Rewilding crops for climate resilience: economic analysis and de novo domestication strategies

This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress resilience lost during domestication. Abstract To match predicted population growth, annual food production should be doubled by 2050. This is not...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 72; no. 18; pp. 6123 - 6139
Main Authors Razzaq, Ali, Wani, Shabir Hussain, Saleem, Fozia, Yu, Min, Zhou, Meixue, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 30.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress resilience lost during domestication. Abstract To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year–1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
AbstractList This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress resilience lost during domestication. Abstract To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year–1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year-1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices, due to the impact of climate changes and associated abiotic stresses on agricultural production systems. Here, we analyze the impact of global climate trends on crop productivity and show that the overall loss in crop production from climate-driven abiotic stresses may exceed US$170 billion year–1 and represents a major threat to global food security. We also show that abiotic stress tolerance had been present in wild progenitors of modern crops but was lost during their domestication. We argue for a major shift in our paradigm of crop breeding, focusing on climate resilience, and call for a broader use of wild relatives as a major tool in this process. We argue that, while molecular tools are currently in place to harness the potential of climate-resilient genes present in wild relatives, the complex polygenic nature of tolerance traits remains a major bottleneck in this process. Future research efforts should be focused not only on finding appropriate wild relatives but also on development of efficient cell-based high-throughput phenotyping platforms allowing assessment of the in planta operation of key genes.
Author Wani, Shabir Hussain
Shabala, Sergey
Zhou, Meixue
Saleem, Fozia
Razzaq, Ali
Yu, Min
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-9122-3714
  surname: Razzaq
  fullname: Razzaq, Ali
  organization: Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
– sequence: 2
  givenname: Shabir Hussain
  orcidid: 0000-0002-7456-4090
  surname: Wani
  fullname: Wani, Shabir Hussain
  email: shabirhussainwani@gmail.com
  organization: Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K,India
– sequence: 3
  givenname: Fozia
  surname: Saleem
  fullname: Saleem, Fozia
  organization: Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisald 38040,Pakistan
– sequence: 4
  givenname: Min
  surname: Yu
  fullname: Yu, Min
  organization: International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
– sequence: 5
  givenname: Meixue
  orcidid: 0000-0003-3009-7854
  surname: Zhou
  fullname: Zhou, Meixue
  organization: Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001,Australia
– sequence: 6
  givenname: Sergey
  orcidid: 0000-0003-2345-8981
  surname: Shabala
  fullname: Shabala, Sergey
  email: Sergey.Shabala@utas.edu.au
  organization: International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000,China
BookMark eNp9kE1LAzEQhoNUsK2e_AM5iSBrJ7vZ7K43KX5BQRC9uiTZ2ZKyTdZkq_bfG21Pgp5mDs87vPNMyMg6i4ScMrhkUGWz1aeaoZcqLcQBGTMuIEl5xkZkDJCmCVR5cUQmIawAIIc8H5PXJ_wwXWPskmrv-kBb56nuzFoOSD0G0xm0Gq8oamfd2mgqrey2wYS4NLRBat27o41bYxiMloNxlobBx_jSYDgmh63sAp7s55S83N48z--TxePdw_x6kWgOMCQcdNHmjchKptuMMy20RMWrQjGmQKkCRaUKrkspylIokaFsCg08wi1rcsym5Hx3t_fubROr1GsTNHadtOg2oU5zDnkKokgjynZo_DcEj22tzfDTO7Y2Xc2g_nZZR5f13mXMXPzK9D4q8ts_6LMd7Tb9v-AX9SeI7Q
CitedBy_id crossref_primary_10_1007_s00122_024_04550_y
crossref_primary_10_1007_s11104_024_06720_9
crossref_primary_10_3390_crops3030018
crossref_primary_10_1016_j_envexpbot_2022_104944
crossref_primary_10_1071_FP23133
crossref_primary_10_3390_agriculture11100908
crossref_primary_10_1016_j_tplants_2023_05_012
crossref_primary_10_1007_s00122_023_04537_1
crossref_primary_10_1016_j_tplants_2025_02_003
crossref_primary_10_1016_j_cj_2023_03_017
crossref_primary_10_3390_plants10101982
crossref_primary_10_3390_app142411950
crossref_primary_10_3390_agriculture15010029
crossref_primary_10_1016_j_tplants_2023_01_008
crossref_primary_10_3390_earth3010016
crossref_primary_10_1111_nph_20227
crossref_primary_10_3389_fpls_2023_1352312
crossref_primary_10_1007_s00425_021_03706_0
crossref_primary_10_3389_fpls_2024_1397765
crossref_primary_10_3389_fpls_2023_1303429
crossref_primary_10_1111_ppl_14216
crossref_primary_10_1016_j_envexpbot_2022_105030
crossref_primary_10_1007_s11104_022_05428_y
crossref_primary_10_1016_j_plaphy_2024_108768
crossref_primary_10_1093_aob_mcac022
crossref_primary_10_3389_fpls_2021_681367
crossref_primary_10_3389_fpls_2021_620420
crossref_primary_10_1007_s11033_021_06815_x
crossref_primary_10_1007_s11104_024_07065_z
crossref_primary_10_1371_journal_pbio_3002208
crossref_primary_10_1016_j_envexpbot_2024_105813
crossref_primary_10_1071_FP23034
crossref_primary_10_1016_j_plgene_2023_100439
crossref_primary_10_1111_tpj_16549
crossref_primary_10_1007_s00122_022_04131_x
crossref_primary_10_1007_s12633_024_03031_7
crossref_primary_10_1039_D4EN00789A
crossref_primary_10_3390_plants13050633
crossref_primary_10_3390_app14072877
crossref_primary_10_1007_s10722_023_01630_8
crossref_primary_10_5511_plantbiotechnology_23_1122a
crossref_primary_10_3390_agronomy12092136
crossref_primary_10_3390_horticulturae9060650
crossref_primary_10_1186_s40537_025_01078_w
crossref_primary_10_1093_plphys_kiac445
crossref_primary_10_1007_s00122_023_04267_4
crossref_primary_10_3390_plants12091764
crossref_primary_10_1093_jxb_erac224
crossref_primary_10_1093_jxb_erad477
crossref_primary_10_3389_fsci_2024_1416023
crossref_primary_10_3390_ijms232214046
crossref_primary_10_21498_2518_1017_20_1_2024_300137
crossref_primary_10_3389_frym_2024_1502882
crossref_primary_10_1186_s12870_022_03694_7
crossref_primary_10_1007_s43538_022_00073_6
crossref_primary_10_1016_j_stress_2024_100627
crossref_primary_10_3390_plants12173119
crossref_primary_10_1016_j_ncrops_2024_100045
crossref_primary_10_1360_TB_2023_1134
crossref_primary_10_1146_annurev_arplant_053122_030653
crossref_primary_10_3390_plants12030494
crossref_primary_10_1016_j_sajb_2024_10_011
crossref_primary_10_1016_j_scitotenv_2024_175949
crossref_primary_10_1111_nph_19619
Cites_doi 10.1111/pbi.13354
10.3389/fpls.2018.01663
10.1098/rspb.2000.1578
10.1038/s41588-018-0041-z
10.2135/cropsci2016.10.0880
10.1038/nbt.4273
10.1007/s00122-010-1479-2
10.3390/agronomy8070119
10.1038/ng.3845
10.1146/annurev-resource-100517-022938
10.3389/fpls.2020.00922
10.1016/j.pbi.2020.101996
10.3390/plants9101305
10.3390/ijms21228567
10.1016/j.copbio.2016.11.009
10.1186/2047-217X-3-8
10.1007/s11103-006-9131-x
10.3389/fpls.2018.01454
10.1007/s11027-010-9219-0
10.5958/0975-6906.2015.00025.5
10.1016/j.tplants.2019.01.011
10.1111/pbi.12215
10.1111/tpj.13515
10.1038/nature22011
10.1038/nbt.4272
10.1016/j.pbi.2019.12.009
10.1017/S1479262113000439
10.1186/s12284-018-0242-1
10.1534/g3.115.019000
10.1111/tpj.13888
10.1038/s41467-017-02063-5
10.1175/JAMC-D-18-0174.1
10.1007/s11738-017-2403-z
10.1111/nph.13255
10.1016/j.jplph.2020.153276
10.15252/embj.2019103256
10.1002/9781119633174.ch21
10.1038/nbt.2050
10.1007/s00122-017-2910-8
10.1371/journal.pone.0048819
10.1002/csc2.20300
10.1038/srep32586
10.1038/s41467-018-02867-z
10.1016/j.molp.2019.03.016
10.1371/journal.pone.0132535
10.1016/j.biotechadv.2014.12.006
10.1016/j.plantsci.2018.06.017
10.1111/nph.15758
10.1007/s00299-015-1760-6
10.1111/1477-8947.12054
10.1007/978-981-13-6830-1_3
10.1038/ncomms13390
10.1073/pnas.1116437108
10.1073/pnas.0604379103
10.1007/s13205-020-02295-1
10.1371/journal.pone.0162860
10.1534/g3.117.039966
10.1371/journal.pone.0022938
10.1073/pnas.0403720101
10.1007/s11103-017-0643-3
10.1038/nbt.2979
10.1186/s12870-016-0872-7
10.1038/s41597-020-0470-2
10.1007/978-3-030-59577-7_12
10.1016/j.plaphy.2020.09.005
10.1371/journal.pgen.1003477
10.1038/nbt.3096
10.1111/nph.13533
