Rewilding crops for climate resilience: economic analysis and de novo domestication strategies
This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress resilience lost during domestication. Abstract To match predicted population growth, annual food production should be doubled by 2050. This is not...
Saved in:
Published in | Journal of experimental botany Vol. 72; no. 18; pp. 6123 - 6139 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
30.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress resilience lost during domestication.
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year–1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes. |
---|---|
AbstractList | This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress resilience lost during domestication.
Abstract
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year–1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes. To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes. To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year–1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes. |
Author | Wani, Shabir Hussain Shabala, Sergey Zhou, Meixue Saleem, Fozia Razzaq, Ali Yu, Min |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-9122-3714 surname: Razzaq fullname: Razzaq, Ali organization: Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan – sequence: 2 givenname: Shabir Hussain orcidid: 0000-0002-7456-4090 surname: Wani fullname: Wani, Shabir Hussain email: shabirhussainwani@gmail.com organization: Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India – sequence: 3 givenname: Fozia surname: Saleem fullname: Saleem, Fozia organization: Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan – sequence: 4 givenname: Min surname: Yu fullname: Yu, Min organization: International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China – sequence: 5 givenname: Meixue orcidid: 0000-0003-3009-7854 surname: Zhou fullname: Zhou, Meixue organization: Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia – sequence: 6 givenname: Sergey orcidid: 0000-0003-2345-8981 surname: Shabala fullname: Shabala, Sergey email: Sergey.Shabala@utas.edu.au organization: International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China |
BookMark | eNp9kE1LAzEQhoNUsK2e_AM5iSBrJ7vZ7K43KX5BQRC9uiTZ2ZKyTdZkq_bfG21Pgp5mDs87vPNMyMg6i4ScMrhkUGWz1aeaoZcqLcQBGTMuIEl5xkZkDJCmCVR5cUQmIawAIIc8H5PXJ_wwXWPskmrv-kBb56nuzFoOSD0G0xm0Gq8oamfd2mgqrey2wYS4NLRBat27o41bYxiMloNxlobBx_jSYDgmh63sAp7s55S83N48z--TxePdw_x6kWgOMCQcdNHmjchKptuMMy20RMWrQjGmQKkCRaUKrkspylIokaFsCg08wi1rcsym5Hx3t_fubROr1GsTNHadtOg2oU5zDnkKokgjynZo_DcEj22tzfDTO7Y2Xc2g_nZZR5f13mXMXPzK9D4q8ts_6LMd7Tb9v-AX9SeI7Q |
CitedBy_id | crossref_primary_10_1007_s00122_024_04550_y crossref_primary_10_1007_s11104_024_06720_9 crossref_primary_10_3390_crops3030018 crossref_primary_10_1016_j_envexpbot_2022_104944 crossref_primary_10_1071_FP23133 crossref_primary_10_3390_agriculture11100908 crossref_primary_10_1016_j_tplants_2023_05_012 crossref_primary_10_1007_s00122_023_04537_1 crossref_primary_10_1016_j_tplants_2025_02_003 crossref_primary_10_1016_j_cj_2023_03_017 crossref_primary_10_3390_plants10101982 crossref_primary_10_3390_app142411950 crossref_primary_10_3390_agriculture15010029 crossref_primary_10_1016_j_tplants_2023_01_008 crossref_primary_10_3390_earth3010016 crossref_primary_10_1111_nph_20227 crossref_primary_10_3389_fpls_2023_1352312 crossref_primary_10_1007_s00425_021_03706_0 crossref_primary_10_3389_fpls_2024_1397765 crossref_primary_10_3389_fpls_2023_1303429 crossref_primary_10_1111_ppl_14216 crossref_primary_10_1016_j_envexpbot_2022_105030 crossref_primary_10_1007_s11104_022_05428_y crossref_primary_10_1016_j_plaphy_2024_108768 crossref_primary_10_1093_aob_mcac022 crossref_primary_10_3389_fpls_2021_681367 crossref_primary_10_3389_fpls_2021_620420 crossref_primary_10_1007_s11033_021_06815_x crossref_primary_10_1007_s11104_024_07065_z crossref_primary_10_1371_journal_pbio_3002208 crossref_primary_10_1016_j_envexpbot_2024_105813 crossref_primary_10_1071_FP23034 crossref_primary_10_1016_j_plgene_2023_100439 crossref_primary_10_1111_tpj_16549 crossref_primary_10_1007_s00122_022_04131_x crossref_primary_10_1007_s12633_024_03031_7 crossref_primary_10_1039_D4EN00789A crossref_primary_10_3390_plants13050633 crossref_primary_10_3390_app14072877 crossref_primary_10_1007_s10722_023_01630_8 crossref_primary_10_5511_plantbiotechnology_23_1122a crossref_primary_10_3390_agronomy12092136 crossref_primary_10_3390_horticulturae9060650 crossref_primary_10_1186_s40537_025_01078_w crossref_primary_10_1093_plphys_kiac445 crossref_primary_10_1007_s00122_023_04267_4 crossref_primary_10_3390_plants12091764 crossref_primary_10_1093_jxb_erac224 crossref_primary_10_1093_jxb_erad477 crossref_primary_10_3389_fsci_2024_1416023 crossref_primary_10_3390_ijms232214046 crossref_primary_10_21498_2518_1017_20_1_2024_300137 crossref_primary_10_3389_frym_2024_1502882 crossref_primary_10_1186_s12870_022_03694_7 crossref_primary_10_1007_s43538_022_00073_6 crossref_primary_10_1016_j_stress_2024_100627 crossref_primary_10_3390_plants12173119 crossref_primary_10_1016_j_ncrops_2024_100045 crossref_primary_10_1360_TB_2023_1134 crossref_primary_10_1146_annurev_arplant_053122_030653 crossref_primary_10_3390_plants12030494 crossref_primary_10_1016_j_sajb_2024_10_011 crossref_primary_10_1016_j_scitotenv_2024_175949 crossref_primary_10_1111_nph_19619 |
Cites_doi | 10.1111/pbi.13354 10.3389/fpls.2018.01663 10.1098/rspb.2000.1578 10.1038/s41588-018-0041-z 10.2135/cropsci2016.10.0880 10.1038/nbt.4273 10.1007/s00122-010-1479-2 10.3390/agronomy8070119 10.1038/ng.3845 10.1146/annurev-resource-100517-022938 10.3389/fpls.2020.00922 10.1016/j.pbi.2020.101996 10.3390/plants9101305 10.3390/ijms21228567 10.1016/j.copbio.2016.11.009 10.1186/2047-217X-3-8 10.1007/s11103-006-9131-x 10.3389/fpls.2018.01454 10.1007/s11027-010-9219-0 10.5958/0975-6906.2015.00025.5 10.1016/j.tplants.2019.01.011 10.1111/pbi.12215 10.1111/tpj.13515 10.1038/nature22011 10.1038/nbt.4272 10.1016/j.pbi.2019.12.009 10.1017/S1479262113000439 10.1186/s12284-018-0242-1 10.1534/g3.115.019000 10.1111/tpj.13888 10.1038/s41467-017-02063-5 10.1175/JAMC-D-18-0174.1 10.1007/s11738-017-2403-z 10.1111/nph.13255 10.1016/j.jplph.2020.153276 10.15252/embj.2019103256 10.1002/9781119633174.ch21 10.1038/nbt.2050 10.1007/s00122-017-2910-8 10.1371/journal.pone.0048819 10.1002/csc2.20300 10.1038/srep32586 10.1038/s41467-018-02867-z 10.1016/j.molp.2019.03.016 10.1371/journal.pone.0132535 10.1016/j.biotechadv.2014.12.006 10.1016/j.plantsci.2018.06.017 10.1111/nph.15758 10.1007/s00299-015-1760-6 10.1111/1477-8947.12054 10.1007/978-981-13-6830-1_3 10.1038/ncomms13390 10.1073/pnas.1116437108 10.1073/pnas.0604379103 10.1007/s13205-020-02295-1 10.1371/journal.pone.0162860 10.1534/g3.117.039966 10.1371/journal.pone.0022938 10.1073/pnas.0403720101 10.1007/s11103-017-0643-3 10.1038/nbt.2979 10.1186/s12870-016-0872-7 10.1038/s41597-020-0470-2 10.1007/978-3-030-59577-7_12 10.1016/j.plaphy.2020.09.005 10.1371/journal.pgen.1003477 10.1038/nbt.3096 10.1111/nph.13533 10.1111/nph.15457 10.1038/s41477-018-0329-0 10.1126/science.1107891 10.1007/s11240-015-0734-2 10.3389/fpls.2018.01402 10.1007/s11103-017-0623-7 10.1038/s41586-020-2947-8 10.1002/9781119552154.ch25 10.1016/j.plantsci.2014.12.006 10.1038/s41467-017-02292-8 10.1111/mec.14082 10.3354/cr00797 10.1093/aob/mcm193 10.1016/j.cell.2020.05.023 10.1111/pbi.13022 10.1038/s42003-020-01413-2 10.1093/aob/mcy221 10.1016/j.plaphy.2017.07.029 10.1016/S0167-8809(99)00146-2 10.1023/B:CLIM.0000025748.49738.93 10.1038/ncomms7914 10.3389/fgene.2020.00359 10.1007/s00606-014-0999-7 10.1093/jxb/erv436 10.1038/nbt.2120 10.3389/fpls.2017.00972 10.3389/fpls.2020.601009 10.25174/2582-2675/2021/111256 10.1088/1748-9326/aa6b0c 10.1038/nature12028 10.1186/s13059-020-02224-8 10.1007/s11032-013-9936-7 10.1016/j.pbi.2019.12.013 10.1111/mec.13859 10.1016/j.atmosenv.2010.11.045 10.1016/j.plantsci.2013.10.007 10.1073/pnas.0701728104 10.1093/gigascience/giz115 10.3389/fpls.2016.01029 10.1038/s41588-019-0410-2 10.1038/nbt.3535 10.3390/ijms20164045 10.1007/s00425-016-2532-4 10.1111/pbi.12454 10.1038/90824 10.1038/s41588-020-00722-w 10.1038/srep19199 10.1104/pp.113.214262 10.1111/pbi.13210 10.1016/j.plantsci.2015.05.021 10.1126/science.1239402 10.1007/s11032-014-0131-2 10.1098/rstb.2010.0158 10.1016/j.cell.2021.01.013 10.2135/cropsci2016.10.0885 10.1016/j.plantsci.2015.08.021 10.1146/annurev.arplant.59.032607.092752 10.1038/s41580-020-00288-9 10.1371/journal.pone.0198776 10.1105/tpc.113.119982 10.1038/s41598-017-09772-3 10.1016/j.tplants.2014.11.003 10.25174/2582-2675/2020/100821 