Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics

[Display omitted] Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One signifi...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmaceutics and biopharmaceutics Vol. 158; pp. 254 - 265
Main Authors Lumen, Dave, Wang, Shiqi, Mäkilä, Ermei, Imlimthan, Surachet, Sarparanta, Mirkka, Correia, Alexandra, Westerveld Haug, Christina, Hirvonen, Jouni, Santos, Hélder A., Airaksinen, Anu J., Filtvedt, Werner, Salonen, Jarno
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.
AbstractList [Display omitted] Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.
Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.
Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.
Author Sarparanta, Mirkka
Filtvedt, Werner
Westerveld Haug, Christina
Mäkilä, Ermei
Salonen, Jarno
Imlimthan, Surachet
Airaksinen, Anu J.
Lumen, Dave
Wang, Shiqi
Santos, Hélder A.
Hirvonen, Jouni
Correia, Alexandra
Author_xml – sequence: 1
  givenname: Dave
  surname: Lumen
  fullname: Lumen, Dave
  organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 2
  givenname: Shiqi
  surname: Wang
  fullname: Wang, Shiqi
  organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 3
  givenname: Ermei
  surname: Mäkilä
  fullname: Mäkilä, Ermei
  organization: Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
– sequence: 4
  givenname: Surachet
  surname: Imlimthan
  fullname: Imlimthan, Surachet
  organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 5
  givenname: Mirkka
  surname: Sarparanta
  fullname: Sarparanta, Mirkka
  organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 6
  givenname: Alexandra
  surname: Correia
  fullname: Correia, Alexandra
  organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 7
  givenname: Christina
  surname: Westerveld Haug
  fullname: Westerveld Haug, Christina
  organization: Nacamed AS, Askim, Norway
– sequence: 8
  givenname: Jouni
  surname: Hirvonen
  fullname: Hirvonen, Jouni
  organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 9
  givenname: Hélder A.
  surname: Santos
  fullname: Santos, Hélder A.
  email: helder.santos@helsinki.fi
  organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 10
  givenname: Anu J.
  surname: Airaksinen
  fullname: Airaksinen, Anu J.
  email: anu.airaksinen@helsinki.fi
  organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 11
  givenname: Werner
  surname: Filtvedt
  fullname: Filtvedt, Werner
  email: werner.filtvedt@dynatec.no
  organization: Nacamed AS, Askim, Norway
– sequence: 12
  givenname: Jarno
  surname: Salonen
  fullname: Salonen, Jarno
  email: jarno.salonen@utu.fi
  organization: Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33279602$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvHCEUhVHkKF4__kCKiDLNbHjNMEhpIstOLFlKk9SIgTtrVrNAYGalrfPHw-7aTQpXXNA5Hzr3XKGLEAMg9JGSNSW0-7JdwzYNa0ZYfaBrwtg7tKK95A0Xgl6gFVFcNZ2g9BJdlbIlhAjZ9h_QJedMqo6wFfr7GPZQZr8xs48BxxEXP3lbx2BCTCbP3k5QcMrRLRYcHg7YQpizH5cNYPsMO2_NhPcmxYwdpFj8iTTWq0mpsk7kgn3A8zNkkw7YBIedN5sQ68-23KD3o5kK3L6c1-j3w_2vux_N08_vj3ffnhorCJkboVpVp86AlRZ41ypmWtoOYARR0gH0UjrGLRslt9xxxYaWwsAVlR0oCfwafT5za5g_S02td75YmCYTIC5FM9HJXjBF2yr99CJdhh04nbLfmXzQr4urgv4ssDmWkmHU1s-npHM2ftKU6GNHequPHeljR5pSXTuqVvaf9ZX-punr2QR1QXsPWRfrIdRGfAY7axf9W_Z_2qStig
CitedBy_id crossref_primary_10_1007_s00231_023_03345_z
crossref_primary_10_1002_wnan_1950
crossref_primary_10_2139_ssrn_4159406
crossref_primary_10_3390_pharmaceutics16020276