10.1111/nph.15457
10.1038/s41477-018-0329-0
10.1126/science.1107891
10.1007/s11240-015-0734-2
10.3389/fpls.2018.01402
10.1007/s11103-017-0623-7
10.1038/s41586-020-2947-8
10.1002/9781119552154.ch25
10.1016/j.plantsci.2014.12.006
10.1038/s41467-017-02292-8
10.1111/mec.14082
10.3354/cr00797
10.1093/aob/mcm193
10.1016/j.cell.2020.05.023
10.1111/pbi.13022
10.1038/s42003-020-01413-2
10.1093/aob/mcy221
10.1016/j.plaphy.2017.07.029
10.1016/S0167-8809(99)00146-2
10.1023/B:CLIM.0000025748.49738.93
10.1038/ncomms7914
10.3389/fgene.2020.00359
10.1007/s00606-014-0999-7
10.1093/jxb/erv436
10.1038/nbt.2120
10.3389/fpls.2017.00972
10.3389/fpls.2020.601009
10.25174/2582-2675/2021/111256
10.1088/1748-9326/aa6b0c
10.1038/nature12028
10.1186/s13059-020-02224-8
10.1007/s11032-013-9936-7
10.1016/j.pbi.2019.12.013
10.1111/mec.13859
10.1016/j.atmosenv.2010.11.045
10.1016/j.plantsci.2013.10.007
10.1073/pnas.0701728104
10.1093/gigascience/giz115
10.3389/fpls.2016.01029
10.1038/s41588-019-0410-2
10.1038/nbt.3535
10.3390/ijms20164045
10.1007/s00425-016-2532-4
10.1111/pbi.12454
10.1038/90824
10.1038/s41588-020-00722-w
10.1038/srep19199
10.1104/pp.113.214262
10.1111/pbi.13210
10.1016/j.plantsci.2015.05.021
10.1126/science.1239402
10.1007/s11032-014-0131-2
10.1098/rstb.2010.0158
10.1016/j.cell.2021.01.013
10.2135/cropsci2016.10.0885
10.1016/j.plantsci.2015.08.021
10.1146/annurev.arplant.59.032607.092752
10.1038/s41580-020-00288-9
10.1371/journal.pone.0198776
10.1105/tpc.113.119982
10.1038/s41598-017-09772-3
10.1016/j.tplants.2014.11.003
10.25174/2582-2675/2020/100821
10.1016/j.molp.2015.05.004
10.1007/s00425-012-1657-3
10.1016/j.envexpbot.2014.10.003
10.1093/gigascience/giy013
10.1146/annurev-phyto-080614-120254
10.1186/s12284-016-0083-8
10.1016/j.tplants.2019.09.010
10.1038/srep36021
10.1016/j.scienta.2018.06.054
10.1038/s41477-019-0577-7
10.1093/molbev/msm077
10.1111/plb.12014
10.1525/gfc.2016.16.1.1
10.1002/bab.1923
10.1111/pbi.13422
10.1111/tpj.12616
10.1016/j.molp.2015.04.007
10.1093/jxb/erv465
10.3389/fpls.2014.00484
10.1007/s10142-017-0563-y
10.1111/pbi.13443
10.1073/pnas.1721749115
10.1111/nph.15350
10.1007/978-3-030-59577-7_9
10.1007/s11105-019-01185-y
10.1371/journal.pone.0066428
10.3389/fpls.2017.00536
10.1038/s41467-018-04253-1
10.1111/j.1365-3040.2009.02055.x
10.1038/s41598-020-63823-w
10.1002/leg3.36
10.1038/s41477-020-0733-0
10.1093/dnares/dsw025
10.1093/nar/gku1039
10.2135/cropsci2018.10.0640
10.1093/botlinnean/boaa064
10.1111/pbi.12467
10.1590/1678-4685-gmb-2016-0093
10.1016/j.jplph.2017.04.007
10.1016/j.pbi.2019.12.005
10.1104/pp.15.00636
10.1186/1471-2164-15-250
10.1016/j.plantsci.2015.08.015
10.1111/tpj.13931
10.1111/j.1365-3040.2012.02511.x
10.1105/tpc.114.135954
10.2135/cropsci2016.10.0851
10.1111/tpj.15107
10.3389/fpls.2019.00004
10.1111/pbi.12867
10.3389/fpls.2018.00128
10.1534/g3.116.026914
10.1016/j.envexpbot.2019.103884
10.1038/ncomms5340
10.1111/pbi.12449
10.3732/ajb.1400116
10.1038/srep14799
10.1007/s13258-019-00910-x
10.1016/j.tplants.2019.10.012
10.1016/j.biocon.2013.08.011
10.3389/fpls.2017.02211
10.1038/ng.3612
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
7X8
DOI 10.1093/jxb/erab276
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 6139
ExternalDocumentID 10_1093_jxb_erab276
10.1093/jxb/erab276
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ACZBC
ADACV
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
CITATION
7X8
ID FETCH-LOGICAL-c400t-40c7f5d6381cf341c6caeb497b11b0bb7e69b74c8a6886b63ead7c04cf3f1d5e3
ISSN 0022-0957
1460-2431
IngestDate Fri Jul 11 03:12:34 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Tue Jul 01 03:05:49 EDT 2025
Wed Aug 28 03:20:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords salinity
Abiotic stress
drought
wild relatives
food security
flooding
breeding
population growth
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-40c7f5d6381cf341c6caeb497b11b0bb7e69b74c8a6886b63ead7c04cf3f1d5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2345-8981
0000-0002-9122-3714
0000-0003-3009-7854
0000-0002-7456-4090
OpenAccessLink https://academic.oup.com/jxb/article-pdf/72/18/6123/40490832/erab276.pdf
PQID 2540520672
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2540520672
crossref_citationtrail_10_1093_jxb_erab276
crossref_primary_10_1093_jxb_erab276
oup_primary_10_1093_jxb_erab276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-30
PublicationDateYYYYMMDD 2021-09-30
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-30
  day: 30
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
PublicationTitle Journal of experimental botany
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Alexandrov (2021093021171533200_CIT0003) 2015; 43
Qiu (2021093021171533200_CIT0136) 2011; 122
Avnery (2021093021171533200_CIT0009) 2011; 45
Zhou (2021093021171533200_CIT0209) 2015; 33
Zhou (2021093021171533200_CIT0208) 2020; 52
Honsdorf (2021093021171533200_CIT0064) 2014; 34
Li (2021093021171533200_CIT0092) 2014; 32
Bevan (2021093021171533200_CIT0019) 2017; 543
Ochieng (2021093021171533200_CIT0119) 2021; 61
Li (2021093021171533200_CIT0091) 2018; 36
Ma (2021093021171533200_CIT0104) 2015; 8
Wang (2021093021171533200_CIT0181) 2021; 19
Bredeson (2021093021171533200_CIT0022) 2016; 34
Bortesi (2021093021171533200_CIT0021) 2015; 33
Edae (2021093021171533200_CIT0039) 2017; 7
FAO (2021093021171533200_CIT0042) 2017
Hufford (2021093021171533200_CIT0068) 2013; 9
Dinneny (2021093021171533200_CIT0037) 2010; 33
Russell (2021093021171533200_CIT0144) 2016; 48
Kuwayama (2021093021171533200_CIT0087) 2019
Berthouly-Salazar (2021093021171533200_CIT0018) 2016; 25
Yu (2021093021171533200_CIT0196) 2021; 184
Burgarella (2021093021171533200_CIT0026) 2019; 10
Nguyen (2021093021171533200_CIT0117) 2019; 59
Pour-Aboughadareh (2021093021171533200_CIT0131) 2017; 39
Hyten (2021093021171533200_CIT0070) 2006; 103
Pourkheirandish (2021093021171533200_CIT0132) 2020; 11
Kang (2021093021171533200_CIT0081) 2016; 14
Maxted (2021093021171533200_CIT0105) 2009
Zsögön (2021093021171533200_CIT0211) 2018; 36
Khan (2021093021171533200_CIT0084) 2019; 24
Singh (2021093021171533200_CIT0154) 2015; 75
Baute (2021093021171533200_CIT0014) 2015; 206
Huang (2021093021171533200_CIT0066) 2016; 54
Yu (2021093021171533200_CIT0198) 2017; 94
Bailey-Serres (2021093021171533200_CIT0011) 2008; 59
Ahmed (2021093021171533200_CIT0002) 2015; 111
Sinclair (2021093021171533200_CIT0152) 2000; 79
Lin (2021093021171533200_CIT0094) 2014; 15
Montenegro (2021093021171533200_CIT0111) 2016; 16
Teshome (2021093021171533200_CIT0165) 2020; 11
Kuzuoglu-Ozturk (2021093021171533200_CIT0088) 2012; 236
Francis (2021093021171533200_CIT0045) 2017; 44
Souter (2021093021171533200_CIT0161) 2017; 57
Stitzer (2021093021171533200_CIT0162) 2018; 220
Kasirajan (2021093021171533200_CIT0082) 2020; 68
Mbow (2021093021171533200_CIT0106) 2019
Xu (2021093021171533200_CIT0192) 2016; 23
Song (2021093021171533200_CIT0159) 2020; 6
Nelson (2021093021171533200_CIT0116) 2009
Vincent (2021093021171533200_CIT0175) 2013; 167
Gosal (2021093021171533200_CIT0055) 2020
Placido (2021093021171533200_CIT0129) 2013; 161
Singh (2021093021171533200_CIT0155) 2017; 8
Wendler (2021093021171533200_CIT0187) 2015; 8
Kadam (2021093021171533200_CIT0080) 2016; 242
Palmgren (2021093021171533200_CIT0121) 2015; 20
Saade (2021093021171533200_CIT0145) 2016; 6
Warschefsky (2021093021171533200_CIT0186) 2014; 101
Lucas (2021093021171533200_CIT0103) 2017; 17
Lowder (2021093021171533200_CIT0101) 2015; 169
Gupta (2021093021171533200_CIT0056) 2017; 24
Fernie (2021093021171533200_CIT0043) 2019; 12
FAO (2021093021171533200_CIT0041) 2015
Singh (2021093021171533200_CIT0153) 2015; 34
Cowan (2021093021171533200_CIT0032) 2020; 169
Li (2021093021171533200_CIT0090) 2012; 35
von Wettberg (2021093021171533200_CIT0178) 2018; 9
Yu (2021093021171533200_CIT0199) 2016; 244
Paprotny (2021093021171533200_CIT0123) 2018; 9
Tyack (2021093021171533200_CIT0171) 2020; 9
Brinton (2021093021171533200_CIT0023) 2020; 3
Jafarzadeh (2021093021171533200_CIT0073) 2016; 11
Smýkal (2021093021171533200_CIT0157) 2018; 8
Hübner (2021093021171533200_CIT0067) 2019; 5
Joshi (2021093021171533200_CIT0078) 2020; 38
Benlloch-Gonzalez (2021093021171533200_CIT0016) 2018; 240
Islam (2021093021171533200_CIT0071) 2021; 13
Tanoue (2021093021171533200_CIT0164) 2016; 6
Nan (2021093021171533200_CIT0115) 2020; 11
Wu (2021093021171533200_CIT0191) 2011; 6
Gao (2021093021171533200_CIT0050) 2017; 214
Wan (2021093021171533200_CIT0179) 2020; 42
Zhang (2021093021171533200_CIT0201) 2020; 56
Liu (2021093021171533200_CIT0096) 2015; 231
Yu (2021093021171533200_CIT0197) 2019; 17
Zhu (2021093021171533200_CIT0210) 2020; 21
Kumar (2021093021171533200_CIT0086) 2021
Song (2021093021171533200_CIT0158) 2019; 8
Van de Wiel (2021093021171533200_CIT0172) 2010
Scafaro (2021093021171533200_CIT0146) 2018; 9
Carter (2021093021171533200_CIT0029) 2018; 10
Cao (2021093021171533200_CIT0028) 2016; 16
Cortés (2021093021171533200_CIT0031) 2018; 9
FAO (2021093021171533200_CIT0040) 2012
Ramu (2021093021171533200_CIT0138) 2017; 49
Rao (2021093021171533200_CIT0139) 2015; 10
Zhang (2021093021171533200_CIT0203) 2001; 19
Kim (2021093021171533200_CIT0085) 2019; 58
Liu (2021093021171533200_CIT0099) 2020; 255
Vikram (2021093021171533200_CIT0173) 2015; 5
Lu (2021093021171533200_CIT0102) 2015; 6
Henry (2021093021171533200_CIT0060) 2014; 12
Jia (2021093021171533200_CIT0077) 2013; 496
Zhao (2021093021171533200_CIT0205) 2020; 18
Nisa (2021093021171533200_CIT0118) 2017; 119
Zhao (2021093021171533200_CIT0207) 2018; 50
Tubiello (2021093021171533200_CIT0170) 2007; 104
Atwell (2021093021171533200_CIT0007) 2014; 215
Porter (2021093021171533200_CIT0130) 2014
Rebetzke (2021093021171533200_CIT0143) 2019; 282
Jia (2021093021171533200_CIT0076) 2017; 7
Antle (2021093021171533200_CIT0006) 2004; 64
Dutra (2021093021171533200_CIT0038) 2018; 13
He (2021093021171533200_CIT0058) 2014; 5
Shabala (2021093021171533200_CIT0150) 2020; 225
Della Coletta (2021093021171533200_CIT0035) 2021; 22
Mishra (2021093021171533200_CIT0109) 2016; 9
Hirsch (2021093021171533200_CIT0062) 2014; 26
Liu (2021093021171533200_CIT0098) 2018; 95
Zaid (2021093021171533200_CIT0200) 2020
Bayer (2021093021171533200_CIT0015) 2020; 6
IWG Drought (2021093021171533200_CIT0072) 2020
Wani (2021093021171533200_CIT0185) 2020
Anderson (2021093021171533200_CIT0005) 2016; 6
Tian (2021093021171533200_CIT0167) 2021; 105
Peter (2021093021171533200_CIT0127) 2020; 10
Shi (2021093021171533200_CIT0151) 2020; 7
Yang (2021093021171533200_CIT0194) 2017; 8
Voesenek (2021093021171533200_CIT0177) 2013; 15
Fustier (2021093021171533200_CIT0046) 2017; 26
Joshi (2021093021171533200_CIT0079) 2016; 7
Peng (2021093021171533200_CIT0126) 2014; 33
Jayakodi (2021093021171533200_CIT0075) 2020; 588
Henry (2021093021171533200_CIT0061) 2014; 12
Patil (2021093021171533200_CIT0124) 2016; 6
Bassi (2021093021171533200_CIT0013) 2016; 242
Bansal (2021093021171533200_CIT0012) 2021
Yolcu (2021093021171533200_CIT0195) 2020; 21
Qi (2021093021171533200_CIT0135) 2014; 5
The 100 Tomato Genome Sequencing Consortium (2021093021171533200_CIT0166) 2014; 80
Berny Mier y Teran (2021093021171533200_CIT0017) 2019; 124
Hurgobin (2021093021171533200_CIT0069) 2018; 16
Wani (2021093021171533200_CIT0183) 2021; 15
Liu (2021093021171533200_CIT0097) 2020; 18
Coyne (2021093021171533200_CIT0033) 2020; 2
Qadir (2021093021171533200_CIT0134) 2014; 38
Zhao (2021093021171533200_CIT0206) 2017; 8
Rampino (2021093021171533200_CIT0137) 2020; 156
Fischer (2021093021171533200_CIT0044) 2014
Brunazzi (2021093021171533200_CIT0025) 2018; 94
Gornall (2021093021171533200_CIT0054) 2010; 365
Li (2021093021171533200_CIT0089) 2014; 3
Wang (2021093021171533200_CIT0182) 2020; 39
Abberton (2021093021171533200_CIT0001) 2016; 14
Pickersgill (2021093021171533200_CIT0128) 2007; 100
Shabala (2021093021171533200_CIT0149) 2016; 67
Michael (2021093021171533200_CIT0108) 2020; 54
Wani (2021093021171533200_CIT0184) 2020; 12
Brozynska (2021093021171533200_CIT0024) 2016; 14
Peng (2021093021171533200_CIT0125) 2004; 6
Ganie (2021093021171533200_CIT0049) 2021; 1
Munns (2021093021171533200_CIT0113) 2012; 30
Wang (2021093021171533200_CIT0180) 2018; 115
Ray (2021093021171533200_CIT0140) 2013; 8
Tilman (2021093021171533200_CIT0169) 2011; 108
Pan (2021093021171533200_CIT0122) 2018; 11
Oshunsanya (2021093021171533200_CIT0120) 2019
Wright (2021093021171533200_CIT0190) 2005; 308
Golicz (2021093021171533200_CIT0052) 2016; 7
Bailey (2021093021171533200_CIT0010) 2015
Tiffin (2021093021171533200_CIT0168) 2001; 268
Villano (2021093021171533200_CIT0174) 2020; 10
Liu (2021093021171533200_CIT0100) 2020; 182
Dempewolf (2021093021171533200_CIT0036) 2017; 57
Zhang (2021093021171533200_CIT0202) 2018; 9
Danilevicz (2021093021171533200_CIT0034) 2020; 54
Naim-Feil (2021093021171533200_CIT0114) 2017; 57
He (2021093021171533200_CIT0059) 2015; 66
Ganie (2021093021171533200_CIT0048) 2014; 300
Hossain (2021093021171533200_CIT0065) 2021
Janzen (2021093021171533200_CIT0074) 2019; 221
World Bank (2021093021171533200_CIT0189) 2017
Montenegro (2021093021171533200_CIT0110) 2017; 90
Song (2021093021171533200_CIT0160) 2015; 5
Sinha (2021093021171533200_CIT0156) 2020; 18
Scossa (2021093021171533200_CIT0148) 2016; 242
Khan (2021093021171533200_CIT0083) 2020; 25
Razzaq (2021093021171533200_CIT0142) 2019; 20
Cheng (2021093021171533200_CIT0030) 2018; 7
Zhang (2021093021171533200_CIT0204) 2017; 130
Haudry (2021093021171533200_CIT0057) 2007; 24
Menguer (2021093021171533200_CIT0107) 2017; 40
Ali (2021093021171533200_CIT0004) 2012; 7
Li (2021093021171533200_CIT0093) 2009; 39
Höft (2021093021171533200_CIT0063) 2018; 8
Liu (2021093021171533200_CIT0095) 2015; 121
Preece (2021093021171533200_CIT0133) 2020; 25
Aversano (2021093021171533200_CIT0008) 2015; 27
Gordon (2021093021171533200_CIT0053) 2017; 8
Borrill (2021093021171533200_CIT0020) 2015; 208
Schatz (2021093021171533200_CIT0147) 2014; 15
Moriondo (2021093021171533200_CIT0112) 2010; 15
Suprunova (2021093021171533200_CIT0163) 2007; 64
Razali (2021093021171533200_CIT0141) 2018; 9
Viruel (2021093021171533200_CIT0176) 2021; 195
Gammans (2021093021171533200_CIT0047) 2017; 12
Wheeler (2021093021171533200_CIT0188) 2013; 341
Gao (2021093021171533200_CIT0051) 2019; 51
Xu (2021093021171533200_CIT0193) 2012; 30
Cao (2021093021171533200_CIT0027) 2017; 95
References_xml – volume: 18
  start-page: 1946
  year: 2020
  ident: 2021093021171533200_CIT0205
  article-title: Trait associations in the pangenome of pigeon pea (Cajanus cajan)
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.13354
– volume: 9
  start-page: 1663
  year: 2018
  ident: 2021093021171533200_CIT0146
  article-title: A thermotolerant variant of rubisco activase from a wild relative improves growth and seed yield in rice under heat stress
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.01663
– volume: 268
  start-page: 861
  year: 2001
  ident: 2021093021171533200_CIT0168
  article-title: Asymmetrical crossing barriers in angiosperms
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2000.1578
– year: 2020
  ident: 2021093021171533200_CIT0072
– volume: 50
  start-page: 278
  year: 2018
  ident: 2021093021171533200_CIT0207
  article-title: Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice
  publication-title: Nature Genetics
  doi: 10.1038/s41588-018-0041-z
– volume: 57
  start-page: 1145
  year: 2017
  ident: 2021093021171533200_CIT0114
  article-title: Drought response and genetic diversity in Pisum fulvum, a wild relative of domesticated pea
  publication-title: Crop Science
  doi: 10.2135/cropsci2016.10.0880
– volume: 36
  start-page: 1160
  year: 2018
  ident: 2021093021171533200_CIT0091
  article-title: Domestication of wild tomato is accelerated by genome editing
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.4273
– volume: 122
  start-page: 695
  year: 2011
  ident: 2021093021171533200_CIT0136
  article-title: Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-010-1479-2
– volume: 8
  start-page: 119
  year: 2018
  ident: 2021093021171533200_CIT0157
  article-title: The impact of genetic changes during crop domestication
  publication-title: Agronomy
  doi: 10.3390/agronomy8070119
– volume: 49
  start-page: 959
  year: 2017
  ident: 2021093021171533200_CIT0138
  article-title: Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation
  publication-title: Nature Genetics
  doi: 10.1038/ng.3845
– volume: 10
  start-page: 361
  year: 2018
  ident: 2021093021171533200_CIT0029
  article-title: Identifying the economic impacts of climate change on agriculture
  publication-title: Annual Review of Resource Economics
  doi: 10.1146/annurev-resource-100517-022938
– volume: 11
  start-page: 922
  year: 2020
  ident: 2021093021171533200_CIT0132
  article-title: Global role of crop genomics in the face of climate change
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.00922
– volume: 1
  start-page: 101996
  year: 2021
  ident: 2021093021171533200_CIT0049
  article-title: Improving rice salt tolerance by precision breeding in a new era
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2020.101996
– volume: 9
  start-page: 1305
  year: 2020
  ident: 2021093021171533200_CIT0171
  article-title: The potential of payment for ecosystem services for crop wild relative conservation
  publication-title: Plants
  doi: 10.3390/plants9101305
– volume: 21
  start-page: 8567
  year: 2020
  ident: 2021093021171533200_CIT0195
  article-title: Natural genetic resources from diverse plants to improve abiotic stress tolerance in plants
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms21228567
– volume-title: Climate change impact on agriculture and costs of adaptation
  year: 2009
  ident: 2021093021171533200_CIT0116
– volume: 44
  start-page: 124
  year: 2017
  ident: 2021093021171533200_CIT0045
  article-title: Challenges and opportunities for improving food quality and nutrition through plant biotechnology
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2016.11.009
– volume: 3
  start-page: 2047
  year: 2014
  ident: 2021093021171533200_CIT0089
  article-title: The 3,000 rice genomes project: new opportunities and challenges for future rice research
  publication-title: Gigascience
  doi: 10.1186/2047-217X-3-8
– volume: 64
  start-page: 17
  year: 2007
  ident: 2021093021171533200_CIT0163
  article-title: Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-006-9131-x
– volume: 9
  start-page: 1454
  year: 2018
  ident: 2021093021171533200_CIT0202
  article-title: Molecular cloning and functional characterization of the dehydrin (IpDHN) gene from Ipomoea pes-caprae
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.01454
– volume: 15
  start-page: 1
  year: 2014
  ident: 2021093021171533200_CIT0147
  article-title: Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica
  publication-title: Genome Biology
– volume: 15
  start-page: 657
  year: 2010
  ident: 2021093021171533200_CIT0112
  article-title: Impact and adaptation opportunities for European agriculture in response to climatic change and variability
  publication-title: Mitigation Adaptation in Strategies for Global Change
  doi: 10.1007/s11027-010-9219-0
– volume: 75
  start-page: 157
  year: 2015
  ident: 2021093021171533200_CIT0154
  article-title: Haplotype diversity and association analysis of SNAC1 gene in wild rice germplasm
  publication-title: Indian Journal Genetics and Plant Breeding
  doi: 10.5958/0975-6906.2015.00025.5
– volume: 24
  start-page: 293
  year: 2019
  ident: 2021093021171533200_CIT0084
  article-title: A CRISPR way for fast-forward crop domestication
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2019.01.011
– volume: 12
  start-page: 655
  year: 2014
  ident: 2021093021171533200_CIT0061
  article-title: Exploring natural selection to guide breeding for agriculture
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12215
– volume: 90
  start-page: 1007
  year: 2017
  ident: 2021093021171533200_CIT0110
  article-title: The pangenome of hexaploid bread wheat
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13515
– volume: 543
  start-page: 346
  year: 2017
  ident: 2021093021171533200_CIT0019
  article-title: Genomic innovation for crop improvement
  publication-title: Nature
  doi: 10.1038/nature22011
– volume: 36
  start-page: 1211
  year: 2018
  ident: 2021093021171533200_CIT0211
  article-title: De novo domestication of wild tomato using genome editing
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.4272
– volume: 54
  start-page: 26
  year: 2020
  ident: 2021093021171533200_CIT0108
  article-title: Building near-complete plant genomes
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2019.12.009
– volume: 12
  start-page: S9
  year: 2014
  ident: 2021093021171533200_CIT0060
  article-title: Sequencing of wild crop relatives to support the conservation and utilization of plant genetic resources
  publication-title: Plant Genetic Resources
  doi: 10.1017/S1479262113000439
– volume: 11
  start-page: 1
  year: 2018
  ident: 2021093021171533200_CIT0122
  article-title: Overexpression of the Tibetan Plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses
  publication-title: Rice
  doi: 10.1186/s12284-018-0242-1
– volume: 5
  start-page: 1999
  year: 2015
  ident: 2021093021171533200_CIT0160
  article-title: Fingerprinting soybean germplasm and its utility in genomic research
  publication-title: G3
  doi: 10.1534/g3.115.019000
– volume: 94
  start-page: 670
  year: 2018
  ident: 2021093021171533200_CIT0025
  article-title: Molecular diversity and landscape genomics of the crop wild relative Triticum urartu across the Fertile Crescent
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13888
– volume: 8
  start-page: 1
  year: 2017
  ident: 2021093021171533200_CIT0194
  article-title: Contributions of Zea mays subspecies mexicana haplotypes to modern maize
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-02063-5
– volume: 58
  start-page: 1233
  year: 2019
  ident: 2021093021171533200_CIT0085
  article-title: Global patterns of crop production losses associated with droughts from 1983 to 2009
  publication-title: Journal of Applied Meteorology and Climatology
  doi: 10.1175/JAMC-D-18-0174.1
– volume: 39
  start-page: 106
  year: 2017
  ident: 2021093021171533200_CIT0131
  article-title: Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-017-2403-z
– volume: 206
  start-page: 830
  year: 2015
  ident: 2021093021171533200_CIT0014
  article-title: Genome scans reveal candidate domestication and improvement genes in cultivated sunflower, as well as post-domestication introgression with wild relatives
  publication-title: New Phytologist
  doi: 10.1111/nph.13255
– volume: 255
  start-page: 153276
  year: 2020
  ident: 2021093021171533200_CIT0099
  article-title: RNA-seq reveals the salt tolerance of Ipomoea pes-caprae, a wild relative of sweet potato
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2020.153276
– volume: 39
  start-page: e103256
  year: 2020
  ident: 2021093021171533200_CIT0182
  article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter
  publication-title: The EMBO Journal
  doi: 10.15252/embj.2019103256
– start-page: 398
  volume-title: Molecular breeding for rice abiotic stress tolerance and nutritional quality
  year: 2021
  ident: 2021093021171533200_CIT0065
  article-title: Targeting the ascorbate–glutathione pathway and the glyoxalase pathway for genetic engineering of abiotic stress-tolerance in rice.
  doi: 10.1002/9781119633174.ch21
– volume: 30
  start-page: 105
  year: 2012
  ident: 2021093021171533200_CIT0193
  article-title: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2050
– volume: 130
  start-page: 1559
  year: 2017
  ident: 2021093021171533200_CIT0204
  article-title: A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum)
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-017-2910-8
– volume: 7
  start-page: e48819
  year: 2012
  ident: 2021093021171533200_CIT0004
  article-title: Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048819
– volume: 61
  start-page: 104
  year: 2021
  ident: 2021093021171533200_CIT0119
  article-title: Novel sources of drought tolerance from landraces and wild sorghum relatives
  publication-title: Crop Science
  doi: 10.1002/csc2.20300
– volume: 6
  start-page: 1
  year: 2016
  ident: 2021093021171533200_CIT0145
  article-title: Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley
  publication-title: Scientific Reports
  doi: 10.1038/srep32586
– volume: 9
  start-page: 1
  year: 2018
  ident: 2021093021171533200_CIT0178
  article-title: Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-02867-z
– start-page: 485
  volume-title: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: 2021093021171533200_CIT0130
  article-title: Food security and food production systems.
– volume: 12
  start-page: 615
  year: 2019
  ident: 2021093021171533200_CIT0043
  article-title: De novo domestication: an alternative route toward new crops for the future
  publication-title: Molecular Plant
  doi: 10.1016/j.molp.2019.03.016
– volume: 10
  start-page: e0132535
  year: 2015
  ident: 2021093021171533200_CIT0139
  article-title: Variations in DREB1A and VP1.1 genes show association with salt tolerance traits in wild tomato (Solanum pimpinellifolium)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0132535
– volume: 33
  start-page: 41
  year: 2015
  ident: 2021093021171533200_CIT0021
  article-title: The CRISPR/Cas9 system for plant genome editing and beyond
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2014.12.006
– volume: 282
  start-page: 40
  year: 2019
  ident: 2021093021171533200_CIT0143
  article-title: Review: High-throughput phenotyping to enhance the use of crop genetic resources
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2018.06.017
– volume: 225
  start-page: 1105
  year: 2020
  ident: 2021093021171533200_CIT0150
  article-title: The energy cost of the tonoplast futile sodium leak
  publication-title: New Phytologist
  doi: 10.1111/nph.15758
– volume: 34
  start-page: 993
  year: 2015
  ident: 2021093021171533200_CIT0153
  article-title: Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance
  publication-title: Plant Cell Reports
  doi: 10.1007/s00299-015-1760-6
– volume: 38
  start-page: 282
  year: 2014
  ident: 2021093021171533200_CIT0134
  article-title: Economics of salt-induced land degradation and restoration
  publication-title: Natural Resources Forum
  doi: 10.1111/1477-8947.12054
– start-page: 71
  volume-title: Sustainable agriculture, forest and environmental management
  year: 2019
  ident: 2021093021171533200_CIT0120
  article-title: Abiotic stress in agricultural crops under climatic conditions.
  doi: 10.1007/978-981-13-6830-1_3
– volume-title: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
  year: 2019
  ident: 2021093021171533200_CIT0106
  article-title: Food security—special report on climate change and land.
– volume: 7
  start-page: 1
  year: 2016
  ident: 2021093021171533200_CIT0052
  article-title: The pangenome of an agronomically important crop plant Brassica oleracea
  publication-title: Nature Communications
  doi: 10.1038/ncomms13390
– volume: 108
  start-page: 20260
  year: 2011
  ident: 2021093021171533200_CIT0169
  article-title: Global food demand and the sustainable intensification of agriculture
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1116437108
– volume: 103
  start-page: 16666
  year: 2006
  ident: 2021093021171533200_CIT0070
  article-title: Impacts of genetic bottlenecks on soybean genome diversity
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0604379103
– volume: 10
  start-page: 1
  year: 2020
  ident: 2021093021171533200_CIT0127
  article-title: Isolation, characterization and expression analysis of stress responsive plant nuclear transcriptional factor subunit (NF-YB2) from commercial Saccharum hybrid and wild relative Erianthus arundinaceus
  publication-title: 3 Biotech
  doi: 10.1007/s13205-020-02295-1
– volume: 11
  start-page: e0162860
  year: 2016
  ident: 2021093021171533200_CIT0073
  article-title: Breeding value of primary synthetic wheat genotypes for grain yield
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162860
– volume: 7
  start-page: 1551
  year: 2017
  ident: 2021093021171533200_CIT0039
  article-title: Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat
  publication-title: G3
  doi: 10.1534/g3.117.039966
– volume: 6
  start-page: e22938
  year: 2011
  ident: 2021093021171533200_CIT0191
  article-title: Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022938
– volume: 6
  start-page: 9971
  year: 2004
  ident: 2021093021171533200_CIT0125
  article-title: Rice yields decline with higher night temperature from global warming
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0403720101
– volume: 95
  start-page: 253
  year: 2017
  ident: 2021093021171533200_CIT0027
  article-title: The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-017-0643-3
– volume: 32
  start-page: 1045
  year: 2014
  ident: 2021093021171533200_CIT0092
  article-title: De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2979
– volume: 16
  start-page: 1
  year: 2016
  ident: 2021093021171533200_CIT0028
  article-title: A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis
  publication-title: BMC Plant Biology
  doi: 10.1186/s12870-016-0872-7
– volume: 7
  start-page: 1
  year: 2020
  ident: 2021093021171533200_CIT0151
  article-title: The draft genome sequence of an upland wild rice species, Oryza granulata
  publication-title: Scientific Data
  doi: 10.1038/s41597-020-0470-2
– start-page: 263
  volume-title: Physiological, molecular, and genetic perspectives of wheat improvement
  year: 2021
  ident: 2021093021171533200_CIT0012
  article-title: Genome editing and trait improvement in wheat.
  doi: 10.1007/978-3-030-59577-7_12
– volume: 156
  start-page: 115
  year: 2020
  ident: 2021093021171533200_CIT0137
  article-title: New gene functions are involved in the thermotolerance of the wild wheat relative Aegilops umbellulata
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2020.09.005
– volume: 9
  start-page: e1003477
  year: 2013
  ident: 2021093021171533200_CIT0068
  article-title: The genomic signature of crop–wild introgression in maize
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1003477
– volume: 33
  start-page: 408
  year: 2015
  ident: 2021093021171533200_CIT0209
  article-title: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.3096
– volume: 208
  start-page: 1008
  year: 2015
  ident: 2021093021171533200_CIT0020
  article-title: Genomics as the key to unlocking the polyploid potential of wheat
  publication-title: New Phytologist
  doi: 10.1111/nph.13533
– volume-title: Traditional plant breeding methods
  year: 2010
  ident: 2021093021171533200_CIT0172
– volume: 221
  start-page: 1279
  year: 2019
  ident: 2021093021171533200_CIT0074
  article-title: The extent of adaptive wild introgression in crops
  publication-title: New Phytologist
  doi: 10.1111/nph.15457
– volume: 5
  start-page: 54
  year: 2019
  ident: 2021093021171533200_CIT0067
  article-title: Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance
  publication-title: Nature Plants
  doi: 10.1038/s41477-018-0329-0
– volume: 308
  start-page: 1310
  year: 2005
  ident: 2021093021171533200_CIT0190
  article-title: The effects of artificial selection on the maize genome
  publication-title: Science
  doi: 10.1126/science.1107891
– start-page: 8
  volume-title: Crop yields and global food security
  year: 2014
  ident: 2021093021171533200_CIT0044
– volume: 121
  start-page: 633
  year: 2015
  ident: 2021093021171533200_CIT0095
  article-title: A novel hybrid proline-rich type gene GsEARLI17 from Glycine soja participated in leaf cuticle synthesis and plant tolerance to salt and alkali stresses
  publication-title: Plant Cell, Tissue and Organ Culture
  doi: 10.1007/s11240-015-0734-2
– volume: 9
  start-page: 1402
  year: 2018
  ident: 2021093021171533200_CIT0141
  article-title: The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.01402
– volume-title: Extreme weather and resilience of the global food system. Final Project Report from the UK–US Taskforce on Extreme Weather and Global Food System Resilience
  year: 2015
  ident: 2021093021171533200_CIT0010
– volume: 94
  start-page: 509
  year: 2017
  ident: 2021093021171533200_CIT0198
  article-title: A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-017-0623-7
– volume: 588
  start-page: 284
  year: 2020
  ident: 2021093021171533200_CIT0075
  article-title: The barley pan-genome reveals the hidden legacy of mutation breeding
  publication-title: Nature
  doi: 10.1038/s41586-020-2947-8
– start-page: 491
  volume-title: Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives
  year: 2020
  ident: 2021093021171533200_CIT0200
  article-title: Role of triacontanol in overcoming environmental stresses.
  doi: 10.1002/9781119552154.ch25
– volume: 231
  start-page: 198
  year: 2015
  ident: 2021093021171533200_CIT0096
  article-title: Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2014.12.006
– volume: 8
  start-page: 1
  year: 2017
  ident: 2021093021171533200_CIT0053
  article-title: Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-02292-8
– volume: 26
  start-page: 2738
  year: 2017
  ident: 2021093021171533200_CIT0046
  article-title: Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples
  publication-title: Molecular Ecology
  doi: 10.1111/mec.14082
– volume-title: Benefits of farm level disaster risk reduction practices in agriculture
  year: 2017
  ident: 2021093021171533200_CIT0042
– volume: 39
  start-page: 31
  year: 2009
  ident: 2021093021171533200_CIT0093
  article-title: Climate change and drought: a risk assessment of crop-yield impacts
  publication-title: Climate Research
  doi: 10.3354/cr00797
– volume: 24
  start-page: 1
  year: 2017
  ident: 2021093021171533200_CIT0056
  article-title: Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement
  publication-title: DNA Research
– volume: 100
  start-page: 925
  year: 2007
  ident: 2021093021171533200_CIT0128
  article-title: Domestication of plants in the Americas: insights from Mendelian and molecular genetics
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcm193
– volume: 182
  start-page: 162
  year: 2020
  ident: 2021093021171533200_CIT0100
  article-title: Pan-genome of wild and cultivated soybeans
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.023
– volume: 17
  start-page: 881
  year: 2019
  ident: 2021093021171533200_CIT0197
  article-title: Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.13022
– volume: 3
  start-page: 1
  year: 2020
  ident: 2021093021171533200_CIT0023
  article-title: A haplotype-led approach to increase the precision of wheat breeding
  publication-title: Communications Biology
  doi: 10.1038/s42003-020-01413-2
– volume: 124
  start-page: 917
  year: 2019
  ident: 2021093021171533200_CIT0017
  article-title: Root and shoot variation in relation to potential intermittent drought adaptation of Mesoamerican wild common bean (Phaseolus vulgaris L.)
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcy221
– volume: 119
  start-page: 9
  year: 2017
  ident: 2021093021171533200_CIT0118
  article-title: GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2017.07.029
– volume: 79
  start-page: 53
  year: 2000
  ident: 2021093021171533200_CIT0152
  article-title: Leaf nitrogen concentration of wheat subjected to elevated CO2 and either water or N deficits
  publication-title: Agriculture, Ecosystems, and Environment
  doi: 10.1016/S0167-8809(99)00146-2
– volume: 64
  start-page: 289
  year: 2004
  ident: 2021093021171533200_CIT0006
  article-title: Adaptation, spatial heterogeneity, and the vulnerability of agricultural systems to climate change and CO2 fertilization: an integrated assessment approach
  publication-title: Climate Change
  doi: 10.1023/B:CLIM.0000025748.49738.93
– year: 2015
  ident: 2021093021171533200_CIT0041
– volume: 6
  start-page: 1
  year: 2015
  ident: 2021093021171533200_CIT0102
  article-title: High-resolution genetic mapping of maize pan-genome sequence anchors
  publication-title: Nature Communications
  doi: 10.1038/ncomms7914
– volume: 11
  start-page: 359
  year: 2020
  ident: 2021093021171533200_CIT0115
  article-title: Genome-wide analysis of WRKY genes and their response to salt stress in the wild progenitor of Asian cultivated rice, Oryza rufipogon
  publication-title: Frontiers in Genetics
  doi: 10.3389/fgene.2020.00359
– volume: 300
  start-page: 1741
  year: 2014
  ident: 2021093021171533200_CIT0048
  article-title: Assessment of genetic diversity in salt-tolerant rice and its wild relatives for ten SSR loci and one allele mining primer of salT gene located on 1st chromosome
  publication-title: Plant Systematics and Evolution
  doi: 10.1007/s00606-014-0999-7
– volume: 66
  start-page: 7405
  year: 2015
  ident: 2021093021171533200_CIT0059
  article-title: HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv436
– volume: 30
  start-page: 360
  year: 2012
  ident: 2021093021171533200_CIT0113
  article-title: Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2120
– volume: 8
  start-page: 972
  year: 2017
  ident: 2021093021171533200_CIT0155
  article-title: Evolutionary insights based on SNP haplotypes of red pericarp, grain size and starch synthase genes in wild and cultivated rice
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.00972
– volume: 11
  start-page: 1874
  year: 2020
  ident: 2021093021171533200_CIT0165
  article-title: The threat of the combined effect of biotic and abiotic stress factors in forestry under a changing climate
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.601009
– volume: 13
  start-page: 1
  year: 2021
  ident: 2021093021171533200_CIT0071
  article-title: High-throughput phenotyping for abiotic stress resilience in cereals
  publication-title: Journal of Cereal Research
  doi: 10.25174/2582-2675/2021/111256
– volume: 12
  start-page: 054007
  year: 2017
  ident: 2021093021171533200_CIT0047
  article-title: Negative impacts of climate change on cereal yields: statistical evidence from France
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/aa6b0c
– volume: 496
  start-page: 91
  year: 2013
  ident: 2021093021171533200_CIT0077
  article-title: Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation
  publication-title: Nature
  doi: 10.1038/nature12028
– volume: 22
  start-page: 1
  year: 2021
  ident: 2021093021171533200_CIT0035
  article-title: How the pan-genome is changing crop genomics and improvement
  publication-title: Genome Biology
  doi: 10.1186/s13059-020-02224-8
– volume: 33
  start-page: 89
  year: 2014
  ident: 2021093021171533200_CIT0126
  article-title: Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression
  publication-title: Molecular Breeding
  doi: 10.1007/s11032-013-9936-7
– volume: 56
  start-page: 218
  year: 2020
  ident: 2021093021171533200_CIT0201
  article-title: Exploring the application of wild species for crop improvement in a changing climate
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2019.12.013
– volume: 25
  start-page: 5500
  year: 2016
  ident: 2021093021171533200_CIT0018
  article-title: Genome scan reveals selection acting on genes linked to stress response in wild pearl millet
  publication-title: Molecular Ecology
  doi: 10.1111/mec.13859
– volume: 45
  start-page: 2284
  year: 2011
  ident: 2021093021171533200_CIT0009
  article-title: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2010.11.045
– volume: 215
  start-page: 48
  year: 2014
  ident: 2021093021171533200_CIT0007
  article-title: Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2013.10.007
– volume: 104
  start-page: 19686
  year: 2007
  ident: 2021093021171533200_CIT0170
  article-title: Crop and pasture response to climate change
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0701728104
– volume: 8
  start-page: giz115
  year: 2019
  ident: 2021093021171533200_CIT0158
  article-title: Draft genome sequence of Solanum aethiopicum provides insights into disease resistance, drought tolerance, and the evolution of the genome
  publication-title: Gigascience
  doi: 10.1093/gigascience/giz115
– volume: 7
  start-page: 1029
  year: 2016
  ident: 2021093021171533200_CIT0079
  article-title: Transcription factors and plants response to drought stress: current understanding and future directions
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01029
– volume: 51
  start-page: 1044
  year: 2019
  ident: 2021093021171533200_CIT0051
  article-title: The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor
  publication-title: Nature Genetics
  doi: 10.1038/s41588-019-0410-2
– volume: 34
  start-page: 562
  year: 2016
  ident: 2021093021171533200_CIT0022
  article-title: Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.3535
– volume: 20
  start-page: 4045
  year: 2019
  ident: 2021093021171533200_CIT0142
  article-title: Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms20164045
– volume-title: Establishment of a global network for the in situ conservation of crop wild relatives: status and needs
  year: 2009
  ident: 2021093021171533200_CIT0105
– volume: 244
  start-page: 681
  year: 2016
  ident: 2021093021171533200_CIT0199
  article-title: GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis
  publication-title: Planta
  doi: 10.1007/s00425-016-2532-4
– year: 2019
  ident: 2021093021171533200_CIT0087
– volume: 14
  start-page: 1070
  year: 2016
  ident: 2021093021171533200_CIT0024
  article-title: Genomics of crop wild relatives: expanding the gene pool for crop improvement
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12454
– volume: 19
  start-page: 765
  year: 2001
  ident: 2021093021171533200_CIT0203
  article-title: Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit
  publication-title: Nature Biotechnology
  doi: 10.1038/90824
– volume: 52
  start-page: 1412
  year: 2020
  ident: 2021093021171533200_CIT0208
  article-title: Triticum population sequencing provides insights into wheat adaptation
  publication-title: Nature Genetics
  doi: 10.1038/s41588-020-00722-w
– volume: 6
  start-page: 1
  year: 2016
  ident: 2021093021171533200_CIT0124
  article-title: Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean
  publication-title: Scientific Reports
  doi: 10.1038/srep19199
– volume: 161
  start-page: 1806
  year: 2013
  ident: 2021093021171533200_CIT0129
  article-title: Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.214262
– volume: 18
  start-page: 443
  year: 2020
  ident: 2021093021171533200_CIT0097
  article-title: The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.13210
– volume: 242
  start-page: 47
  year: 2016
  ident: 2021093021171533200_CIT0148
  article-title: Genomics-based strategies for the use of natural variation in the improvement of crop metabolism
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2015.05.021
– volume: 341
  start-page: 508
  year: 2013
  ident: 2021093021171533200_CIT0188
  article-title: Climate change impacts on global food security
  publication-title: Science
  doi: 10.1126/science.1239402
– volume: 34
  start-page: 1475
  year: 2014
  ident: 2021093021171533200_CIT0064
  article-title: Evaluation of juvenile drought stress tolerance and genotyping by sequencing with wild barley introgression lines
  publication-title: Molecular Breeding
  doi: 10.1007/s11032-014-0131-2
– volume: 365
  start-page: 2973
  year: 2010
  ident: 2021093021171533200_CIT0054
  article-title: Implications of climate change for agricultural productivity in the early twenty-first century
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2010.0158
– volume: 184
  start-page: 1156
  year: 2021
  ident: 2021093021171533200_CIT0196
  article-title: A route to de novo domestication of wild allotetraploid rice
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.013
– volume: 57
  start-page: 1070
  year: 2017
  ident: 2021093021171533200_CIT0036
  article-title: Past and future use of wild relatives in crop breeding
  publication-title: Crop Science
  doi: 10.2135/cropsci2016.10.0885
– volume: 242
  start-page: 23
  year: 2016
  ident: 2021093021171533200_CIT0013
  article-title: Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.)
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2015.08.021
– volume: 59
  start-page: 313
  year: 2008
  ident: 2021093021171533200_CIT0011
  article-title: Flooding stress: acclimations and genetic diversity
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092752
– volume: 21
  start-page: 661
  year: 2020
  ident: 2021093021171533200_CIT0210
  article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology
  publication-title: Nature Reviews. Molecular Cell Biology
  doi: 10.1038/s41580-020-00288-9
– volume: 13
  start-page: e0198776
  year: 2018
  ident: 2021093021171533200_CIT0038
  article-title: Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0198776
– volume: 26
  start-page: 121
  year: 2014
  ident: 2021093021171533200_CIT0062
  article-title: Insights into the maize pan-genome and pan-transcriptome
  publication-title: The Plant Cell
  doi: 10.1105/tpc.113.119982
– volume: 7
  start-page: 1
  year: 2017
  ident: 2021093021171533200_CIT0076
  article-title: GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-09772-3
– volume: 20
  start-page: 155
  year: 2015
  ident: 2021093021171533200_CIT0121
  article-title: Are we ready for back-to-nature crop breeding?
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2014.11.003
– volume: 12
  start-page: 1
  year: 2020
  ident: 2021093021171533200_CIT0184
  article-title: Recent advances in genomics assisted breeding for drought stress tolerance in major cereals
  publication-title: Journal of Cereal Research
  doi: 10.25174/2582-2675/2020/100821
– volume: 8
  start-page: 1507
  year: 2015
  ident: 2021093021171533200_CIT0187
  article-title: Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond
  publication-title: Molecular Plant
  doi: 10.1016/j.molp.2015.05.004
– volume: 236
  start-page: 1081
  year: 2012
  ident: 2021093021171533200_CIT0088
  article-title: Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response
  publication-title: Planta
  doi: 10.1007/s00425-012-1657-3
– volume: 111
  start-page: 1
  year: 2015
  ident: 2021093021171533200_CIT0002
  article-title: Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley
  publication-title: Environmental and Experimental Botany
  doi: 10.1016/j.envexpbot.2014.10.003
– volume: 7
  start-page: giy013
  year: 2018
  ident: 2021093021171533200_CIT0030
  article-title: 10KP: a phylodiverse genome sequencing plan
  publication-title: Gigascience
  doi: 10.1093/gigascience/giy013
– volume: 54
  start-page: 279
  year: 2016
  ident: 2021093021171533200_CIT0066
  article-title: Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev-phyto-080614-120254
– volume: 9
  start-page: 15
  year: 2016
  ident: 2021093021171533200_CIT0109
  article-title: Association of SNP haplotypes of HKT family genes with salt tolerance in Indian wild rice germplasm
  publication-title: Rice
  doi: 10.1186/s12284-016-0083-8
– volume: 25
  start-page: 14
  year: 2020
  ident: 2021093021171533200_CIT0133
  article-title: A return to the wild: root exudates and food security
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2019.09.010
– volume: 6
  start-page: 1
  year: 2016
  ident: 2021093021171533200_CIT0164
  article-title: Global-scale river flood vulnerability in the last 50 years
  publication-title: Scientific Reports
  doi: 10.1038/srep36021
– volume: 240
  start-page: 405
  year: 2018
  ident: 2021093021171533200_CIT0016
  article-title: An approach to global warming effects on flowering and fruit set of olive trees growing under field conditions
  publication-title: Scientia Horticulture
  doi: 10.1016/j.scienta.2018.06.054
– volume: 6
  start-page: 34
  year: 2020
  ident: 2021093021171533200_CIT0159
  article-title: Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus
  publication-title: Nature Plants
  doi: 10.1038/s41477-019-0577-7
– year: 2017
  ident: 2021093021171533200_CIT0189
– volume: 24
  start-page: 1506
  year: 2007
  ident: 2021093021171533200_CIT0057
  article-title: Grinding up wheat: a massive loss of nucleotide diversity since domestication
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msm077
– volume: 15
  start-page: 426
  year: 2013
  ident: 2021093021171533200_CIT0177
  article-title: Ethylene—and oxygen signalling—drive plant survival during flooding
  publication-title: Plant Biology
  doi: 10.1111/plb.12014
– volume: 16
  start-page: 1
  year: 2016
  ident: 2021093021171533200_CIT0111
  article-title: Banking on wild relatives to feed the world
  publication-title: Gastronomica
  doi: 10.1525/gfc.2016.16.1.1
– volume: 68
  start-page: 288
  year: 2020
  ident: 2021093021171533200_CIT0082
  article-title: Gene expression studies of Saccharum spontaneum, a wild relative of sugarcane in response to salinity stress
  publication-title: Biotechnology and Applied Biochemistry
  doi: 10.1002/bab.1923
– volume: 18
  start-page: 2482
  year: 2020
  ident: 2021093021171533200_CIT0156
  article-title: Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.)
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.13422
– volume: 80
  start-page: 136
  year: 2014
  ident: 2021093021171533200_CIT0166
  article-title: Exploring genetic variation in the tomato (Solanum lycopersicon) clade by whole-genome sequencing
  publication-title: The Plant Journal
  doi: 10.1111/tpj.12616
– volume: 8
  start-page: 1274
  year: 2015
  ident: 2021093021171533200_CIT0104
  article-title: A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants
  publication-title: Molecular Plant
  doi: 10.1016/j.molp.2015.04.007
– volume: 67
  start-page: 1015
  year: 2016
  ident: 2021093021171533200_CIT0149
  article-title: On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv465
– volume: 5
  start-page: 484
  year: 2014
  ident: 2021093021171533200_CIT0058
  article-title: Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2014.00484
– volume: 17
  start-page: 667
  year: 2017
  ident: 2021093021171533200_CIT0103
  article-title: High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis
  publication-title: Functional & Integrative Genomics
  doi: 10.1007/s10142-017-0563-y
– volume: 19
  start-page: 20
  year: 2021
  ident: 2021093021171533200_CIT0181
  article-title: Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.13443
– volume: 115
  start-page: 5223
  year: 2018
  ident: 2021093021171533200_CIT0180
  article-title: Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1721749115
– volume: 220
  start-page: 395
  year: 2018
  ident: 2021093021171533200_CIT0162
  article-title: Maize domestication and gene interaction
  publication-title: New Phytologist
  doi: 10.1111/nph.15350
– start-page: 175
  volume-title: Physiological, molecular, and genetic perspectives of wheat improvement
  year: 2021
  ident: 2021093021171533200_CIT0086
  article-title: Genomic selection for wheat improvement.
  doi: 10.1007/978-3-030-59577-7_9
– volume: 38
  start-page: 137
  year: 2020
  ident: 2021093021171533200_CIT0078
  article-title: Identification and characterization of NADH kinase-3 from a stress-tolerant wild mung bean species (Vigna luteola (Jacq.) Benth.) with a possible role in waterlogging tolerance
  publication-title: Plant Molecular Biology Reporter
  doi: 10.1007/s11105-019-01185-y
– volume: 8
  start-page: e66428
  year: 2013
  ident: 2021093021171533200_CIT0140
  article-title: Yield trends are insufficient to double global crop production by 2050
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0066428
– volume: 8
  start-page: 536
  year: 2017
  ident: 2021093021171533200_CIT0206
  article-title: SNP discovery and genetic variation of candidate genes relevant to heat tolerance and agronomic traits in natural populations of sand rice (Agriophyllum squarrosum)
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.00536
– volume: 9
  start-page: 1
  year: 2018
  ident: 2021093021171533200_CIT0123
  article-title: Trends in flood losses in Europe over the past 150 years
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-04253-1
– volume: 33
  start-page: 543
  year: 2010
  ident: 2021093021171533200_CIT0037
  article-title: Analysis of the salt-stress response at cell-type resolution
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.02055.x
– volume: 10
  start-page: 1
  year: 2020
  ident: 2021093021171533200_CIT0174
  article-title: WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-63823-w
– volume: 2
  start-page: e36
  year: 2020
  ident: 2021093021171533200_CIT0033
  article-title: Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement
  publication-title: Legume Science
  doi: 10.1002/leg3.36
– volume: 6
  start-page: 914
  year: 2020
  ident: 2021093021171533200_CIT0015
  article-title: Plant pan-genomes are the new reference
  publication-title: Nature Plants
  doi: 10.1038/s41477-020-0733-0
– volume: 23
  start-page: 311
  year: 2016
  ident: 2021093021171533200_CIT0192
  article-title: WRKY transcription factor genes in wild rice Oryza nivara
  publication-title: DNA Research
  doi: 10.1093/dnares/dsw025
– volume-title: Physiological, molecular, and genetic perspectives of wheat improvement
  year: 2020
  ident: 2021093021171533200_CIT0185
– volume: 43
  start-page: D1023
  year: 2015
  ident: 2021093021171533200_CIT0003
  article-title: SNP-Seek database of SNPs derived from 3000 rice genomes
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gku1039
– volume: 59
  start-page: 1133
  year: 2019
  ident: 2021093021171533200_CIT0117
  article-title: Co-expression of Arabidopsis AtAVP1 and AtNHX1 to improve salt tolerance in soybean
  publication-title: Crop Science
  doi: 10.2135/cropsci2018.10.0640
– volume: 195
  start-page: 1
  year: 2021
  ident: 2021093021171533200_CIT0176
  article-title: Crop wild phylorelatives (CWPs): phylogenetic distance, cytogenetic compatibility and breeding system data enable estimation of crop wild relative gene pool classification
  publication-title: Botanical Journal of the Linnean Society
  doi: 10.1093/botlinnean/boaa064
– volume: 14
  start-page: 1095
  year: 2016
  ident: 2021093021171533200_CIT0001
  article-title: Global agricultural intensification during climate change: a role for genomics
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12467
– volume: 40
  start-page: 238
  year: 2017
  ident: 2021093021171533200_CIT0107
  article-title: A walk on the wild side: Oryza species as source for rice abiotic stress tolerance
  publication-title: Genetics and Molecular Biology
  doi: 10.1590/1678-4685-gmb-2016-0093
– volume: 214
  start-page: 81
  year: 2017
  ident: 2021093021171533200_CIT0050
  article-title: Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2017.04.007
– volume: 54
  start-page: 18
  year: 2020
  ident: 2021093021171533200_CIT0034
  article-title: Plant pangenomics: approaches, applications and advancements
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2019.12.005
– volume: 169
  start-page: 971
  year: 2015
  ident: 2021093021171533200_CIT0101
  article-title: A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
  publication-title: Plant Physiology
  doi: 10.1104/pp.15.00636
– volume: 15
  start-page: 1
  year: 2014
  ident: 2021093021171533200_CIT0094
  article-title: Beyond genomic variation—comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-250
– volume: 242
  start-page: 342
  year: 2016
  ident: 2021093021171533200_CIT0080
  article-title: Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2015.08.015
– volume: 95
  start-page: 71
  year: 2018
  ident: 2021093021171533200_CIT0098
  article-title: Assembly and annotation of a draft genome sequence for Glycine latifolia, a perennial wild relative of soybean
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13931
– volume: 35
  start-page: 1582
  year: 2012
  ident: 2021093021171533200_CIT0090
  article-title: HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2012.02511.x
– volume: 27
  start-page: 954
  year: 2015
  ident: 2021093021171533200_CIT0008
  article-title: The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives
  publication-title: The Plant Cell
  doi: 10.1105/tpc.114.135954
– volume: 57
  start-page: 1160
  year: 2017
  ident: 2021093021171533200_CIT0161
  article-title: Successful introgression of abiotic stress tolerance from wild tepary bean to common bean
  publication-title: Crop Science
  doi: 10.2135/cropsci2016.10.0851
– volume: 105
  start-page: 1165
  year: 2021
  ident: 2021093021171533200_CIT0167
  article-title: Designing future crops: challenges and strategies for sustainable agriculture
  publication-title: The Plant Journal
  doi: 10.1111/tpj.15107
– volume: 10
  start-page: 4
  year: 2019
  ident: 2021093021171533200_CIT0026
  article-title: Adaptive introgression: an untapped evolutionary mechanism for crop adaptation
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2019.00004
– volume: 16
  start-page: 1265
  year: 2018
  ident: 2021093021171533200_CIT0069
  article-title: Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12867
– volume: 15
  start-page: 1
  year: 2021
  ident: 2021093021171533200_CIT0183
  article-title: WRKY transcription factors and plant defense responses: latest discoveries and future prospects
  publication-title: Plant Cell Reports
– volume: 9
  start-page: 128
  year: 2018
  ident: 2021093021171533200_CIT0031
  article-title: Genotyping by sequencing and genome–environment associations in wild common bean predict widespread divergent adaptation to drought
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.00128
– volume: 6
  start-page: 835
  year: 2016
  ident: 2021093021171533200_CIT0005
  article-title: Environmental association analyses identify candidates for abiotic stress tolerance in Glycine soja, the wild progenitor of cultivated soybeans
  publication-title: G3
  doi: 10.1534/g3.116.026914
– volume-title: Accelerated plant breeding, Vol. 1
  year: 2020
  ident: 2021093021171533200_CIT0055
– volume: 169
  start-page: 103884
  year: 2020
  ident: 2021093021171533200_CIT0032
  article-title: Crop wild relatives as a genetic resource for generating low-cyanide, drought-tolerant Sorghum
  publication-title: Environmental and Experimental Botany
  doi: 10.1016/j.envexpbot.2019.103884
– volume: 5
  start-page: 1
  year: 2014
  ident: 2021093021171533200_CIT0135
  article-title: Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing
  publication-title: Nature Communications
  doi: 10.1038/ncomms5340
– volume: 14
  start-page: 1057
  year: 2016
  ident: 2021093021171533200_CIT0081
  article-title: Translational genomics for plant breeding with the genome sequence explosion
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12449
– volume-title: The state of food insecurity in the world: economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition
  year: 2012
  ident: 2021093021171533200_CIT0040
– volume: 101
  start-page: 1791
  year: 2014
  ident: 2021093021171533200_CIT0186
  article-title: Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1400116
– volume: 5
  start-page: 1
  year: 2015
  ident: 2021093021171533200_CIT0173
  article-title: Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits
  publication-title: Scientific Reports
  doi: 10.1038/srep14799
– volume: 42
  start-page: 325
  year: 2020
  ident: 2021093021171533200_CIT0179
  article-title: Genome-wide identification, characterisation and expression profile analysis of DEAD-box family genes in sweet potato wild ancestor Ipomoea trifida under abiotic stresses
  publication-title: Genes & Genomics
  doi: 10.1007/s13258-019-00910-x
– volume: 25
  start-page: 148
  year: 2020
  ident: 2021093021171533200_CIT0083
  article-title: Super-pangenome by integrating the wild side of a species for accelerated crop improvement
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2019.10.012
– volume: 167
  start-page: 265
  year: 2013
  ident: 2021093021171533200_CIT0175
  article-title: A prioritized crop wild relative inventory to help underpin global food security
  publication-title: Biological Conservation
  doi: 10.1016/j.biocon.2013.08.011
– volume: 8
  start-page: 2211
  year: 2018
  ident: 2021093021171533200_CIT0063
  article-title: Haplotype variation of flowering time genes of sugar beet and its wild relatives and the impact on life cycle regimes
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.02211
– volume: 48
  start-page: 1024
  year: 2016
  ident: 2021093021171533200_CIT0144
  article-title: Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation
  publication-title: Nature Genetics
  doi: 10.1038/ng.3612
SSID ssj0005055
Score 2.5873926
SecondaryResourceType review_article
Snippet This work analyzes the economic cost of global climate changes on crop productivity and argues for a broader use of wild relatives to improve crop stress...
To match predicted population growth, annual food production should be doubled by 2050. This is not achievable by current agronomical and breeding practices,...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6123
Title Rewilding crops for climate resilience: economic analysis and de novo domestication strategies
URI https://www.proquest.com/docview/2540520672
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66-uCLeMV1vUTYJ0vdpk2T1jeVHUZdV9AZGF8suRUqa7tOOyrz6z1JbzMyyupLKeEQSr6vJyeX8x2EDk2oOU2M9DkhuU9zHftCK3tcSHKiRZxoZrOR352y6Zy-WcSL37JLGvlMrXfmlfwPqtAGuNos2X9AdugUGuAd8IUnIAzPC2H8wfxoi1p7thCXU1awqY4QhNpiKHVx5v5bV3ynyz_2RC9CYjfMtfHK6nvl6eqrFdtod--8uunlI_4QuW5VBZBV0_sTd1y0XotvbeZMMW7Wu7pRVhxaFktvuqprUQyk_AhTlHGsnFTrYpglPq3aW_3l5r5ESPpLFIMrpSzwQ9r5eLOjrfO_PNzkWbLhTa00zE4330pgffkpLexLIUO-Q0779H02mZ-cZLPjxewyuhLCOsKtuV-_He8ABa4s7vBZXQIndH8EnR91XW-FLFtpkP287YKR2Q10vcMCv2gpcRNdMuUtdPWlg-I2-jzwAjteYOAF7niBR148xz0rcM8KeNFYG2xZgbdYgUdW3EHzyfHs1dTv6mj4Cjx049NA8TzW4GmJyiFqUUwJI2nKJSEykJIblkpOVSJYkjDJIvAuXAUUjOF_jU10F-2VVWnuIUxjHqQiNSSKGM0jnspU6jDWeZpyQZjZR0_7ocpUJzJva52cZe1lhyiDcc26cd1Hh4PxeautstvsMYz53y2e9Hhk4B3tkZcoTbWqs9AuSGyFgvD-BWwO0LWRyQ_QXrNcmYcQczbykePNLyRbidc
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rewilding+crops+for+climate+resilience%3A+economic+analysis+and+de+novo+domestication+strategies&rft.jtitle=Journal+of+experimental+botany&rft.au=Razzaq%2C+Ali&rft.au=Wani%2C+Shabir+Hussain&rft.au=Saleem%2C+Fozia&rft.au=Yu%2C+Min&rft.date=2021-09-30&rft.issn=1460-2431&rft.eissn=1460-2431&rft.volume=72&rft.issue=18&rft.spage=6123&rft_id=info:doi/10.1093%2Fjxb%2Ferab276&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon