: g.s.vardoyan@tudelft.nl
  organization: QuTech, Delft University of Technology, Delft, The Netherlands
– sequence: 4
  givenname: Stephanie
  orcidid: 0000-0002-8433-0730
  surname: Wehner
  fullname: Wehner, Stephanie
  email: s.d.c.wehner@tudelft.nl
  organization: QuTech, Delft University of Technology, Delft, The Netherlands
BookMark eNp9kc1LHTEUxUOxUGvdd9FFoOv3vPmYTGYpYq0gqPVJF12ETOZG85iXaJJB_O87z6cgXXR1PzjncLm_z2QvpoiEfGWwZAy6o9X16ZIDl0shGq1a-YHsc6W7BdOg9971n8hhKWsA4A1jCvg--bNKaSzUp0zrPdLjaMfnEgpNnl5PNtZpQ69yqsltVb_wcQo5xDt6U21FeoYRs60hRfo71PsQqaWrsMF5ikN6-kI-ejsWPHytB-T2x-nq5Ofi4vLs_OT4YuEkQF3Ivm9Ey_quUXrwcgBsOQrZSa4HJzQD5Yem6b1sWi298-0AXmFvQWGjtURxQM53uUOya_OQw8bmZ5NsMC-LlO-MzTW4EQ3re6kBBlACpeqsdl5766wUqKztuznr-y7rIafHCUs16zTl-SvFCFCd4iBUO6vUTuVyKiWjNy7Ul0fUbMNoGJgtFzNzMVsu5pXLbIR_jG_n_sfybWcJiPhOLlnbcin-ApAZmhQ
CODEN ITQEA9
CitedBy_id crossref_primary_10_22331_q_2024_09_03_1458
Cites_doi 10.1081/SQA-200056194
10.1038/s41534-023-00713-9
10.1103/physrevlett.70.1895
10.1103/PhysRevA.71.060310
10.1214/aop/1176994578
10.22331/q-2021-09-07-537
10.1103/physrevlett.77.2818
10.1007/978-3-662-45608-8_22
10.1007/978-0-8176-4749-0
10.1103/PhysRevA.59.1025
10.1038/s41467-021-22706-y
10.1103/PhysRevA.71.022316
10.1142/4669
10.1103/physrevlett.124.010510
10.1007/978-0-8176-4749-0_14
10.1119/1.1463744
10.1103/PhysRevA.100.032322
10.1007/978-1-4757-3460-7
10.1126/science.aam9288
10.1017/cbo9780511813658
10.1103/PhysRevLett.86.5188
10.1103/PRXQuantum.2.040302
10.1364/QIM.2021.M2A.2
10.1038/s41534-022-00631-2
10.1017/cbo9780511810817
10.1103/physreva.60.1888
10.1103/PhysRevLett.130.050803
10.1109/QCE49297.2020.00029
10.1103/physrevlett.76.722
10.1088/2058-9565/aab31b
10.1038/s41534-023-00765-x
10.1088/1367-2630/acb004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/TQE.2024.3358674
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2689-1808
EndPage 20
ExternalDocumentID oai_doaj_org_article_1bb4800d063e469a8cf8faca43e6aab9
10_1109_TQE_2024_3358674
10417724
Genre orig-research
GrantInformation_xml – fundername: NWO ZK QSC Ada Lovelace Fellowship
– fundername: EU Horizon Europe
  grantid: 101102140
– fundername: Quantum Internet Alliance
GroupedDBID 0R~
97E
AAFWJ
ABAZT
ABJNI
ABVLG
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IEDLZ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-4bb5371b9568df4d0e72e349428dc38106fd55bf45784fcf7d0f6eba06e5884e3
IEDL.DBID RIE
ISSN 2689-1808
IngestDate Wed Aug 27 01:28:44 EDT 2025
Fri Jul 25 02:44:13 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Tue Jul 01 01:36:24 EDT 2025
Wed Aug 27 01:53:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-4bb5371b9568df4d0e72e349428dc38106fd55bf45784fcf7d0f6eba06e5884e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7480-3728
0000-0002-8433-0730
0009-0006-5422-1388
0000-0002-6005-8138
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10417724
PQID 3069620367
PQPubID 5075780
PageCount 20
ParticipantIDs ieee_primary_10417724
crossref_citationtrail_10_1109_TQE_2024_3358674
proquest_journals_3069620367
crossref_primary_10_1109_TQE_2024_3358674
doaj_primary_oai_doaj_org_article_1bb4800d063e469a8cf8faca43e6aab9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on quantum engineering
PublicationTitleAbbrev TQE
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
Praxmeyer (ref13) 2013
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1081/SQA-200056194
– ident: ref15
  doi: 10.1038/s41534-023-00713-9
– ident: ref33
  doi: 10.1103/physrevlett.70.1895
– ident: ref5
  doi: 10.1103/PhysRevA.71.060310
– ident: ref30
  doi: 10.1214/aop/1176994578
– ident: ref12
  doi: 10.22331/q-2021-09-07-537
– ident: ref2
  doi: 10.1103/physrevlett.77.2818
– ident: ref28
  doi: 10.1007/978-3-662-45608-8_22
– ident: ref20
  doi: 10.1007/978-0-8176-4749-0
– ident: ref6
  doi: 10.1103/PhysRevA.59.1025
– ident: ref17
  doi: 10.1038/s41467-021-22706-y
– ident: ref4
  doi: 10.1103/PhysRevA.71.022316
– ident: ref22
  doi: 10.1142/4669
– ident: ref10
  doi: 10.1103/physrevlett.124.010510
– ident: ref24
  doi: 10.1007/978-0-8176-4749-0_14
– ident: ref26
  doi: 10.1119/1.1463744
– ident: ref14
  doi: 10.1103/PhysRevA.100.032322
– ident: ref19
  doi: 10.1007/978-1-4757-3460-7
– ident: ref3
  doi: 10.1126/science.aam9288
– ident: ref31
  doi: 10.1017/cbo9780511813658
– ident: ref27
  doi: 10.1103/PhysRevLett.86.5188
– ident: ref21
  doi: 10.1214/aop/1176994578
– ident: ref18
  doi: 10.1103/PRXQuantum.2.040302
– ident: ref7
  doi: 10.1364/QIM.2021.M2A.2
– ident: ref8
  doi: 10.1038/s41534-022-00631-2
– ident: ref32
  doi: 10.1017/cbo9780511810817
– ident: ref34
  doi: 10.1103/physreva.60.1888
– ident: ref9
  doi: 10.1103/PhysRevLett.130.050803
– ident: ref11
  doi: 10.1109/QCE49297.2020.00029
– year: 2013
  ident: ref13
  article-title: Reposition time in probabilistic imperfect memories
– ident: ref1
  doi: 10.1103/physrevlett.76.722
– ident: ref16
  doi: 10.1088/2058-9565/aab31b
– ident: ref29
  doi: 10.1038/s41534-023-00765-x
– ident: ref35
  doi: 10.1088/1367-2630/acb004
SSID ssj0002511602
Score 2.2570944
Snippet Quantum protocols commonly require a certain number of quantum resource states to be available simultaneously. An important class of examples is quantum...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computational modeling
Computer memory
Exact solutions
Performance analysis
Performance evaluation
Probabilistic logic
Protocol
Protocols
Quantum computing
Quantum entanglement
Quantum networks
Quantum phenomena
Qubit
scan statistics
Statistical analysis
Time dependence
Windows (intervals)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRH5VWq-zBi4fYpNls0qNKi3gQKy0WPCz7xEJNpE3x7zuzSUtF0IvHLJtNMjO7M99m5ltCLqMY3KJ2HEAOC3G3KgqklEmQgeuV0GQj59k-H_n9hD1Mk-nWUV-YE1bRA1eC60ZKMQhqDLhSC1BOZtplTmrJYsulVL50D3zeFpjCNRgDZ46pO62aVLM7Hg0ADfbYdRwnGU_ZNz_k6frr81V-LMre0wwPyH4dItKb6tUOyY7Nj8iuT9XUy2PyOi6K-ZJCsEkheKNrVhFaODpagZxW7_RpUZSFxl7PFjN9wT1RH1XSimUalUFfZuXbLKeSYhUIXOWm-GySyXAwvrsP6iMSAg2TrwyYUkmcRgqL_oxjJrRpzyLjTC8zGsm7uDNJohyDicmcdqkJHbdKhtxihaqNT0gjL3LbItSCvPoAl7KeNgwcWz_MZAoDZ7HRTkWsTbprgQld84fjMRZz4XFE2BcgYoEiFrWI2-Rqc8dHxZ3xS99b1MGmH7Je-wawBVHbgvjLFtqkiRrcehiLAD3A4J21SkU9RZcCsFKf42_Y9PQ_nn1G9vB7qt2ZDmmUi5U9h3ilVBfeNL8A8XvknQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Tools for the Analysis of Quantum Protocols Requiring State Generation Within a Time Window
URI https://ieeexplore.ieee.org/document/10417724
https://www.proquest.com/docview/3069620367
https://doaj.org/article/1bb4800d063e469a8cf8faca43e6aab9
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9VAEB9sQfDiZ6VPa9mDFw95TV42m-So8koRLFZeseBh2Y9ZLK2J9CUIHvzbndnse_iB4iUkYZMs-e1kfrOZ-S3A86Ikt-iCoiBH5jxbVWTGmCpryPUaOoVFiGqfp-rkXL65qC5SsXqshUHEmHyGc96N__J970aeKiMLlwWxQbkDOxS5TcVa2wkV5sqKs3X2k47m0epsSQHgQs7LsmpULX9xPVGhPy2p8sd3ODqX43twuunWlFNyNR8HO3ffflNs_O9-34e7iWaKl9O4eAC3sHsIt2O6p1s_go-rvr9eCyKsggig2CiTiD6Is5He9fhZvLvph95xq_fI2cLk4kRkpmJSqmZAxYfL4dNlJ4zgShI66nz_dQ_Oj5er1ydZWmYhc2TAQyatrcq6sFw46IP0OdYLZNWaReMdC4Cp4KvKBknGLYMLtc-DQmtyhVzliuVj2O36DvdBIAHQUsjVLJyX5BzbvDE13bgpvQu2kDM42iCgXdIg56UwrnWMRfJWE2aaMdMJsxm82F7xZdLf-EfbVwzqth0rZ8cTBIZOhqgLayWRZE_UDKVqTeNCE4wzskRljG1nsMcA_vSwCbsZHGzGiE5mvtYUb7WKf-XWT_5y2VO4w12cJm0OYHe4GfEZ0ZjBHsbwn7Zvvy8P41D-AcoF75s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BEaKXlo9WXSjgAxcO2SYbx0mOpWq1QFlRtBWVOFj-FBVtgrqJKvXXd8bxrigIxC2JnMTK82Te2DPPAG-yHN2i8QKDHJ7SbFWWKKWKpELXq_CSy3xQ-5yJ6Sn_cFacxWL1UAvjnAvJZ25Mh2Et37amp6kytHCeIRvk9-EBOv4iG8q1VlMqxJYF5evsRCXNvfnJIYaAEz7O86ISJb_jfIJGf9xU5Y8_cXAvR5swW3ZsyCr5Me47PTY3v2k2_nfPH8NGJJpsfxgZT-Cea57Cw5DwaRbP4Nu8bS8WDCkrQwrIltokrPXspMev3V-yz1dt1xpq9cVRvjA6ORa4KRu0qglS9vW8-37eMMWolgTPGtteb8Hp0eH8YJrEjRYSgybcJVzrIi8zTaWD1nObunLiSLdmUllDEmDC26LQnqN5c298aVMvnFapcFTn6vJtWGvaxu0AcwhAjUFXNTGWo3us00qV-OAqt8brjI9gb4mANFGFnDbDuJAhGklriZhJwkxGzEbwdnXHz0GB4x9t3xGoq3aknR0uIBgymqLMtOZIky2SM8dFrSrjK6-M4rkTSul6BFsE4C8vG7Abwe5yjMho6AuJEVctaDG3fP6X217Do-n807E8fj_7-ALWqbvDFM4urHVXvXuJpKbTr8JQvgUjVfC-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tools+for+the+Analysis+of+Quantum+Protocols+Requiring+State+Generation+Within+a+Time+Window&rft.jtitle=IEEE+transactions+on+quantum+engineering&rft.au=Davies%2C+Bethany&rft.au=Beauchamp%2C+Thomas&rft.au=Vardoyan%2C+Gayane&rft.au=Wehner%2C+Stephanie&rft.date=2024&rft.pub=IEEE&rft.eissn=2689-1808&rft.volume=5&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1109%2FTQE.2024.3358674&rft.externalDocID=10417724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2689-1808&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2689-1808&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2689-1808&client=summon