Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics
[Display omitted] Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One signifi...
Saved in:
Published in | European journal of pharmaceutics and biopharmaceutics Vol. 158; pp. 254 - 265 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements. |
---|---|
AbstractList | [Display omitted]
Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements. Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements.Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements. Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties, which makes it an excellent material for building engineered nanosystems for drug delivery and diagnostic purposes. One significant hurdle for commercial applications of PSi is the lack of industrial scale production of nanosized PSi particles. Here, we report a novel two-step production method for PSi nanoparticles. The method is based on centrifuge chemical vapor deposition (cCVD) of elemental silicon in an industrial scale reactor followed by electrochemical post-processing to porous particles. Physical properties, biocompatibility and in vivo biodistribution of the cCVD produced nanoparticles were investigated and compared to PSi nanoparticles conventionally produced from silicon wafers by pulse electrochemical etching. Our results demonstrate that the cCVD production provides PSi nanoparticles with comparable physical and biological quality to the conventional method. This method may circumvent several limitations of the conventional method such as the requirements for high purity monocrystalline silicon substrates as starting material and the material losses during the top-down milling process of the pulse-etched films to porous nanoparticles. However, the electroless etching required for the porosification of cCVD-produced nanoparticles limited control over the pore size, but is amenable for scaling of the production to industrial requirements. |
Author | Sarparanta, Mirkka Filtvedt, Werner Westerveld Haug, Christina Mäkilä, Ermei Salonen, Jarno Imlimthan, Surachet Airaksinen, Anu J. Lumen, Dave Wang, Shiqi Santos, Hélder A. Hirvonen, Jouni Correia, Alexandra |
Author_xml | – sequence: 1 givenname: Dave surname: Lumen fullname: Lumen, Dave organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 2 givenname: Shiqi surname: Wang fullname: Wang, Shiqi organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 3 givenname: Ermei surname: Mäkilä fullname: Mäkilä, Ermei organization: Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland – sequence: 4 givenname: Surachet surname: Imlimthan fullname: Imlimthan, Surachet organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 5 givenname: Mirkka surname: Sarparanta fullname: Sarparanta, Mirkka organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 6 givenname: Alexandra surname: Correia fullname: Correia, Alexandra organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 7 givenname: Christina surname: Westerveld Haug fullname: Westerveld Haug, Christina organization: Nacamed AS, Askim, Norway – sequence: 8 givenname: Jouni surname: Hirvonen fullname: Hirvonen, Jouni organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 9 givenname: Hélder A. surname: Santos fullname: Santos, Hélder A. email: helder.santos@helsinki.fi organization: Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 10 givenname: Anu J. surname: Airaksinen fullname: Airaksinen, Anu J. email: anu.airaksinen@helsinki.fi organization: Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 11 givenname: Werner surname: Filtvedt fullname: Filtvedt, Werner email: werner.filtvedt@dynatec.no organization: Nacamed AS, Askim, Norway – sequence: 12 givenname: Jarno surname: Salonen fullname: Salonen, Jarno email: jarno.salonen@utu.fi organization: Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33279602$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvHCEUhVHkKF4__kCKiDLNbHjNMEhpIstOLFlKk9SIgTtrVrNAYGalrfPHw-7aTQpXXNA5Hzr3XKGLEAMg9JGSNSW0-7JdwzYNa0ZYfaBrwtg7tKK95A0Xgl6gFVFcNZ2g9BJdlbIlhAjZ9h_QJedMqo6wFfr7GPZQZr8xs48BxxEXP3lbx2BCTCbP3k5QcMrRLRYcHg7YQpizH5cNYPsMO2_NhPcmxYwdpFj8iTTWq0mpsk7kgn3A8zNkkw7YBIedN5sQ68-23KD3o5kK3L6c1-j3w_2vux_N08_vj3ffnhorCJkboVpVp86AlRZ41ypmWtoOYARR0gH0UjrGLRslt9xxxYaWwsAVlR0oCfwafT5za5g_S02td75YmCYTIC5FM9HJXjBF2yr99CJdhh04nbLfmXzQr4urgv4ssDmWkmHU1s-npHM2ftKU6GNHequPHeljR5pSXTuqVvaf9ZX-punr2QR1QXsPWRfrIdRGfAY7axf9W_Z_2qStig |
CitedBy_id | crossref_primary_10_1007_s00231_023_03345_z crossref_primary_10_1002_wnan_1950 crossref_primary_10_2139_ssrn_4159406 crossref_primary_10_3390_pharmaceutics16020276 crossref_primary_10_1016_j_cej_2024_150067 crossref_primary_10_3390_molecules30030684 crossref_primary_10_3390_nano12183226 crossref_primary_10_1140_epjp_s13360_022_03607_5 crossref_primary_10_1007_s13346_021_00991_w crossref_primary_10_1016_j_nucmedbio_2022_05_004 crossref_primary_10_1016_j_ijpharm_2022_122371 crossref_primary_10_1016_j_cis_2025_103416 crossref_primary_10_1007_s10854_022_08774_w crossref_primary_10_1039_D3NR05655D crossref_primary_10_1016_j_micromeso_2021_111473 |
Cites_doi | 10.1016/j.addr.2008.03.017 10.4103/eus.eus_44_19 10.1002/adfm.201200869 10.1016/j.biomaterials.2015.01.008 10.1016/j.biomaterials.2009.02.008 10.1016/j.ijrobp.2006.09.011 10.1016/j.biomaterials.2016.03.046 10.1007/s12274-014-0635-4 10.1016/S0169-409X(02)00022-4 10.1016/j.cej.2007.09.001 10.1016/j.cbpa.2015.08.009 10.1016/j.coph.2013.06.006 10.1016/j.actbio.2009.12.043 10.1200/JCO.2019.37.15_suppl.4125 10.1039/c3tb20285b 10.1038/s41467-019-11718-4 10.1016/j.solmat.2012.08.014 10.1016/S0167-9317(02)00447-1 10.1063/1.1319191 10.1002/adma.19950071215 10.1021/acsnano.9b05740 10.1016/j.ijpharm.2007.05.010 10.1016/S0022-0248(02)01472-0 10.1515/pac-2014-1117 10.1016/j.biomaterials.2010.12.011 10.3390/app10144992 10.1021/ar00001a002 10.3390/pharmaceutics11120686 10.1016/j.ces.2019.115230 10.2174/157016311796799053 10.2217/nnm-2019-0167 10.1158/1078-0432.CCR-05-0400 10.1002/adfm.201403414 10.1002/ange.201610162 10.4155/ppa-2016-0042 10.1186/1556-276X-7-408 10.1021/nl050066y 10.1002/cphc.200900914 10.1038/nbt.3330 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ejpb.2020.11.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3441 |
EndPage | 265 |
ExternalDocumentID | 33279602 10_1016_j_ejpb_2020_11_022 S0939641120303556 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSP SSU SSZ T5K TEORI UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c400t-4959c406aec7ce36592a515bea4097dee877d23c2f73c3d392b51eb39176e97e3 |
IEDL.DBID | .~1 |
ISSN | 0939-6411 1873-3441 |
IngestDate | Fri Jul 11 01:24:33 EDT 2025 Thu Apr 03 06:58:13 EDT 2025 Tue Jul 01 02:56:59 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Fri Feb 23 02:48:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles Toxicity Porous silicon Biodistribution Production |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-4959c406aec7ce36592a515bea4097dee877d23c2f73c3d392b51eb39176e97e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0939641120303556 |
PMID | 33279602 |
PQID | 2467842915 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2467842915 pubmed_primary_33279602 crossref_citationtrail_10_1016_j_ejpb_2020_11_022 crossref_primary_10_1016_j_ejpb_2020_11_022 elsevier_sciencedirect_doi_10_1016_j_ejpb_2020_11_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | European journal of pharmaceutics and biopharmaceutics |
PublicationTitleAlternate | Eur J Pharm Biopharm |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Baron (b0175) 2002; 61 Goh (b0075) 2007; 67 Santos (b0045) 2011; 8 Blanco, Shen, Ferrari (b0095) 2015; 33 Limnell (b0100) 2007; 343 Santos, Salonen, Bimbo (b0050) 2013 Fomin, Timoshenko (b0195) 2020; 10 Santos (b0225) 2010; 6 Voelcker (b0015) 2009; 30 Yong (b0070) 2019; 10 Mäkilä (b0115) 2019; 13 Salonen, Lehto (b0030) 2008; 137 Chiappini (b0035) 2010; 11 Thommes (b0150) 2015; 87 Bimbo (b0230) 2011; 32 Rinaldi (b0165) 2001; vol. 72 Jasinski, Gates (b0160) 1991; 24 Wang (b0220) 2015; 48 Anglin (b0010) 2008; 60 Kim, Cho (b0120) 2012; 7 Zhang (b0055) 2019; 14 Bhutani (b0090) 2020; 9 Kim (b0065) 2018; 9 Filtvedt, Filtvedt (b0140) 2010 Canham (b0025) 1995; 7 Ross (b0085) 2019 Alhmoud (b0130) 2015; 25 Canham (b0040) 2014 Kolasinski (b0145) 2017; 129 Li, Bohn (b0110) 2000; 77 Blandin (b0190) 2013; 1 Şen, Sarparanta, Rosenholm, Airaksinen (b0060) 2018 Filtvedt (b0180) 2012; 107 Shahbazi (b0235) 2015; 8 Ferreira (b0215) 2016; 94 Godin (b0125) 2012; 22 Mangolini, Thimsen, Kortshagen (b0200) 2005; 5 Qi, Chilkoti (b0205) 2015; 28 Savage (b0005) 2013; 13 Santos (b0020) 2014 Kulyavtsev, Spencer (b0135) 2017; 6 Roberts, Bentley, Harris (b0210) 2002; 54 Leach, Zhu, Ekerdt (b0170) 2002; 243 GX (b0105) 2006 Zhang (b0080) 2005; 11 Vazquez-Pufleau, Yamane (b0185) 2020; 211 Lumen (b0155) 2019; 11 Vazquez-Pufleau (10.1016/j.ejpb.2020.11.022_b0185) 2020; 211 Mangolini (10.1016/j.ejpb.2020.11.022_b0200) 2005; 5 Shahbazi (10.1016/j.ejpb.2020.11.022_b0235) 2015; 8 Ferreira (10.1016/j.ejpb.2020.11.022_b0215) 2016; 94 Fomin (10.1016/j.ejpb.2020.11.022_b0195) 2020; 10 Voelcker (10.1016/j.ejpb.2020.11.022_b0015) 2009; 30 Goh (10.1016/j.ejpb.2020.11.022_b0075) 2007; 67 Salonen (10.1016/j.ejpb.2020.11.022_b0030) 2008; 137 Thommes (10.1016/j.ejpb.2020.11.022_b0150) 2015; 87 Roberts (10.1016/j.ejpb.2020.11.022_b0210) 2002; 54 Canham (10.1016/j.ejpb.2020.11.022_b0040) 2014 Santos (10.1016/j.ejpb.2020.11.022_b0050) 2013 Filtvedt (10.1016/j.ejpb.2020.11.022_b0140) 2010 Zhang (10.1016/j.ejpb.2020.11.022_b0055) 2019; 14 Blanco (10.1016/j.ejpb.2020.11.022_b0095) 2015; 33 Wang (10.1016/j.ejpb.2020.11.022_b0220) 2015; 48 Yong (10.1016/j.ejpb.2020.11.022_b0070) 2019; 10 Kim (10.1016/j.ejpb.2020.11.022_b0120) 2012; 7 Limnell (10.1016/j.ejpb.2020.11.022_b0100) 2007; 343 Lumen (10.1016/j.ejpb.2020.11.022_b0155) 2019; 11 Kolasinski (10.1016/j.ejpb.2020.11.022_b0145) 2017; 129 Mäkilä (10.1016/j.ejpb.2020.11.022_b0115) 2019; 13 Bimbo (10.1016/j.ejpb.2020.11.022_b0230) 2011; 32 Godin (10.1016/j.ejpb.2020.11.022_b0125) 2012; 22 Blandin (10.1016/j.ejpb.2020.11.022_b0190) 2013; 1 Santos (10.1016/j.ejpb.2020.11.022_b0045) 2011; 8 Bhutani (10.1016/j.ejpb.2020.11.022_b0090) 2020; 9 Santos (10.1016/j.ejpb.2020.11.022_b0020) 2014 Qi (10.1016/j.ejpb.2020.11.022_b0205) 2015; 28 Kulyavtsev (10.1016/j.ejpb.2020.11.022_b0135) 2017; 6 Rinaldi (10.1016/j.ejpb.2020.11.022_b0165) 2001; vol. 72 Santos (10.1016/j.ejpb.2020.11.022_b0225) 2010; 6 Chiappini (10.1016/j.ejpb.2020.11.022_b0035) 2010; 11 Kim (10.1016/j.ejpb.2020.11.022_b0065) 2018; 9 Jasinski (10.1016/j.ejpb.2020.11.022_b0160) 1991; 24 Filtvedt (10.1016/j.ejpb.2020.11.022_b0180) 2012; 107 Zhang (10.1016/j.ejpb.2020.11.022_b0080) 2005; 11 Savage (10.1016/j.ejpb.2020.11.022_b0005) 2013; 13 Ross (10.1016/j.ejpb.2020.11.022_b0085) 2019 Baron (10.1016/j.ejpb.2020.11.022_b0175) 2002; 61 Canham (10.1016/j.ejpb.2020.11.022_b0025) 1995; 7 GX (10.1016/j.ejpb.2020.11.022_b0105) 2006 Li (10.1016/j.ejpb.2020.11.022_b0110) 2000; 77 Leach (10.1016/j.ejpb.2020.11.022_b0170) 2002; 243 Alhmoud (10.1016/j.ejpb.2020.11.022_b0130) 2015; 25 Anglin (10.1016/j.ejpb.2020.11.022_b0010) 2008; 60 Şen (10.1016/j.ejpb.2020.11.022_b0060) 2018 |
References_xml | – volume: 14 start-page: 3213 year: 2019 end-page: 3230 ident: b0055 article-title: Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications publication-title: Nanomedicine – volume: 6 start-page: 77 year: 2017 end-page: 85 ident: b0135 article-title: Drug delivery via porous silicon: a focused patent review publication-title: Pharm. Pat. Anal. – volume: 87 start-page: 1051 year: 2015 end-page: 1069 ident: b0150 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. – volume: 60 start-page: 1266 year: 2008 end-page: 1277 ident: b0010 article-title: Porous silicon in drug delivery devices and materials publication-title: Adv. Drug Deliv. Rev. – start-page: 1703651 year: 2018 ident: b0060 article-title: Multimodality imaging of silica and silicon materials in vivo publication-title: Adv. Mater. – volume: 54 start-page: 459 year: 2002 end-page: 476 ident: b0210 article-title: Chemistry for peptide and protein PEGylation publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 655 year: 2005 end-page: 659 ident: b0200 article-title: High-yield plasma synthesis of luminescent silicon nanocrystals publication-title: Nano Lett. – year: 2014 ident: b0020 article-title: Porous Silicon for Biomedical Applications – volume: 61 start-page: 511 year: 2002 end-page: 515 ident: b0175 article-title: Nucleation control of CVD growth silicon nanocrystals for quantum devices publication-title: Microelectron. Eng. – volume: 107 start-page: 188 year: 2012 end-page: 200 ident: b0180 article-title: Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors publication-title: Sol. Energy Mater. – volume: 30 start-page: 2873 year: 2009 end-page: 2880 ident: b0015 article-title: The biocompatibility of porous silicon in tissues of the eye publication-title: Biomaterials – volume: 28 start-page: 181 year: 2015 end-page: 193 ident: b0205 article-title: Protein–polymer conjugation—moving beyond PEGylation publication-title: Curr. Opin. Chem. Biol. – volume: 48 start-page: 108 year: 2015 end-page: 118 ident: b0220 article-title: Multifunctional porous silicon nanoparticles for cancer theranostics publication-title: Biomaterials – volume: 77 start-page: 2572 year: 2000 end-page: 2574 ident: b0110 article-title: Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon publication-title: Appl. Phys. Lett. – volume: 67 start-page: 786 year: 2007 end-page: 792 ident: b0075 article-title: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 13 start-page: 13056 year: 2019 end-page: 13064 ident: b0115 article-title: Hierarchical nanostructuring of porous silicon with electrochemical and regenerative electroless etching publication-title: ACS Nano – volume: 9 start-page: 1 year: 2018 end-page: 13 ident: b0065 article-title: Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus publication-title: Nat. Commun. – volume: 8 start-page: 228 year: 2011 end-page: 249 ident: b0045 article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging publication-title: Curr. Drug Discov. Technol. – year: 2019 ident: b0085 article-title: PanCO: An open-label, single-arm pilot study of phosphorus-32 (P-32; Oncosil) microparticles in patients with unresectable locally advanced pancreatic adenocarcinoma (LAPC) in combination with FOLFIRINOX or gemcitabine+ nab-paclitaxel (GNP) chemotherapies publication-title: Am. Soc. Clin. Oncol. – volume: 8 start-page: 1505 year: 2015 end-page: 1521 ident: b0235 article-title: A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors publication-title: Nano Res. – volume: 129 start-page: 639 year: 2017 end-page: 642 ident: b0145 article-title: Regenerative electroless etching of silicon publication-title: Angew. Chem. – volume: 32 start-page: 2625 year: 2011 end-page: 2633 ident: b0230 article-title: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles publication-title: Biomaterials – volume: 137 start-page: 162 year: 2008 end-page: 172 ident: b0030 article-title: Fabrication and chemical surface modification of mesoporous silicon for biomedical applications publication-title: Chem. Eng. J. – start-page: 65 year: 2006 end-page: 133 ident: b0105 article-title: Porous silicon: morphology and formation mechanisms publication-title: Modern Aspects of Electrochemistry – volume: 13 start-page: 834 year: 2013 end-page: 841 ident: b0005 article-title: Porous silicon advances in drug delivery and immunotherapy publication-title: Curr. Opin. Pharmacol. – volume: 25 start-page: 1137 year: 2015 end-page: 1145 ident: b0130 article-title: Porous silicon nanodiscs for targeted drug delivery publication-title: Adv. Funct. Mater. – volume: 343 start-page: 141 year: 2007 end-page: 147 ident: b0100 article-title: Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles publication-title: Int. J. Pharm. – volume: 11 start-page: 686 year: 2019 ident: b0155 article-title: Site-specific publication-title: Pharmaceutics – volume: 10 start-page: 1 year: 2019 end-page: 16 ident: b0070 article-title: Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy publication-title: Nat. Commun. – volume: 11 start-page: 7532 year: 2005 end-page: 7537 ident: b0080 article-title: Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice publication-title: Clin. Cancer Res. – volume: 243 start-page: 30 year: 2002 end-page: 40 ident: b0170 article-title: Thermal desorption effects in chemical vapor deposition of silicon nanoparticles publication-title: J. Cryst. Growth – volume: 6 start-page: 2721 year: 2010 end-page: 2731 ident: b0225 article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size publication-title: Acta Biomater. – start-page: 1773 year: 2013 end-page: 1781 ident: b0050 article-title: Porous silicon for drug delivery publication-title: Encyclopedia of Metalloproteins – volume: 11 start-page: 1029 year: 2010 end-page: 1035 ident: b0035 article-title: Tailored porous silicon microparticles: fabrication and properties publication-title: ChemPhysChem – volume: 22 start-page: 4225 year: 2012 end-page: 4235 ident: b0125 article-title: Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice publication-title: Adv. Funct. Mater. – volume: 1 start-page: 2489 year: 2013 end-page: 2495 ident: b0190 article-title: Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications publication-title: J. Mater. Chem. B – volume: 33 start-page: 941 year: 2015 end-page: 951 ident: b0095 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. – volume: vol. 72 start-page: 1 year: 2001 end-page: 50 ident: b0165 article-title: CVD technologies for silicon: a quick survey publication-title: Semiconductors and Semimetals – volume: 7 start-page: 1033 year: 1995 end-page: 1037 ident: b0025 article-title: Bioactive silicon structure fabrication through nanoetching techniques publication-title: Adv. Mater. – volume: 7 start-page: 408 year: 2012 ident: b0120 article-title: Morphological and nanostructural features of porous silicon prepared by electrochemical etching publication-title: Nanoscale Res. Lett. – year: 2014 ident: b0040 article-title: Handbook of Porous Silicon – volume: 9 start-page: 24 year: 2020 ident: b0090 article-title: An open-label, single-arm pilot study of EUS-guided brachytherapy with phosphorus-32 microparticles in combination with gemcitabine+/-nab-paclitaxel in unresectable locally advanced pancreatic cancer (OncoPaC-1): Technical details and study protocol publication-title: Endosc. Ultrasound – volume: 211 start-page: 115230 year: 2020 ident: b0185 article-title: Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth publication-title: Chem. Eng. Sci. – year: 2010 ident: b0140 article-title: Reactor and method for production of silicon publication-title: WO2010136529A1 – volume: 24 start-page: 9 year: 1991 end-page: 15 ident: b0160 article-title: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry publication-title: Acc. Chem. Res. – volume: 94 start-page: 93 year: 2016 end-page: 104 ident: b0215 article-title: In vitro and in vivo assessment of heart-homing porous silicon nanoparticles publication-title: Biomaterials – volume: 10 start-page: 4992 year: 2020 ident: b0195 article-title: Spin-dependent phenomena in semiconductor micro-and nanoparticles for biomedical applications publication-title: Appl. Sci. – volume: 60 start-page: 1266 issue: 11 year: 2008 ident: 10.1016/j.ejpb.2020.11.022_b0010 article-title: Porous silicon in drug delivery devices and materials publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.03.017 – year: 2014 ident: 10.1016/j.ejpb.2020.11.022_b0020 – volume: 9 start-page: 24 issue: 1 year: 2020 ident: 10.1016/j.ejpb.2020.11.022_b0090 article-title: An open-label, single-arm pilot study of EUS-guided brachytherapy with phosphorus-32 microparticles in combination with gemcitabine+/-nab-paclitaxel in unresectable locally advanced pancreatic cancer (OncoPaC-1): Technical details and study protocol publication-title: Endosc. Ultrasound doi: 10.4103/eus.eus_44_19 – volume: 22 start-page: 4225 issue: 20 year: 2012 ident: 10.1016/j.ejpb.2020.11.022_b0125 article-title: Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200869 – volume: 48 start-page: 108 year: 2015 ident: 10.1016/j.ejpb.2020.11.022_b0220 article-title: Multifunctional porous silicon nanoparticles for cancer theranostics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.01.008 – volume: 30 start-page: 2873 issue: 15 year: 2009 ident: 10.1016/j.ejpb.2020.11.022_b0015 article-title: The biocompatibility of porous silicon in tissues of the eye publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.008 – volume: 67 start-page: 786 issue: 3 year: 2007 ident: 10.1016/j.ejpb.2020.11.022_b0075 article-title: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device—a first-in-man study publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2006.09.011 – start-page: 1703651 year: 2018 ident: 10.1016/j.ejpb.2020.11.022_b0060 article-title: Multimodality imaging of silica and silicon materials in vivo publication-title: Adv. Mater. – volume: 94 start-page: 93 year: 2016 ident: 10.1016/j.ejpb.2020.11.022_b0215 article-title: In vitro and in vivo assessment of heart-homing porous silicon nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.03.046 – volume: 8 start-page: 1505 issue: 5 year: 2015 ident: 10.1016/j.ejpb.2020.11.022_b0235 article-title: A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors publication-title: Nano Res. doi: 10.1007/s12274-014-0635-4 – volume: vol. 72 start-page: 1 year: 2001 ident: 10.1016/j.ejpb.2020.11.022_b0165 article-title: CVD technologies for silicon: a quick survey – volume: 54 start-page: 459 issue: 4 year: 2002 ident: 10.1016/j.ejpb.2020.11.022_b0210 article-title: Chemistry for peptide and protein PEGylation publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00022-4 – volume: 137 start-page: 162 issue: 1 year: 2008 ident: 10.1016/j.ejpb.2020.11.022_b0030 article-title: Fabrication and chemical surface modification of mesoporous silicon for biomedical applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.09.001 – start-page: 1773 year: 2013 ident: 10.1016/j.ejpb.2020.11.022_b0050 article-title: Porous silicon for drug delivery – volume: 28 start-page: 181 year: 2015 ident: 10.1016/j.ejpb.2020.11.022_b0205 article-title: Protein–polymer conjugation—moving beyond PEGylation publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2015.08.009 – volume: 13 start-page: 834 issue: 5 year: 2013 ident: 10.1016/j.ejpb.2020.11.022_b0005 article-title: Porous silicon advances in drug delivery and immunotherapy publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2013.06.006 – volume: 6 start-page: 2721 issue: 7 year: 2010 ident: 10.1016/j.ejpb.2020.11.022_b0225 article-title: In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.12.043 – year: 2010 ident: 10.1016/j.ejpb.2020.11.022_b0140 article-title: Reactor and method for production of silicon publication-title: WO2010136529A1 – year: 2019 ident: 10.1016/j.ejpb.2020.11.022_b0085 article-title: PanCO: An open-label, single-arm pilot study of phosphorus-32 (P-32; Oncosil) microparticles in patients with unresectable locally advanced pancreatic adenocarcinoma (LAPC) in combination with FOLFIRINOX or gemcitabine+ nab-paclitaxel (GNP) chemotherapies publication-title: Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2019.37.15_suppl.4125 – volume: 1 start-page: 2489 issue: 19 year: 2013 ident: 10.1016/j.ejpb.2020.11.022_b0190 article-title: Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20285b – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ejpb.2020.11.022_b0070 article-title: Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy publication-title: Nat. Commun. doi: 10.1038/s41467-019-11718-4 – volume: 107 start-page: 188 year: 2012 ident: 10.1016/j.ejpb.2020.11.022_b0180 article-title: Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors publication-title: Sol. Energy Mater. doi: 10.1016/j.solmat.2012.08.014 – volume: 61 start-page: 511 year: 2002 ident: 10.1016/j.ejpb.2020.11.022_b0175 article-title: Nucleation control of CVD growth silicon nanocrystals for quantum devices publication-title: Microelectron. Eng. doi: 10.1016/S0167-9317(02)00447-1 – volume: 77 start-page: 2572 issue: 16 year: 2000 ident: 10.1016/j.ejpb.2020.11.022_b0110 article-title: Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon publication-title: Appl. Phys. Lett. doi: 10.1063/1.1319191 – volume: 7 start-page: 1033 issue: 12 year: 1995 ident: 10.1016/j.ejpb.2020.11.022_b0025 article-title: Bioactive silicon structure fabrication through nanoetching techniques publication-title: Adv. Mater. doi: 10.1002/adma.19950071215 – volume: 13 start-page: 13056 issue: 11 year: 2019 ident: 10.1016/j.ejpb.2020.11.022_b0115 article-title: Hierarchical nanostructuring of porous silicon with electrochemical and regenerative electroless etching publication-title: ACS Nano doi: 10.1021/acsnano.9b05740 – year: 2014 ident: 10.1016/j.ejpb.2020.11.022_b0040 – volume: 343 start-page: 141 issue: 1 year: 2007 ident: 10.1016/j.ejpb.2020.11.022_b0100 article-title: Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2007.05.010 – volume: 243 start-page: 30 issue: 1 year: 2002 ident: 10.1016/j.ejpb.2020.11.022_b0170 article-title: Thermal desorption effects in chemical vapor deposition of silicon nanoparticles publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)01472-0 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ejpb.2020.11.022_b0065 article-title: Immunogene therapy with fusogenic nanoparticles modulates macrophage response to Staphylococcus aureus publication-title: Nat. Commun. – volume: 87 start-page: 1051 issue: 9–10 year: 2015 ident: 10.1016/j.ejpb.2020.11.022_b0150 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-1117 – volume: 32 start-page: 2625 issue: 10 year: 2011 ident: 10.1016/j.ejpb.2020.11.022_b0230 article-title: Drug permeation across intestinal epithelial cells using porous silicon nanoparticles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.12.011 – volume: 10 start-page: 4992 issue: 14 year: 2020 ident: 10.1016/j.ejpb.2020.11.022_b0195 article-title: Spin-dependent phenomena in semiconductor micro-and nanoparticles for biomedical applications publication-title: Appl. Sci. doi: 10.3390/app10144992 – volume: 24 start-page: 9 issue: 1 year: 1991 ident: 10.1016/j.ejpb.2020.11.022_b0160 article-title: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry publication-title: Acc. Chem. Res. doi: 10.1021/ar00001a002 – volume: 11 start-page: 686 issue: 12 year: 2019 ident: 10.1016/j.ejpb.2020.11.022_b0155 article-title: Site-specific 111In-radiolabeling of dual-PEGylated porous silicon nanoparticles and their in vivo evaluation in murine 4T1 breast cancer model publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11120686 – volume: 211 start-page: 115230 year: 2020 ident: 10.1016/j.ejpb.2020.11.022_b0185 article-title: Relative kinetics of nucleation and condensation of silane pyrolysis in a helium atmosphere provide mechanistic insight in the initial stages of particle formation and growth publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115230 – volume: 8 start-page: 228 issue: 3 year: 2011 ident: 10.1016/j.ejpb.2020.11.022_b0045 article-title: Multifunctional porous silicon for therapeutic drug delivery and imaging publication-title: Curr. Drug Discov. Technol. doi: 10.2174/157016311796799053 – volume: 14 start-page: 3213 issue: 24 year: 2019 ident: 10.1016/j.ejpb.2020.11.022_b0055 article-title: Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications publication-title: Nanomedicine doi: 10.2217/nnm-2019-0167 – volume: 11 start-page: 7532 issue: 20 year: 2005 ident: 10.1016/j.ejpb.2020.11.022_b0080 article-title: Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-05-0400 – volume: 25 start-page: 1137 issue: 7 year: 2015 ident: 10.1016/j.ejpb.2020.11.022_b0130 article-title: Porous silicon nanodiscs for targeted drug delivery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403414 – volume: 129 start-page: 639 issue: 2 year: 2017 ident: 10.1016/j.ejpb.2020.11.022_b0145 article-title: Regenerative electroless etching of silicon publication-title: Angew. Chem. doi: 10.1002/ange.201610162 – volume: 6 start-page: 77 issue: 2 year: 2017 ident: 10.1016/j.ejpb.2020.11.022_b0135 article-title: Drug delivery via porous silicon: a focused patent review publication-title: Pharm. Pat. Anal. doi: 10.4155/ppa-2016-0042 – start-page: 65 year: 2006 ident: 10.1016/j.ejpb.2020.11.022_b0105 article-title: Porous silicon: morphology and formation mechanisms – volume: 7 start-page: 408 year: 2012 ident: 10.1016/j.ejpb.2020.11.022_b0120 article-title: Morphological and nanostructural features of porous silicon prepared by electrochemical etching publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-408 – volume: 5 start-page: 655 issue: 4 year: 2005 ident: 10.1016/j.ejpb.2020.11.022_b0200 article-title: High-yield plasma synthesis of luminescent silicon nanocrystals publication-title: Nano Lett. doi: 10.1021/nl050066y – volume: 11 start-page: 1029 issue: 5 year: 2010 ident: 10.1016/j.ejpb.2020.11.022_b0035 article-title: Tailored porous silicon microparticles: fabrication and properties publication-title: ChemPhysChem doi: 10.1002/cphc.200900914 – volume: 33 start-page: 941 issue: 9 year: 2015 ident: 10.1016/j.ejpb.2020.11.022_b0095 article-title: Principles of nanoparticle design for overcoming biological barriers to drug delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 |
SSID | ssj0004758 |
Score | 2.4327788 |
Snippet | [Display omitted]
Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several... Porous silicon (PSi) is a biocompatible and biodegradable material, which can be utilized in biomedical applications. It has several favorable properties,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 254 |
SubjectTerms | Biodistribution Nanoparticles Porous silicon Production Toxicity |
Title | Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics |
URI | https://dx.doi.org/10.1016/j.ejpb.2020.11.022 https://www.ncbi.nlm.nih.gov/pubmed/33279602 https://www.proquest.com/docview/2467842915 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELUQXPay4mM_ygKalVZcltDGduLmiBCouyshpAWJm-XYExRUudW2ReqFC3-cceJQOMBhb1HlqFZmMvNe_PzM2A-bpcqVVZGE5EikK0xizBATzB0XlZAcXaO2uMhH1_L3TXazxk67vTBBVhlrf1vTm2odf-nHp9mf1nX_L3HxIpeEFyhPqWsG220pVcjy44eVzEOq5ozOMDgJo-PGmVbjhXfTkjgiD5XjeMD5W83pLfDZNKHzTfYxokc4aSe4xdbQb7PDy9Z-enkEV6vdVLMjOITLlTH1coc9vjDVmHiYVDCrx5QJHrzxRJ6jRg6mjQssOiiX0Ig362pxi2CjtwDcGwLt4LATfAEBX3i5Eg61h3Zj1xKMd-BaPV-Y1Sd2fX52dTpK4iEMiaXXe54QgSroKjdolUURVmENYaASTXDKcohDpSislldKWOEIbpVZSgydaGCOhULxma37icevDEw6HEhhjaM6ITOCIoR2UjcoUWaOWKXssbR7-tpGh_JwUMZYd1K0Ox0ipkPEiLpoiliP_Xy-Z9r6c7w7OuuCql9lmaYG8u5937sM0PT6hTUV43GymGlOjWZIPT3NeuxLmxrP8xCCKyKIfPc___Ub-8CDgqb54LPH1uf_FrhPEGheHjQ5fsA2Tn79GV08ARX0B9k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LBdhr2XPVoOGHpZvcSSH_GxKFqkaxcUWAr0JsgSXbgolGBJBuS8Pz7Klpvu0B56MwwLFkyK_D7rIwXw1aRxbsuqiLxzRIktdKT1iCLKrJCVTATZRm0xycYXyY_L9HILDrtaGC-rDLG_jelNtA53BuFrDuZ1PfjFXLzIEsYL7KecNbMnsO27U6U92D44OR1PNuWReXNMp38-8gNC7Uwr86Lreck0Ufjg8X0oxH356T782eSh4xfwPABIPGjn-BK2yL2CvfO2A_V6H6ebgqrFPu7h-aY39fo1_L3TV2PmcFbhor5hZ3DotGP-HGRyOG8awZLFco2NfrOuVleEJrQXwD-acTta6jRfyNgX726GY-2wre1ao3YWbSvp87N6AxfHR9PDcRTOYYgMr_BlxByq4KtMk8kNSb8RqxkGlaR9syxLNMpztqwRVS6NtIy4yjRmks5MMKMiJ_kWem7m6D2gjkfDRBptOVQkKaMRBjyxHZaUpJaJZdKHuPv6yoQm5f6sjBvVqdGulbeY8hZj9qLYYn34djtm3rboePDptDOq-s_RFOeQB8d96TxA8Qr02yra0Wy1UIJzzYjTepz24V3rGrfzkFLkzBHFh0e-dReejqc_z9TZyeT0IzwTXlDT_P_5BL3l7xV9ZkS0LHeCx_8DFEcKig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+silicon+nanoparticles+produced+by+centrifuge+chemical+vapor+deposition+for+applications+in+therapy+and+diagnostics&rft.jtitle=European+journal+of+pharmaceutics+and+biopharmaceutics&rft.au=Lumen%2C+Dave&rft.au=Wang%2C+Shiqi&rft.au=M%C3%A4kil%C3%A4%2C+Ermei&rft.au=Imlimthan%2C+Surachet&rft.date=2021-01-01&rft.eissn=1873-3441&rft.volume=158&rft.spage=254&rft_id=info:doi/10.1016%2Fj.ejpb.2020.11.022&rft_id=info%3Apmid%2F33279602&rft.externalDocID=33279602 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0939-6411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0939-6411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0939-6411&client=summon |