crossref_primary_10_1016_j_cej_2024_150067
crossref_primary_10_3390_molecules30030684
crossref_primary_10_3390_nano12183226
crossref_primary_10_1140_epjp_s13360_022_03607_5
crossref_primary_10_1007_s13346_021_00991_w
crossref_primary_10_1016_j_nucmedbio_2022_05_004
crossref_primary_10_1016_j_ijpharm_2022_122371
crossref_primary_10_1016_j_cis_2025_103416
crossref_primary_10_1007_s10854_022_08774_w
crossref_primary_10_1039_D3NR05655D
crossref_primary_10_1016_j_micromeso_2021_111473
Cites_doi 10.1016/j.addr.2008.03.017
10.4103/eus.eus_44_19
10.1002/adfm.201200869
10.1016/j.biomaterials.2015.01.008
10.1016/j.biomaterials.2009.02.008
10.1016/j.ijrobp.2006.09.011
10.1016/j.biomaterials.2016.03.046
10.1007/s12274-014-0635-4
10.1016/S0169-409X(02)00022-4
10.1016/j.cej.2007.09.001
10.1016/j.cbpa.2015.08.009
10.1016/j.coph.2013.06.006
10.1016/j.actbio.2009.12.043
10.1200/JCO.2019.37.15_suppl.4125
10.1039/c3tb20285b
10.1038/s41467-019-11718-4
10.1016/j.solmat.2012.08.014
10.1016/S0167-9317(02)00447-1
10.1063/1.1319191
10.1002/adma.19950071215
10.1021/acsnano.9b05740
10.1016/j.ijpharm.2007.05.010
10.1016/S0022-0248(02)01472-0
10.1515/pac-2014-1117
10.1016/j.biomaterials.2010.12.011
10.3390/app10144992
10.1021/ar00001a002
10.3390/pharmaceutics11120686
10.1016/j.ces.2019.115230
10.2174/157016311796799053
10.2217/nnm-2019-0167
10.1158/1078-0432.CCR-05-0400
10.1002/adfm.201403414
10.1002/ange.201610162
10.4155/ppa-2016-0042
10.1186/1556-276X-7-408
10.1021/nl050066y
10.1002/cphc.200900914
10.1038/nbt.3330
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ejpb.2020.11.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3441
EndPage 265
ExternalDocumentID 33279602
10_1016_j_ejpb_2020_11_022
S0939641120303556
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSP
SSU
SSZ
T5K
TEORI
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
ID FETCH-LOGICAL-c400t-4959c406aec7ce36592a515bea4097dee877d23c2f73c3d392b51eb39176e97e3
IEDL.DBID .~1
ISSN 0939-6411
1873-3441
IngestDate Fri Jul 11 01:24:33 EDT 2025
Thu Apr 03 06:58:13 EDT 2025
Tue Jul 01 02:56:59 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Fri Feb 23 02:48:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nanoparticles
Toxicity
Porous silicon
Biodistribution
Production
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-4959c406aec7ce36592a515bea4097dee877d23c2f73c3d392b51eb39176e97e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0939641120303556
PMID 33279602
PQID 2467842915
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2467842915
pubmed_primary_33279602
crossref_citationtrail_10_1016_j_ejpb_2020_11_022
crossref_primary_10_1016_j_ejpb_2020_11_022
elsevier_sciencedirect_doi_10_1016_j_ejpb_2020_11_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle European journal of pharmaceutics and biopharmaceutics
PublicationTitleAlternate Eur J Pharm Biopharm
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Baron (b0175) 2002; 61
Goh (b0075) 2007; 67
Santos (b0045) 2011; 8
Blanco, Shen, Ferrari (b0095) 2015; 33
Limnell (b0100) 2007; 343
Santos, Salonen, Bimbo (b0050) 2013
Fomin, Timoshenko (b0195) 2020; 10
Santos (b0225) 2010; 6
Voelcker (b0015) 2009; 30
Yong (b0070) 2019; 10
Mäkilä (b0115) 2019; 13
Salonen, Lehto (b0030) 2008; 137
Chiappini (b0035) 2010; 11
Thommes (b0150) 2015; 87
Bimbo (b0230) 2011; 32
Rinaldi (b0165) 2001; vol. 72
Jasinski, Gates (b0160) 1991; 24
Wang (b0220) 2015; 48
Anglin (b0010) 2008; 60
Kim, Cho (b0120) 2012; 7
Zhang (b0055) 2019; 14
Bhutani (b0090) 2020; 9
Kim (b0065) 2018; 9
Filtvedt, Filtvedt (b0140) 2010
Canham (b0025) 1995; 7
Ross (b0085) 2019
Alhmoud (b0130) 2015; 25
Canham (b0040) 2014
Kolasinski (b0145) 2017; 129
Li, Bohn (b0110) 2000; 77
Blandin (b0190) 2013; 1
Şen, Sarparanta, Rosenholm, Airaksinen (b0060) 2018
Filtvedt (b0180) 2012; 107
Shahbazi (b0235) 2015; 8
Ferreira (b0215) 2016; 94
Godin (b0125) 2012; 22
Mangolini, Thimsen, Kortshagen (b0200) 2005; 5
Qi, Chilkoti (b0205) 2015; 28
Savage (b0005) 2013; 13
Santos (b0020) 2014
Kulyavtsev, Spencer (b0135) 2017; 6
Roberts, Bentley, Harris (b0210) 2002; 54
Leach, Zhu, Ekerdt (b0170) 2002; 243
GX (b0105) 2006
Zhang (b0080) 2005; 11
Vazquez-Pufleau, Yamane (b0185) 2020; 211
Lumen (b0155) 2019; 11
Vazquez-Pufleau (10.1016/j.ejpb.2020.11.022_b0185) 2020; 211
Mangolini (10.1016/j.ejpb.2020.11.022_b0200) 2005; 5
Shahbazi (10.1016/j.ejpb.2020.11.022_b0235) 2015; 8
Ferreira (10.1016/j.ejpb.2020.11.022_b0215) 2016; 94
Fomin (10.1016/j.ejpb.2020.11.022_b0195) 2020; 10
Voelcker (10.1016/j.ejpb.2020.11.022_b0015) 2009; 30
Goh (10.1016/j.ejpb.2020.11.022_b0075) 2007; 67
Salonen (10.1016/j.ejpb.2020.11.022_b0030) 2008; 137
Thommes (10.1016/j.ejpb.2020.11.022_b0150) 2015; 87
Roberts (10.1016/j.ejpb.2020.11.022_b0210) 2002; 54
Canham (10.1016/j.ejpb.2020.11.022_b0040) 2014
Santos (10.1016/j.ejpb.2020.11.022_b0050) 2013
Filtvedt (10.1016/j.ejpb.2020.11.022_b0140) 2010
Zhang (10.1016/j.ejpb.2020.11.022_b0055) 2019; 14
Blanco (10.1016/j.ejpb.2020.11.022_b0095) 2015; 33
Wang (10.1016/j.ejpb.2020.11.022_b0220) 2015; 48
Yong (10.1016/j.ejpb.2020.11.022_b0070) 2019; 10
Kim (10.1016/j.ejpb.2020.11.022_b0120) 2012; 7
Limnell (10.1016/j.ejpb.2020.11.022_b0100) 2007; 343
Lumen (10.1016/j.ejpb.2020.11.022_b0155) 2019; 11
Kolasinski (10.1016/j.ejpb.2020.11.022_b0145) 2017; 129
Mäkilä (10.1016/j.ejpb.2020.11.022_b0115) 2019; 13
Bimbo (10.1016/j.ejpb.2020.11.022_b0230) 2011; 32
Godin (10.1016/j.ejpb.2020.11.022_b0125) 2012; 22
Blandin (10.1016/j.ejpb.2020.11.022_b0190) 2013; 1
Santos (10.1016/j.ejpb.2020.11.022_b0045) 2011; 8
Bhutani (10.1016/j.ejpb.2020.11.022_b0090) 2020; 9
Santos (10.1016/j.ejpb.2020.11.022_b0020) 2014
Qi (10.1016/j.ejpb.2020.11.022_b0205) 2015; 28
Kulyavtsev (10.1016/j.ejpb.2020.11.022_b0135) 2017; 6
Rinaldi (10.1016/j.ejpb.2020.11.022_b0165) 2001; vol. 72
Santos (10.1016/j.ejpb.2020.11.022_b0225) 2010; 6
Chiappini (10.1016/j.ejpb.2020.11.022_b0035) 2010; 11
Kim (10.1016/j.ejpb.2020.11.022_b0065) 2018; 9
Jasinski (10.1016/j.ejpb.2020.11.022_b0160) 1991; 24
Filtvedt (10.1016/j.ejpb.2020.11.022_b0180) 2012; 107
Zhang (10.1016/j.ejpb.2020.11.022_b0080) 2005; 11
Savage (10.1016/j.ejpb.2020.11.022_b0005) 2013; 13
Ross (10.1016/j.ejpb.2020.11.022_b0085) 2019
Baron (10.1016/j.ejpb.2020.11.022_b0175) 2002; 61
Canham (10.1016/j.ejpb.2020.11.022_b0025) 1995; 7
GX (10.1016/j.ejpb.2020.11.022_b0105) 2006
Li (10.1016/j.ejpb.2020.11.022_b0110) 2000; 77
Leach (10.1016/j.ejpb.2020.11.022_b0170) 2002; 243
Alhmoud (10.1016/j.ejpb.2020.11.022_b0130) 2015; 25
Anglin (10.1016/j.ejpb.2020.11.022_b0010) 2008; 60
Şen (10.1016/j.ejpb.2020.11.022_b0060) 2018
References_xml – volume: 14
  start-page: 3213
  year: 2019
  end-page: 3230
  ident: b0055
  article-title: Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications
  publication-title: Nanomedicine
– volume: 6
  start-page: 77
  year: 2017
  end-page: 85
  ident: b0135
  article-title: Drug delivery via porous silicon: a focused patent review
  publication-title: Pharm. Pat. Anal.
– volume: 87
  start-page: 1051
  year: 2015
  end-page: 1069
  ident: b0150
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
– volume: 60
  start-page: 1266
  year: 2008
  end-page: 1277
  ident: b0010
  article-title: Porous silicon in drug delivery devices and materials
  publication-title: Adv. Drug Deliv. Rev.
– start-page: 1703651
  year: 2018
  ident: b0060
  article-title: Multimodality imaging of silica and silicon materials in vivo
  publication-title: Adv. Mater.
– volume: 54
  start-page: 459
  year: 2002
  end-page: 476
  ident: b0210
  article-title: Chemistry for peptide and protein PEGylation
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 655
  year: 2005
  end-page: 659
  ident: b0200
  article-title: High-yield plasma synthesis of luminescent silicon nanocrystals
  publication-title: Nano Lett.
– year: 2014
  ident: b0020
  article-title: Porous Silicon for Biomedical Applications
– volume: 61
  start-page: 511
  year: 2002
  end-page: 515
  ident: b0175
  article-title: Nucleation control of CVD growth silicon nanocrystals for quantum devices
  publication-title: Microelectron. Eng.
– volume: 107
  start-page: 188
  year: 2012
  end-page: 200
  ident: b0180
  article-title: Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors
  publication-title: Sol. Energy Mater.
– volume: 30
  start-page: 2873
  year: 2009
  end-page: 2880
  ident: b0015
  article-title: The biocompatibility of porous silicon in tissues of the eye
  publication-title: Biomaterials
– volume: 28
  start-page: 181
  year: 2015
  end-page: 193
  ident: b0205
  article-title: Protein–polymer conjugation—moving beyond PEGylation
  publication-title: Curr. Opin. Chem. Biol.
– volume: 48
  start-page: 108
  year: 2015
  end-page: 118
  ident: b0220
  article-title: Multifunctional porous silicon nanoparticles for cancer theranostics
  publication-title: Biomaterials
– volume: 77
  start-page: 2572
  year: 2000
  end-page: 2574
  ident: b0110
  article-title: Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon
  publication-title: Appl. Phys. Lett.
– volume: 67
  start-page: 786
  year: 2007
  end-page: 792
  ident: b0075
  article-title: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 13
  start-page: 13056
  year: 2019
  end-page: 13064
  ident: b0115
  article-title: Hierarchical nanostructuring of porous silicon with electrochemical and regenerative electroless etching
  publication-title: ACS Nano
– volume: 9
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0065
  article-title: Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus
  publication-title: Nat. Commun.
– volume: 8
  start-page: 228
  year: 2011
  end-page: 249
  ident: b0045
  article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging
  publication-title: Curr. Drug Discov. Technol.
– year: 2019
  ident: b0085
  article-title: PanCO: An open-label, single-arm pilot study of phosphorus-32 (P-32; Oncosil) microparticles in patients with unresectable locally advanced pancreatic adenocarcinoma (LAPC) in combination with FOLFIRINOX or gemcitabine+ nab-paclitaxel (GNP) chemotherapies
  publication-title: Am. Soc. Clin. Oncol.
– volume: 8
  start-page: 1505
  year: 2015
  end-page: 1521
  ident: b0235
  article-title: A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors
  publication-title: Nano Res.
– volume: 129
  start-page: 639
  year: 2017
  end-page: 642
  ident: b0145
  article-title: Regenerative electroless etching of silicon
  publication-title: Angew. Chem.
– volume: 32
  start-page: 2625
  year: 2011
  end-page: 2633
  ident: b0230
  article-title: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles
  publication-title: Biomaterials
– volume: 137
  start-page: 162
  year: 2008
  end-page: 172
  ident: b0030
  article-title: Fabrication and chemical surface modification of mesoporous silicon for biomedical applications
  publication-title: Chem. Eng. J.
– start-page: 65
  year: 2006
  end-page: 133
  ident: b0105
  article-title: Porous silicon: morphology and formation mechanisms
  publication-title: Modern Aspects of Electrochemistry
– volume: 13
  start-page: 834
  year: 2013
  end-page: 841
  ident: b0005
  article-title: Porous silicon advances in drug delivery and immunotherapy
  publication-title: Curr. Opin. Pharmacol.
– volume: 25
  start-page: 1137
  year: 2015
  end-page: 1145
  ident: b0130
  article-title: Porous silicon nanodiscs for targeted drug delivery
  publication-title: Adv. Funct. Mater.
– volume: 343
  start-page: 141
  year: 2007
  end-page: 147
  ident: b0100
  article-title: Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles
  publication-title: Int. J. Pharm.
– volume: 11
  start-page: 686
  year: 2019
  ident: b0155
  article-title: Site-specific
  publication-title: Pharmaceutics
– volume: 10
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0070
  article-title: Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy
  publication-title: Nat. Commun.
– volume: 11
  start-page: 7532
  year: 2005
  end-page: 7537
  ident: b0080
  article-title: Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice
  publication-title: Clin. Cancer Res.
– volume: 243
  start-page: 30
  year: 2002
  end-page: 40
  ident: b0170
  article-title: Thermal desorption effects in chemical vapor deposition of silicon nanoparticles
  publication-title: J. Cryst. Growth
– volume: 6
  start-page: 2721
  year: 2010
  end-page: 2731
  ident: b0225
  article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size
  publication-title: Acta Biomater.
– start-page: 1773
  year: 2013
  end-page: 1781
  ident: b0050
  article-title: Porous silicon for drug delivery
  publication-title: Encyclopedia of Metalloproteins
– volume: 11
  start-page: 1029
  year: 2010
  end-page: 1035
  ident: b0035
  article-title: Tailored porous silicon microparticles: fabrication and properties
  publication-title: ChemPhysChem
– volume: 22
  start-page: 4225
  year: 2012
  end-page: 4235
  ident: b0125
  article-title: Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 2489
  year: 2013
  end-page: 2495
  ident: b0190
  article-title: Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications
  publication-title: J. Mater. Chem. B
– volume: 33
  start-page: 941
  year: 2015
  end-page: 951
  ident: b0095
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
– volume: vol. 72
  start-page: 1
  year: 2001
  end-page: 50
  ident: b0165
  article-title: CVD technologies for silicon: a quick survey
  publication-title: Semiconductors and Semimetals
– volume: 7
  start-page: 1033
  year: 1995
  end-page: 1037
  ident: b0025
  article-title: Bioactive silicon structure fabrication through nanoetching techniques
  publication-title: Adv. Mater.
– volume: 7
  start-page: 408
  year: 2012
  ident: b0120
  article-title: Morphological and nanostructural features of porous silicon prepared by electrochemical etching
  publication-title: Nanoscale Res. Lett.
– year: 2014
  ident: b0040
  article-title: Handbook of Porous Silicon
– volume: 9
  start-page: 24
  year: 2020
  ident: b0090
  article-title: An open-label, single-arm pilot study of EUS-guided brachytherapy with phosphorus-32 microparticles in combination with gemcitabine+/-nab-paclitaxel in unresectable locally advanced pancreatic cancer (OncoPaC-1): Technical details and study protocol
  publication-title: Endosc. Ultrasound
– volume: 211
  start-page: 115230
  year: 2020
  ident: b0185
  article-title: Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth
  publication-title: Chem. Eng. Sci.
– year: 2010
  ident: b0140
  article-title: Reactor and method for production of silicon
  publication-title: WO2010136529A1
– volume: 24
  start-page: 9
  year: 1991
  end-page: 15
  ident: b0160
  article-title: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry
  publication-title: Acc. Chem. Res.
– volume: 94
  start-page: 93
  year: 2016
  end-page: 104
  ident: b0215
  article-title: In vitro and in vivo assessment of heart-homing porous silicon nanoparticles
  publication-title: Biomaterials
– volume: 10
  start-page: 4992
  year: 2020
  ident: b0195
  article-title: Spin-dependent phenomena in semiconductor micro-and nanoparticles for biomedical applications
  publication-title: Appl. Sci.
– volume: 60
  start-page: 1266
  issue: 11
  year: 2008
  ident: 10.1016/j.ejpb.2020.11.022_b0010
  article-title: Porous silicon in drug delivery devices and materials
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.03.017
– year: 2014
  ident: 10.1016/j.ejpb.2020.11.022_b0020
– volume: 9
  start-page: 24
  issue: 1
  year: 2020
  ident: 10.1016/j.ejpb.2020.11.022_b0090
  article-title: An open-label, single-arm pilot study of EUS-guided brachytherapy with phosphorus-32 microparticles in combination with gemcitabine+/-nab-paclitaxel in unresectable locally advanced pancreatic cancer (OncoPaC-1): Technical details and study protocol
  publication-title: Endosc. Ultrasound
  doi: 10.4103/eus.eus_44_19
– volume: 22
  start-page: 4225
  issue: 20
  year: 2012
  ident: 10.1016/j.ejpb.2020.11.022_b0125
  article-title: Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200869
– volume: 48
  start-page: 108
  year: 2015
  ident: 10.1016/j.ejpb.2020.11.022_b0220
  article-title: Multifunctional porous silicon nanoparticles for cancer theranostics
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.01.008
– volume: 30
  start-page: 2873
  issue: 15
  year: 2009
  ident: 10.1016/j.ejpb.2020.11.022_b0015
  article-title: The biocompatibility of porous silicon in tissues of the eye
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.02.008
– volume: 67
  start-page: 786
  issue: 3
  year: 2007
  ident: 10.1016/j.ejpb.2020.11.022_b0075
  article-title: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2006.09.011
– start-page: 1703651
  year: 2018
  ident: 10.1016/j.ejpb.2020.11.022_b0060
  article-title: Multimodality imaging of silica and silicon materials in vivo
  publication-title: Adv. Mater.
– volume: 94
  start-page: 93
  year: 2016
  ident: 10.1016/j.ejpb.2020.11.022_b0215
  article-title: In vitro and in vivo assessment of heart-homing porous silicon nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.03.046
– volume: 8
  start-page: 1505
  issue: 5
  year: 2015
  ident: 10.1016/j.ejpb.2020.11.022_b0235
  article-title: A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0635-4
– volume: vol. 72
  start-page: 1
  year: 2001
  ident: 10.1016/j.ejpb.2020.11.022_b0165
  article-title: CVD technologies for silicon: a quick survey
– volume: 54
  start-page: 459
  issue: 4
  year: 2002
  ident: 10.1016/j.ejpb.2020.11.022_b0210
  article-title: Chemistry for peptide and protein PEGylation
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(02)00022-4
– volume: 137
  start-page: 162
  issue: 1
  year: 2008
  ident: 10.1016/j.ejpb.2020.11.022_b0030
  article-title: Fabrication and chemical surface modification of mesoporous silicon for biomedical applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.09.001
– start-page: 1773
  year: 2013
  ident: 10.1016/j.ejpb.2020.11.022_b0050
  article-title: Porous silicon for drug delivery
– volume: 28
  start-page: 181
  year: 2015
  ident: 10.1016/j.ejpb.2020.11.022_b0205
  article-title: Protein–polymer conjugation—moving beyond PEGylation
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2015.08.009
– volume: 13
  start-page: 834
  issue: 5
  year: 2013
  ident: 10.1016/j.ejpb.2020.11.022_b0005
  article-title: Porous silicon advances in drug delivery and immunotherapy
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2013.06.006
– volume: 6
  start-page: 2721
  issue: 7
  year: 2010
  ident: 10.1016/j.ejpb.2020.11.022_b0225
  article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.12.043
– year: 2010
  ident: 10.1016/j.ejpb.2020.11.022_b0140
  article-title: Reactor and method for production of silicon
  publication-title: WO2010136529A1
– year: 2019
  ident: 10.1016/j.ejpb.2020.11.022_b0085
  article-title: PanCO: An open-label, single-arm pilot study of phosphorus-32 (P-32; Oncosil) microparticles in patients with unresectable locally advanced pancreatic adenocarcinoma (LAPC) in combination with FOLFIRINOX or gemcitabine+ nab-paclitaxel (GNP) chemotherapies
  publication-title: Am. Soc. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.15_suppl.4125
– volume: 1
  start-page: 2489
  issue: 19
  year: 2013
  ident: 10.1016/j.ejpb.2020.11.022_b0190
  article-title: Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20285b
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ejpb.2020.11.022_b0070
  article-title: Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11718-4
– volume: 107
  start-page: 188
  year: 2012
  ident: 10.1016/j.ejpb.2020.11.022_b0180
  article-title: Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors
  publication-title: Sol. Energy Mater.
  doi: 10.1016/j.solmat.2012.08.014
– volume: 61
  start-page: 511
  year: 2002
  ident: 10.1016/j.ejpb.2020.11.022_b0175
  article-title: Nucleation control of CVD growth silicon nanocrystals for quantum devices
  publication-title: Microelectron. Eng.
  doi: 10.1016/S0167-9317(02)00447-1
– volume: 77
  start-page: 2572
  issue: 16
  year: 2000
  ident: 10.1016/j.ejpb.2020.11.022_b0110
  article-title: Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1319191
– volume: 7
  start-page: 1033
  issue: 12
  year: 1995
  ident: 10.1016/j.ejpb.2020.11.022_b0025
  article-title: Bioactive silicon structure fabrication through nanoetching techniques
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19950071215
– volume: 13
  start-page: 13056
  issue: 11
  year: 2019
  ident: 10.1016/j.ejpb.2020.11.022_b0115
  article-title: Hierarchical nanostructuring of porous silicon with electrochemical and regenerative electroless etching
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05740
– year: 2014
  ident: 10.1016/j.ejpb.2020.11.022_b0040
– volume: 343
  start-page: 141
  issue: 1
  year: 2007
  ident: 10.1016/j.ejpb.2020.11.022_b0100
  article-title: Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2007.05.010
– volume: 243
  start-page: 30
  issue: 1
  year: 2002
  ident: 10.1016/j.ejpb.2020.11.022_b0170
  article-title: Thermal desorption effects in chemical vapor deposition of silicon nanoparticles
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)01472-0
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ejpb.2020.11.022_b0065
  article-title: Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus
  publication-title: Nat. Commun.
– volume: 87
  start-page: 1051
  issue: 9–10
  year: 2015
  ident: 10.1016/j.ejpb.2020.11.022_b0150
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-1117
– volume: 32
  start-page: 2625
  issue: 10
  year: 2011
  ident: 10.1016/j.ejpb.2020.11.022_b0230
  article-title: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.12.011
– volume: 10
  start-page: 4992
  issue: 14
  year: 2020
  ident: 10.1016/j.ejpb.2020.11.022_b0195
  article-title: Spin-dependent phenomena in semiconductor micro-and nanoparticles for biomedical applications
  publication-title: Appl. Sci.
  doi: 10.3390/app10144992
– volume: 24
  start-page: 9
  issue: 1
  year: 1991
  ident: 10.1016/j.ejpb.2020.11.022_b0160
  article-title: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00001a002
– volume: 11
  start-page: 686
  issue: 12
  year: 2019
  ident: 10.1016/j.ejpb.2020.11.022_b0155
  article-title: Site-specific 111In-radiolabeling of dual-PEGylated porous silicon nanoparticles and their in vivo evaluation in murine 4T1 breast cancer model
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11120686
– volume: 211
  start-page: 115230
  year: 2020
  ident: 10.1016/j.ejpb.2020.11.022_b0185
  article-title: Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.115230
– volume: 8
  start-page: 228
  issue: 3
  year: 2011
  ident: 10.1016/j.ejpb.2020.11.022_b0045
  article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging
  publication-title: Curr. Drug Discov. Technol.
  doi: 10.2174/157016311796799053
– volume: 14
  start-page: 3213
  issue: 24
  year: 2019
  ident: 10.1016/j.ejpb.2020.11.022_b0055
  article-title: Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2019-0167
– volume: 11
  start-page: 7532
  issue: 20
  year: 2005
  ident: 10.1016/j.ejpb.2020.11.022_b0080
  article-title: Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-0400
– volume: 25
  start-page: 1137
  issue: 7
  year: 2015
  ident: 10.1016/j.ejpb.2020.11.022_b0130
  article-title: Porous silicon nanodiscs for targeted drug delivery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403414
– volume: 129
  start-page: 639
  issue: 2
  year: 2017
  ident: 10.1016/j.ejpb.2020.11.022_b0145
  article-title: Regenerative electroless etching of silicon
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201610162
– volume: 6
  start-page: 77
  issue: 2
  year: 2017
  ident: 10.1016/j.ejpb.2020.11.022_b0135
  article-title: Drug delivery via porous silicon: a focused patent review
  publication-title: Pharm. Pat. Anal.
  doi: 10.4155/ppa-2016-0042
– start-page: 65
  year: 2006
  ident: 10.1016/j.ejpb.2020.11.022_b0105
  article-title: Porous silicon: morphology and formation mechanisms
– volume: 7
  start-page: 408
  year: 2012
  ident: 10.1016/j.ejpb.2020.11.022_b0120
  article-title: Morphological and nanostructural features of porous silicon prepared by electrochemical etching
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-408
– volume: 5
  start-page: 655
  issue: 4
  year: 2005
  ident: 10.1016/j.ejpb.2020.11.022_b0200
  article-title: High-yield plasma synthesis of luminescent silicon nanocrystals
  publication-title: Nano Lett.
  doi: 10.1021/nl050066y
– volume: 11
  start-page: 1029
  issue: 5
  year: 2010
  ident: 10.1016/j.ejpb.2020.11.022_b0035
  article-title: Tailored porous silicon microparticles: fabrication and properties
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200900914
– volume: 33
  start-page: 941
  issue: 9
  year: 2015
  ident: 10.1016/j.ejpb.2020.11.022_b0095
  article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
SSID ssj0004758
Score 2.4327788
Snippet [Display omitted] Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several...
Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 254
SubjectTerms Biodistribution
Nanoparticles
Porous silicon
Production
Toxicity
Title Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics
URI https://dx.doi.org/10.1016/j.ejpb.2020.11.022
https://www.ncbi.nlm.nih.gov/pubmed/33279602
https://www.proquest.com/docview/2467842915
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELUQXPay4mM_ygKalVZcltDGduLmiBCouyshpAWJm-XYExRUudW2ReqFC3-cceJQOMBhb1HlqFZmMvNe_PzM2A-bpcqVVZGE5EikK0xizBATzB0XlZAcXaO2uMhH1_L3TXazxk67vTBBVhlrf1vTm2odf-nHp9mf1nX_L3HxIpeEFyhPqWsG220pVcjy44eVzEOq5ozOMDgJo-PGmVbjhXfTkjgiD5XjeMD5W83pLfDZNKHzTfYxokc4aSe4xdbQb7PDy9Z-enkEV6vdVLMjOITLlTH1coc9vjDVmHiYVDCrx5QJHrzxRJ6jRg6mjQssOiiX0Ig362pxi2CjtwDcGwLt4LATfAEBX3i5Eg61h3Zj1xKMd-BaPV-Y1Sd2fX52dTpK4iEMiaXXe54QgSroKjdolUURVmENYaASTXDKcohDpSislldKWOEIbpVZSgydaGCOhULxma37icevDEw6HEhhjaM6ITOCIoR2UjcoUWaOWKXssbR7-tpGh_JwUMZYd1K0Ox0ipkPEiLpoiliP_Xy-Z9r6c7w7OuuCql9lmaYG8u5937sM0PT6hTUV43GymGlOjWZIPT3NeuxLmxrP8xCCKyKIfPc___Ub-8CDgqb54LPH1uf_FrhPEGheHjQ5fsA2Tn79GV08ARX0B9k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LBdhr2XPVoOGHpZvcSSH_GxKFqkaxcUWAr0JsgSXbgolGBJBuS8Pz7Klpvu0B56MwwLFkyK_D7rIwXw1aRxbsuqiLxzRIktdKT1iCLKrJCVTATZRm0xycYXyY_L9HILDrtaGC-rDLG_jelNtA53BuFrDuZ1PfjFXLzIEsYL7KecNbMnsO27U6U92D44OR1PNuWReXNMp38-8gNC7Uwr86Lreck0Ufjg8X0oxH356T782eSh4xfwPABIPGjn-BK2yL2CvfO2A_V6H6ebgqrFPu7h-aY39fo1_L3TV2PmcFbhor5hZ3DotGP-HGRyOG8awZLFco2NfrOuVleEJrQXwD-acTta6jRfyNgX726GY-2wre1ao3YWbSvp87N6AxfHR9PDcRTOYYgMr_BlxByq4KtMk8kNSb8RqxkGlaR9syxLNMpztqwRVS6NtIy4yjRmks5MMKMiJ_kWem7m6D2gjkfDRBptOVQkKaMRBjyxHZaUpJaJZdKHuPv6yoQm5f6sjBvVqdGulbeY8hZj9qLYYn34djtm3rboePDptDOq-s_RFOeQB8d96TxA8Qr02yra0Wy1UIJzzYjTepz24V3rGrfzkFLkzBHFh0e-dReejqc_z9TZyeT0IzwTXlDT_P_5BL3l7xV9ZkS0LHeCx_8DFEcKig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+silicon+nanoparticles+produced+by+centrifuge+chemical+vapor+deposition+for+applications+in+therapy+and+diagnostics&rft.jtitle=European+journal+of+pharmaceutics+and+biopharmaceutics&rft.au=Lumen%2C+Dave&rft.au=Wang%2C+Shiqi&rft.au=M%C3%A4kil%C3%A4%2C+Ermei&rft.au=Imlimthan%2C+Surachet&rft.date=2021-01-01&rft.eissn=1873-3441&rft.volume=158&rft.spage=254&rft_id=info:doi/10.1016%2Fj.ejpb.2020.11.022&rft_id=info%3Apmid%2F33279602&rft.externalDocID=33279602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-6411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-6411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-6411&client=summon