10.1016/j.molp.2015.05.004 10.1007/s00425-012-1657-3 10.1016/j.envexpbot.2014.10.003 10.1093/gigascience/giy013 10.1146/annurev-phyto-080614-120254 10.1186/s12284-016-0083-8 10.1016/j.tplants.2019.09.010 10.1038/srep36021 10.1016/j.scienta.2018.06.054 10.1038/s41477-019-0577-7 10.1093/molbev/msm077 10.1111/plb.12014 10.1525/gfc.2016.16.1.1 10.1002/bab.1923 10.1111/pbi.13422 10.1111/tpj.12616 10.1016/j.molp.2015.04.007 10.1093/jxb/erv465 10.3389/fpls.2014.00484 10.1007/s10142-017-0563-y 10.1111/pbi.13443 10.1073/pnas.1721749115 10.1111/nph.15350 10.1007/978-3-030-59577-7_9 10.1007/s11105-019-01185-y 10.1371/journal.pone.0066428 10.3389/fpls.2017.00536 10.1038/s41467-018-04253-1 10.1111/j.1365-3040.2009.02055.x 10.1038/s41598-020-63823-w 10.1002/leg3.36 10.1038/s41477-020-0733-0 10.1093/dnares/dsw025 10.1093/nar/gku1039 10.2135/cropsci2018.10.0640 10.1093/botlinnean/boaa064 10.1111/pbi.12467 10.1590/1678-4685-gmb-2016-0093 10.1016/j.jplph.2017.04.007 10.1016/j.pbi.2019.12.005 10.1104/pp.15.00636 10.1186/1471-2164-15-250 10.1016/j.plantsci.2015.08.015 10.1111/tpj.13931 10.1111/j.1365-3040.2012.02511.x 10.1105/tpc.114.135954 10.2135/cropsci2016.10.0851 10.1111/tpj.15107 10.3389/fpls.2019.00004 10.1111/pbi.12867 10.3389/fpls.2018.00128 10.1534/g3.116.026914 10.1016/j.envexpbot.2019.103884 10.1038/ncomms5340 10.1111/pbi.12449 10.3732/ajb.1400116 10.1038/srep14799 10.1007/s13258-019-00910-x 10.1016/j.tplants.2019.10.012 10.1016/j.biocon.2013.08.011 10.3389/fpls.2017.02211 10.1038/ng.3612 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1093/jxb/erab276 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 6139 |
ExternalDocumentID | 10_1093_jxb_erab276 10.1093/jxb/erab276 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 6.Y 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABEUO ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABWST ABXSQ ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACMRT ACNCT ACPQN ACPRK ACUFI ACUTJ ACZBC ADACV ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQVQM ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC C1A CAG CDBKE COF CS3 CXTWN CZ4 D-I DAKXR DATOO DFGAJ DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD ELUNK ESX F20 F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ H~9 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JXSIZ KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AGORE AHGBF AJBYB AJNCP ALXQX CITATION 7X8 |
ID | FETCH-LOGICAL-c400t-40c7f5d6381cf341c6caeb497b11b0bb7e69b74c8a6886b63ead7c04cf3f1d5e3 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Fri Jul 11 03:12:34 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Tue Jul 01 03:05:49 EDT 2025 Wed Aug 28 03:20:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | salinity Abiotic stress drought wild relatives food security flooding breeding population growth |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-40c7f5d6381cf341c6caeb497b11b0bb7e69b74c8a6886b63ead7c04cf3f1d5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2345-8981 0000-0002-9122-3714 0000-0003-3009-7854 0000-0002-7456-4090 |
OpenAccessLink | https://academic.oup.com/jxb/article-pdf/72/18/6123/40490832/erab276.pdf |
PQID | 2540520672 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2540520672 crossref_citationtrail_10_1093_jxb_erab276 crossref_primary_10_1093_jxb_erab276 oup_primary_10_1093_jxb_erab276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-30 |
PublicationDateYYYYMMDD | 2021-09-30 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK |
PublicationTitle | Journal of experimental botany |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Alexandrov (2021093021171533200_CIT0003) 2015; 43 Qiu (2021093021171533200_CIT0136) 2011; 122 Avnery (2021093021171533200_CIT0009) 2011; 45 Zhou (2021093021171533200_CIT0209) 2015; 33 Zhou (2021093021171533200_CIT0208) 2020; 52 Honsdorf (2021093021171533200_CIT0064) 2014; 34 Li (2021093021171533200_CIT0092) 2014; 32 Bevan (2021093021171533200_CIT0019) 2017; 543 Ochieng (2021093021171533200_CIT0119) 2021; 61 Li (2021093021171533200_CIT0091) 2018; 36 Ma (2021093021171533200_CIT0104) 2015; 8 Wang (2021093021171533200_CIT0181) 2021; 19 Bredeson (2021093021171533200_CIT0022) 2016; 34 Bortesi (2021093021171533200_CIT0021) 2015; 33 Edae (2021093021171533200_CIT0039) 2017; 7 FAO (2021093021171533200_CIT0042) 2017 Hufford (2021093021171533200_CIT0068) 2013; 9 Dinneny (2021093021171533200_CIT0037) 2010; 33 Russell (2021093021171533200_CIT0144) 2016; 48 Kuwayama (2021093021171533200_CIT0087) 2019 Berthouly-Salazar (2021093021171533200_CIT0018) 2016; 25 Yu (2021093021171533200_CIT0196) 2021; 184 Burgarella (2021093021171533200_CIT0026) 2019; 10 Nguyen (2021093021171533200_CIT0117) 2019; 59 Pour-Aboughadareh (2021093021171533200_CIT0131) 2017; 39 Hyten (2021093021171533200_CIT0070) 2006; 103 Pourkheirandish (2021093021171533200_CIT0132) 2020; 11 Kang (2021093021171533200_CIT0081) 2016; 14 Maxted (2021093021171533200_CIT0105) 2009 Zsögön (2021093021171533200_CIT0211) 2018; 36 Khan (2021093021171533200_CIT0084) 2019; 24 Singh (2021093021171533200_CIT0154) 2015; 75 Baute (2021093021171533200_CIT0014) 2015; 206 Huang (2021093021171533200_CIT0066) 2016; 54 Yu (2021093021171533200_CIT0198) 2017; 94 Bailey-Serres (2021093021171533200_CIT0011) 2008; 59 Ahmed (2021093021171533200_CIT0002) 2015; 111 Sinclair (2021093021171533200_CIT0152) 2000; 79 Lin (2021093021171533200_CIT0094) 2014; 15 Montenegro (2021093021171533200_CIT0111) 2016; 16 Teshome (2021093021171533200_CIT0165) 2020; 11 Kuzuoglu-Ozturk (2021093021171533200_CIT0088) 2012; 236 Francis (2021093021171533200_CIT0045) 2017; 44 Souter (2021093021171533200_CIT0161) 2017; 57 Stitzer (2021093021171533200_CIT0162) 2018; 220 Kasirajan (2021093021171533200_CIT0082) 2020; 68 Mbow (2021093021171533200_CIT0106) 2019 Xu (2021093021171533200_CIT0192) 2016; 23 Song (2021093021171533200_CIT0159) 2020; 6 Nelson (2021093021171533200_CIT0116) 2009 Vincent (2021093021171533200_CIT0175) 2013; 167 Gosal (2021093021171533200_CIT0055) 2020 Placido (2021093021171533200_CIT0129) 2013; 161 Singh (2021093021171533200_CIT0155) 2017; 8 Wendler (2021093021171533200_CIT0187) 2015; 8 Kadam (2021093021171533200_CIT0080) 2016; 242 Palmgren (2021093021171533200_CIT0121) 2015; 20 Saade (2021093021171533200_CIT0145) 2016; 6 Warschefsky (2021093021171533200_CIT0186) 2014; 101 Lucas (2021093021171533200_CIT0103) 2017; 17 Lowder (2021093021171533200_CIT0101) 2015; 169 Gupta (2021093021171533200_CIT0056) 2017; 24 Fernie (2021093021171533200_CIT0043) 2019; 12 FAO (2021093021171533200_CIT0041) 2015 Singh (2021093021171533200_CIT0153) 2015; 34 Cowan (2021093021171533200_CIT0032) 2020; 169 Li (2021093021171533200_CIT0090) 2012; 35 von Wettberg (2021093021171533200_CIT0178) 2018; 9 Yu (2021093021171533200_CIT0199) 2016; 244 Paprotny (2021093021171533200_CIT0123) 2018; 9 Tyack (2021093021171533200_CIT0171) 2020; 9 Brinton (2021093021171533200_CIT0023) 2020; 3 Jafarzadeh (2021093021171533200_CIT0073) 2016; 11 Smýkal (2021093021171533200_CIT0157) 2018; 8 Hübner (2021093021171533200_CIT0067) 2019; 5 Joshi (2021093021171533200_CIT0078) 2020; 38 Benlloch-Gonzalez (2021093021171533200_CIT0016) 2018; 240 Islam (2021093021171533200_CIT0071) 2021; 13 Tanoue (2021093021171533200_CIT0164) 2016; 6 Nan (2021093021171533200_CIT0115) 2020; 11 Wu (2021093021171533200_CIT0191) 2011; 6 Gao (2021093021171533200_CIT0050) 2017; 214 Wan (2021093021171533200_CIT0179) 2020; 42 Zhang (2021093021171533200_CIT0201) 2020; 56 Liu (2021093021171533200_CIT0096) 2015; 231 Yu (2021093021171533200_CIT0197) 2019; 17 Zhu (2021093021171533200_CIT0210) 2020; 21 Kumar (2021093021171533200_CIT0086) 2021 Song (2021093021171533200_CIT0158) 2019; 8 Van de Wiel (2021093021171533200_CIT0172) 2010 Scafaro (2021093021171533200_CIT0146) 2018; 9 Carter (2021093021171533200_CIT0029) 2018; 10 Cao (2021093021171533200_CIT0028) 2016; 16 Cortés (2021093021171533200_CIT0031) 2018; 9 FAO (2021093021171533200_CIT0040) 2012 Ramu (2021093021171533200_CIT0138) 2017; 49 Rao (2021093021171533200_CIT0139) 2015; 10 Zhang (2021093021171533200_CIT0203) 2001; 19 Kim (2021093021171533200_CIT0085) 2019; 58 Liu (2021093021171533200_CIT0099) 2020; 255 Vikram (2021093021171533200_CIT0173) 2015; 5 Lu (2021093021171533200_CIT0102) 2015; 6 Henry (2021093021171533200_CIT0060) 2014; 12 Jia (2021093021171533200_CIT0077) 2013; 496 Zhao (2021093021171533200_CIT0205) 2020; 18 Nisa (2021093021171533200_CIT0118) 2017; 119 Zhao (2021093021171533200_CIT0207) 2018; 50 Tubiello (2021093021171533200_CIT0170) 2007; 104 Atwell (2021093021171533200_CIT0007) 2014; 215 Porter (2021093021171533200_CIT0130) 2014 Rebetzke (2021093021171533200_CIT0143) 2019; 282 Jia (2021093021171533200_CIT0076) 2017; 7 Antle (2021093021171533200_CIT0006) 2004; 64 Dutra (2021093021171533200_CIT0038) 2018; 13 He (2021093021171533200_CIT0058) 2014; 5 Shabala (2021093021171533200_CIT0150) 2020; 225 Della Coletta (2021093021171533200_CIT0035) 2021; 22 Mishra (2021093021171533200_CIT0109) 2016; 9 Hirsch (2021093021171533200_CIT0062) 2014; 26 Liu (2021093021171533200_CIT0098) 2018; 95 Zaid (2021093021171533200_CIT0200) 2020 Bayer (2021093021171533200_CIT0015) 2020; 6 IWG Drought (2021093021171533200_CIT0072) 2020 Wani (2021093021171533200_CIT0185) 2020 Anderson (2021093021171533200_CIT0005) 2016; 6 Tian (2021093021171533200_CIT0167) 2021; 105 Peter (2021093021171533200_CIT0127) 2020; 10 Shi (2021093021171533200_CIT0151) 2020; 7 Yang (2021093021171533200_CIT0194) 2017; 8 Voesenek (2021093021171533200_CIT0177) 2013; 15 Fustier (2021093021171533200_CIT0046) 2017; 26 Joshi (2021093021171533200_CIT0079) 2016; 7 Peng (2021093021171533200_CIT0126) 2014; 33 Jayakodi (2021093021171533200_CIT0075) 2020; 588 Henry (2021093021171533200_CIT0061) 2014; 12 Patil (2021093021171533200_CIT0124) 2016; 6 Bassi (2021093021171533200_CIT0013) 2016; 242 Bansal (2021093021171533200_CIT0012) 2021 Yolcu (2021093021171533200_CIT0195) 2020; 21 Qi (2021093021171533200_CIT0135) 2014; 5 The 100 Tomato Genome Sequencing Consortium (2021093021171533200_CIT0166) 2014; 80 Berny Mier y Teran (2021093021171533200_CIT0017) 2019; 124 Hurgobin (2021093021171533200_CIT0069) 2018; 16 Wani (2021093021171533200_CIT0183) 2021; 15 Liu (2021093021171533200_CIT0097) 2020; 18 Coyne (2021093021171533200_CIT0033) 2020; 2 Qadir (2021093021171533200_CIT0134) 2014; 38 Zhao (2021093021171533200_CIT0206) 2017; 8 Rampino (2021093021171533200_CIT0137) 2020; 156 Fischer (2021093021171533200_CIT0044) 2014 Brunazzi (2021093021171533200_CIT0025) 2018; 94 Gornall (2021093021171533200_CIT0054) 2010; 365 Li (2021093021171533200_CIT0089) 2014; 3 Wang (2021093021171533200_CIT0182) 2020; 39 Abberton (2021093021171533200_CIT0001) 2016; 14 Pickersgill (2021093021171533200_CIT0128) 2007; 100 Shabala (2021093021171533200_CIT0149) 2016; 67 Michael (2021093021171533200_CIT0108) 2020; 54 Wani (2021093021171533200_CIT0184) 2020; 12 Brozynska (2021093021171533200_CIT0024) 2016; 14 Peng (2021093021171533200_CIT0125) 2004; 6 Ganie (2021093021171533200_CIT0049) 2021; 1 Munns (2021093021171533200_CIT0113) 2012; 30 Wang (2021093021171533200_CIT0180) 2018; 115 Ray (2021093021171533200_CIT0140) 2013; 8 Tilman (2021093021171533200_CIT0169) 2011; 108 Pan (2021093021171533200_CIT0122) 2018; 11 Oshunsanya (2021093021171533200_CIT0120) 2019 Wright (2021093021171533200_CIT0190) 2005; 308 Golicz (2021093021171533200_CIT0052) 2016; 7 Bailey (2021093021171533200_CIT0010) 2015 Tiffin (2021093021171533200_CIT0168) 2001; 268 Villano (2021093021171533200_CIT0174) 2020; 10 Liu (2021093021171533200_CIT0100) 2020; 182 Dempewolf (2021093021171533200_CIT0036) 2017; 57 Zhang (2021093021171533200_CIT0202) 2018; 9 Danilevicz (2021093021171533200_CIT0034) 2020; 54 Naim-Feil (2021093021171533200_CIT0114) 2017; 57 He (2021093021171533200_CIT0059) 2015; 66 Ganie (2021093021171533200_CIT0048) 2014; 300 Hossain (2021093021171533200_CIT0065) 2021 Janzen (2021093021171533200_CIT0074) 2019; 221 World Bank (2021093021171533200_CIT0189) 2017 Montenegro (2021093021171533200_CIT0110) 2017; 90 Song (2021093021171533200_CIT0160) 2015; 5 Sinha (2021093021171533200_CIT0156) 2020; 18 Scossa (2021093021171533200_CIT0148) 2016; 242 Khan (2021093021171533200_CIT0083) 2020; 25 Razzaq (2021093021171533200_CIT0142) 2019; 20 Cheng (2021093021171533200_CIT0030) 2018; 7 Zhang (2021093021171533200_CIT0204) 2017; 130 Haudry (2021093021171533200_CIT0057) 2007; 24 Menguer (2021093021171533200_CIT0107) 2017; 40 Ali (2021093021171533200_CIT0004) 2012; 7 Li (2021093021171533200_CIT0093) 2009; 39 Höft (2021093021171533200_CIT0063) 2018; 8 Liu (2021093021171533200_CIT0095) 2015; 121 Preece (2021093021171533200_CIT0133) 2020; 25 Aversano (2021093021171533200_CIT0008) 2015; 27 Gordon (2021093021171533200_CIT0053) 2017; 8 Borrill (2021093021171533200_CIT0020) 2015; 208 Schatz (2021093021171533200_CIT0147) 2014; 15 Moriondo (2021093021171533200_CIT0112) 2010; 15 Suprunova (2021093021171533200_CIT0163) 2007; 64 Razali (2021093021171533200_CIT0141) 2018; 9 Viruel (2021093021171533200_CIT0176) 2021; 195 Gammans (2021093021171533200_CIT0047) 2017; 12 Wheeler (2021093021171533200_CIT0188) 2013; 341 Gao (2021093021171533200_CIT0051) 2019; 51 Xu (2021093021171533200_CIT0193) 2012; 30 Cao (2021093021171533200_CIT0027) 2017; 95 |
References_xml | – volume: 18 start-page: 1946 year: 2020 ident: 2021093021171533200_CIT0205 article-title: Trait associations in the pangenome of pigeon pea (Cajanus cajan) publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.13354 – volume: 9 start-page: 1663 year: 2018 ident: 2021093021171533200_CIT0146 article-title: A thermotolerant variant of rubisco activase from a wild relative improves growth and seed yield in rice under heat stress publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.01663 – volume: 268 start-page: 861 year: 2001 ident: 2021093021171533200_CIT0168 article-title: Asymmetrical crossing barriers in angiosperms publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2000.1578 – year: 2020 ident: 2021093021171533200_CIT0072 – volume: 50 start-page: 278 year: 2018 ident: 2021093021171533200_CIT0207 article-title: Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice publication-title: Nature Genetics doi: 10.1038/s41588-018-0041-z – volume: 57 start-page: 1145 year: 2017 ident: 2021093021171533200_CIT0114 article-title: Drought response and genetic diversity in Pisum fulvum, a wild relative of domesticated pea publication-title: Crop Science doi: 10.2135/cropsci2016.10.0880 – volume: 36 start-page: 1160 year: 2018 ident: 2021093021171533200_CIT0091 article-title: Domestication of wild tomato is accelerated by genome editing publication-title: Nature Biotechnology doi: 10.1038/nbt.4273 – volume: 122 start-page: 695 year: 2011 ident: 2021093021171533200_CIT0136 article-title: Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-010-1479-2 – volume: 8 start-page: 119 year: 2018 ident: 2021093021171533200_CIT0157 article-title: The impact of genetic changes during crop domestication publication-title: Agronomy doi: 10.3390/agronomy8070119 – volume: 49 start-page: 959 year: 2017 ident: 2021093021171533200_CIT0138 article-title: Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation publication-title: Nature Genetics doi: 10.1038/ng.3845 – volume: 10 start-page: 361 year: 2018 ident: 2021093021171533200_CIT0029 article-title: Identifying the economic impacts of climate change on agriculture publication-title: Annual Review of Resource Economics doi: 10.1146/annurev-resource-100517-022938 – volume: 11 start-page: 922 year: 2020 ident: 2021093021171533200_CIT0132 article-title: Global role of crop genomics in the face of climate change publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.00922 – volume: 1 start-page: 101996 year: 2021 ident: 2021093021171533200_CIT0049 article-title: Improving rice salt tolerance by precision breeding in a new era publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2020.101996 – volume: 9 start-page: 1305 year: 2020 ident: 2021093021171533200_CIT0171 article-title: The potential of payment for ecosystem services for crop wild relative conservation publication-title: Plants doi: 10.3390/plants9101305 – volume: 21 start-page: 8567 year: 2020 ident: 2021093021171533200_CIT0195 article-title: Natural genetic resources from diverse plants to improve abiotic stress tolerance in plants publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms21228567 – volume-title: Climate change impact on agriculture and costs of adaptation year: 2009 ident: 2021093021171533200_CIT0116 – volume: 44 start-page: 124 year: 2017 ident: 2021093021171533200_CIT0045 article-title: Challenges and opportunities for improving food quality and nutrition through plant biotechnology publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2016.11.009 – volume: 3 start-page: 2047 year: 2014 ident: 2021093021171533200_CIT0089 article-title: The 3,000 rice genomes project: new opportunities and challenges for future rice research publication-title: Gigascience doi: 10.1186/2047-217X-3-8 – volume: 64 start-page: 17 year: 2007 ident: 2021093021171533200_CIT0163 article-title: Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley publication-title: Plant Molecular Biology doi: 10.1007/s11103-006-9131-x – volume: 9 start-page: 1454 year: 2018 ident: 2021093021171533200_CIT0202 article-title: Molecular cloning and functional characterization of the dehydrin (IpDHN) gene from Ipomoea pes-caprae publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.01454 – volume: 15 start-page: 1 year: 2014 ident: 2021093021171533200_CIT0147 article-title: Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica publication-title: Genome Biology – volume: 15 start-page: 657 year: 2010 ident: 2021093021171533200_CIT0112 article-title: Impact and adaptation opportunities for European agriculture in response to climatic change and variability publication-title: Mitigation Adaptation in Strategies for Global Change doi: 10.1007/s11027-010-9219-0 – volume: 75 start-page: 157 year: 2015 ident: 2021093021171533200_CIT0154 article-title: Haplotype diversity and association analysis of SNAC1 gene in wild rice germplasm publication-title: Indian Journal Genetics and Plant Breeding doi: 10.5958/0975-6906.2015.00025.5 – volume: 24 start-page: 293 year: 2019 ident: 2021093021171533200_CIT0084 article-title: A CRISPR way for fast-forward crop domestication publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2019.01.011 – volume: 12 start-page: 655 year: 2014 ident: 2021093021171533200_CIT0061 article-title: Exploring natural selection to guide breeding for agriculture publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12215 – volume: 90 start-page: 1007 year: 2017 ident: 2021093021171533200_CIT0110 article-title: The pangenome of hexaploid bread wheat publication-title: The Plant Journal doi: 10.1111/tpj.13515 – volume: 543 start-page: 346 year: 2017 ident: 2021093021171533200_CIT0019 article-title: Genomic innovation for crop improvement publication-title: Nature doi: 10.1038/nature22011 – volume: 36 start-page: 1211 year: 2018 ident: 2021093021171533200_CIT0211 article-title: De novo domestication of wild tomato using genome editing publication-title: Nature Biotechnology doi: 10.1038/nbt.4272 – volume: 54 start-page: 26 year: 2020 ident: 2021093021171533200_CIT0108 article-title: Building near-complete plant genomes publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2019.12.009 – volume: 12 start-page: S9 year: 2014 ident: 2021093021171533200_CIT0060 article-title: Sequencing of wild crop relatives to support the conservation and utilization of plant genetic resources publication-title: Plant Genetic Resources doi: 10.1017/S1479262113000439 – volume: 11 start-page: 1 year: 2018 ident: 2021093021171533200_CIT0122 article-title: Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses publication-title: Rice doi: 10.1186/s12284-018-0242-1 – volume: 5 start-page: 1999 year: 2015 ident: 2021093021171533200_CIT0160 article-title: Fingerprinting soybean germplasm and its utility in genomic research publication-title: G3 doi: 10.1534/g3.115.019000 – volume: 94 start-page: 670 year: 2018 ident: 2021093021171533200_CIT0025 article-title: Molecular diversity and landscape genomics of the crop wild relative Triticum urartu across the Fertile Crescent publication-title: The Plant Journal doi: 10.1111/tpj.13888 – volume: 8 start-page: 1 year: 2017 ident: 2021093021171533200_CIT0194 article-title: Contributions of Zea mays subspecies mexicana haplotypes to modern maize publication-title: Nature Communications doi: 10.1038/s41467-017-02063-5 – volume: 58 start-page: 1233 year: 2019 ident: 2021093021171533200_CIT0085 article-title: Global patterns of crop production losses associated with droughts from 1983 to 2009 publication-title: Journal of Applied Meteorology and Climatology doi: 10.1175/JAMC-D-18-0174.1 – volume: 39 start-page: 106 year: 2017 ident: 2021093021171533200_CIT0131 article-title: Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement publication-title: Acta Physiologiae Plantarum doi: 10.1007/s11738-017-2403-z – volume: 206 start-page: 830 year: 2015 ident: 2021093021171533200_CIT0014 article-title: Genome scans reveal candidate domestication and improvement genes in cultivated sunflower, as well as post-domestication introgression with wild relatives publication-title: New Phytologist doi: 10.1111/nph.13255 – volume: 255 start-page: 153276 year: 2020 ident: 2021093021171533200_CIT0099 article-title: RNA-seq reveals the salt tolerance of Ipomoea pes-caprae, a wild relative of sweet potato publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2020.153276 – volume: 39 start-page: e103256 year: 2020 ident: 2021093021171533200_CIT0182 article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter publication-title: The EMBO Journal doi: 10.15252/embj.2019103256 – start-page: 398 volume-title: Molecular breeding for rice abiotic stress tolerance and nutritional quality year: 2021 ident: 2021093021171533200_CIT0065 article-title: Targeting the ascorbate–glutathione pathway and the glyoxalase pathway for genetic engineering of abiotic stress-tolerance in rice. doi: 10.1002/9781119633174.ch21 – volume: 30 start-page: 105 year: 2012 ident: 2021093021171533200_CIT0193 article-title: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes publication-title: Nature Biotechnology doi: 10.1038/nbt.2050 – volume: 130 start-page: 1559 year: 2017 ident: 2021093021171533200_CIT0204 article-title: A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum) publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-017-2910-8 – volume: 7 start-page: e48819 year: 2012 ident: 2021093021171533200_CIT0004 article-title: Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing publication-title: PLoS One doi: 10.1371/journal.pone.0048819 – volume: 61 start-page: 104 year: 2021 ident: 2021093021171533200_CIT0119 article-title: Novel sources of drought tolerance from landraces and wild sorghum relatives publication-title: Crop Science doi: 10.1002/csc2.20300 – volume: 6 start-page: 1 year: 2016 ident: 2021093021171533200_CIT0145 article-title: Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley publication-title: Scientific Reports doi: 10.1038/srep32586 – volume: 9 start-page: 1 year: 2018 ident: 2021093021171533200_CIT0178 article-title: Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation publication-title: Nature Communications doi: 10.1038/s41467-018-02867-z – start-page: 485 volume-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2014 ident: 2021093021171533200_CIT0130 article-title: Food security and food production systems. – volume: 12 start-page: 615 year: 2019 ident: 2021093021171533200_CIT0043 article-title: De novo domestication: an alternative route toward new crops for the future publication-title: Molecular Plant doi: 10.1016/j.molp.2019.03.016 – volume: 10 start-page: e0132535 year: 2015 ident: 2021093021171533200_CIT0139 article-title: Variations in DREB1A and VP1.1 genes show association with salt tolerance traits in wild tomato (Solanum pimpinellifolium) publication-title: PLoS One doi: 10.1371/journal.pone.0132535 – volume: 33 start-page: 41 year: 2015 ident: 2021093021171533200_CIT0021 article-title: The CRISPR/Cas9 system for plant genome editing and beyond publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2014.12.006 – volume: 282 start-page: 40 year: 2019 ident: 2021093021171533200_CIT0143 article-title: Review: High-throughput phenotyping to enhance the use of crop genetic resources publication-title: Plant Science doi: 10.1016/j.plantsci.2018.06.017 – volume: 225 start-page: 1105 year: 2020 ident: 2021093021171533200_CIT0150 article-title: The energy cost of the tonoplast futile sodium leak publication-title: New Phytologist doi: 10.1111/nph.15758 – volume: 34 start-page: 993 year: 2015 ident: 2021093021171533200_CIT0153 article-title: Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance publication-title: Plant Cell Reports doi: 10.1007/s00299-015-1760-6 – volume: 38 start-page: 282 year: 2014 ident: 2021093021171533200_CIT0134 article-title: Economics of salt-induced land degradation and restoration publication-title: Natural Resources Forum doi: 10.1111/1477-8947.12054 – start-page: 71 volume-title: Sustainable agriculture, forest and environmental management year: 2019 ident: 2021093021171533200_CIT0120 article-title: Abiotic stress in agricultural crops under climatic conditions. doi: 10.1007/978-981-13-6830-1_3 – volume-title: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. year: 2019 ident: 2021093021171533200_CIT0106 article-title: Food security—special report on climate change and land. – volume: 7 start-page: 1 year: 2016 ident: 2021093021171533200_CIT0052 article-title: The pangenome of an agronomically important crop plant Brassica oleracea publication-title: Nature Communications doi: 10.1038/ncomms13390 – volume: 108 start-page: 20260 year: 2011 ident: 2021093021171533200_CIT0169 article-title: Global food demand and the sustainable intensification of agriculture publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1116437108 – volume: 103 start-page: 16666 year: 2006 ident: 2021093021171533200_CIT0070 article-title: Impacts of genetic bottlenecks on soybean genome diversity publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0604379103 – volume: 10 start-page: 1 year: 2020 ident: 2021093021171533200_CIT0127 article-title: Isolation, characterization and expression analysis of stress responsive plant nuclear transcriptional factor subunit (NF-YB2) from commercial Saccharum hybrid and wild relative Erianthus arundinaceus publication-title: 3 Biotech doi: 10.1007/s13205-020-02295-1 – volume: 11 start-page: e0162860 year: 2016 ident: 2021093021171533200_CIT0073 article-title: Breeding value of primary synthetic wheat genotypes for grain yield publication-title: PLoS One doi: 10.1371/journal.pone.0162860 – volume: 7 start-page: 1551 year: 2017 ident: 2021093021171533200_CIT0039 article-title: Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat publication-title: G3 doi: 10.1534/g3.117.039966 – volume: 6 start-page: e22938 year: 2011 ident: 2021093021171533200_CIT0191 article-title: Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley publication-title: PLoS One doi: 10.1371/journal.pone.0022938 – volume: 6 start-page: 9971 year: 2004 ident: 2021093021171533200_CIT0125 article-title: Rice yields decline with higher night temperature from global warming publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0403720101 – volume: 95 start-page: 253 year: 2017 ident: 2021093021171533200_CIT0027 article-title: The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity publication-title: Plant Molecular Biology doi: 10.1007/s11103-017-0643-3 – volume: 32 start-page: 1045 year: 2014 ident: 2021093021171533200_CIT0092 article-title: De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits publication-title: Nature Biotechnology doi: 10.1038/nbt.2979 – volume: 16 start-page: 1 year: 2016 ident: 2021093021171533200_CIT0028 article-title: A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis publication-title: BMC Plant Biology doi: 10.1186/s12870-016-0872-7 – volume: 7 start-page: 1 year: 2020 ident: 2021093021171533200_CIT0151 article-title: The draft genome sequence of an upland wild rice species, Oryza granulata publication-title: Scientific Data doi: 10.1038/s41597-020-0470-2 – start-page: 263 volume-title: Physiological, molecular, and genetic perspectives of wheat improvement year: 2021 ident: 2021093021171533200_CIT0012 article-title: Genome editing and trait improvement in wheat. doi: 10.1007/978-3-030-59577-7_12 – volume: 156 start-page: 115 year: 2020 ident: 2021093021171533200_CIT0137 article-title: New gene functions are involved in the thermotolerance of the wild wheat relative Aegilops umbellulata publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2020.09.005 – volume: 9 start-page: e1003477 year: 2013 ident: 2021093021171533200_CIT0068 article-title: The genomic signature of crop–wild introgression in maize publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1003477 – volume: 33 start-page: 408 year: 2015 ident: 2021093021171533200_CIT0209 article-title: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean publication-title: Nature Biotechnology doi: 10.1038/nbt.3096 – volume: 208 start-page: 1008 year: 2015 ident: 2021093021171533200_CIT0020 article-title: Genomics as the key to unlocking the polyploid potential of wheat publication-title: New Phytologist doi: 10.1111/nph.13533 – volume-title: Traditional plant breeding methods year: 2010 ident: 2021093021171533200_CIT0172 – volume: 221 start-page: 1279 year: 2019 ident: 2021093021171533200_CIT0074 article-title: The extent of adaptive wild introgression in crops publication-title: New Phytologist doi: 10.1111/nph.15457 – volume: 5 start-page: 54 year: 2019 ident: 2021093021171533200_CIT0067 article-title: Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance publication-title: Nature Plants doi: 10.1038/s41477-018-0329-0 – volume: 308 start-page: 1310 year: 2005 ident: 2021093021171533200_CIT0190 article-title: The effects of artificial selection on the maize genome publication-title: Science doi: 10.1126/science.1107891 – start-page: 8 volume-title: Crop yields and global food security year: 2014 ident: 2021093021171533200_CIT0044 – volume: 121 start-page: 633 year: 2015 ident: 2021093021171533200_CIT0095 article-title: A novel hybrid proline-rich type gene GsEARLI17 from Glycine soja participated in leaf cuticle synthesis and plant tolerance to salt and alkali stresses publication-title: Plant Cell, Tissue and Organ Culture doi: 10.1007/s11240-015-0734-2 – volume: 9 start-page: 1402 year: 2018 ident: 2021093021171533200_CIT0141 article-title: The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.01402 – volume-title: Extreme weather and resilience of the global food system. Final Project Report from the UK–US Taskforce on Extreme Weather and Global Food System Resilience year: 2015 ident: 2021093021171533200_CIT0010 – volume: 94 start-page: 509 year: 2017 ident: 2021093021171533200_CIT0198 article-title: A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis publication-title: Plant Molecular Biology doi: 10.1007/s11103-017-0623-7 – volume: 588 start-page: 284 year: 2020 ident: 2021093021171533200_CIT0075 article-title: The barley pan-genome reveals the hidden legacy of mutation breeding publication-title: Nature doi: 10.1038/s41586-020-2947-8 – start-page: 491 volume-title: Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives year: 2020 ident: 2021093021171533200_CIT0200 article-title: Role of triacontanol in overcoming environmental stresses. doi: 10.1002/9781119552154.ch25 – volume: 231 start-page: 198 year: 2015 ident: 2021093021171533200_CIT0096 article-title: Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato publication-title: Plant Science doi: 10.1016/j.plantsci.2014.12.006 – volume: 8 start-page: 1 year: 2017 ident: 2021093021171533200_CIT0053 article-title: Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure publication-title: Nature Communications doi: 10.1038/s41467-017-02292-8 – volume: 26 start-page: 2738 year: 2017 ident: 2021093021171533200_CIT0046 article-title: Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples publication-title: Molecular Ecology doi: 10.1111/mec.14082 – volume-title: Benefits of farm level disaster risk reduction practices in agriculture year: 2017 ident: 2021093021171533200_CIT0042 – volume: 39 start-page: 31 year: 2009 ident: 2021093021171533200_CIT0093 article-title: Climate change and drought: a risk assessment of crop-yield impacts publication-title: Climate Research doi: 10.3354/cr00797 – volume: 24 start-page: 1 year: 2017 ident: 2021093021171533200_CIT0056 article-title: Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement publication-title: DNA Research – volume: 100 start-page: 925 year: 2007 ident: 2021093021171533200_CIT0128 article-title: Domestication of plants in the Americas: insights from Mendelian and molecular genetics publication-title: Annals of Botany doi: 10.1093/aob/mcm193 – volume: 182 start-page: 162 year: 2020 ident: 2021093021171533200_CIT0100 article-title: Pan-genome of wild and cultivated soybeans publication-title: Cell doi: 10.1016/j.cell.2020.05.023 – volume: 17 start-page: 881 year: 2019 ident: 2021093021171533200_CIT0197 article-title: Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.13022 – volume: 3 start-page: 1 year: 2020 ident: 2021093021171533200_CIT0023 article-title: A haplotype-led approach to increase the precision of wheat breeding publication-title: Communications Biology doi: 10.1038/s42003-020-01413-2 – volume: 124 start-page: 917 year: 2019 ident: 2021093021171533200_CIT0017 article-title: Root and shoot variation in relation to potential intermittent drought adaptation of Mesoamerican wild common bean (Phaseolus vulgaris L.) publication-title: Annals of Botany doi: 10.1093/aob/mcy221 – volume: 119 start-page: 9 year: 2017 ident: 2021093021171533200_CIT0118 article-title: GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2017.07.029 – volume: 79 start-page: 53 year: 2000 ident: 2021093021171533200_CIT0152 article-title: Leaf nitrogen concentration of wheat subjected to elevated CO2 and either water or N deficits publication-title: Agriculture, Ecosystems, and Environment doi: 10.1016/S0167-8809(99)00146-2 – volume: 64 start-page: 289 year: 2004 ident: 2021093021171533200_CIT0006 article-title: Adaptation, spatial heterogeneity, and the vulnerability of agricultural systems to climate change and CO2 fertilization: an integrated assessment approach publication-title: Climate Change doi: 10.1023/B:CLIM.0000025748.49738.93 – year: 2015 ident: 2021093021171533200_CIT0041 – volume: 6 start-page: 1 year: 2015 ident: 2021093021171533200_CIT0102 article-title: High-resolution genetic mapping of maize pan-genome sequence anchors publication-title: Nature Communications doi: 10.1038/ncomms7914 – volume: 11 start-page: 359 year: 2020 ident: 2021093021171533200_CIT0115 article-title: Genome-wide analysis of WRKY genes and their response to salt stress in the wild progenitor of Asian cultivated rice, Oryza rufipogon publication-title: Frontiers in Genetics doi: 10.3389/fgene.2020.00359 – volume: 300 start-page: 1741 year: 2014 ident: 2021093021171533200_CIT0048 article-title: Assessment of genetic diversity in salt-tolerant rice and its wild relatives for ten SSR loci and one allele mining primer of salT gene located on 1st chromosome publication-title: Plant Systematics and Evolution doi: 10.1007/s00606-014-0999-7 – volume: 66 start-page: 7405 year: 2015 ident: 2021093021171533200_CIT0059 article-title: HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv436 – volume: 30 start-page: 360 year: 2012 ident: 2021093021171533200_CIT0113 article-title: Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene publication-title: Nature Biotechnology doi: 10.1038/nbt.2120 – volume: 8 start-page: 972 year: 2017 ident: 2021093021171533200_CIT0155 article-title: Evolutionary insights based on SNP haplotypes of red pericarp, grain size and starch synthase genes in wild and cultivated rice publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.00972 – volume: 11 start-page: 1874 year: 2020 ident: 2021093021171533200_CIT0165 article-title: The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.601009 – volume: 13 start-page: 1 year: 2021 ident: 2021093021171533200_CIT0071 article-title: High-throughput phenotyping for abiotic stress resilience in cereals publication-title: Journal of Cereal Research doi: 10.25174/2582-2675/2021/111256 – volume: 12 start-page: 054007 year: 2017 ident: 2021093021171533200_CIT0047 article-title: Negative impacts of climate change on cereal yields: statistical evidence from France publication-title: Environmental Research Letters doi: 10.1088/1748-9326/aa6b0c – volume: 496 start-page: 91 year: 2013 ident: 2021093021171533200_CIT0077 article-title: Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation publication-title: Nature doi: 10.1038/nature12028 – volume: 22 start-page: 1 year: 2021 ident: 2021093021171533200_CIT0035 article-title: How the pan-genome is changing crop genomics and improvement publication-title: Genome Biology doi: 10.1186/s13059-020-02224-8 – volume: 33 start-page: 89 year: 2014 ident: 2021093021171533200_CIT0126 article-title: Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression publication-title: Molecular Breeding doi: 10.1007/s11032-013-9936-7 – volume: 56 start-page: 218 year: 2020 ident: 2021093021171533200_CIT0201 article-title: Exploring the application of wild species for crop improvement in a changing climate publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2019.12.013 – volume: 25 start-page: 5500 year: 2016 ident: 2021093021171533200_CIT0018 article-title: Genome scan reveals selection acting on genes linked to stress response in wild pearl millet publication-title: Molecular Ecology doi: 10.1111/mec.13859 – volume: 45 start-page: 2284 year: 2011 ident: 2021093021171533200_CIT0009 article-title: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2010.11.045 – volume: 215 start-page: 48 year: 2014 ident: 2021093021171533200_CIT0007 article-title: Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? publication-title: Plant Science doi: 10.1016/j.plantsci.2013.10.007 – volume: 104 start-page: 19686 year: 2007 ident: 2021093021171533200_CIT0170 article-title: Crop and pasture response to climate change publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0701728104 – volume: 8 start-page: giz115 year: 2019 ident: 2021093021171533200_CIT0158 article-title: Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome publication-title: Gigascience doi: 10.1093/gigascience/giz115 – volume: 7 start-page: 1029 year: 2016 ident: 2021093021171533200_CIT0079 article-title: Transcription factors and plants response to drought stress: current understanding and future directions publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01029 – volume: 51 start-page: 1044 year: 2019 ident: 2021093021171533200_CIT0051 article-title: The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor publication-title: Nature Genetics doi: 10.1038/s41588-019-0410-2 – volume: 34 start-page: 562 year: 2016 ident: 2021093021171533200_CIT0022 article-title: Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity publication-title: Nature Biotechnology doi: 10.1038/nbt.3535 – volume: 20 start-page: 4045 year: 2019 ident: 2021093021171533200_CIT0142 article-title: Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms20164045 – volume-title: Establishment of a global network for the in situ conservation of crop wild relatives: status and needs year: 2009 ident: 2021093021171533200_CIT0105 – volume: 244 start-page: 681 year: 2016 ident: 2021093021171533200_CIT0199 article-title: GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis publication-title: Planta doi: 10.1007/s00425-016-2532-4 – year: 2019 ident: 2021093021171533200_CIT0087 – volume: 14 start-page: 1070 year: 2016 ident: 2021093021171533200_CIT0024 article-title: Genomics of crop wild relatives: expanding the gene pool for crop improvement publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12454 – volume: 19 start-page: 765 year: 2001 ident: 2021093021171533200_CIT0203 article-title: Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit publication-title: Nature Biotechnology doi: 10.1038/90824 – volume: 52 start-page: 1412 year: 2020 ident: 2021093021171533200_CIT0208 article-title: Triticum population sequencing provides insights into wheat adaptation publication-title: Nature Genetics doi: 10.1038/s41588-020-00722-w – volume: 6 start-page: 1 year: 2016 ident: 2021093021171533200_CIT0124 article-title: Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean publication-title: Scientific Reports doi: 10.1038/srep19199 – volume: 161 start-page: 1806 year: 2013 ident: 2021093021171533200_CIT0129 article-title: Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat publication-title: Plant Physiology doi: 10.1104/pp.113.214262 – volume: 18 start-page: 443 year: 2020 ident: 2021093021171533200_CIT0097 article-title: The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.13210 – volume: 242 start-page: 47 year: 2016 ident: 2021093021171533200_CIT0148 article-title: Genomics-based strategies for the use of natural variation in the improvement of crop metabolism publication-title: Plant Science doi: 10.1016/j.plantsci.2015.05.021 – volume: 341 start-page: 508 year: 2013 ident: 2021093021171533200_CIT0188 article-title: Climate change impacts on global food security publication-title: Science doi: 10.1126/science.1239402 – volume: 34 start-page: 1475 year: 2014 ident: 2021093021171533200_CIT0064 article-title: Evaluation of juvenile drought stress tolerance and genotyping by sequencing with wild barley introgression lines publication-title: Molecular Breeding doi: 10.1007/s11032-014-0131-2 – volume: 365 start-page: 2973 year: 2010 ident: 2021093021171533200_CIT0054 article-title: Implications of climate change for agricultural productivity in the early twenty-first century publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2010.0158 – volume: 184 start-page: 1156 year: 2021 ident: 2021093021171533200_CIT0196 article-title: A route to de novo domestication of wild allotetraploid rice publication-title: Cell doi: 10.1016/j.cell.2021.01.013 – volume: 57 start-page: 1070 year: 2017 ident: 2021093021171533200_CIT0036 article-title: Past and future use of wild relatives in crop breeding publication-title: Crop Science doi: 10.2135/cropsci2016.10.0885 – volume: 242 start-page: 23 year: 2016 ident: 2021093021171533200_CIT0013 article-title: Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.) publication-title: Plant Science doi: 10.1016/j.plantsci.2015.08.021 – volume: 59 start-page: 313 year: 2008 ident: 2021093021171533200_CIT0011 article-title: Flooding stress: acclimations and genetic diversity publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.59.032607.092752 – volume: 21 start-page: 661 year: 2020 ident: 2021093021171533200_CIT0210 article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/s41580-020-00288-9 – volume: 13 start-page: e0198776 year: 2018 ident: 2021093021171533200_CIT0038 article-title: Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield publication-title: PLoS One doi: 10.1371/journal.pone.0198776 – volume: 26 start-page: 121 year: 2014 ident: 2021093021171533200_CIT0062 article-title: Insights into the maize pan-genome and pan-transcriptome publication-title: The Plant Cell doi: 10.1105/tpc.113.119982 – volume: 7 start-page: 1 year: 2017 ident: 2021093021171533200_CIT0076 article-title: GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance publication-title: Scientific Reports doi: 10.1038/s41598-017-09772-3 – volume: 20 start-page: 155 year: 2015 ident: 2021093021171533200_CIT0121 article-title: Are we ready for back-to-nature crop breeding? publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2014.11.003 – volume: 12 start-page: 1 year: 2020 ident: 2021093021171533200_CIT0184 article-title: Recent advances in genomics assisted breeding for drought stress tolerance in major cereals publication-title: Journal of Cereal Research doi: 10.25174/2582-2675/2020/100821 – volume: 8 start-page: 1507 year: 2015 ident: 2021093021171533200_CIT0187 article-title: Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond publication-title: Molecular Plant doi: 10.1016/j.molp.2015.05.004 – volume: 236 start-page: 1081 year: 2012 ident: 2021093021171533200_CIT0088 article-title: Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response publication-title: Planta doi: 10.1007/s00425-012-1657-3 – volume: 111 start-page: 1 year: 2015 ident: 2021093021171533200_CIT0002 article-title: Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2014.10.003 – volume: 7 start-page: giy013 year: 2018 ident: 2021093021171533200_CIT0030 article-title: 10KP: a phylodiverse genome sequencing plan publication-title: Gigascience doi: 10.1093/gigascience/giy013 – volume: 54 start-page: 279 year: 2016 ident: 2021093021171533200_CIT0066 article-title: Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses publication-title: Annual Review of Phytopathology doi: 10.1146/annurev-phyto-080614-120254 – volume: 9 start-page: 15 year: 2016 ident: 2021093021171533200_CIT0109 article-title: Association of SNP haplotypes of HKT family genes with salt tolerance in Indian wild rice germplasm publication-title: Rice doi: 10.1186/s12284-016-0083-8 – volume: 25 start-page: 14 year: 2020 ident: 2021093021171533200_CIT0133 article-title: A return to the wild: root exudates and food security publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2019.09.010 – volume: 6 start-page: 1 year: 2016 ident: 2021093021171533200_CIT0164 article-title: Global-scale river flood vulnerability in the last 50 years publication-title: Scientific Reports doi: 10.1038/srep36021 – volume: 240 start-page: 405 year: 2018 ident: 2021093021171533200_CIT0016 article-title: An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions publication-title: Scientia Horticulture doi: 10.1016/j.scienta.2018.06.054 – volume: 6 start-page: 34 year: 2020 ident: 2021093021171533200_CIT0159 article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus publication-title: Nature Plants doi: 10.1038/s41477-019-0577-7 – year: 2017 ident: 2021093021171533200_CIT0189 – volume: 24 start-page: 1506 year: 2007 ident: 2021093021171533200_CIT0057 article-title: Grinding up wheat: a massive loss of nucleotide diversity since domestication publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msm077 – volume: 15 start-page: 426 year: 2013 ident: 2021093021171533200_CIT0177 article-title: Ethylene—and oxygen signalling—drive plant survival during flooding publication-title: Plant Biology doi: 10.1111/plb.12014 – volume: 16 start-page: 1 year: 2016 ident: 2021093021171533200_CIT0111 article-title: Banking on wild relatives to feed the world publication-title: Gastronomica doi: 10.1525/gfc.2016.16.1.1 – volume: 68 start-page: 288 year: 2020 ident: 2021093021171533200_CIT0082 article-title: Gene expression studies of Saccharum spontaneum, a wild relative of sugarcane in response to salinity stress publication-title: Biotechnology and Applied Biochemistry doi: 10.1002/bab.1923 – volume: 18 start-page: 2482 year: 2020 ident: 2021093021171533200_CIT0156 article-title: Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.) publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.13422 – volume: 80 start-page: 136 year: 2014 ident: 2021093021171533200_CIT0166 article-title: Exploring genetic variation in the tomato (Solanum lycopersicon) clade by whole-genome sequencing publication-title: The Plant Journal doi: 10.1111/tpj.12616 – volume: 8 start-page: 1274 year: 2015 ident: 2021093021171533200_CIT0104 article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants publication-title: Molecular Plant doi: 10.1016/j.molp.2015.04.007 – volume: 67 start-page: 1015 year: 2016 ident: 2021093021171533200_CIT0149 article-title: On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv465 – volume: 5 start-page: 484 year: 2014 ident: 2021093021171533200_CIT0058 article-title: Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2014.00484 – volume: 17 start-page: 667 year: 2017 ident: 2021093021171533200_CIT0103 article-title: High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis publication-title: Functional & Integrative Genomics doi: 10.1007/s10142-017-0563-y – volume: 19 start-page: 20 year: 2021 ident: 2021093021171533200_CIT0181 article-title: Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.13443 – volume: 115 start-page: 5223 year: 2018 ident: 2021093021171533200_CIT0180 article-title: Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1721749115 – volume: 220 start-page: 395 year: 2018 ident: 2021093021171533200_CIT0162 article-title: Maize domestication and gene interaction publication-title: New Phytologist doi: 10.1111/nph.15350 – start-page: 175 volume-title: Physiological, molecular, and genetic perspectives of wheat improvement year: 2021 ident: 2021093021171533200_CIT0086 article-title: Genomic selection for wheat improvement. doi: 10.1007/978-3-030-59577-7_9 – volume: 38 start-page: 137 year: 2020 ident: 2021093021171533200_CIT0078 article-title: Identification and characterization of NADH kinase-3 from a stress-tolerant wild mung bean species (Vigna luteola (Jacq.) Benth.) with a possible role in waterlogging tolerance publication-title: Plant Molecular Biology Reporter doi: 10.1007/s11105-019-01185-y – volume: 8 start-page: e66428 year: 2013 ident: 2021093021171533200_CIT0140 article-title: Yield trends are insufficient to double global crop production by 2050 publication-title: PLoS One doi: 10.1371/journal.pone.0066428 – volume: 8 start-page: 536 year: 2017 ident: 2021093021171533200_CIT0206 article-title: SNP discovery and genetic variation of candidate genes relevant to heat tolerance and agronomic traits in natural populations of sand rice (Agriophyllum squarrosum) publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.00536 – volume: 9 start-page: 1 year: 2018 ident: 2021093021171533200_CIT0123 article-title: Trends in flood losses in Europe over the past 150 years publication-title: Nature Communications doi: 10.1038/s41467-018-04253-1 – volume: 33 start-page: 543 year: 2010 ident: 2021093021171533200_CIT0037 article-title: Analysis of the salt-stress response at cell-type resolution publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2009.02055.x – volume: 10 start-page: 1 year: 2020 ident: 2021093021171533200_CIT0174 article-title: WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species publication-title: Scientific Reports doi: 10.1038/s41598-020-63823-w – volume: 2 start-page: e36 year: 2020 ident: 2021093021171533200_CIT0033 article-title: Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement publication-title: Legume Science doi: 10.1002/leg3.36 – volume: 6 start-page: 914 year: 2020 ident: 2021093021171533200_CIT0015 article-title: Plant pan-genomes are the new reference publication-title: Nature Plants doi: 10.1038/s41477-020-0733-0 – volume: 23 start-page: 311 year: 2016 ident: 2021093021171533200_CIT0192 article-title: WRKY transcription factor genes in wild rice Oryza nivara publication-title: DNA Research doi: 10.1093/dnares/dsw025 – volume-title: Physiological, molecular, and genetic perspectives of wheat improvement year: 2020 ident: 2021093021171533200_CIT0185 – volume: 43 start-page: D1023 year: 2015 ident: 2021093021171533200_CIT0003 article-title: SNP-Seek database of SNPs derived from 3000 rice genomes publication-title: Nucleic Acids Research doi: 10.1093/nar/gku1039 – volume: 59 start-page: 1133 year: 2019 ident: 2021093021171533200_CIT0117 article-title: Co-expression of Arabidopsis AtAVP1 and AtNHX1 to improve salt tolerance in soybean publication-title: Crop Science doi: 10.2135/cropsci2018.10.0640 – volume: 195 start-page: 1 year: 2021 ident: 2021093021171533200_CIT0176 article-title: Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification publication-title: Botanical Journal of the Linnean Society doi: 10.1093/botlinnean/boaa064 – volume: 14 start-page: 1095 year: 2016 ident: 2021093021171533200_CIT0001 article-title: Global agricultural intensification during climate change: a role for genomics publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12467 – volume: 40 start-page: 238 year: 2017 ident: 2021093021171533200_CIT0107 article-title: A walk on the wild side: Oryza species as source for rice abiotic stress tolerance publication-title: Genetics and Molecular Biology doi: 10.1590/1678-4685-gmb-2016-0093 – volume: 214 start-page: 81 year: 2017 ident: 2021093021171533200_CIT0050 article-title: Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2017.04.007 – volume: 54 start-page: 18 year: 2020 ident: 2021093021171533200_CIT0034 article-title: Plant pangenomics: approaches, applications and advancements publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2019.12.005 – volume: 169 start-page: 971 year: 2015 ident: 2021093021171533200_CIT0101 article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation publication-title: Plant Physiology doi: 10.1104/pp.15.00636 – volume: 15 start-page: 1 year: 2014 ident: 2021093021171533200_CIT0094 article-title: Beyond genomic variation—comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage publication-title: BMC Genomics doi: 10.1186/1471-2164-15-250 – volume: 242 start-page: 342 year: 2016 ident: 2021093021171533200_CIT0080 article-title: Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding publication-title: Plant Science doi: 10.1016/j.plantsci.2015.08.015 – volume: 95 start-page: 71 year: 2018 ident: 2021093021171533200_CIT0098 article-title: Assembly and annotation of a draft genome sequence for Glycine latifolia, a perennial wild relative of soybean publication-title: The Plant Journal doi: 10.1111/tpj.13931 – volume: 35 start-page: 1582 year: 2012 ident: 2021093021171533200_CIT0090 article-title: HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2012.02511.x – volume: 27 start-page: 954 year: 2015 ident: 2021093021171533200_CIT0008 article-title: The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives publication-title: The Plant Cell doi: 10.1105/tpc.114.135954 – volume: 57 start-page: 1160 year: 2017 ident: 2021093021171533200_CIT0161 article-title: Successful introgression of abiotic stress tolerance from wild tepary bean to common bean publication-title: Crop Science doi: 10.2135/cropsci2016.10.0851 – volume: 105 start-page: 1165 year: 2021 ident: 2021093021171533200_CIT0167 article-title: Designing future crops: challenges and strategies for sustainable agriculture publication-title: The Plant Journal doi: 10.1111/tpj.15107 – volume: 10 start-page: 4 year: 2019 ident: 2021093021171533200_CIT0026 article-title: Adaptive introgression: an untapped evolutionary mechanism for crop adaptation publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2019.00004 – volume: 16 start-page: 1265 year: 2018 ident: 2021093021171533200_CIT0069 article-title: Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12867 – volume: 15 start-page: 1 year: 2021 ident: 2021093021171533200_CIT0183 article-title: WRKY transcription factors and plant defense responses: latest discoveries and future prospects publication-title: Plant Cell Reports – volume: 9 start-page: 128 year: 2018 ident: 2021093021171533200_CIT0031 article-title: Genotyping by sequencing and genome–environment associations in wild common bean predict widespread divergent adaptation to drought publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.00128 – volume: 6 start-page: 835 year: 2016 ident: 2021093021171533200_CIT0005 article-title: Environmental association analyses identify candidates for abiotic stress tolerance in Glycine soja, the wild progenitor of cultivated soybeans publication-title: G3 doi: 10.1534/g3.116.026914 – volume-title: Accelerated plant breeding, Vol. 1 year: 2020 ident: 2021093021171533200_CIT0055 – volume: 169 start-page: 103884 year: 2020 ident: 2021093021171533200_CIT0032 article-title: Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2019.103884 – volume: 5 start-page: 1 year: 2014 ident: 2021093021171533200_CIT0135 article-title: Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing publication-title: Nature Communications doi: 10.1038/ncomms5340 – volume: 14 start-page: 1057 year: 2016 ident: 2021093021171533200_CIT0081 article-title: Translational genomics for plant breeding with the genome sequence explosion publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12449 – volume-title: The state of food insecurity in the world: economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition year: 2012 ident: 2021093021171533200_CIT0040 – volume: 101 start-page: 1791 year: 2014 ident: 2021093021171533200_CIT0186 article-title: Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives publication-title: American Journal of Botany doi: 10.3732/ajb.1400116 – volume: 5 start-page: 1 year: 2015 ident: 2021093021171533200_CIT0173 article-title: Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits publication-title: Scientific Reports doi: 10.1038/srep14799 – volume: 42 start-page: 325 year: 2020 ident: 2021093021171533200_CIT0179 article-title: Genome-wide identification, characterisation and expression profile analysis of DEAD-box family genes in sweet potato wild ancestor Ipomoea trifida under abiotic stresses publication-title: Genes & Genomics doi: 10.1007/s13258-019-00910-x – volume: 25 start-page: 148 year: 2020 ident: 2021093021171533200_CIT0083 article-title: Super-pangenome by integrating the wild side of a species for accelerated crop improvement publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2019.10.012 – volume: 167 start-page: 265 year: 2013 ident: 2021093021171533200_CIT0175 article-title: A prioritized crop wild relative inventory to help underpin global food security publication-title: Biological Conservation doi: 10.1016/j.biocon.2013.08.011 – volume: 8 start-page: 2211 year: 2018 ident: 2021093021171533200_CIT0063 article-title: Haplotype variation of flowering time genes of sugar beet and its wild relatives and the impact on life cycle regimes publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.02211 – volume: 48 start-page: 1024 year: 2016 ident: 2021093021171533200_CIT0144 article-title: Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation publication-title: Nature Genetics doi: 10.1038/ng.3612 |
SSID | ssj0005055 |
Score | 2.5873926 |
SecondaryResourceType | review_article |
Snippet | This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress... To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices,... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6123 |
Title | Rewilding crops for climate resilience: economic analysis and de novo domestication strategies |
URI | https://www.proquest.com/docview/2540520672 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66-uCLeMV1vUTYJ0vdpk2T1jeVHUZdV9AZGF8suRUqa7tOOyrz6z1JbzMyyupLKeEQSr6vJyeX8x2EDk2oOU2M9DkhuU9zHftCK3tcSHKiRZxoZrOR352y6Zy-WcSL37JLGvlMrXfmlfwPqtAGuNos2X9AdugUGuAd8IUnIAzPC2H8wfxoi1p7thCXU1awqY4QhNpiKHVx5v5bV3ynyz_2RC9CYjfMtfHK6nvl6eqrFdtod--8uunlI_4QuW5VBZBV0_sTd1y0XotvbeZMMW7Wu7pRVhxaFktvuqprUQyk_AhTlHGsnFTrYpglPq3aW_3l5r5ESPpLFIMrpSzwQ9r5eLOjrfO_PNzkWbLhTa00zE4330pgffkpLexLIUO-Q0779H02mZ-cZLPjxewyuhLCOsKtuV-_He8ABa4s7vBZXQIndH8EnR91XW-FLFtpkP287YKR2Q10vcMCv2gpcRNdMuUtdPWlg-I2-jzwAjteYOAF7niBR148xz0rcM8KeNFYG2xZgbdYgUdW3EHzyfHs1dTv6mj4Cjx049NA8TzW4GmJyiFqUUwJI2nKJSEykJIblkpOVSJYkjDJIvAuXAUUjOF_jU10F-2VVWnuIUxjHqQiNSSKGM0jnspU6jDWeZpyQZjZR0_7ocpUJzJva52cZe1lhyiDcc26cd1Hh4PxeautstvsMYz53y2e9Hhk4B3tkZcoTbWqs9AuSGyFgvD-BWwO0LWRyQ_QXrNcmYcQczbykePNLyRbidc |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rewilding+crops+for+climate+resilience%3A+economic+analysis+and+de+novo+domestication+strategies&rft.jtitle=Journal+of+experimental+botany&rft.au=Razzaq%2C+Ali&rft.au=Wani%2C+Shabir+Hussain&rft.au=Saleem%2C+Fozia&rft.au=Yu%2C+Min&rft.date=2021-09-30&rft.issn=1460-2431&rft.eissn=1460-2431&rft.volume=72&rft.issue=18&rft.spage=6123&rft_id=info:doi/10.1093%2Fjxb%2Ferab276&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |